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Abstract

Let 2 ≤ q ≤ min{p, t − 1} be fixed and n → ∞. Suppose that F is a p-uniform
hypergraph on n vertices that contains no complete q-uniform hypergraph on t vertices
as a trace. We determine the asymptotic maximum size of F in many cases. For
example, when q = 2 and p ∈ {t, t+ 1}, the maximum is ( n

t−1 )t−1 + o(nt−1), and when

p = t = 3, it is b (n−1)2

4 c for all n ≥ 3. Our proofs use the Kruskal-Katona theorem,
an extension of the sunflower lemma due to Füredi, and recent results on hypergraph
Turán numbers.
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1. Introduction

Let [n] = {1, 2, . . . , n}. Given a set X, 2X denotes the family of all subsets of X, and(
X
q

)
= {A ⊆ X : |A| = q}. A hypergraph H on X is a family of subsets of X; these subsets

are called edges of H and X is the vertex set of H. If all edges of H have size p, then H is
a p-uniform hypergraph (p-graph for short).

Let G be a hypergraph on X and S ⊆ X. We define the trace of G on S as

G|S := {E ∩ S : E ∈ G}.

Note that we omit multiplicity when defining GS .

If there exists a set S such that G|S contains a copy of F as a subhypergraph, we say that
G contains F as a trace, or F is a trace of G. In this case we write G → F , otherwise
G 6→ F . Let Lp(n, F ) (L(n, F )) denote the maximum number of edges in a p-uniform (not
necessarily uniform) hypergraph on [n] not containing F as a trace. Extremal problems
on traces started from determining L(n, 2[t]). Sauer [15], Perles-Shelah [16], and Vapnik-
Chervonenkis [18] independently found that L(n, 2[t]) =

(
n
0

)
+ . . .+

(
n

t−1

)
. For the uniform

case, Frankl and Pach [6] showed that Lp(n, 2[t]) ≤
(

n
t−1

)
for t ≤ p ≤ n. Many intersecting

problems and applications on traces can be found in the survey of Füredi and Pach [9].

In this paper we consider the problem of forbidding a level of the lattice 2[t] as a trace.
More precisely, given integers p, t, n with max{p, t} ≤ n, we study the value of Lp(n,

(
[t]
q

)
)

for 1 ≤ q ≤ t − 1 (the q = 0 and q = t cases are trivial). Frankl and Pach [6] studied the
q = 1 case and obtained that ex(p + t − 1,

(
[t]

t−1

)
) ≤ Lp(n,

(
[t]
1

)
) ≤

(
p+t−1

t−1

)
, where ex is the

classical Turán number. Balogh, Keevash and Sudakov [1] investigated the trace problem
of forbidding more than one non-trivial level of 2[t].

Trivially Lp(n,
(
[t]
q

)
) =

(
n
p

)
when p < q. Therefore throughout the paper we assume that

2 ≤ q ≤ t− 1 and q ≤ p, (1)

and whenever we use asymptotic notation, we assume that only n→∞. Note that the p = q

case is exactly the Turán problem. The reason why we only consider uniform trace numbers
is that Füredi and Quinn [10] showed that L(n,

(
[t]
q

)
) = L(n, 2[t]) for every 0 ≤ q ≤ t, in

other words, forbidding a level of the lattice 2[t] is equivalent to forbidding the whole lattice
in the non-uniform case. Following graph theory language, the forbidden configuration

(
[t]
q

)
is a complete q-graph on t vertices, so we denote it by Kq

t , and write Kt = K2
t .
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Our first result, which is little more than an observation, determines the order of magnitude
of Lp(n,Kq

t ).

Proposition 1.1. Lp(n,Kq
t ) = Θ(nmin{p,t−1}).

A trace problem for uniform hypergraphs is in fact a Turán problem. Given a family
F of r-graphs, the Turán number ex(n,F) of F is the maximum number of edges in an
r-graph on n vertices containing no F ∈ F (see e.g., Füredi [8] for a survey). When
F = {F}, we write ex(n, F ) instead of ex(n, {F}). If we denote K3 by {12, 23, 31}, then
L3(n,K3) = ex(n, {F1, F2, F3}), where F1 = {124, 234, 134}, F2 = {124, 234, 135}, and F3 =
{124, 235, 136}. In general, for any q-graph F and q ≤ p, we have Lp(n, F ) = ex(n,Hp(F )),
where Hp(F ) is the family of all p-graphs H with |F | edges such that H → F .

Definition 1.2. Let Hp
q,t be the member of Hp(Kq

t ) with the maximum number of vertices.
In other words, Hp

q,t is the p-graph obtained from Kq
t by enlarging each of its

(
t
q

)
edges with

a (different) set of p− q new vertices. Trivially Hp
p,t = Kp

t .

Since forbidding a family of hypergraphs (as a subgraph) is not easier than forbidding any
member of the family,

Lp(n,Kq
t ) = ex(n,Hp(Kq

t )) ≤ ex(n,Hp
q,t). (2)

Our second result, which is also not hard to prove, shows that the inequality in (2) is
asymptotically an equality when p < t.

