Generalizing the Ramsey Problem through Diameter

Dhruv Mubayi*

Submitted: January 8, 2001; Accepted: November 13, 2001. MR Subject Classifications: 05C12, 05C15, 05C35, 05C55

Abstract

Given a graph G and positive integers d, k, let $f_d^k(G)$ be the maximum t such that every k-coloring of E(G) yields a monochromatic subgraph with diameter at most d on at least t vertices. Determining $f_1^k(K_n)$ is equivalent to determining classical Ramsey numbers for multicolorings. Our results include

• determining $f_d^k(K_{a,b})$ within 1 for all d, k, a, b

• for $d \ge 4$, $f_d^3(K_n) = \lceil n/2 \rceil + 1$ or $\lceil n/2 \rceil$ depending on whether $n \equiv 2 \pmod{4}$ or not

• $f_3^k(K_n) > \frac{n}{k-1+1/k}$

The third result is almost sharp, since a construction due to Calkin implies that $f_3^k(K_n) \leq \frac{n}{k-1} + k - 1$ when k - 1 is a prime power. The asymptotics for $f_d^k(K_n)$ remain open when d = k = 3 and when $d \geq 3, k \geq 4$ are fixed.

1 Introduction

The Ramsey problem for multicolorings asks for the minimum n such that every k-coloring of the edges of K_n yields a monochromatic K_p . This problem has been generalized in many ways (see, e.g., [2, 6, 7, 9, 12, 13, 14]). We begin with the following generalization due to Paul Erdős [8] (see also [11]):

Problem 1 What is the maximum t with the property that every k-coloring of $E(K_n)$ yields a monochromatic subgraph of diameter at most two on at least t vertices?

A related problem is investigated in [14], where the existence of the Ramsey number is proven when the host graph is not necessarily a clique. Call a subgraph of diameter at most d a d-subgraph.

^{*}Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607-7045, *mubayi@math.uic.edu*

Keywords: diameter, generalized ramsey theory

Theorem 2 (Tonoyan [14]) Let $D, k \ge 1$, $d \ge D$, $n \ge 2$. Then there is a smallest integer $t = R_{D,k}(n,d)$ such that every graph G with diameter D on at least t vertices has the following property: every k-coloring of E(G) yields a monochromatic d-subgraph on at least n vertices.

We study a problem closely related to Tonoyan's result that also generalizes Problem 1 to larger diameter.

Definition 3 Let G be a graph and d, k be positive integers. Then $f_d^k(G)$ is the maximum t with the property that every k-coloring of E(G) yields a monochromatic d-subgraph on at least t vertices.

The asymptotics for $f_d^k(G)$ when $G = K_n$ and d = 2 (Erdős' problem) were determined in [10].

Theorem 4 (Fowler [10]) $f_2^2(K_n) = \lceil 3n/4 \rceil$ and if $k \ge 3$, then $f_2^k(K_n) \sim n/k$ as $n \to \infty$.

In this paper, we study $f_d^k(G)$ when G is a complete graph or a complete bipartite graph. In the latter case, we determine its value within 1.

Theorem 5 (Section 3) Let $k, a, b \ge 2$. Then $f_2^k(K_{a,b}) = 1 + \lceil \max\{a, b\}/k \rceil$, and for $d \ge 3$, $\left\lceil \frac{1}{ab} \left(\left\lceil \frac{ab^2}{k} \right\rceil + \left\lceil \frac{a^2b}{k} \right\rceil \right) \right\rceil \le f_d^k(K_{a,b}) \le \left\lceil \frac{a}{k} \right\rceil + \left\lceil \frac{b}{k} \right\rceil.$

Determining $f_d^k(K_n)$ (for $d \ge 3$) seems more difficult. We succeed in doing this only when d > k = 3.

Theorem 6 (Section 4) Let $d \ge 4$. Then

$$f_d^3(K_n) = \begin{cases} n/2 + 1 & n \equiv 2 \pmod{4} \\ \lceil n/2 \rceil & otherwise \end{cases}$$

When d = 3 we are able to obtain bounds for $f_d^k(K_n)$.

Theorem 7 (Section 5) Let $k \ge 2$. Then $f_3^k(K_n) > n/(k - 1 + 1/k)$.

