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Abstract

Ahlswede and Khachatrian [5] proved the following theorem, which answered a question of
Frankl and Füredi [3]. Let 2 ≤ t + 1 ≤ k ≤ 2t + 1 and n ≥ (t + 1)(k − t + 1). Suppose that
F is a family of k-subsets of an n-set, every two of which have at least t common elements. If
| ∩F∈F F | < t, then |F| ≤ (t + 2)

(
n−t−2
k−t−1

)
+

(
n−t−2
k−t−2

)
, and this is best possible.

We give a new, short proof of this result. The proof in [5] requires the entire machinery of
the proof of the complete intersection theorem, while our proof uses only ordinary compression
and an earlier result of Wilson [7].

1 Introduction

An intersecting family is a collection of sets, every two of which have a point in common. A family
of sets is trivial if there is a fixed element that lies in all of its sets, otherwise it is nontrivial.
The Erdős-Ko-Rado theorem [1] states that if n ≥ 2k and F is an intersecting family of k-sets of
[n], then |F| ≤ (

n−1
k−1

)
. If n > 2k and equality holds, then F is trivial. If we consider nontrivial

families, the corresponding result was proved by Hilton and Milner who showed that for n ≥ 2k,
|F| ≤ |{F ⊂ [n] : k + 1 ∈ F, F ∩ [k] 6= ∅, |F | = k} ∪ [k]}|.
A family F is t-intersecting if for every F, H ∈ F we have |F ∩H| ≥ t; if in addition | ∩F∈F F | < t,
then F is nontrivial t-intersecting, otherwise it is a trivial t-intersecting family. The Erdős-Ko-Rado
theorem was generalized in [1], where it was proved that for n sufficiently large, a t-intersecting
family of k-sets of [n] satisfies |F| ≤ (

n−t
k−t

)
. Frankl conjectured that the same bound holds if and

only if n ≥ (t+1)(k−t+1), and this was proved by Wilson [7]. Later Ahlswede and Khachatrian [4]
determined the maximum size for all n, by proving their Complete Intersection theorem.

Frankl [2] determined the maximum size of a nontrivial t-intersecting family of k-sets of [n] for n

sufficiently large, and later Frankl and Füredi [3] asked whether the same result holds for n < ckt
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for some constant c. There are two natural constructions, one of them is optimal for k > 2t + 1
and the other for t < k ≤ 2t + 1. Almost 20 years after Frankl’s theorem, the problem was solved
by Ahlswede and Khachatrian [5] for the full range of n, however their proof contains the entire
machinery of their earlier proof of the Complete Intersection theorem. For n < (t + 1)(k − t + 1),
the problem is already solved by the Complete Intersection theorem, since the largest t-intersecting
families of k-sets in this range are nontrivial.

In this note, we provide a new, short proof of this theorem for the case k ≤ 2t + 1. It is somewhat
based on ideas of Frankl and Füredi [3]. The only tools we use are ordinary compression and
Wilson’s result for the base case of our induction argument. Thus our proof is very similar to the
original proof of the Erdős-Ko-Rado theorem.

Fix 2 ≤ t + 1 ≤ k ≤ 2t + 1. For k ≥ t let

f(n, k, t) = (t + 2)
(

n− t− 2
k − t− 1

)
+

(
n− t− 2
k − t− 2

)
.

Note that f(n, k, t) is the size of the family of all k-sets of [n] that intersect a fixed (t + 2)-set in at
least t + 1 points. Call such a family B(n, k, t). Throughout this note we set

n0 = n(k, t) = (t + 1)(k − t + 1).

Theorem 1 Let 1 ≤ t < k ≤ 2t + 1 and n ≥ n0. Suppose that F is a nontrivial t-intersecting
family of k-sets of [n]. Then |F| ≤ f(n, k, t). If n > n0 and equality holds, then F is isomorphic
to B(n, k, t), and possibly to {F ⊂ [n] : 4 ∈ F, F ∩ [3] 6= ∅, |F | = 3} ∪ [3]} when (t, k) = (1, 3).

2 Proof

The following inequality will be needed.

Lemma 2 Let 2 ≤ t + 1 < k ≤ 2t + 1. Then for all t ≤ i < k,
(

n0 − t

i− t

)
−

(
n0 − k − 1

i− t

)
≤ f(n0, i, t) = (t + 2)

(
n0 − t− 2
i− t− 1

)
+

(
n0 − t− 2
i− t− 2

)
. (1)

The inequality is strict when i = k − 1 > 2.

Proof. Apply Pascal’s identity three times to
(
n0−t
i−t

)
, and then (1) is equivalent to

(
n0 − t− 2

i− t

)
≤ t

(
n0 − t− 2
i− t− 1

)
+

(
n0 − k − 1

i− t

)
.