Proposition 1.3. Let p < t. Then Lp(n,Kq
t ) = ex(n,Hp

q,t) + o(np).

Our main result reduces Lp(n,Kq
t ) when p ≥ t to Turán numbers in many cases.

Theorem 1.4. Fix 2 ≤ q < t ≤ p. Suppose that q ∈ {t− 2, t− 1} or p ∈ {t, t+ 1}. Then

Lp(n,Kq
t ) = Lt−1(n,Kq

t ) + o(nt−1) = ex(n,Ht−1
q,t ) + o(nt−1). (3)

This suggests that determining Lp(n,Kq
t ) could be as difficult as a hypergraph Turán

problem. For example, (3) implies that L4(n,K3
4 ) = ex(n,K3

4 ) + o(n3), and determining
ex(n,K3

4 ) is a well-known open problem of Turán [17]. Together with Mantel’s Theorem on
ex(n,K3) [12], Theorem 1.4 gives

Lp(n,K3) = ex(n,K3) + o(n2) =
(n

2

)2
+ o(n2). (4)
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Determining ex(n,Hp
q,t) in general seems hopeless. However, the q = 2 case was recently

solved by the first author [13] and Pikhurko [14]. Given 2 ≤ p ≤ `, a p-graph is `-partite if
its vertices can be partitioned into ` classes, such that every edge has at most one vertex
from each class. An `-partite p-graph is called complete if it contains all allowable edges. We
denote by T p

` (n) the complete `-partite p-graph (a generalized Turán graph) on n vertices
with no two class sizes differ more than one. Let p < t. Clearly T p

t−1(n) contains no Hp
2,t as

a subgraph and ∣∣T p
` (n)

∣∣ =
∑

S∈([`]
p )

∏
i∈S

⌊
n+ i− 1

`

⌋
=

(
`

p

) (n
`

)p
+ o(np).

The first author [13] showed that ex(n,Hp
2,t) = |T p

t−1(n)| + o(np) as n → ∞. Pikhurko
[14] improved this to ex(n,Hp

2,t) = |T p
t−1(n)| for sufficiently large n. Applying (2), we thus

have Lp(n,Kt) ≤ |T p
t−1(n)| for sufficiently large n. On the other hand, it is easy to see that

T p
t−1(n) contains no Kq

t for any q ≥ 2 as a trace. In fact, every t-vertex set S of T p
t−1(n) must

contain two vertices a, b from the same vertex class, but no edge of T p
t−1(n) contains both

a and b. Thus for q ≥ 2, every q-subset of S containing a and b is absent from T p
t−1(n)|S .

Consequently T p
t−1(n) 6→ Kq

t , in particular, Lp(n,Kt) ≥ |T p
t−1(n)|. Putting the upper and

lower bounds together, for 2 ≤ p < t and sufficiently large n,

Lp(n,Kt) = |T p
t−1(n)| =

(
t− 1
p

) (
n

t− 1

)p

+ o(np). (5)

By combining (5) with Theorem 1.4, we obtain the following result.

Corollary 1.5. Suppose that t = 4 or p ∈ {t, t+ 1}. Then

Lp(n,Kt) = |T t−1
t−1 (n)|+ o(nt−1) =

(
n

t− 1

)t−1

+ o(nt−1). (6)

We conjecture the values of Lp(n,Kq
t ) as follows.

Conjecture 1.6. Fix p, q, t, n with 2 ≤ q < min{t, p}. For n > n0,

Lp(n,Kq
t ) =

{
ex(n,Hp

q,t) if p < t,

Lt−1(n− p+ t− 1,Kq
t ) = ex(n− p+ t− 1,Ht−1

q,t ) if p ≥ t.

The equation (5) confirms the conjecture for the case of q = 2, p < t, and sufficiently
large n. As further evidence of Conjecture 1.6, we prove its smallest non-trivial case:
(p, q, t) = (3, 2, 3). Note that this sharpens the p = 3 case of (4).
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Theorem 1.7. Let n ≥ 3. Then

L3(n,K3) = ex(n− 1,K3) =
⌊

(n− 1)2

4

⌋
.

2. Preliminary Results

In this section we prove Proposition 1.1, Proposition 1.3 and the supersaturation property
for trace problems.

We first observe that Lp(n,Kq
t ) is close to a monotone function of n.

Proposition 2.1. Lp(n,Kq
t ) ≥ Lp−i(n− i,Kq

t ) for 1 ≤ i ≤ p− q.

Proof. Suppose that G ⊆
(
[n−i]
p−i

)
satisfies G 6→ Kq

t . We extend G to a p-graph G′ by adding
a set C of i new vertices and replacing each E ∈ G by E ∪ C. We claim that G′ 6→ Kq

t .
Consider a t-set S of vertices. If S contains a vertex x ∈ C, then all edges of G′ contain x,
and consequently all q-subsets of E \ {x} are absent from G′|E . Otherwise E ∩C = ∅, and
we have G′|E = G|E 6→ Kq

t .