In section 5 we also describe an unpublished construction of Calkin which implies that $f_3^k(K_n) \leq n/(k-1) + k - 1$ when k-1 is a prime power. This shows that the bound in Theorem 7 is not far off from being best possible. In section 6 we summarize the known results for $f_d^k(K_n)$. Our main tool for Theorems 5 and 7 is developed in Section 2.

The electronic journal of combinatorics 9 (2002), #R00

2 The Main Lemma

In this section we prove a statement about 3-subgraphs in colorings of bipartite graphs. Although this is later used in the proofs of Theorems 5 and 7, we feel it is of independent interest.

Suppose that G is a graph and $c : E(G) \to [k]$ is a k-coloring of its edges. For each $i \in [k]$ and $x \in V(G)$, let $N_i(x) = \{y \in N(x) : c(xy) = i\}$ and $d_i(x) = |N_i(x)|$. For $uv \in E(G)$, let the weight of uv be

$$w(uv) = d_{c(uv)}(u) + d_{c(uv)}(v).$$

Lemma 8 Let G be a subgraph of $K_{a,b}$ with e edges and $d \ge 3$. Then

$$f_d^k(G) \ge \left\lceil \frac{1}{e} \left(\left\lceil \frac{e^2}{ak} \right\rceil + \left\lceil \frac{e^2}{bk} \right\rceil \right) \right\rceil \ge \left\lceil \frac{e}{ak} \right\rceil + \left\lceil \frac{e}{bk} \right\rceil - 1.$$

Proof: Suppose that $K_{a,b}$ has bipartition A, B with $X = V(G) \cap A$, and $Y = V(G) \cap B$. Let $c : E(G) \to [k]$ be a k-coloring. Observe that an edge with weight w gives rise to a 3-subgraph on w vertices. We prove the stronger statement that G has an edge with weight at least

$$\left\lceil \frac{1}{e} \left(\left\lceil \frac{e^2}{ak} \right\rceil + \left\lceil \frac{e^2}{bk} \right\rceil \right) \right\rceil.$$

We obtain a lower bound on the sum of all the edge-weights.

$$\sum_{uv \in E(G)} w(uv) = \sum_{x \in X} \sum_{i \in [k]} \sum_{y \in N_i(x)} w(xy)$$

$$= \sum_{x \in X} \sum_{i \in [k]} \sum_{y \in N_i(x)} d_i(x) + d_i(y)$$

$$= \sum_{x \in X} \sum_{i \in [k]} [d_i(x)]^2 + \sum_{y \in Y} \sum_{i \in [k]} [d_i(y)]^2$$

$$\ge \left\lceil \frac{e^2}{ak} \right\rceil + \left\lceil \frac{e^2}{bk} \right\rceil,$$
(1)

where (1) follows from the Cauchy-Schwarz inequality applied to each double sum. Since there is an edge with weight at least as large as the average, we have

$$f_d^k(G) \ge \left\lceil \frac{1}{e} \left(\left\lceil \frac{e^2}{ak} \right\rceil + \left\lceil \frac{e^2}{bk} \right\rceil \right) \right\rceil \ge \left\lceil \frac{e}{ak} + \frac{e}{bk} \right\rceil \ge \left\lceil \frac{e}{ak} \right\rceil + \left\lceil \frac{e}{bk} \right\rceil - 1.$$

A slight variation of the proof of Lemma 8 also yields the following more general result.

Lemma 9 Suppose that G is a graph with n vertices and e edges. Let $c : E(G) \to [k]$ be a k-coloring of E(G) such that every color class is triangle-free. Then G contains a monochromatic 3-subgraph on at least 4e/(nk) vertices.

The electronic journal of combinatorics ${\bf 9}$ (2002), $\#{\rm R00}$

3 Bipartite Graphs

Proof of Theorem 5: Let $c : E(K_{a,b}) \to [k]$ be a k-coloring. The lower bound for the case d = 2 is obtained by considering a pair (v, i) for which $d_i(v)$ is maximized. The set $v \cup N_i(v)$ induces a monochromatic 2-subgraph. The lower bound when $d \ge 3$ follows from Lemma 8. For the upper bounds we provide the following constructions.

