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Abstract

A minimal k-cycle is a family of sets A0, . . . , Ak−1 for which Ai ∩Aj 6= ∅ if and only if i = j

or i and j are consecutive modulo k. Let fr(n, k) be the maximum size of a family of r-sets of
an n element set containing no minimal k-cycle. Our results imply that for fixed r, k ≥ 3,

`

(
n− 1
r − 1

)
+ O(nr−2) ≤ fr(n, k) ≤ 3`

(
n− 1
r − 1

)
+ O(nr−2),

where ` = b(k− 1)/2c. We also prove that fr(n, 4) = (1 + o(1))
(
n−1
r−1

)
as n →∞. This supports

a conjecture of Füredi [9] on families in which no two pairs of disjoint sets have the same union.

1 Introduction.

In this paper, we are interested in a generalization to hypergraphs of the extremal theory of paths
and cycles in graphs. Following Berge [1], a k-cycle is a set system {Ai : i ∈ Zk} such that the
family {Ai ∩ Ai+1 : i ∈ Zk} has a system of distinct representatives. It is convenient to represent
a k-cycle {A0, A1, . . . , Ak−1} as an ordered list A0A1A2 . . . Ak−1A0. A minimal k-cycle is a k-cycle
A0A1 . . . Ak−1A0 such that Ai ∩ Aj 6= ∅ if and only if i = j or i and j are consecutive modulo
k. A minimal k-path is a family of sets {A0, A1, . . . , Ak−1} such that Ai ∩ Aj 6= ∅ if and only if
|i−j| ≤ 1. In other words, no vertex in a minimal k-path or k-cycle belongs to two non-consecutive
sets. We write Ck and Pk for the family of minimal k-cycles and k-paths, respectively. For example
any path, in the traditional sense of graphs, is a minimal path.

Given vertices x, y in a set system, consider the minimum integer k such that there is a k-path
{A0, A1, . . . , Ak−1} with x ∈ A0 and y ∈ Ak−1 (we call this a shortest xy-path). Then a shortest xy-
path in a set system is a minimal path, and the shortest paths describe a natural notion of distance
between vertices of a set system. Our interest lies in extremal problems for these structures, in
particular, the determination of exr(n, Ck) (exr(n,Pk)), defined as the maximum size of a family of r-
element sets of an n element set containing no minimal k-cycle (k-path). One of the first noteworthy
results in this direction is due to Erdős and Gallai [4], who proved the following theorem:

Theorem 1.1 (Erdős-Gallai [4]) Let n and k be positive integers and suppose n = qk + r, where
0 ≤ r < k. Then ex2(n,Pk) = q

(k
2

)
+
(r
2

)
.
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The extremal problem for k-cycles in graphs (which is the same as minimal k-cycles) is a notorious
open problem in combinatorics when k is even (see [2] for history and results), and completely
solved when k is odd [3, 17]. The situation for hypergraphs is somewhat different. For example,
the following theorem about triangles (or minimal 3-cycles), solves an old problem of Erdős, and
was proved by the current authors only recently.

Theorem 1.2 ([15]) Let r ≥ 3 and n ≥ 3r/2. Then exr(n, C3) =
(n−1
r−1

)
.

Recall the Erdős-Ko-Rado theorem [6] which states that for n ≥ 2r, the maximum size of an
intersecting family of r-element sets on an n element set is

(n−1
r−1

)
. We will deduce from the Erdős-

Ko-Rado theorem that the extremal set system for a minimal path of length three is the same as
that in Theorem 1.2. More generally, we will prove the following:

Theorem 1.3 Let r, k ≥ 3, ` = bk−1
2 c and n ≥ (k + 1)r/2. Then

exr(n,Pk) ≤



(
n− 1
r − 1

)
for k = 3

5k − 1
6

(
n

2

)
for r = 3

2`

(
n− 1
r − 1

)
+ O(nr−2) for k, r > 3.

The result is sharp for k = 3.

Although the same problem for minimal k-cycles seems more difficult, our results are similar. Note
that the case k = 3 is already completely solved by Theorem 1.2.

Theorem 1.4 Let r ≥ 3, k ≥ 4, ` = bk−1
2 c and n ≥ kr/2. Then

exr(n, Ck) ≤



5k − 1
6

(
n

2

)
for r = 3

5k

4

(
n

3

)
for r = 4

3`

(
n− 1
r − 1

)
+ O(nr−2) for r > 4.