Proof of Proposition 1.1. We need to show that Lp(n,Kq
t ) = Θ(nmin{p,t−1}). When p ≥

t, Frankl and Pach [6] showed that Lp(n,Kq
t ) ≤

(
n

t−1

)
. When p < t, trivially Lp(n,Kq

t ) ≤(
n
p

)
. We now consider lower bounds. When p ≤ t− 1, Since T p

t−1(n) 6→ Kq
t (for q ≥ 2), we

have Lp(n,Kq
t ) ≥ |T p

t−1(n)| = Ω(np). Now let p ≥ t. Since T t−1
t−1 (n − p + t − 1) 6→ Kq

t and
|T t−1

t−1 (n− p+ t− 1)| = Ω(nt−1), we have Lt−1(n− p+ t− 1,Kq
t ) = Ω(nt−1). Proposition 2.1

thus implies that Lp(n,Kq
t ) ≥ Lt−1(n− p+ t− 1,Kq

t ) = Ω(nt−1).

Definition 2.2. Let F be a p-graph (p ≥ 2) on [`] and ~m = 〈m1, . . . ,m`〉 be a vector of
positive integers. The blow-up F (~m) of F is obtained by replacing each vertex i by a vertex
class Vi of size mi, and each edge {i1, . . . , ip} by the family of all p-sets {w1, . . . , wp}, where
wj ∈ Vij . We simply write F (m) if all mi = m.

A phenomenon discovered by Brown, Erdős and Simonovits [5], usually called supersatu-
ration, implies that ex(n, F (~m)) = ex(n, F ) + o(nr) for every r-graph F and its blow-up
F (~m). To prove Proposition 1.3, we need a lemma from [13], which is a simple consequence
of supersaturation.
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Lemma 2.3 (Lemma 4 in [13]). Let m, p be positive integers with p ≥ 2, and let F be
a finite family of p-graphs. If H is a p-graph satisfying H ⊆ F (m) for all F ∈ F , then
ex(n,H) ≤ ex(n,F) + o(np).

Proof of Proposition 1.3. Here p < t and we must show that Lp(n,Kq
t ) = ex(n,Hp

q,t) +
o(np). Because of (2), we only need to show that Lp(n,Kq

t ) ≥ ex(n,Hp
q,t) + o(np) when

n → ∞. For each F ∈ Hp(Kq
t )), it is easy to see that Hp

q,t ⊆ F (
(

t
q

)
). Lemma 2.3 implies

that
ex(n,Hp

q,t) ≤ ex(n,Hp(Kq
t )) + o(np) = Lp(n,Kq

t ) + o(np). (7)

Next we prove the supersaturation phenomenon for trace problems.

Lemma 2.4. Lp(n,Kq
t (m)) ≤ Lp(n,Kq

t ) + o(np). In particular, Lp(n,Kq
t (m)) = (1 +

o(1))Lp(n,Kq
t ) for p < t.

Proof. The second assertion follows from the first by realizing that Lp(n,Kq
t ) = Θ(np) for

p < t from Proposition 1.1. To prove the first claim, recall that Hp(Kq
t (m)) is the family of

p-graphs whose |Kq
t (m)| edges contain Kq

t (m) as a trace, and Hp
q,t is obtained from Kq

t by
enlarging each of its

(
t
q

)
edges with a different set of p− q new vertices. Let H̃ = Hp

q,t(~m),
where mi = m for all the vertices vi in the original Kq

t , and mi = 1 for the other vertices.
It is easy to see that H̃ is a member of Hp(Kq

t (m)). We thus have

Lp(n,Kq
t (m)) = ex(n,Hp(Kq

t (m)))

≤ ex(n, H̃)

≤ ex(n,Hp
q,t) + o(np)

≤ Lp(n,Kq
t ) + o(np),

where the first inequality holds because H̃ ∈ Hp(Kq
t (m)), the second inequality holds be-

cause of supersaturation for the Turán problems, and the last one holds because of (7).

3. Proof of Theorem 1.4

Throughout this section we will assume that p ≥ t. Our goal is to prove that if q ∈
{t− 2, t− 1} or p ∈ {t, t+ 1}, then

Lp(n,Kq
t ) = Lt−1(n,Kq

t ) + o(nt−1).
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In fact, the second equality of (3) in Theorem 1.4, Lt−1(n,Kq
t ) = ex(n,Ht−1

q,t ) + o(nt−1),
follows from Proposition 1.3 (note that the second condition in (1) still holds because
t− 1 ≥ q). Furthermore, we claim that

Lp(n,Kq
t ) ≥ Lt−1(n,Kq

t ) + o(nt−1). (8)

To see this, first observe that Proposition 2.1 implies that Lp(n,Kq
t ) ≥ Lt−1(n−p+t−1,Kq

t ).
Proposition 1.3 further gives that Lp(n,Kq

t ) ≥ ex(n − p + t − 1,Ht−1
q,t ) + o(nt−1). Now

we recall a fact on the Turán number, which immediately follows from the existence of
limn→∞ ex(n,F)/

(
n
p

)
. Given a family F of r-graphs and an integer c > 0,

ex(n,F)− ex(n− c,F) = o(nr). (9)

Therefore Lp(n,Kq
t ) ≥ ex(n,Ht−1

q,t ) + o(nt−1) and (8) follows after applying Proposition 1.3
again.