Let $K_{a,b}$ have bipartition $X = \{x_1, \ldots, x_a\}$ and $Y = \{y_1, \ldots, y_b\}$, and assume that $a \leq b$. Partition X into k sets X_1, \ldots, X_k , each of size $\lceil a/k \rceil$ or $\lfloor a/k \rfloor$, and partition Y into k sets Y_1, \ldots, Y_k , each of size $\lceil b/k \rceil$ or $\lfloor b/k \rfloor$. Furthermore, let both these partitions be "consecutive" in the sense that $X_1 = \{x_1, x_2, \ldots, x_r\}$, $X_2 = \{x_{r+1}, x_{r+2}, \ldots, x_{r+s}\}$, etc. Finally, for each nonnegative integer t, let $Y_i + t = \{y_{l+t} : y_l \in Y_i\}$, where subscripts are taken modulo b.

When d = 2 and $j \in [k]$, let the j^{th} color class be all edges between x_i and $Y_j + (i-1)$ for each $i \in [n]$. Because $K_{a,b}$ is bipartite, the distance between a pair of nonadjacent vertices $x \in X$ and $y \in Y$ in the subgraph formed by the edges in color j is at least three. Thus a 2-subgraph of $K_{a,b}$ is a complete bipartite graph.

For $1 \leq i \leq k$, let α_i be the smallest subscript of an element in Y_i . Thus $\alpha_{i+1} - \alpha_i = |Y_i|$ since $Y_i = \{y_{\alpha_i}, y_{\alpha_i+1}, \dots, y_{\alpha_{i+1}-1}\}$. Fix $l \in [k]$ and let H be a largest monochromatic complete bipartite graph in color l. Let $A = V(H) \cap X$ and $B = V(H) \cap Y$. Let r be the smallest index such that $x_r \in A$ and let s be the largest index such that $x_s \in A$. As $N_H(x_r) = \{y_{\alpha_l+r-1}, y_{\alpha_l+r}, \dots, y_{\alpha_{l+1}+r-2}\}$ and $N_H(x_s) = \{y_{\alpha_l+s-1}, y_{\alpha_l+s}, \dots, y_{\alpha_{l+1}+s-2}\}$, we have $N_H(x_r) \cap N_H(x_s) = \{y_{\alpha_l+s-1}, \dots, y_{\alpha_{l+1}+r-2}\}$, where subscripts are taken modulo b. Consequently,

$$\begin{aligned} |V(H)| &\leq |\{x_r, \dots, x_s\}| + |\{y_{\alpha_l+s-1}, \dots, y_{\alpha_{l+1}+r-2}\}| \\ &= (s-r+1) + (\alpha_{l+1}+r-2 - (\alpha_l+s-1)+1) \\ &= 1 + \alpha_{l+1} - \alpha_l \\ &= 1 + |Y_l| \\ &\leq 1 + \lceil b/k \rceil. \end{aligned}$$

When d > 2 and $j \in [k]$, let the j^{th} color class consist of the edges between X_i and Y_{i-1+j} (subscripts taken modulo k) for each $i \in [k]$. The maximum size of a connected monochromatic subgraph is $\max_{i,i'}\{|X_i| + |Y_{i'}|\} = \lceil a/k \rceil + \lceil b/k \rceil$.

Recall that the bipartite Ramsey number for multicolorings $b_k(H)$ is the minimum n such that every k-coloring of $E(K_{n,n})$ yields a monochromatic copy of H. Analogous to the case with the classical Ramsey numbers, determining these numbers is hard. Chvátal [5], and Bieneke-Schwenk [3] proved that when $H = K_{p,q}$, this number is at most $(q - 1)k^p + O(k^{p-1})$, and some exact results for the case $H = K_{2,q}$ were also obtained in [3].

It is worth noting that the function $f_2^k(K_{a,b})$ seems fundamentally different (and much easier to determine) from the numbers $b_k(K_{p,q})$, since we do not require our complete bipartite subgraphs to have a specified number of vertices in each partite set.