The following construction shows that the theorems above are not far from optimal. Let A[k, r] be
a set system on an n-element set X, constructed as follows: put ` = bk−1

2 c, let L be an `-element
subset of X, and take all r-sets in X which contain at least one vertex of L. It is straightforward to
verify that A[k, r] contains no minimal k-cycle, since for any set of ` vertices in a minimal k-cycle,
there is a set in the cycle disjoint from these vertices, whereas no set in A[k, r] is disjoint from L.
Furthermore

|A[k, r]| =
(

n

r

)
−
(

n− `

r

)
≥ `

(
n− 1
r − 1

)
+ O(nr−2).

The foregoing discussion suggests the following conjecture:
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Conjecture 1.5 Let n, k, r ≥ 3 be integers and ` = bk−1
2 c. Then, as n →∞,

exr(n, Ck) = `

(
n− 1
r − 1

)
+ O(nr−2).

In fact, it would be very interesting to determine the exact value of ex(n, Ck). Conjecture 1.5 holds
for k = 3 by Theorem 1.2. We also settle the next case, namely k = 4. This problem was studied
in [13] in the context of simple hypergraphs, where the asymptotics for the extremal function were
determined. Another related extremal problem on minimal 4-cycles was posed in ([7], page 191).
It appears there in the context of Natarajan dimension, itself a generalization of the well studied
notion of VC dimension.

The extremal problem for minimal 4-cycles is also a relaxation of the question of estimating the
maximum size fr(n) of a family of r-element sets on an n element set containing no two pairs of
disjoint r-element sets with the same union. Since all the forbidden configurations in this question
are minimal 4-cycles, exr(n, C4) ≤ fr(n). Answering a question of Erdős, Füredi [9] proved that
fr(n) ≤ 7

2

( n
r−1

)
. The authors [14] slightly improved Füredi’s result by showing that fr(n) < 3

( n
r−1

)
.

Füredi further conjectured that f 3(n) =
(n
2

)
for infinitely many n and fr(n) =

(n−1
r−1

)
+ bn−1

r c for
all sufficiently large n. We prove the following result, which supports Füredi’s conjecture:

Theorem 1.6 Let r ≥ 3 be fixed. Then(
n− 1
r − 1

)
+

⌊
n− 1

r

⌋
≤ exr(n, C4) ≤

(
n− 1
r − 1

)
+ O(nr−2).

Notation and Terminology

We follow Bollobás [2] for set system notations, such as X(r) for the set system of all r-sets in X, Ax

for the family of sets in a set system A containing x, and d(x) = |Ax|. The residue of a set S ⊂ X

in a set system A on X is defined by resS = {A ⊂ X\S : A ∪ S ∈ A}. We write d(S) = |resS|.

An r-partite set system A on X is a set system for which X has a partition (X1, X2, . . . , Xr) into
parts Xi such that |A ∩ Xi| = 1 for all A ∈ A and 1 ≤ i ≤ r. In this case, we consider A as a
subset of the cartesian product

∏r
i=1 Xi, which denotes the complete r-partite system with parts

X1, X2, . . . , Xr. For convenience, this set system is denoted
∏(r), when the parts X1, X2, . . . , Xr

are specified.

If F is a family of set systems and G is a fixed set system, then ex(G,F) denotes the maximum size
of a subsystem of G that does not contain a copy of any member of F . When G = [n](r), we write
exr(n,F), or ex(n,F) when clear from context. Any set system achieving this maximum is called
an extremal set system for F , and any set system not containing any member F is called F-free.
If some set system in F is r-partite, then we write z(

∏(r),F) for the maximum size of an F-free
set system with parts X1, X2, . . . , Xr; when |Xi| = n for all i, we again abbreviate as zr(n,F) or
z(n,F).
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2 Proof Techniques

The aim of this section is to give an idea of how the theorems on minimal paths and cycles stated
in the introduction will be proved. The first two inequalities of Theorems 1.3 and 1.4 will be proved
separately. The last inequalities in Theorems 1.3 and 1.4 are implied by the following:

Theorem 2.1 Let n, k ≥ 3. Then

zr(n,Pk) ≤ 2`nr−1 for r ≥ 2

zr(n, Ck) ≤ 3`nr−1 for r ≥ 3.

To establish this implication, we first consider the more general extremal problem for families which
are said to be closed under extension (Section 2.1), and then we show how to reduce our extremal
problems to the setting of r-partite set systems (Section 2.2). In Sections 3–5, we will use these
ideas to prove our results.

2.1 Families Closed Under Extension

Let W be a part of an r-partite set system A on X, let Y be a set disjoint from X with |Y | = |W |,
and let φ : W → Y be a bijection. The extension of A from W to Y under φ is the (r + 1)-partite
system

Aφ =
⋃

w∈W

{A ∪ φ(w) : A ∈ Aw}.