Define, for fixed k and t,

h(n, i) = t

(
n− t− 2
i− t− 1

)
+

(
n− k − 1

i− t

)
−

(
n− t− 2

i− t

)
.

2



We are to show that h(n0, i) ≥ 0 for all t ≤ i < k. We will in fact show this for all n ≥ k +1. Since
k > t + 1, we have n0 > k + 1. First, observe that h(n, t) = 0 for all n ≥ k + 1. We may henceforth
assume that i > t. Next we show that h(k + 1, i) ≥ 0 for all t < i < k. Indeed, this is equivalent to

(
k − t− 1

i− t

)
≤ t

(
k − t− 1
i− t− 1

)
,

which is equivalent to i(t + 1) ≥ t2 + k. Since i ≥ t + 1, this follows as long as k ≤ 2t + 1,
which holds. Finally, apply induction on n, and Pascal’s identity to each term of h(n, i) to obtain
h(n, i) = h(n− 1, i) + h(n− 1, i− 1) ≥ 0. If i = k− 1 > 2, then either i > t + 1 or k < 2t + 1, hence
the inequality is strict for all n > k + 1. In particular, it is strict for n = n0.

Proof of Theorem 1. When t = 1 and k = 2 then trivially |F| ≤ 3, and equality holds only for
a triangle. When t = 1 and k = 3 then the theorem is the same as the Hilton-Milner theorem. So
from now on we assume t ≥ 2. Fixing t, we proceed by induction on k.

For k = t + 1, the aim is to show that |F| ≤ (
t+2
t+1

)
= t + 2 = f(n, t + 1, t). Indeed, let A,B ∈ F .

Now if F is nontrivial t-intersecting, then it is easy to see that each C ∈ F contains A∆B and t−1
vertices of A ∩B, hence F is isomorphic to B(n, t + 1, t).

We may therefore assume that k > t + 1 > 2. Let us order the underlying set of elements X

linearly. For x < y, the family Sx,y(F) = {Sx,y(F ) : F ∈ F}, where Sx,y(F ) = F − {y} ∪ {x}
if x 6∈ F, y ∈ F, F − {y} ∪ {x} 6∈ F and F otherwise. It is well-known that |Sx,y(F)| = |F| and
Sx,y(F) is t-intersecting. Apply this compression procedure to F until we obtain either a family H
such that Sx,y(H) is trivial t-intersecting or a family G which is stable, i.e., Sx,y(G) = G holds for
all x < y.

In the first case - assuming that the operation Sx0,y0 would result in the trivial t-intersecting family
Sx0,y0(H) - continue applying the operation Sx,y, for x, y 6∈ {x0, y0}. This procedure will terminate,
and we call the resulting family G. Define Y to be the smallest n0 − 2 elements of X − {x0, y0},
together with {x0, y0}. In the second case, stop once we have a stable G and define Y to be the
smallest n0 elements.

Thus in both cases, we have defined a set Y of size n0 and obtained a family G such that Sx,y(G) = G
for all x, y 6∈ {x0, y0}.
Claim 1. G is a nontrivial t-intersecting family.

Proof of Claim 1. This follows by our procedure if we are in the second case, so assume that
we are in the first case. As Sx0,y0(H) is a trivial t-intersecting family, every member of H contains
either x0 or y0, and therefore every member of G contains either x0 or y0.

Suppose for contradiction that G is a trivial t-intersecting family. Then there is a t-set T contained
in every member of G. If T ∩ {x0, y0} = ∅, then T ∪ {x0, y0} is a (t + 2)-set, that contains at least
t + 1 elements of every member of G. Since clearly G does not contain all such sets, |G| < f(n, k, t)
and we are done. We cannot have x0 ∈ T , since Sx0,y0(H) 6= H, and this implies that there exists
A ∈ G with x0 6∈ A. So we may assume that x0 6∈ T and y0 ∈ T .
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Since Sx0,y0(H) is a trivial t-intersecting family, there is a t-set T ′ that is contained in all members
of Sx0,y0(H), and since H is a nontrivial t-intersecting family x0 ∈ T ′ and y0 6∈ T ′. There exists a
set B ∈ H that contains x0 but not y0, otherwise the t-set T ′ − {x0} ∪ {y0} is subset of every set
of H, making it trivial. This implies that there exists a C ∈ G that omits y0, which contradicts the
fact that y0 ∈ T .

Claim 2 (see Lemma 2.2 of [3].) For every A,B ∈ G, we have |A ∩B ∩ Y | ≥ t.

