Forbidding complete hypergraphs as traces

Dhruv Mubayi *
Department of Mathematics, Statistics, and Computer Science
University of Illinois
Chicago, IL 60607

Yi Zhao ${ }^{\dagger}$
Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303

September 13, 2006

Abstract

Let $2 \leq q \leq \min \{p, t-1\}$ be fixed and $n \rightarrow \infty$. Suppose that \mathcal{F} is a p-uniform hypergraph on n vertices that contains no complete q-uniform hypergraph on t vertices as a trace. We determine the asymptotic maximum size of \mathcal{F} in many cases. For example, when $q=2$ and $p \in\{t, t+1\}$, the maximum is $\left(\frac{n}{t-1}\right)^{t-1}+o\left(n^{t-1}\right)$, and when $p=t=3$, it is $\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$ for all $n \geq 3$. Our proofs use the Kruskal-Katona theorem, an extension of the sunflower lemma due to Füredi, and recent results on hypergraph Turán numbers.

[^0]
1. Introduction

Let $[n]=\{1,2, \ldots, n\}$. Given a set $X, 2^{X}$ denotes the family of all subsets of X, and $\binom{X}{q}=\{A \subseteq X:|A|=q\}$. A hypergraph \mathcal{H} on X is a family of subsets of X; these subsets are called edges of \mathcal{H} and X is the vertex set of \mathcal{H}. If all edges of \mathcal{H} have size p, then \mathcal{H} is a p-uniform hypergraph (p-graph for short).

Let G be a hypergraph on X and $S \subseteq X$. We define the trace of G on S as

$$
\left.G\right|_{S}:=\{E \cap S: E \in G\} .
$$

Note that we omit multiplicity when defining G_{S}.
If there exists a set S such that $\left.G\right|_{S}$ contains a copy of F as a subhypergraph, we say that G contains F as a trace, or F is a trace of G. In this case we write $G \rightarrow F$, otherwise $G \nrightarrow F$. Let $L^{p}(n, F)(L(n, F))$ denote the maximum number of edges in a p-uniform (not necessarily uniform) hypergraph on $[n]$ not containing F as a trace. Extremal problems on traces started from determining $L\left(n, 2^{[t]}\right)$. Sauer [15], Perles-Shelah [16], and VapnikChervonenkis [18] independently found that $L\left(n, 2^{[t]}\right)=\binom{n}{0}+\ldots+\binom{n}{t-1}$. For the uniform case, Frankl and Pach [6] showed that $L^{p}\left(n, 2^{[t]}\right) \leq\binom{ n}{t-1}$ for $t \leq p \leq n$. Many intersecting problems and applications on traces can be found in the survey of Füredi and Pach [9].

In this paper we consider the problem of forbidding a level of the lattice $2^{[t]}$ as a trace. More precisely, given integers p, t, n with $\max \{p, t\} \leq n$, we study the value of $L^{p}\left(n,\binom{[t]}{q}\right)$ for $1 \leq q \leq t-1$ (the $q=0$ and $q=t$ cases are trivial). Frankl and Pach [6] studied the $q=1$ case and obtained that $\operatorname{ex}\left(p+t-1,\binom{[t]}{t-1}\right) \leq L^{p}\left(n,\binom{[t]}{1}\right) \leq\binom{ p+t-1}{t-1}$, where $e x$ is the classical Turán number. Balogh, Keevash and Sudakov [1] investigated the trace problem of forbidding more than one non-trivial level of $2^{[t]}$.

Trivially $L^{p}\left(n,\binom{[t]}{q}\right)=\binom{n}{p}$ when $p<q$. Therefore throughout the paper we assume that

$$
\begin{equation*}
2 \leq q \leq t-1 \quad \text { and } \quad q \leq p \tag{1}
\end{equation*}
$$

and whenever we use asymptotic notation, we assume that only $n \rightarrow \infty$. Note that the $p=q$ case is exactly the Turán problem. The reason why we only consider uniform trace numbers is that Füredi and Quinn [10] showed that $L\left(n,\binom{[t]}{q}\right)=L\left(n, 2^{[t]}\right)$ for every $0 \leq q \leq t$, in other words, forbidding a level of the lattice $2^{[t]}$ is equivalent to forbidding the whole lattice in the non-uniform case. Following graph theory language, the forbidden configuration $\binom{[t]}{q}$ is a complete q-graph on t vertices, so we denote it by K_{t}^{q}, and write $K_{t}=K_{t}^{2}$.