In other words, we extend each set A ∈ A to a new part Y by deciding, using φ, which point from
Y to add to A. We say that a family F of set systems is closed under extension if the following
holds for every r: for every r-partite set system A ∈ F with ground set X, and every bijection
φ from a part W of A to a set Y disjoint from X, Aφ ∈ F . The notion of extension is useful in
conjunction with the following inductive lemma:

Lemma 2.2 Let X1, X2, . . . , Xr+1 be disjoint sets each of size n, and let F be a family of set
systems which is closed under extension. Then, for any integer r ≥ 2,

z(
∏(r+1),F) ≤ n · z(

∏(r),F).

Proof. Let B ⊂
∏(r+1) be an F-free set system with parts X1, X2, . . . , Xr+1 and |B| = z(

∏(r+1),F).
Let φ1, φ2, . . . , φn denote bijections Xr → Xr+1 such that φi(x) 6= φj(x) for all x ∈ Xr and for
1 ≤ i < j ≤ n. Then ∑

i≤n

∑
x∈Xr

|res{x, φi(x)}| = |B|.

By the Pigeonhole Principle, there exists a bijection φ ∈ {φ1, φ2, . . . , φn} such that

∑
x∈Xr

|res{x, φ(x)}| ≥ |B|
n

.
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Now let B′ denote the family of sets B ∈ B which contain some pair {x, φ(x)}, and let

A =
⋃

x∈Xr

res{φ(x)},

where the residue is taken in B′. By the above inequality, |B′| ≥ |B|/n. Also, B′ = Aφ, and A is
r-partite and of size |B′| ≥ |B|/n. If A contains an r-partite G ∈ F , then Gφ ∈ F , since F is closed
under extension. But then

Gφ ⊂ Aφ = B′ ⊂ B,

which is a contradiction. This shows that A contains no r-partite member of F , and

1
n

z(
∏(r+1),F) ≤ |A| ≤ z(

∏(r),F).

2.2 Partitioning Set Systems

The following lemma of Erdős and Kleitman’s [5] establishes an explicit relationship between
exr(n,F) and zr(n,F), when the family F contains an r-partite set system. We omit the proof,
which is now a standard counting argument.

Lemma 2.3 Let A be a system of r-sets in X, where |X| = rn. Then A contains an r-partite set
system B in which each part has size n and such that |B| ≥ (r!/rr) · |A|.

Corollary 2.4 Let F be a family of set systems containing an r-partite set system, let X1, . . . , Xr

be disjoint sets of the same size, and X =
⋃

Xi. Then

ex(X(r),F) ≤ rr

r!
· z(
∏(r),F).

In particular, exr(tr,F) ≤ (rr/r!)zr(t,F).

Proof. Let A be an F-free family of r-sets in X, such that |A| = ex(X(r),F). By Lemma 2.3, A
contains an r-partite set system, B, of size at least (r!/rr) · ex(X(r),F). Clearly |B| ≤ z(

∏(r),F),
from which Corollary 2.4 follows.

Proposition 2.5 The last bounds of Theorems 1.3 and 1.4 are implied by Theorem 2.1 for r = 2
and r = 3, respectively.

Proof. It is straightforward to verify that the families Pk and Ck of minimal k-paths and minimal
k-cycles are both closed under extension. The proof of the proposition is the same for paths and
cycles, so we just consider the case of cycles. Suppose Theorem 2.1 has been proved for r = 3. Let
n′ = tr be the smallest integer greater than n that is divisible by r. By Lemma 2.2, applied with
F = Ck,

zr(t, Ck) ≤ tr−3z3(t, Ck) ≤ tr−33`t2 = 3`tr−1.
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Now Corollary 2.4 implies that

exr(n, Ck) ≤ exr(n′, Ck) ≤
rr

r!
zr(t, Ck) ≤

rr

r!
3`tr−1 = 3`

(
n− 1
r − 1

)
+ O(nr−2).

This completes the proof.

3 Minimal Paths

In this section we prove the first and last inequalities in Theorem 1.3. We will verify Theorem 1.3
for r = 3 and Theorem 1.4 simultaneously at the end of Section 4.

Proof of Theorem 1.3 for k = 3 and for k, r > 3.

Case 1 : k = 3. Let |X| = n and A ⊂ X(r) be a P3-free family of maximum size. Let K1, . . . ,Kt

be the components of A, where Ki has ni vertices, and suppose n1, n2, . . . , ns ≤ 2r − 1 and
ns+1, ns+2, . . . , nt ≥ 2r.