Therefore the main task is to verify

Lp(n,Kq
t ) ≤ Lt−1(n,Kq

t ) + o(nt−1). (10)

for q ∈ {t−2, t−1} or p ∈ {t, t+1}. The q = t−1 case (Section 3.1) is the easiest: its main
idea is to find a one-to-one function from a p-graphG withG 6→ Kq

t to a (t−1)-graph G′ such
that G′ 6⊇ Kt−1

t . The remaining cases are harder: we present two lemmas in Section 3.2, and
complete the proofs in Section 3.3. The main tools include the Erdős-Ko-Rado theorem,
the Kruskal-Katona theorem and a lemma on sunflowers due to Füredi.

3.1. q = t− 1.

Let G be a hypergraph and S be a subset of its vertex set. The degree of S in G, degG(S),
or deg(S) if the underlying hypergraph is clear from the context, is the number of edges
in G containing S (frequently called codegree when |S| ≥ 2). Given a p-graph G, if every
edge E ∈ G contains at least one p′-subset E′ with degG(E′) = 1, then φ(E) = E′ defines a
one-to-one function from G to G′ = {E′ : E ∈ G} (if more than one p′-subsets are of degree
1, then arbitrarily pick one of them to be φ(E)).

Proposition 3.1. Let G be a p-graph such that G 6→ Kq
t . If there exists a function φ

mapping every edge E ∈ G to a q-set E′ ⊂ E such that degG(E′) = 1, then φ(G) = {φ(E) :
E ∈ G} contains no Kq

t as a subgraph.
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Proof. Suppose instead, that G′ contains a subgraph G′
1 on a t-set T such that G1

∼= Kq
t .

Clearly φ is one-to-one. Let φ−1 be the inverse function. We claim that each edge E ∈ G

with φ(E) ∈ G′
1 satisfies that E ∩ T = φ(E) and therefore G|T ⊇ Kq

t , contradicting the
assumption that G 6→ Kq

t . In fact, if E ∩ T ) φ(E), then E ∩ T contains another q-set
Q ∈ G′

1. Clearly E 6= φ−1(Q) because φ is a function. The fact that both E and φ−1(Q)
contain Q implies that degG(Q) ≥ 2, a contradiction.

The following lemma is the key observation for proving the q = t− 1 case of (10).

Lemma 3.2. Let 2 ≤ t ≤ p. Suppose that S is a p-set and H is a family of proper subsets
of S. If every (t− 1)-subset of S is contained in some member of H, then H → Kt−1

t .

Proof. We do induction on p for fixed t ≥ 2. The base case p = t is trivial, since every
(t− 1)-subset of S is a member of H, or

(
S

p−1

)
⊆ H. For the induction step, let p > t and

consider two cases. If
(

S
p−1

)
⊆ H, then for a fixed t-set T ⊂ S, we have H|T ⊇

(
T

t−1

)
because

each (t− 1)-subset T ′ of T is contained in T ′ ∪ (S \T ), which is a member of H. Otherwise(
S

p−1

)
6⊆ H, and there exists an (p− 1)-set S′ 6∈ H. It is easy to see that H|S′ satisfies the

assumption of the lemma with p− 1 instead of p. We then apply the induction hypothesis
to S′ and H|S′ obtaining that H|S′ → Kt−1

t and consequently H → Kt−1
t .

Proof of (10) for q = t − 1. Let G be an n-vertex p-graph not having Kt−1
t as a trace.

Each edge E ∈ G must contain a (t− 1)-subset E′ with degG(E′) = 1, otherwise we apply
Lemma 3.2 with S = E and H = G|E − {E} to conclude that G → Kt−1

t . We thus
define φ(E) = E′ and φ is a one-to-one function from G to

(
[n]
t−1

)
. By Proposition 3.1, the

resulting (t− 1)-graph G′ contains no Kt−1
t as a subgraph, thus |G| = |G′| ≤ ex(n,Kt−1

t ) =
Lt−1(n,Kt−1

t ).

3.2. Two Lemmas

Fix G ⊆
(
[n]
p

)
with |G| ≥ 2. The following partition of G will be needed in our proofs.

Define a function f : G→ [p] such that for E ∈ G,

f(E) = min{|D| : D ⊆ E,deg(D) = 1 and ∀S ⊂ D,deg(S) ≥ 2}.