Our first result, which is little more than an observation, determines the order of magnitude of $L^{p}\left(n, K_{t}^{q}\right)$.

Proposition 1.1. $L^{p}\left(n, K_{t}^{q}\right)=\Theta\left(n^{\min \{p, t-1\}}\right)$.

A trace problem for uniform hypergraphs is in fact a Turán problem. Given a family \mathcal{F} of r-graphs, the Turán number $\operatorname{ex}(n, \mathcal{F})$ of \mathcal{F} is the maximum number of edges in an r-graph on n vertices containing no $F \in \mathcal{F}$ (see e.g., Füredi [8] for a survey). When $\mathcal{F}=\{F\}$, we write $\operatorname{ex}(n, F)$ instead of $\operatorname{ex}(n,\{F\})$. If we denote K_{3} by $\{12,23,31\}$, then $L^{3}\left(n, K_{3}\right)=\operatorname{ex}\left(n,\left\{F_{1}, F_{2}, F_{3}\right\}\right)$, where $F_{1}=\{124,234,134\}, F_{2}=\{124,234,135\}$, and $F_{3}=$ $\{124,235,136\}$. In general, for any q-graph F and $q \leq p$, we have $L^{p}(n, F)=\operatorname{ex}\left(n, \mathcal{H}^{p}(F)\right)$, where $\mathcal{H}^{p}(F)$ is the family of all p-graphs H with $|F|$ edges such that $H \rightarrow F$.

Definition 1.2. Let $H_{q, t}^{p}$ be the member of $\mathcal{H}^{p}\left(K_{t}^{q}\right)$ with the maximum number of vertices. In other words, $H_{q, t}^{p}$ is the p-graph obtained from K_{t}^{q} by enlarging each of its $\binom{t}{q}$ edges with a (different) set of $p-q$ new vertices. Trivially $H_{p, t}^{p}=K_{t}^{p}$.

Since forbidding a family of hypergraphs (as a subgraph) is not easier than forbidding any member of the family,

$$
\begin{equation*}
L^{p}\left(n, K_{t}^{q}\right)=\operatorname{ex}\left(n, \mathcal{H}^{p}\left(K_{t}^{q}\right)\right) \leq \operatorname{ex}\left(n, H_{q, t}^{p}\right) . \tag{2}
\end{equation*}
$$

Our second result, which is also not hard to prove, shows that the inequality in (2) is asymptotically an equality when $p<t$.

Proposition 1.3. Let $p<t$. Then $L^{p}\left(n, K_{t}^{q}\right)=\operatorname{ex}\left(n, H_{q, t}^{p}\right)+o\left(n^{p}\right)$.

Our main result reduces $L^{p}\left(n, K_{t}^{q}\right)$ when $p \geq t$ to Turán numbers in many cases.
Theorem 1.4. Fix $2 \leq q<t \leq p$. Suppose that $q \in\{t-2, t-1\}$ or $p \in\{t, t+1\}$. Then

$$
\begin{equation*}
L^{p}\left(n, K_{t}^{q}\right)=L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right)=\operatorname{ex}\left(n, H_{q, t}^{t-1}\right)+o\left(n^{t-1}\right) . \tag{3}
\end{equation*}
$$

This suggests that determining $L^{p}\left(n, K_{t}^{q}\right)$ could be as difficult as a hypergraph Turán problem. For example, (3) implies that $L^{4}\left(n, K_{4}^{3}\right)=\operatorname{ex}\left(n, K_{4}^{3}\right)+o\left(n^{3}\right)$, and determining ex $\left(n, K_{4}^{3}\right)$ is a well-known open problem of Turán [17]. Together with Mantel's Theorem on ex $\left(n, K_{3}\right)$ [12], Theorem 1.4 gives

$$
\begin{equation*}
L^{p}\left(n, K_{3}\right)=\operatorname{ex}\left(n, K_{3}\right)+o\left(n^{2}\right)=\left(\frac{n}{2}\right)^{2}+o\left(n^{2}\right) . \tag{4}
\end{equation*}
$$