We first claim that |Ki| ≤
(ni−1

r−1

)
for s+1 ≤ i ≤ t. To see this we observe that if |Ki| >

(ni−1
r−1

)
, then

by the Erdős-Ko-Rado theorem, there are disjoint sets A1, A2 in Ki. Since Ki is a component, we
may select two points in A1 and A2 which are the endpoints of a minimal path P. If the path has
length at least two, then P ∪{Ai} contains a minimal path of length three for some i ∈ {1, 2}. If P
has length one, then P ∪ {A1, A2} is a minimal path of length three in A. Therefore |Ki| ≤

(ni−1
r−1

)
for s + 1 ≤ i ≤ t. It follows that

|A| ≤
s∑

i=1

(
ni

r

)
+

t∑
i=s+1

(
ni − 1
r − 1

)
.

The next claim is that this is less than
(n−1
r−1

)
unless A has only one component. To prove this

claim, let A1, A2, . . . , As be sets of size n1, n2, . . . , ns and let As+1, As+2, . . . , At be sets of size
ns+1 − 1, ns+2 − 1, . . . , nt−1, respectively, chosen so that Ap ∩ Aq = {x} for all p 6= q. Then the
sum above is precisely sum of the number of (r−1)-element subsets of each Ai. Furthermore, since
r ≥ 3, there is an (r− 1)-set in A1 ∪A2 ∪ . . .∪At which is not contained in any Ai, and this union
has size at most n− 1 if A has more than one component. Finally, if A has one component, then
|A| ≤

(n−1
r−1

)
if n ≥ (k + 1)r/2 = 2r. This completes the proof for k = 3.

Case 2 : k, r > 3. By Proposition 2.5, it suffices to prove that z2(n,Pk) ≤ 2ln. In fact, we will
show more generally that a bipartite graph H with parts X and Y of sizes m and n, respectively,
and with |H| > (m + n)`, contains a k-path. We proceed by induction on m + n + k. If m ≤ `

or n ≤ `, the claim is vacuously true, since |H| > mn in this case. Suppose m > ` and n > `. If
d(x) ≤ ` in H, for some x ∈ X ∪ Y , then

H′ = {E ∈ H : x 6∈ E}
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has size more than (m + n− 1)` and therefore contains a k-path, by induction. So we may assume
d(x) > ` for all x ∈ X ∪ Y .

By induction on m + n + k, H contains a (k − 1)-path P = {A1, A2, . . . , Ak−1}. The endvertices
of a path are those vertices x such that d(x) = 1. If there exists an edge E = {x, y} where x is an
endvertex of P and y 6∈

⋃
Ai, then P ∪ {E} is a k-path in H, as required. Suppose this is not the

case. Then, as d(x) > ` for each endvertex x of P, |P| ≥ 2` + 1 if k is even and |P| ≥ 2` + 2 ≥ k if
k is odd. In the latter case, we have the required minimal k-path in H, namely P. In the case k is
even, let x and y be the endvertices of P, and suppose |P| = 2` + 1. Then d(x) > ` and d(y) > `

imply {x, y} ∈ H. Therefore P ∪ {{x, y}} is a minimal k-cycle C ⊂ H.

Let V =
⋃
C. If there exists {u, v} ∈ H with v ∈ V and u 6∈ V , then let Q ⊂ C be a minimal

(k − 1)-path such that v is an endvertex of Q. It follows that Q ∪ {{u, v}} is a minimal k-path in
H, as required. So we assume that for all E ∈ H, E ⊂ V or E ∩ V = ∅. In particular,

G = {E ∈ H : E ∩ V = ∅}

has size at least
(m + n)`− (` + 1)2 > (m + n− 2(` + 1))`.

By induction, G contains a k-path. This completes the proof of Theorem 1.3 for k > 3.

Remark 3.1 The proof of z2(X×Y,Pk) ≤ (m+n)` for X, Y of size m,n respectively was actually
only needed for the case when k is even. When k is odd, Theorem 1.1 implies that ex2(n,Pk) ≤ `n,
and so one immediately gets z2(n,Pk) ≤ ex2(2n,Pk) ≤ 2`n which is the bound we sought.