Proof of Claim 2. Assume that A,B is a counterexample with |(A ∪ B) ∩ Y | maximum pos-
sible. Let us choose x ∈ Y − (A ∪ B) − {x0, y0} and y ∈ (A ∩ B) − Y , which could be done as
n0 − 2 > 2k − t − 1 ≥ |(A ∪ B) ∩ Y | and (A ∩ B) − Y 6= ∅. Since Sx,y(G) = G, we conclude that
B′ = (B ∪ {x} − {y}) ∈ G, and A,B′ is a counterexample with |(A ∪ B′) ∩ Y | > |(A ∪ B) ∩ Y |, a
contradiction.

For t < i ≤ k, let Ai := {A ∩ Y : A ∈ G : |A ∩ Y | = i}.

Claim 3. Let t < i ≤ k. Then |Ai| ≤ f(n0, i, t).

Proof of Claim 3. By Claim 2, Ai is t-intersecting. For i = k Wilson’s theorem [7] yields
|Ak| ≤

(
n0−t
k−t

)
= f(n0, k, t), where the equality follows by a short calculation. We may therefore

assume that t < i < k.

If Ai is nontrivial t-intersecting, then since n(k, t) > n(i, t), we may apply induction on k to obtain
|Ai| ≤ f(n0, i, t). Hence we may assume that Ai is trivial t-intersecting. Then there is a t-set T

contained in each member of Ai. By Claim 1, G is non-trivial, so there is a k-set S ∈ G that does
not contain T . Let HS,T denote the family of all i-sets in Y that contain T and intersect S∩Y in at
least t elements. By Claim 2, |Ai| ≤ |HS,T |. It is easy to see that HS,T is strictly maximized when
|S ∩ T | = t− 1 and S ⊂ Y (one can see this algebraically or by a simple combinatorial argument).
Thus there are k − t + 1 points of S outside T , and we obtain

|Ai| ≤ |HS,T | ≤
(

n0 − t

i− t

)
−

(
n0 − k − 1

i− t

)
≤ f(n0, i, t), (2)

where the last inequality follows by Lemma 2.

Suppose there exists an A ∈ G with |A ∩ Y | = t. Then by Claim 2, all other sets of G contain the
t-set A ∩ Y , and this contradicts Claim 1. Therefore every set of G intersects Y in at least t + 1
elements. For i > t, the number of sets in G that intersect X − Y in k − i elements is at most(
n−n0

k−i

)|Ai|. Consequently, by Claim 3,

|G| ≤
k∑

i=t+1

f(n0, i, t)
(

n− n0

k − i

)
= (t+2)

k∑

i=t+1

(
n0 − t− 2
i− t− 1

)(
n− n0

k − i

)
+

k∑

i=t+1

(
n0 − t− 2
i− t− 2

)(
n− n0

k − i

)

= (t + 2)
(

n− t− 2
k − t− 1

)
+

(
n− t− 2
k − t− 2

)
= f(n, k, t).
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Now suppose that |F| = |G| = f(n, k, t) and n > n0. Then we have equality in Claim 3, and
in particular, |Ak−1| = f(n0, k − 1, t). Because k > t + 1 ≥ 3, we have k − 1 > 2, hence by
Lemma 2 we have strict inequality in (2). This implies that Ak−1 is nontrivial t-intersecting. Since
n0 > n(k − 1, t), we conclude, by induction on k, that Ak−1

∼= B(n0, k − 1, t). From this and
Claim 2, we easily obtain Ai

∼= B(n0, i, t) when max{t + 1, k − n + n0} ≤ i ≤ k (clearly Ai = ∅ if
i < k − n + n0), and then G ∼= B(n, k, t). Finally, if H is t-intersecting and Sx,y(H) ∼= B(n, k, t),
then it is easy to show that H ∼= B(n, k, t). This implies that F ∼= B(n, k, t).

For k > 2t+1 and n > n0, a nontrivial t-intersecting family of k-sets of maximum size is isomorphic
to either B(n, k, t) or

C(n, k, t) = {F : [t] ⊂ F, [t + 1, k + 1] ∩ F 6= ∅} ∪ {F : [k + 1]− {i}, i ∈ [k + 1]}.

This was proved by Ahlswede and Khachatrian [5]. For n sufficiently large, C(n, k, t) is the larger
of these two families.

There are two reasons that our proof does not work for the case k > 2t + 1. The first is that we
could not prove a base case for the induction. While a short calculation can determine the smallest
n1 such that for all n ≥ n1, we have |C(n, k, t)| ≥ |B(n, k, t)|, we do not know a way of proving that
the maximum size of a nontrivial t-intersecting family of k-sets of [n1] is |C(n1, k, t)| without using
[5]. For k ≤ 2t + 1, we used Wilson’s theorem to settle the case n = n0.

The other obstacle would come from trying to prove an analogue of Claim 3. When we are trying
to upper bound |Ai|, we cannot use induction on i, since the formula differs depending on whether
i > 2t + 1.
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