4 Diameter at least four

In this section we consider $f_d^k(K_n)$. Since a 1-subgraph is a clique, the problem is hopeless if d = 1. The case d = 2 was settled in [10], where nontrivial constructions were obtained that matched the trivial lower bounds asymptotically. We investigate the problem for larger d. We include the following slight strengthening of a well-known (and easy) fact for completeness (see problem 2.1.34 of [15]).

Proposition 10 Every 2-coloring of $E(K_n)$ yields a monochromatic spanning 2-subgraph or a monochromatic spanning 3-subgraph in each color. Thus in particular, $f_d^2(K_n) = n$ for $d \ge 3$.

Proof: Suppose that the coloring uses red and blue. We may assume that both the red subgraph and the blue subgraph have diameter at least three. Thus there exist vertices r_1, r_2 (respectively, b_1, b_2) with the shortest red r_1, r_2 -path (respectively, blue b_1, b_2 -path) having length at least three. We will show that the blue subgraph has diameter at most three.

Let u, v be arbitrary vertices in K_n . If $\{u, v\} \cap \{r_1, r_2\} \neq \emptyset$, then the fact that there is no red r_1, r_2 -path of length at most two guarantees a blue u, v-path of length at most two. We may therefore assume that $\{u, v\} \cap \{r_1, r_2\} = \emptyset$.

At least one of ur_1, ur_2 is blue, and at least one of vr_1, vr_2 is blue. Together with the blue edge r_1r_2 , these three blue edges contain a u, v-path of length at most three. Since u and v are arbitrary, the blue subgraph has diameter at most three. Similarly, the vertices b_1, b_2 can be used to show that the red subgraph also has diameter at most three. \Box

We now turn to the case when $d, k \ge 3$. The following k-coloring of K_n has the property that the largest connected monochromatic subgraph has order $2\lceil n/(k+1)\rceil$ when k is odd and $2\lceil n/k\rceil$ when k is even. As we will see below, this is sharp when k = 3, but not for any other value of k when k - 1 is a prime power [4].

This construction was suggested independently by Erdős. It uses the well-known fact that the edge-chromatic number of K_n is n if n is odd and n-1 if n is even.

Construction 11 When k is odd, partition $V(K_n)$ into k + 1 sets V_1, \ldots, V_{k+1} , each of size $\lfloor n/(k+1) \rfloor$ or $\lceil n/(k+1) \rceil$. Contract each V_i to a single vertex v_i , and the edges between any pair V_i, V_j to a single edge $v_i v_j$ to obtain K_{k+1} . Let $c : E(K_{k+1}) \to [k]$ be a proper edge-coloring. Expand K_{k+1} back to the original K_n , coloring every edge between V_i and V_j with $c(v_i v_j)$. Color all edges within each V_i with color 1.

Because c is a proper edge-coloring, a monochromatic connected graph G can have $V(G) \cap V_i \neq \emptyset$ for at most two distinct indices $i \in [k]$. Thus $|V(G)| \leq 2\lceil n/(k+1)\rceil$. In the case $n \equiv 1 \pmod{k}$, only one V_i has size $\lceil n/(k+1)\rceil$ and all the rest have size $\lfloor n/(k+1) \rfloor$, so $|V(G)| \leq \lceil n/(k+1)\rceil + \lfloor n/(k+1) \rfloor$.

When k is even, partition $V(K_n)$ into k sets, color as described above with k-1 colors and change the color on any single edge to the kth color.

Proof of Theorem 6: For the upper bounds we use Construction 11. When $n \equiv 0, 3 \pmod{4}$, $2\lceil n/4 \rceil = \lceil n/2 \rceil$. When $n \equiv 2 \pmod{4}$, $2\lceil n/4 \rceil = n/2 + 1$. When $n \equiv 1 \pmod{4}$, the construction gives the improvement $\lceil n/4 \rceil + \lfloor n/4 \rfloor$ which again equals the claimed bound $\lceil n/2 \rceil$.

For the lower bound, consider a 3-coloring $c : E(K_n) \to [3]$. Pick any vertex v, and assume without loss of generality that $\max\{d_i(v)\} = d_1(v)$. Let $N = v \cup N_1(v)$ and let $N' = (\bigcup_{w \in N} N_1(w)) - N$. The subgraph in color 1 induced by $N \cup N'$ is a 4-subgraph, thus we are done unless $|N| + |N'| \leq n/2$, which we may henceforth assume.