4 Minimal Cycles

The aim of this section is to prove Theorem 1.4. We already saw that it is sufficient to prove Theorem
2.1 in the case r = 3 for cycles. Before we prove Theorem 2.1, we require a lemma. The following
definition is needed for this lemma: given a graph G and a collection of sets S = {Sv : v ∈ V (G)}
indexed by the vertex set of G, a G-system of representatives for S is a multiset X = {xv : v ∈ V (G)}
indexed by the vertex set of G such that xv ∈ Sv for all v ∈ V (G) and xu 6= xv whenever {u, v} is not
an edge of G. For example, if G is the empty graph then X is a system of distinct representatives.
In fact, as pointed out by a referee, the notion of G-system of representatives corresponds to list
coloring of the complement of G.

Gravier and Maffray [11] conjectured that every claw-free graph has chromatic number equal to its
list chromatic number. Ohba [12] conjectured that a graph with chromatic number χ and at most
2χ + 1 vertices has list chromatic number χ as well. Since the complement of a k-vertex path is
both claw-free, and has at most 2χ + 1 vertices, the following result would follow from either of
these two conjectures. Since both these conjectures are open (although the second has been proved
asymptotically by Reed and Sudakov), we cannot apply earlier results to the lemma below.
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Lemma 4.1 Let P be a path on k vertices, and let S = {Sv : v ∈ V (P )} be a set system of sets of
size at least k/2. Then there is a P -system of representatives for S.

Proof. If k is odd, then the sets Si each have size at least (k +1)/2. Therefore if we can prove the
statement of the lemma for all even values of k, we also obtain all the odd values of k. Throughout
the rest of the proof, k is even. In fact, we will prove something slightly more general: we will
prove that for any graph F that is the union of any number of vertex-disjoint paths of odd length,
there is an F -system of representatives for any family S = {Sv : v ∈ V (F )}, where each Sv has
size at least k/2. The case k = 2 is trivial, so we suppose k ≥ 4 and proceed by induction on k.
Now by Hall’s Theorem, we can find a system of distinct representatives for S if and only if Hall’s
condition holds: for all X ⊂ V (F ) ∣∣∣ ⋃

v∈X

Sv

∣∣∣ ≥ |X|.

A system of distinct representatives for F is also an F -system of representatives, so we are done
if Hall’s condition holds. Therefore we assume that there is an X ⊂ V (F ) which violates Hall’s
condition. This set must have size greater than k/2, since each set in S has size at least k/2.
Furthermore, the sets in {Sx : x ∈ X} are pairwise intersecting, otherwise

⋃
x∈X Sx has size at least

k, and Hall’s condition would hold for X. Since |X| > k/2, we can choose {u, v} ⊂ X such that
{u, v} is an edge of F and the graph F ′ obtaining by removing the vertices u and v from F consists
of a union of vertex-disjoint paths of odd length. Now choose any x ∈ Su ∩ Sv, and replace S by
the family

S ′ = {Sv − {x} : v ∈ V (F ′)}.

Since |V (F ′)| = k − 2, S ′ has an F ′-system of representatives, by induction. Adding x to this set
gives an F -system of representatives for S, in which Su and Sv are represented by x.

Proof of Theorem 1.3 for r = 3 and Theorem 1.4. Let X, Y and Z be disjoint sets of size n.
We start with the case r > 4:

Case 1 : r > 4. By Proposition 2.5, to prove Theorem 1.4 for r > 4, it suffices to prove

z(X × Y × Z, Ck) ≤ 3`n2.

We will show that if A ⊂ X × Y × Z and |A| > 3`n2, then A contains a minimal k-cycle. Let A′

denote the family of all sets {x, y, z} ∈ A with y ∈ Y and z ∈ Z, such that {y, z} is a subset of at
least d1

2ke sets in A. Then

|A| ≤ (d1
2ke − 1)n2 + |A′| ≤ `n2 + |A′|.

Since |A| > 3`n2, we have |A′| > 2`n2. So, for some x1 ∈ X, we must have

|A′
x1
| > 2`n.
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By Theorem 2.1, with r = 2, A′
x1

contains a k-path P = {A1, A2, . . . , Ak}. The next step is to
apply Lemma 4.1. Take P to be the path with consecutive vertices 2, 3, 4, . . . , k − 1, and let S be
the family of sets defined by

Si = {y ∈ X\{x1} : Ai ∈ A′
y}

for 2 ≤ i ≤ k − 1. By definition of A′, we have |Si| ≥ (k − 2)/2 for all i. By Lemma 4.1, there
exists a P -system of representatives for S. This means we can find vertices x2, . . . , xk−1 ∈ X

representing S2, S3, . . . , Sk−1 such that xi and xj are distinct whenever |i− j| > 1. Now Ai ∈ Axi

and A1, Ak ∈ Ax1 , so the sets A1 ∪ {x1}, A2 ∪ {x2}, . . . , Ak ∪ {x1} form a minimal k-cycle in A.
This completes the proof of Theorem 1.4 for r > 4.