(Throughout this subsection deg = degG.) Since deg(E) = 1 and deg(∅) = |G| ≥ 2, there
always exists a subset D ⊂ E such that deg(D) = 1 but deg(S) ≥ 2 for all S ⊂ D. Hence f
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is well defined. For 1 ≤ i ≤ p, let Gi = {E ∈ G : f(E) = i}. Clearly, Gp +Gp−1 + . . .+G1

is a partition of G.

Furthermore, for k ≤ p, let ∂kG denote the shadow of G at level k, namely, ∂kG = {D :
|D| = k,D ⊆ E for some E ∈ G}. In particular, ∂G = ∂p−1G. Let

Gi = {D ∈ ∂iG : deg(D) = 1 and ∀S ⊂ D,deg(S) ≥ 2}.

If we map each D ∈ Gi to the unique E ∈ G such that D ⊆ E, then we obtain an onto
function from Gi to Gi. Hence |Gi| ≤ |Gi| for 1 ≤ i ≤ p. We are ready to state two lemmas,
which are the key ingredients in our proofs.

Lemma 3.3. Let t ≤ k ≤ p and G ⊆
(
[n]
p

)
. If G 6→ Kq

t , then |∂t(Gk)| = O(nt−2).

Lemma 3.4. Let t ≤ i ≤ k ≤ p and G ⊆
(
[n]
p

)
. If G 6→ Kt−2

t , then |∂i(Gk)| = O(nt−2).

In order to prove Lemma 3.3. We need the following lemma on sunflowers, which is an easy
corollary of a result of Füredi [7] and the Erdős-Ko-Rado Theorem [4]. A sunflower (or
∆-system) with k petals and a core Y is a collection of distinct sets S1, . . . , Sk such that
Si ∩ Sj = Y for all i 6= j.

Lemma 3.5. Given k and r, there exists C = C(k, r) such that every F ⊆
([n]

k

)
with

|F | ≥ Cnk−i contains an r-petal sunflower with a core of size less than i.

Proof. Füredi [7] extended the well-known Sunflower Lemma of Erdős and Rado [3] as
follows: given k and r, there exists c = c(k, r) such that every F ⊆

([n]
k

)
contains a subfamily

F ′ such that |F ′| > c|F | and for all distinct E1, E2 ∈ F ′, F ′ contains an r-petal sunflower
with core E1 ∩ E2. (The original statement in [7] is actually stronger.) Let C = 1/c. We
apply this result to F ⊆

([n]
k

)
with |F | ≥ nk−i/c. Since |F ′| ≥ nk−i >

(
n−i
k−i

)
, by the Erdős-

Ko-Rado Theorem [4], F ′ contains E1, E2 such that |E1 ∩ E2| < i. Then F ′ contains an
r-petal sunflower with core E1 ∩ E2 of size less than i.

Fix i ∈ [p]. We say that a hypergraph H ⊆ ∂iG satisfies the property (�) if

for all D ∈ H and x ∈ D, there exists E ∈ G s.t. D \ {x} ⊂ E, x 6∈ E.

We claim that ∂iGk satisfies (�) for all t ≤ i ≤ k. First we show that Gk satisfies (�). Pick
D ∈ Gk and x ∈ D. Since D ∈ Gk, there exists a unique E1 ∈ G such that D ⊆ E1. Since
deg(D \ {x}) ≥ 2, there exists E ∈ G, E 6= E1 such that D \ {x} ⊂ E. In addition, x 6∈ E,
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otherwise D ⊆ E, contradicting deg(D) = 1. We next observe that if H satisfies (�), then
∂H also satisfies (�). In fact, let S ∈ ∂H and x ∈ S. Suppose that S ⊂ D ∈ H. Then there
exists E ∈ G such that D \ {x} ⊂ E, x 6∈ E, in particular, S \ {x} ⊂ E.

Given a function φ : A→ B and y ∈ B, let φ−1(y) = {x ∈ A : φ(x) = y}.

Proof of Lemma 3.3. Let H = ∂t(Gk). Since G 6→ Kq
t , each D ∈ H contains at least

one q-element subset Q such that Q 6∈ GD. We denote such a Q by ψ(D) (arbitrarily pick
one if more than one set can be chosen). In order to show that |H| = O(nt−2), it suffices
to show that for each set Q ∈

(
[n]
q

)
, we have |ψ−1(Q)| = O(nt−2−q). Define a (t− q)-graph

F = {D − Q : D ∈ ψ−1(Q)}. Suppose to the contrary, that |ψ−1(Q)| = |F | > Cnt−q−2

for the constant C = C(t − q, p − t + 3) from Lemma 3.5. By Lemma 3.5, F contains a
sunflower S1, . . . , Sp−t+3 with core Y of size at most 1. For all i, let Di = Si ∪Q ∈ H.