Let $M = V(K_n) - N - N'$. Observe that color 1 is forbidden on edges between N and M. Since $M \subseteq N_2(v) \cup N_3(v)$, we may assume without loss of generality that the set $S = N_2(v) \cap M$ satisfies $|S| \ge |M|/2 \ge n/4$.

If every $x \in N$ has the property that there is a $y \in S$ with c(xy) = 2, then the subgraph in color 2 induced by $N \cup S$ is a 4-subgraph with at least (n+2)/3 + n/4 vertices, and we are done. We may therefore suppose that there is an $x \in N$ such that c(xx') = 3 for every $x' \in S$. For i = 2, 3, let

$$A_i = \{ u \in N \cup N' \cup (M - S) : \text{ there is a } u' \in S \text{ with } c(uu') = i \}.$$

By the definitions of N, M, and A_i , we have $A_2 \cup A_3 \supseteq N$. We next strengthen this to $A_2 \cup A_3 \supseteq N \cup N'$. If there is a vertex $z \in N'$ with c(zy) = 1 for every $y \in S$, then the subgraph in color 1 induced by $S \cup N \cup \{z\}$ is a monochromatic 4-subgraph on at least $n/4 + (n+2)/3 + 1 \ge n/2 + 1$ vertices. Therefore we assume the $A_2 \cup A_3 \supseteq N \cup N'$.

Because of v and x, each of the sets $A_i \cup S$ induces a monochromatic 4-subgraph. Consequently, there is a monochromatic 4-subgraph of order at least $|S| + \max_i \{|A_i|\}$. By the previous observations, this is at least

$$|S| + \frac{|A_2| + |A_3|}{2} \ge \left\lceil \frac{|M|}{2} \right\rceil + \left\lceil \frac{|A_2 \cup A_3|}{2} \right\rceil \ge$$
$$\ge \left\lceil \frac{|M|}{2} \right\rceil + \left\lceil \frac{|N \cup N'|}{2} \right\rceil = \left\lceil \frac{|M|}{2} \right\rceil + \left\lceil \frac{n - |M|}{2} \right\rceil \ge \left\lceil \frac{n}{2} \right\rceil$$

We now improve this bound by one when n = 4l+2. We obtain the improvement unless equality holds above, which forces |M| to be even, |S| = |M|/2, and $A_2 \cup A_3 = N \cup N'$. Recall that $|N| + |N'| \le n/2$, which implies that $|M| \ge n/2 = 2l + 1$. Because |M| is even, we obtain $|M| \ge 2l + 2 = n/2 + 1$.

Since $A_2 \cup A_3 = N \cup N'$, every vertex in M - S has no edge to S in color 2 or 3. Thus all edges between S and M - S are of color 1, and the complete bipartite graph B with parts S and M - S is monochromatic. Because |S| = |M|/2, both S and M - S are nonempty. This implies that B is a monochromatic 2-subgraph with $|M| \ge n/2 + 1$ vertices.

The electronic journal of combinatorics ${\bf 9}$ (2002), $\#{\rm R00}$

5 Diameter three and infinity

In this section we prove Theorem 7 and also present an unpublished construction of Calkin which improves the bounds given by Construction 11 when k - 1 > 3 is a prime power.

Proof of Theorem 7: Given a k-coloring $c : E(K_n) \to [k]$, choose $v \in V(K_n)$, and assume that $d_i(v)$ is maximized when i = 1. Consider the bipartite graph G with bipartition $A = v \cup N_1(v)$ and $B = V(K_n) - A$; set a = |A|. For $x \in A$ and $y \in B$, let $xy \in E(G)$ if $c(xy) \neq 1$. Let $\Delta = \max_{w \in A} |N_1(w) \cap B|$. Then $E(G) \ge a(n - a - \Delta)$.