Case 2 : r = 3 and r = 4. We now derive the upper bounds in Theorem 1.4 for r = 3 and r = 4
as well as the second bound in Theorem 1.3. The main claim is that if Y is a set of size |X| − 1,
then

ex(X(r), Ck) ≤ 1
r

((
n

r − 1

)(
rk −

⌊
3k

2

⌋)
+ n · ex(Y (r−1),Pk)

)
.

To prove this claim, let A ⊂ X(r) be a set system containing no minimal k-cycle, and let

L = {E ∈ X(r−1) : d(E) ≥ (r − 2)k + dk
2e+ 1}.

Set S = X(r−1) \ L. Then

r|A| =

(
r

r − 1

)
|A| =

∑
E∈X(r−1)

d(E) =
∑
E∈S

d(E) +
∑
E∈L

d(E).

We bound each term on the right separately. By definition of S,

∑
E∈S

d(E) ≤
(

n

r − 1

)(
(r − 2)k +

⌈
k

2

⌉)
=

(
n

r − 1

)(
rk −

⌊
3k

2

⌋)
.

We next prove that
∑

E∈L d(E) ≤ n · ex(Y (r−1),Pk). Suppose, for a contradiction, that this is
false. Then there is a vertex x1 ∈ X for which |res(x1) ∩ L| > ex(Y (r−1),Pk) where Y = X\{x1}.
Consequently, there exist sets A1, . . . , Ak ∈ res(x1)∩L forming a k-path and satisfying Ai∪{x1} ∈
A. Let

Xi = {y ∈ X − {x1} −
⋃
j 6=i

Aj : Ai ∈ res(y)}.

Now |
⋃

j 6=i Aj | ≤ (r − 2)(k − 1) + 1. So, by definition of L,

|Xi| ≥ d(Ai)−
∣∣∣∣∣⋃
j 6=i

Aj

∣∣∣∣∣ ≥ dk
2
e+ r − 3 ≥ dk

2
e

for each i ∈ {1, 2, . . . , k}. We now apply Lemma 4.1 and proceed as in the proof of Case 1 to
find a minimal k-cycle of the form {Ai ∪ {yi} : 1 ≤ i ≤ k} where y1 = yk = x1 and yi ∈ Xi for
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1 < i < k. This proves the claim. We remark that a minimal k-path is obtained too, of the form
{Ai ∪ yi : 1 ≤ i ≤ k} where yi ∈ Xi.

Now the bounds for r = 3 and r = 4 follow from the claim. To see this, we first let r = 3 in the
claim. Then

ex(X(3), Ck) ≤ 1
3

[(
n

2

)⌈
3k

2

⌉
+ n · ex(Y (2),Pk)

]
.

By Theorem 1.1, ex(Y (2),Pk) ≤ k−1
2 (n− 1), which gives

ex(X(3), Ck) ≤ 1
3

(⌈
3k

2

⌉
+ k − 1

)(
n

2

)
≤ 5k − 1

6

(
n

2

)
.

It may be checked, as we remarked above, that the same bound holds for paths:

ex(X(3),Pk) ≤ 5k − 1
6

(
n

2

)
,

which was the second upper bound in Theorem 1.3. Using this fact and the claim for r = 4, we
obtain

ex(X(4), Ck) ≤ 1
4

⌈
5k

2

⌉(
n

3

)
+

3
4

(
5k − 1

6

)(
n

3

)
≤ 5k

4

(
n

3

)

This completes the proof of Theorem 1.4.

5 Minimal 4-Cycles

In this section we prove Theorem 1.6. This is achieved via the following result in the case r = 3,
and a suitable application of Lemma 2.2 and Corollary 2.4 (see Proposition 2.5 for the details).
The proof involves a substantially more delicate analysis than the case of k-cycles.

Theorem 5.1 Let r ≥ 3, let n ≥ 4, and let X1, X2, . . . , Xr be disjoint sets of size n. Then
z(
∏(r), C4) ≤ nr−1 + 11nr−2.

To prove Theorem 5.1 in the case r = 3, let |X| = |Y | = |Z| = n for some disjoint sets X, Y and
Z, and let A ⊂ X × Y × Z contain no minimal 4-cycle; we must show that |A| ≤ n2 + 11n.