Case 1: Y = ∅. Since D1 ∈ ∂t(Gk), there exists E ∈ G such that D1 ⊂ E. At most
|E \D1| = p− t petals have non-empty intersection with E \D1. Since the total number of
petals is greater than p−t+1, there exists j 6= 1 such that Sj∩(E \D1) = ∅, or Dj∩E = Q,
a contradiction.

Case 2: Y = {x}. Since H satisfies (�), there exists E ∈ G such that D1 \ {x} ⊂ E and
x 6∈ E. At most |E \ (D1 \ {x})| = p − t + 1 petals have non-empty intersection with
E \ (D1 \ {x}). Since the total number of petals is p− t+ 3, there exists j, j 6= 1 such that
Sj∩(E \(D1\{x})) = ∅. Since x 6∈ E but x ∈ Dj , we have Dj∩E = Q, a contradiction.

Proof of Lemma 3.4. We do induction on i ≥ t. The base case i = t holds because of
Lemma 3.3. Let H = ∂iGk. For each D ∈ H, arbitrarily pick one of its t-subsets S. Since
G 6→ Kt−2

t , S contains a (t− 2)-subset Q such that Q 6∈ G|S . Suppose S \Q = {x, y}. Let
ψ(D) = D−{y} and φ(D) = (ψ(D), Q, x). We claim that |ψ−1(D−{y})| ≤

(
i−1
t−1

)
(t−1)(p−

i+2). By the pigeonhole principle, it suffices to show that |φ−1(D−{y}, Q, x))| ≤ p− i+2
(for a fixed D−{y}, there are

(
i−1
t−1

)
(t− 1) ways of choosing a (t− 2)-set Q and an element

x 6∈ Q). Suppose instead, that there exist D1, . . . , Dp−i+3 ∈ H forming a sunflower with
core D − {y} and petals {yj}, 1 ≤ j ≤ p − i + 3 such that Q 6∈ G|Sj for Sj = Q ∪ {x, yj}.
Since H satisfies (�), there exists E ∈ G such that D1 \ {x} ⊂ E and x 6∈ E. At most
|E \ (D1 \ {x})| = p− i+ 1 petals have non-empty intersection with E \ (D1 \ {x}). Since
the total number of petals is p − t + 3, there exists j 6= 1 such that yj 6∈ E. Since x 6∈ E

but x ∈ Dj , we have Sj ∩ E = Q, a contradiction.

We thus have |H| ≤ C|ψ(H)|, where C =
(
i−1
t−1

)
(t− 1)(p− i+2). Since ψ(H) ⊆ ∂i−1Gk, the
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induction hypothesis gives |ψ(H)| ≤ |∂i−1Gk| = O(nt−2). Consequently |H| = O(nt−2).

3.3. Proofs for p ∈ {t, t + 1} and q = t− 2

We need a proposition, which can be considered as an extension of Proposition 3.1.

Proposition 3.6. Let q ≤ p′ ≤ p, and m =
(

t
q

)
(p− q) + 1. Suppose that G is a p-graph on

[n] and φ is a function from G to
([n]

p′

)
such that φ(E) ⊆ E for each E ∈ G. If G 6→ Kq

t ,
then φ(G) 6→ Kq

t (m).

Proof. Suppose instead, that φ(G) → Kq
t (m). Then there are disjoint vertex sets

X1, X2, . . . , Xt of size m such that the following holds. Let Q be the family of q-sets
having non-empty intersection with exactly q of X1, X2, . . . , Xt. For each Q ∈ Q, there
exists E ∈ G such that Q ⊆ φ(E) ⊆ E. Denote such E by EQ. We say that a set Q ∈ Q
is bad if there exists j such that Q ∩Xj = ∅ and (EQ \Q) ∩Xj 6= ∅. Given a bad Q ∈ Q,
a t-tuple x1, . . . , xt with xi ∈ Xi is called bad because of Q if {x1, . . . , xt} contains Q and
at least one vertex from EQ \ Q. A t-tuple from X1 × · · · × Xt is called bad if it is bad
because of some Q. For fixed bad Q ∈ Q, the number of bad t-tuples because of Q is at
most (p−q)mt−q−1 (first select a vertex from EQ \Q and then decide the remaining t−q−1
coordinates). The total number of bad t-tuples is thus at most

(
t
q

)
mq(p− q)mt−q−1. When

m >
(

t
q

)
(p − q), we have

(
t
q

)
mq(p − q)mt−q−1 < mt, or the number of bad t-tuples is less

than the total number of t-tuples in X1×· · ·×Xt. Hence there always exists a good t-tuple
T and consequently G|T ⊇ Kq

t , a contradiction.