For any $w \in A$ with $|N_1(w) \cap B| = \Delta$, the subgraph in color 1 induced by $A \cup N_1(w)$ is a 3-subgraph with at least $a + \Delta$ vertices. By definition, color 1 is absent in G and thus E(G) is (k-1)-colored. Lemma 8 applied to G yields a 3-subgraph on at least $(n-a-\Delta)/(k-1) + a(n-a-\Delta)/((k-1)(n-a))$ vertices. Thus K_n contains a 3-subgraph of order at least

$$\min_{\substack{a, \Delta \\ a \ge 1+(n-1)/k \\ \Delta \le n-a}} \max\left\{a + \Delta, \ \frac{a(n-a-\Delta)}{k-1} \left(\frac{1}{a} + \frac{1}{n-a}\right)\right\}.$$

We let Δ and *a* take on real values to obtain a lower bound on this minimum. Since one of these functions is increasing in Δ and the other is decreasing in Δ , the choice of Δ that minimizes the maximum (for fixed *a*) is that for which the two quantities are equal. This choice is

$$\Delta = \frac{(n-a)(n-a(k-1))}{kn-a(k-1)} ,$$

and both functions become $n^2/(kn - a(k - 1))$. Since this is an increasing function for $1 + (n - 1)/k \le a < kn/(k - 1)$, and since we are assuming $a \le n$, the minimum is obtained at a = 1 + (n - 1)/k. This yields a lower bound of $kn^2/((k^2 - k + 1)n - (k - 1)^2)$.

Definition 12 For a positive integer k, let $f_{\infty}^{k}(G)$ be the maximum t with the property that every k-coloring of E(G) yields a monochromatic connected subgraph on at least t vertices.

Clearly $f_d^k(G) \leq f_\infty^k(G)$ for each d, since a d-subgraph is connected. Construction 11 and Theorem 6 therefore immediately yield $f_\infty^3(K_n) = n/2 + 1$ or $\lceil n/2 \rceil$ depending on whether $n \equiv 2 \pmod{4}$ or not (see also exercise 14 of Chapter 6 of [1]). For larger k, however, the following unpublished construction due to Calkin improves Construction 11

Construction 13 (Calkin) Let q be a prime power and \mathbf{F} be a finite field on q elements. We exhibit a q + 1-coloring of $E(K_{q^2})$. Let $V(K_{q^2}) = \mathbf{F} \times \mathbf{F}$. Color the edge (i, j)(i', j') by the field element (j' - j)/(i' - i) if $i \neq i'$, and color all edges (i, j)(i, j') with a single new color. This coloring is well-defined since (j' - j)/(i' - i) = (j - j')/(i - i'). \Box

Lemma 14 Construction 13 produces a q + 1-coloring of $E(K_{q^2})$ such that the subgraph of any given color consists of q vertex disjoint copies of K_q .

Proof: This is certainly true of the color on edges of the form (i, j)(i, j'). Now fix a color $l \in \mathbf{F}$. Let $(x, y) \sim (x', y')$ if the edge (x, y)(x', y') has color l. We will show that this relation is transitive.

Suppose that $(i, j) \sim (i', j')$ and $(i', j') \sim (i'', j'')$. Then

$$(j'-j)/(i'-i) = l = (j''-j')/(i''-i').$$

Consequently,

$$(j''-j) = (j''-j') + (j'-j) = l(i''-i') + l(i'-i) = l(i''-i)$$

and therefore $(i, j) \sim (i'', j'')$.

Since this relation on $V(K_{q^2}) \times V(K_{q^2})$ is an equivalence relation, the edges in color l form vertex disjoint complete graphs. For fixed i, j, l, there are exactly q - 1 distinct $(x, y) \neq (i, j)$ for which $(x, y) \sim (i, j)$, because $x \neq i$ uniquely determines y. This completes the proof.

Lemma 14 together with Theorem 5 allows us to easily obtain good bounds for $f_{\infty}^k(K_n)$. The author believes that the following theorem was also proved independently by Calkin. Our proof of the lower bound given below uses Theorem 5.

Theorem 15 Let k-1 be a prime power. Then $n/(k-1) \leq f_{\infty}^{k}(K_{n}) \leq n/(k-1)+k-1$.