Determining $\operatorname{ex}\left(n, H_{q, t}^{p}\right)$ in general seems hopeless. However, the $q=2$ case was recently solved by the first author [13] and Pikhurko [14]. Given $2 \leq p \leq \ell$, a p-graph is ℓ-partite if its vertices can be partitioned into ℓ classes, such that every edge has at most one vertex from each class. An ℓ-partite p-graph is called complete if it contains all allowable edges. We denote by $T_{\ell}^{p}(n)$ the complete ℓ-partite p-graph (a generalized Turán graph) on n vertices with no two class sizes differ more than one. Let $p<t$. Clearly $T_{t-1}^{p}(n)$ contains no $H_{2, t}^{p}$ as a subgraph and

$$
\left|T_{\ell}^{p}(n)\right|=\sum_{S \in\binom{[\ell]}{p}} \prod_{i \in S}\left\lfloor\frac{n+i-1}{\ell}\right\rfloor=\binom{\ell}{p}\left(\frac{n}{\ell}\right)^{p}+o\left(n^{p}\right) .
$$

The first author [13] showed that $\operatorname{ex}\left(n, H_{2, t}^{p}\right)=\left|T_{t-1}^{p}(n)\right|+o\left(n^{p}\right)$ as $n \rightarrow \infty$. Pikhurko [14] improved this to ex $\left(n, H_{2, t}^{p}\right)=\left|T_{t-1}^{p}(n)\right|$ for sufficiently large n. Applying (2), we thus have $L^{p}\left(n, K_{t}\right) \leq\left|T_{t-1}^{p}(n)\right|$ for sufficiently large n. On the other hand, it is easy to see that $T_{t-1}^{p}(n)$ contains no K_{t}^{q} for any $q \geq 2$ as a trace. In fact, every t-vertex set S of $T_{t-1}^{p}(n)$ must contain two vertices a, b from the same vertex class, but no edge of $T_{t-1}^{p}(n)$ contains both a and b. Thus for $q \geq 2$, every q-subset of S containing a and b is absent from $\left.T_{t-1}^{p}(n)\right|_{S}$. Consequently $T_{t-1}^{p}(n) \nrightarrow K_{t}^{q}$, in particular, $L^{p}\left(n, K_{t}\right) \geq\left|T_{t-1}^{p}(n)\right|$. Putting the upper and lower bounds together, for $2 \leq p<t$ and sufficiently large n,

$$
\begin{equation*}
L^{p}\left(n, K_{t}\right)=\left|T_{t-1}^{p}(n)\right|=\binom{t-1}{p}\left(\frac{n}{t-1}\right)^{p}+o\left(n^{p}\right) . \tag{5}
\end{equation*}
$$

By combining (5) with Theorem 1.4, we obtain the following result.
Corollary 1.5. Suppose that $t=4$ or $p \in\{t, t+1\}$. Then

$$
\begin{equation*}
L^{p}\left(n, K_{t}\right)=\left|T_{t-1}^{t-1}(n)\right|+o\left(n^{t-1}\right)=\left(\frac{n}{t-1}\right)^{t-1}+o\left(n^{t-1}\right) . \tag{6}
\end{equation*}
$$

We conjecture the values of $L^{p}\left(n, K_{t}^{q}\right)$ as follows.
Conjecture 1.6. Fix p, q, t, n with $2 \leq q<\min \{t, p\}$. For $n>n_{0}$,

$$
L^{p}\left(n, K_{t}^{q}\right)= \begin{cases}\operatorname{ex}\left(n, H_{q, t}^{p}\right) & \text { if } p<t, \\ L^{t-1}\left(n-p+t-1, K_{t}^{q}\right)=\operatorname{ex}\left(n-p+t-1, H_{q, t}^{t-1}\right) & \text { if } p \geq t .\end{cases}
$$

The equation (5) confirms the conjecture for the case of $q=2, p<t$, and sufficiently large n. As further evidence of Conjecture 1.6, we prove its smallest non-trivial case: $(p, q, t)=(3,2,3)$. Note that this sharpens the $p=3$ case of (4).