Proof of (10) for p = t. Given G ⊆
(
[n]
t

)
such that G 6→ Kq

t , we partition G into
Gt + . . . + G1 as in the beginning of Section 3.2. By Lemma 3.3, |Gt| = O(nt−2) and
consequently |Gt| ≤ |Gt| = O(nt−2). Trivially |Gi| ≤ |Gi| = O(nt−2) for i ≤ t − 2. It
remains to show that |Gt−1| ≤ Lt−1(n,Kq

t ) + o(nt−1). In fact, for each E ∈ Gt−1, we define
φ(E) = D where D is one of the (t−1)-subsets of E satisfying deg(D) = 1. Proposition 3.6
implies that φ(G) 6→ Kq

t (m) for m =
(

t
q

)
(p− q) + 1. So

|G| = |φ(G)| ≤ Lt−1(n,Kq
t (m)) ≤ Lt−1(n,Kq

t ) + o(nt−1),

where the last inequality follows from Lemma 2.4.

Proof of (10) for p = t+1. We need Lovász’s version [11] of the Kruskal-Katona Theorem:
let H be a (t + 1)-graph with |H| =

(
x

t+1

)
for some real number x. Then ∂H ≥

(
x
t

)
. This
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implies that if |∂H| = O(nk), then |H| = O(n
k(t+1)

t ). To see this, suppose that |∂H| ≤ Cnk

for some C > 0. Since
(

x
t

)t ≤
(
x
t

)
≤ |∂H| ≤ Cnk, we have x

t ≤ C
1
t n

k
t and

|H| =
(

x

t+ 1

)
=

(
x

t

)
x− t

t+ 1
≤ CnkC

1
t n

k
t = O(n

k(t+1)
t ).

Now given G ⊆
(

[n]
t+1

)
such that G 6→ Kq

t , we partition G into Gt+1 + Gt + . . . + G1. The
proof of the p = t case shows

∑t
i=1 |Gi| ≤ Lt−1(n,Kq

t ) + o(nt−1). It suffices to show that
|Gt+1| = o(nt−1), or |Gt+1| = o(nt−1). Lemma 3.3 guarantees that ∂t(Gt+1) = O(nt−2) and
consequently, by the result of Lovász, |Gt+1| = O(n

(t−2)(t+1)
t ) = o(nt−1).

Proof of (10) for q = t − 2. Given G ⊆
(
[n]
p

)
such that G 6→ Kt−2

t , we partition G

into Gp + . . . + Gt + Gt−1 + . . . + G1. The proof of the p = t case shows
∑t

i=1 |Gi| ≤
Lt−1(n,Kq

t ) + o(nt−1). For t < k ≤ p, we apply Lemma 3.4 with i = k and obtain that
|Gk| ≤ |Gk| ≤ ∂k(Gk) = O(nt−2), thus completing the proof.

4. An Exact Result

In order to prove Theorem 1.7, we need the following lemma, which can be proved by
following the original proof of Mantel’s Theorem [12]. We use + instead of ∪ for a disjoint
union. In a graph G, given a vertex set A and a vertex x, N(x,A) denotes the neighborhood
of x in A, and d(x,A) = |N(x,A)|, in particular d(x) = d(x, V (G)). For disjoint vertex sets
X and Y , we denote by e(X,Y ) the number of edges between X and Y . For simplicity we
write ab instead of {a, b}.

Lemma 4.1. Let G = (V,E) be a triangle-free graph such that

for every ab ∈ E, there exists c ∈ V, such that ac 6∈ E and bc 6∈ E. (?)

Then |E| ≤
⌊

(n−1)2

4

⌋
+ 1 with equality only when G has the following structure: V (G) =

A+B+{z}, there exist a ∈ A and a non-empty set Bz ⊆ B such that E(G) = A×B−{ab :
b ∈ Bz}+ {zb : b ∈ Bz}+ {az}.

Proof. Let xy be an edge. Since G is triangle-free, we have N(x) ∩N(y) = ∅. With (?),
we further derive that d(x) + d(y) ≤ n− 1.
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If d(x) + d(y) ≤ n− 2 for every edge xy in G, then following Mantel’s proof of his theorem,
we have

4|E|2

n
=

(∑
x∈V d(x)

)2

n
≤

∑
x∈V

(d(x))2 =
∑

xy∈E

(d(x) + d(y)) ≤ (n− 2)|E|,

|E| ≤ n(n− 2)
4

<
(n− 1)2

4
<

⌊
(n− 1)2

4

⌋
+ 1.

Otherwise assume that d(x) + d(y) = n − 1 for some e = {x, y}. Let A = N(y) and
B = N(x). We know that A ∩ B = ∅ and A ∪ B = V − {z} for some vertex z. Let
d1 = d(z,A) and d2 = d(z,B).

Case 1: d1 = 0, or d2 = 0.

Say, d1 = 0. For each b ∈ N(z,B), there exists a ∈ A such that ab 6∈ E, since otherwise
edge xb does not satisfy (?). This implies that

|E| = e(A,B) + d(z,B) ≤ |A||B| ≤
⌊

(n− 1)2

4

⌋
.

Case 2: d1, d2 > 0.