A star is a graph consisting of a positive number of edges incident with a fixed vertex. We define
a double star to be a graph comprising a pair of disjoint stars whose centers are joined by a new
edge. Note that a double star contains a path of length three, and therefore at least one leaf in X

and in Y . Any vertex of degree one in a star or double star is called a leaf. Finally, the edge of a
double star joining the centers of two stars is called the central edge.

10



For z ∈ Z, let Sz denote the set of edges in res{z} which are contained in precisely one set in A.
Let Lz denote the set of edges in res{z} not in Sz. Finally, let S =

⋃
z∈Z Sz – this is the set of

edges with one end in X and the other in Y , which appear in exactly one triple in A.

Claim 1. For z ∈ Z, each component of Lz is contained in a double star.

Proof. It suffices to show that Lz contains no 4-path and no 4-cycle. Suppose, for a contradiction,
that Lz contains edges A1, A2, A3, A4 forming a 4-path or 4-cycle. Then, by definition of Lz, there
exist (not necessarily distinct) vertices v, w ∈ Z, distinct from z, such that A2 ∈ Lv and A3 ∈ Lw.
Consequently {A1 ∪ {z}, A2 ∪ {v}, A3 ∪ {w}, A4 ∪ {z}} is a minimal 4-cycle in A, a contradiction.
Therefore Lz contains no 4-path or 4-cycle. The proof of Claim 1 is complete.

Claim 2. For w ∈ Z, let S¬w denote the graph of all edges of S\Sw which intersect at least one
edge of Lw. Then |S¬w| ≤ 2n.

Proof. A vertex of Lw is an element in some edge of Lw. We assert that for each x ∈ X, there
is at most one edge of S¬w joining x to a vertex of Lw. The same assertion is made for each
y ∈ Y ; the proof of the latter statement will be the same as that for each x ∈ X. Suppose,
for a contradiction, {w, a, x}, {w, b, x} ∈ A, with {a, v}, {b, x′} ∈ Lw, for some v, x, x′ ∈ X. To
prove the assertion, we must show that a = b. First note that S¬w ∩ Lw = ∅, and therefore
{a, x}, {b, x} 6∈ Lw. Let us suppose that {a, x} ∈ St and {b, x} ∈ Su, where t, u are distinct from
w. Then {(x, a, t), (x, b, u), (v, a, w), (x′, b, w)} is a minimal 4-cycle in A. This contradiction shows
that a = b, as required.

By definition, each edge of S¬w is incident with an element of Lw. Combining the above assertions,
we find that:

|S¬w| ≤
∑
x∈X

1 +
∑
y∈Y

1 = |X|+ |Y | = 2n.

This completes the proof of Claim 2.

Claim 3. For z ∈ Z, let Xz, Yz denote the sets of leaves of Lz in X, Y respectively. Then

n|A| ≤ n3 + 3n2 + 2
∑
w∈Z

|Xw||Yw|.

Proof. Let X∗
z and Y ∗

z denote the sets of vertices of X and Y incident with central edges of Lz,
respectively. By Claim 1, the central edges form a matching, so

|Lz| ≤ |Xz|+ |Yz|+ |X∗
z |.

So, for each w ∈ Z, we have

|A| =
∑
z∈Z

|Lz|+
∑
z∈Z

|Sz|

≤
∑
z∈Z

(|Xz|+ |Yz|+ |X∗
z |) + |Sw|+

∑
z∈Z
z 6=w

|Sz|
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≤
∑
z∈Z

(|Xz|+ |Yz|+ |X∗
z |) + |Sw|+ |S¬w| +

∑
z∈Z
z 6=w

|Sz\S¬w|.

Now the last sum is at most (n− |Xw| − |X∗
w|)(n− |Yw| − Y ∗

w |), as every edge of Sz\S¬w is disjoint
from all edges in Lw, by definition of S¬w. By Claim 2, |S¬w| ≤ 2n. Therefore

|A| ≤
∑
z∈Z

(|Xz|+ |Yz|+ |X∗
z |) + |Sw|+ 2n + (n− |Xw| − |X∗

w|)(n− |Yw| − |Y ∗
w |)

≤
∑
z∈Z

(|Xz|+ |Yz|+ |X∗
z |) + |Sw|+ 2n + (n− |Xw| − |X∗

w|)(n− |Yw|)

≤
∑
z∈Z

(|Xz|+ |Yz|+ |X∗
z |) + |Sw|+ 2n + n2 − n(|Xw|+ |Yw|+ |X∗

w|) + 2|Xw||Yw|.

In the last line, we used the fact |X∗
w| ≤ |Xw|. This follows from the fact that each double star has

at least one leaf in X. Summing over w ∈ Z gives

n|A| ≤ n3 + 3n2 + 2
∑
w∈Z

|Xw||Yw|.