Proof: For the upper bound we use the idea of Construction 13. Let **F** be a finite field of q = k - 1 elements. Partition $V(K_n)$ into $(k - 1)^2$ sets $V_{i,j}$ of size $\lfloor n/(k - 1)^2 \rfloor$ or $\lceil n/(k - 1)^2 \rceil$, where $i, j \in \mathbf{F}$. Color all edges between $V_{i,j}$ and $V_{i',j'}$ by the field element (j' - j)/(i' - i) if $i \neq i'$, and by a new color if i = i'. Color all edges within each $V_{i,j}$ by a single color in **F**.

Lemma 14 implies that the order of the largest monochromatic connected subgraph is at most $\lceil n/(k-1)^2 \rceil (k-1) \le n/(k-1) + k - 1$.

For the lower bound, consider a k-coloring of $E(K_n)$. We may assume that the subgraph H in some color l is not a connected spanning subgraph. This yields a partition $X \cup Y$ of $V(K_n)$ such that no edge between X and Y has color l (let X be a component of H). The bipartite graph B formed by the X, Y edges is colored with k-1 colors. Applying Theorem 5 to B yields a 3-subgraph of order at least |X|/(k-1)+|Y|/(k-1)=n/(k-1). \Box

6 Table of Results

Table of Results	for	$f_d^k(K_n)$
------------------	-----	--------------

	2	3	4	5			
1	Equivalent to classical Ramsey numbers						
2	$\left\lceil \frac{3n}{4} \right\rceil, [10] \qquad \qquad \sim \frac{n}{k} \;, [10]$						
		$\leq \left\lceil \frac{n}{2} \right\rceil + 1 ,$	$\leq \frac{n}{3} + 2 \; ,$	$\leq \frac{n}{k-1} + k - 1$, $k-1$ prime		
3	n,	Construction 11	Construction 13	power, Construction 13			
	Proposition 10	$> \frac{3n}{7}$, Theorem 7	$> \frac{4n}{13}$, Theorem 7	$> \frac{n}{k-1+1/k}$, Theorem 7			
4		$\left\lceil \frac{n}{2} \right\rceil$ or $\left\lceil \frac{n}{2} \right\rceil + 1$	$\leq \frac{n}{3} + 3 \; ,$	$\leq \frac{n}{4} + 4 \; ,$			
:		Construction 11 Theorem 6	Construction 13	Construction 13			

7 Acknowledgments

The author thanks Tom Fowler for informing him about [10], and an anonymous referee for informing him about [4]. Thanks also to Annette Rohrs for help with typesetting the article.

References

- [1] B. Bollobás, Modern Graph Theory, Springer-Verlag (1998).
- [2] S. Burr, P. Erdős, Generalizations of a Ramsey-theoretic result of Chvátal, J. Graph Theory 7 (1983), no. 1, 39–51.
- [3] L. W. Beineke, A. J. Schwenk, On a bipartite form of the Ramsey problem, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pp. 17–22. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976.
- [4] N. Calkin, unpublished.

- [5] V. Chvátal, On finite polarized partition relations, Canad. Math. Bul., 12, (1969), 321–326.
- [6] M. K. Chung, C. L. Liu, A generalization of Ramsey theory for graphs, *Discrete Math.* 21 (1978), no. 2, 117–127.
- [7] G. Chen, R. H. Schelp, Ramsey problems with bounded degree spread, Combin. Probab. Comput. 2 (1993), no. 3, 263–269.
- [8] P. Erdős, personal communication with T. Fowler.
- [9] P. Erdős, A. Hajnal, J. Pach, On a metric generalization of Ramsey's theorem, *Israel J. Math.* 102 (1997), 283–295.
- [10] T. Fowler, Finding large monochromatic diameter two subgraphs, to appear.
- [11] A. Gyárfás, Fruit salad, Electron. J. Combin. 4 (1997), no. 1, Research Paper 8, 8 pp. (electronic).
- [12] M. S. Jacobson, On a generalization of Ramsey theory, Discrete Math. 38 (1982), no. 2-3, 191–195.
- [13] J. Nešetřil, V. Rödl A structural generalization of the Ramsey theorem, Bull. Amer. Math. Soc. 83 (1977), no. 1, 127–128.
- [14] R. N. Tonoyan, An analogue of Ramsey's theorem, Applied mathematics, No. 1 (Russian), 61–66, 92–93, Erevan. Univ., Erevan, 1981.
- [15] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., (1996).