In this case d1d2 − d1 − d2 + 1 = (d1 − 1)(d2 − 1) ≥ 0 with equality if and only if at least
one of d1, d2 is 1. Since G is triangle-free, there is no edge between N(z,A) and N(z,B).
Thus e(A,B) ≤ |A||B| − d1d2 and

|E| = e(A,B) + d(z,A) + d(z,B) ≤ |A||B| − d1d2 + d1 + d2 ≤
⌊

(n− 1)2

4

⌋
+ 1,

where equality holds only when G has the desired structure.

Proof of Theorem 1.7. To show that L3(n,K3) ≥
⌊

(n−1)2

4

⌋
, we enlarge each edge of

Kbn−1
2

c,dn−1
2

e with the same new vertex.

To prove the upper bound, we consider a 3-graph H on [n] such that H 6→ K3. The proof
of the q = t − 1 case of Theorem 1.4 implies that each triple T ∈ H contains a pair φ(T )
with degH(φ(T )) = 1. We thus obtain a graph G on [n] with edge set E = {φ(T ) : T ∈ H}.
Clearly |E| = |H|, and G satisfies (?) because

if φ({a, b, c}) = ab, then ac 6∈ E and bc 6∈ E. (11)
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Next we claim that G 6= G∗, where G∗ is a graph causing the equality in Lemma 4.1.
Suppose, to the contrary, that G = G∗. Let us consider edges za and zb for any b ∈ Bz. By
(11), φ−1(za) = {z, a, x} for some x ∈ A \ {a}, and φ−1(zb) = {z, b, y} for some y ∈ B \Bz.
Since a is the unique vertex which is non-adjacent to both x and b, we have φ−1(xb) =
{a, b, x}. The trace of {z, a, x}, {z, b, y}, {a, b, x} on {z, a, b} is a K3, contradicting H 6→ K3.

Finally we apply Lemma 4.1 and obtain that |H| = |E| ≤
⌊

(n−1)2

4

⌋
.

5. Concluding Remarks and Open Problems

A less ambitious goal than proving Conjecture 1.6 is to verify (3), or equivalently (10), for
p ≥ t + 2 and q ≤ t − 3. This will reduce the trace problem to determining ex(n,Ht−1

q,t ),
which is only known for q = 2. To obtain the asymptotic value of Lp(n,Kq

t ) in other cases,
one should try to verify (6) for p ≥ t+ 2 and t ≥ 5; the smallest open case is to prove that

L7(n,K5) = |T 4
4 (n)|+ o(n4) =

(n
4

)4
+ o(n4).

Following the ideas in Sections 3.2 and 3.3, in order to extend Theorem 1.4 for all p ≥ t,
one needs to show that Gk = o(nt−1) for t ≤ k ≤ p. When p ≥ t + 2, this does not follow
from Lemma 3.3 and the Kruskal-Katona theorem. The proof of Lemma 3.4 relies on the
assumption q = t− 2, and does not seem to generalize to other values of q.

A general uniform trace problem is to determine Lp(n, F ) for arbitrary p and F . Because of
the close connection between trace problems and Turán problems, as seen in Proposition 1.3
and Theorem 1.4, it is very hard to determine Lp(n, F ) in general. Let us consider L3(n, F )
when F is a graph. Fix t = χ(F ). When t ≥ 4, we have

L3(n, F ) = |T 3
t−1(n)|+ o(n3) =

(
t− 1

3

) (
n

t− 1

)3

+ o(n3).

In fact, the lower bound for L3(n, F ) follows from T 3
t−1(n) 6→ F , where T 3

t−1(n) is the
generalized Turán graph defined in the introduction. The reason for T 3

t−1(n) 6→ F is that
when embedding F into a (t− 1)-partite graph, some partition set must contain both ends
of an edge of F . The upper bound follows from (5) and Lemma 2.4. The same arguments
actually show that Lp(n, F ) = |T p

t−1(n)|+ o(nt−1) for every F with t = χ(F ) > p.

Problem 5.1. Determine the order of magnitude of L3(n, F ) for every F with χ(F ) ≤ 3.

14



This seems no easier than determining the order of magnitude of the Turán numbers for
bipartite graphs. We can derive an upper bound for L3(n, F ) as follows. A result of Erdős
[2] implies that ex(n,K3

3 (m)) = O(n3− 1
m2 ). For a 3-graph H, it is clear that K3

3 (m) ⊆ H

implies that H → K3(m − 1). For each F with χ(F ) ≤ 3, there exists m such that
F ⊆ K3(m). Hence L3(n, F ) ≤ L3(n,K3(m)) ≤ ex(n,K3

3 (m + 1)) = O(n3−c), where
c = 1/(m + 1)2. However, we do not have a matching lower bound. For example, we only
know L3(n,K3(2)) = Ω(n5/2), in contrast to the upper bound O(n26/9) derived by above
arguments (or O(n11/4) by some extra ideas). This lower bound can be seen from the 3-
partite 3-graph with partition sets A,B,C of size n, and the edge set {e∪v : v ∈ C, e ∈ G},
where G is a maximum C4-free bipartite graph on (A,B) with Ω(n3/2) edges.
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