Here we used the fact
∑

w∈Z |Sw| ≤ n2. This completes Claim 3.

The proof of Theorem 1.6 is complete, once we have verified the following claim:

Claim 4.
∑

w∈Z |Xw||Yw| ≤ 4n2.

Proof. The terms in the sum above can be interpreted as the number of pairs {u, v} with u ∈ Xw

and v ∈ Yw. In words, this means that both u and v are leaves of Lw. Let Mw denote the set
of edges of Lw which are not incident with any other edges of Lw. Then Mw is a matching. Let
X∗∗

w ⊂ Xw and Y ∗∗
w ⊂ Yw be the sets of vertices of Mw in X and Y . For each w ∈ Z, define a

bipartite graph Hw with parts Xw and Yw and in which {u, v} ∈ Hw whenever u ∈ Xw, v ∈ Yw and
(u, v) 6∈ X∗∗

w × Y ∗∗
w , and let H be the bipartite multigraph with parts X and Y consisting of the

sum of all the graphs Hw. In other words, an edge e ∈ H has multiplicity equal to the number of
w for which e ∈ Hw. We claim that H has no multiple edges.

Suppose, for a contradiction, that {u, v} ∈ H has edge-multiplicity at least two. Then, for some
w1, w2 ∈ Z, u and v are leaves of stars in Lwi for i ∈ {1, 2}. Since (u, v) 6∈ X∗∗

wi
×Y ∗∗

wi
, {u, v} 6∈ Lwi ,

for i ∈ {1, 2}. Therefore we find vertices ui ∈ X and vi ∈ Y distinct from u and v, and such that
{u, ui}, {v, vi} ∈ Lwi . Note that we may have u1 = u2 or v1 = v2. In any case,

{(u, u1, w1), (u, u2, w2), (v1, v, w1), (v2, v, w2)}

is a minimal 4-cycle in A, which is a contradiction. Therefore H has no multiple edges. This
implies that

|H| =
∑
w∈Z

(|Xw||Yw| − |X∗∗
w ||Y ∗∗

w |) ≤ n2.

Finally, to complete the proof of Claim 4, we show that
∑

w |X∗∗
w ||Y ∗∗

w | ≤ 3n2. Now as |Y ∗∗
w | = |X∗∗

w |,
we have ∑

w∈Z

|X∗∗
w ||Y ∗∗

w | =
∑
w∈Z

|X∗∗
w |2 = 2

∑
w∈Z

(
|X∗∗

w |
2

)
+
∑
w∈Z

|X∗∗
w |.
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The last term is at most n2, so it suffices to show that the first term is less than 2n2. To do this,
we will show that {u, v} ⊂ X∗∗

w for at most two w ∈ Z. Suppose, for a contradiction, that this is
not the case. Then there are pairs of disjoint edges {u, ui}, {v, vi} ∈ Mwi for i ∈ {1, 2, 3}, and for
some distinct vertices w1, w2, w3 ∈ Z. If {ui, uj}∩{vi, vj} = ∅ for some distinct i, j ∈ {1, 2, 3}, then

{(wi, u, ui), (wj , u, uj), (wj , v, vj), (wi, v, vi)}

is a minimal 4-cycle in A, which is a contradiction. So {ui, uj} ∩ {vi, vj} 6= ∅ for all i, j ∈ {1, 2, 3}.
It follows that the graph K spanned by all the edges {u, ui} and {v, vi} is a complete bipartite
graph. We may assume v1 = u2, v2 = u3, v3 = u1 and u1 6= u3. Then

{(w1, u, u1), (w3, u, u3), (w2, v, u3), (w1, v, u1)}

is a minimal 4-cycle in A. This contradiction completes the proof.

6 Acknowledgments

The authors thank the referee for helpful comments which included shortening the proof of Theorem
1.3 Case 1.

References

[1] Berge, C. Hypergraphs. Combinatorics of finite sets. Translated from the French. North-
Holland Mathematical Library, 45. North-Holland Publishing Co., Amsterdam, 1989.

[2] Bollobás, B. Combinatorics. Set systems, hypergraphs, families of vectors and combinatorial
probability. Cambridge University

[3] A. J. Bondy, Large cycles in graphs, Discrete Math 1 1971/1972 no. 2, 121–132.
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[14] Mubayi, D., Verstraëte, J. A hypergraph extension of the bipartite Turán problem. J. Combin.
Theory Ser. A 106 (2004), no. 2, 237–253.
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