Theorem 1.7. Let $n \geq 3$. Then

$$
L^{3}\left(n, K_{3}\right)=\operatorname{ex}\left(n-1, K_{3}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor .
$$

2. Preliminary Results

In this section we prove Proposition 1.1, Proposition 1.3 and the supersaturation property for trace problems.

We first observe that $L^{p}\left(n, K_{t}^{q}\right)$ is close to a monotone function of n.
Proposition 2.1. $L^{p}\left(n, K_{t}^{q}\right) \geq L^{p-i}\left(n-i, K_{t}^{q}\right)$ for $1 \leq i \leq p-q$.

Proof. Suppose that $G \subseteq\binom{[n-i]}{p-i}$ satisfies $G \nrightarrow K_{t}^{q}$. We extend G to a p-graph G^{\prime} by adding a set C of i new vertices and replacing each $E \in G$ by $E \cup C$. We claim that $G^{\prime} \nrightarrow K_{t}^{q}$. Consider a t-set S of vertices. If S contains a vertex $x \in C$, then all edges of G^{\prime} contain x, and consequently all q-subsets of $E \backslash\{x\}$ are absent from $\left.G^{\prime}\right|_{E}$. Otherwise $E \cap C=\emptyset$, and we have $\left.G^{\prime}\right|_{E}=\left.G\right|_{E} \nrightarrow K_{t}^{q}$.

Proof of Proposition 1.1. We need to show that $L^{p}\left(n, K_{t}^{q}\right)=\Theta\left(n^{\min \{p, t-1\}}\right)$. When $p \geq$ t, Frankl and Pach [6] showed that $L^{p}\left(n, K_{t}^{q}\right) \leq\binom{ n}{t-1}$. When $p<t$, trivially $L^{p}\left(n, K_{t}^{q}\right) \leq$ $\binom{n}{p}$. We now consider lower bounds. When $p \leq t-1$, Since $T_{t-1}^{p}(n) \nrightarrow K_{t}^{q}$ (for $q \geq 2$), we have $L^{p}\left(n, K_{t}^{q}\right) \geq\left|T_{t-1}^{p}(n)\right|=\Omega\left(n^{p}\right)$. Now let $p \geq t$. Since $T_{t-1}^{t-1}(n-p+t-1) \nrightarrow K_{t}^{q}$ and $\left|T_{t-1}^{t-1}(n-p+t-1)\right|=\Omega\left(n^{t-1}\right)$, we have $L^{t-1}\left(n-p+t-1, K_{t}^{q}\right)=\Omega\left(n^{t-1}\right)$. Proposition 2.1 thus implies that $L^{p}\left(n, K_{t}^{q}\right) \geq L^{t-1}\left(n-p+t-1, K_{t}^{q}\right)=\Omega\left(n^{t-1}\right)$.

Definition 2.2. Let F be a p-graph $(p \geq 2)$ on $[\ell]$ and $\vec{m}=\left\langle m_{1}, \ldots, m_{\ell}\right\rangle$ be a vector of positive integers. The blow-up $F(\vec{m})$ of F is obtained by replacing each vertex i by a vertex class V_{i} of size m_{i}, and each edge $\left\{i_{1}, \ldots, i_{p}\right\}$ by the family of all p-sets $\left\{w_{1}, \ldots, w_{p}\right\}$, where $w_{j} \in V_{i_{j}}$. We simply write $F(m)$ if all $m_{i}=m$.

A phenomenon discovered by Brown, Erdős and Simonovits [5], usually called supersaturation, implies that $\operatorname{ex}(n, F(\vec{m}))=\operatorname{ex}(n, F)+o\left(n^{r}\right)$ for every r-graph F and its blow-up $F(\vec{m})$. To prove Proposition 1.3, we need a lemma from [13], which is a simple consequence of supersaturation.

Lemma 2.3 (Lemma 4 in [13]). Let m, p be positive integers with $p \geq 2$, and let \mathcal{F} be a finite family of p-graphs. If H is a p-graph satisfying $H \subseteq F(m)$ for all $F \in \mathcal{F}$, then $\operatorname{ex}(n, H) \leq \operatorname{ex}(n, \mathcal{F})+o\left(n^{p}\right)$.

Proof of Proposition 1.3. Here $p<t$ and we must show that $L^{p}\left(n, K_{t}^{q}\right)=\operatorname{ex}\left(n, H_{q, t}^{p}\right)+$ $o\left(n^{p}\right)$. Because of (2), we only need to show that $L^{p}\left(n, K_{t}^{q}\right) \geq \operatorname{ex}\left(n, H_{q, t}^{p}\right)+o\left(n^{p}\right)$ when $n \rightarrow \infty$. For each $\left.F \in \mathcal{H}^{p}\left(K_{t}^{q}\right)\right)$, it is easy to see that $H_{q, t}^{p} \subseteq F\left(\binom{t}{q}\right)$. Lemma 2.3 implies that

$$
\begin{equation*}
\operatorname{ex}\left(n, H_{q, t}^{p}\right) \leq \operatorname{ex}\left(n, \mathcal{H}^{p}\left(K_{t}^{q}\right)\right)+o\left(n^{p}\right)=L^{p}\left(n, K_{t}^{q}\right)+o\left(n^{p}\right) \tag{7}
\end{equation*}
$$

Next we prove the supersaturation phenomenon for trace problems.
Lemma 2.4. $L^{p}\left(n, K_{t}^{q}(m)\right) \leq L^{p}\left(n, K_{t}^{q}\right)+o\left(n^{p}\right)$. In particular, $L^{p}\left(n, K_{t}^{q}(m)\right)=(1+$ $o(1)) L^{p}\left(n, K_{t}^{q}\right)$ for $p<t$.

Proof. The second assertion follows from the first by realizing that $L^{p}\left(n, K_{t}^{q}\right)=\Theta\left(n^{p}\right)$ for $p<t$ from Proposition 1.1. To prove the first claim, recall that $\mathcal{H}^{p}\left(K_{t}^{q}(m)\right)$ is the family of p-graphs whose $\left|K_{t}^{q}(m)\right|$ edges contain $K_{t}^{q}(m)$ as a trace, and $H_{q, t}^{p}$ is obtained from K_{t}^{q} by enlarging each of its $\binom{t}{q}$ edges with a different set of $p-q$ new vertices. Let $\tilde{H}=H_{q, t}^{p}(\vec{m})$, where $m_{i}=m$ for all the vertices v_{i} in the original K_{t}^{q}, and $m_{i}=1$ for the other vertices. It is easy to see that \tilde{H} is a member of $\mathcal{H}^{p}\left(K_{t}^{q}(m)\right)$. We thus have

$$
\begin{aligned}
L^{p}\left(n, K_{t}^{q}(m)\right) & =\operatorname{ex}\left(n, \mathcal{H}^{p}\left(K_{t}^{q}(m)\right)\right) \\
& \leq \operatorname{ex}(n, \tilde{H}) \\
& \leq \operatorname{ex}\left(n, H_{q, t}^{p}\right)+o\left(n^{p}\right) \\
& \leq L^{p}\left(n, K_{t}^{q}\right)+o\left(n^{p}\right),
\end{aligned}
$$

where the first inequality holds because $\tilde{H} \in \mathcal{H}^{p}\left(K_{t}^{q}(m)\right)$, the second inequality holds because of supersaturation for the Turán problems, and the last one holds because of (7).

3. Proof of Theorem 1.4

Throughout this section we will assume that $p \geq t$. Our goal is to prove that if $q \in$ $\{t-2, t-1\}$ or $p \in\{t, t+1\}$, then

$$
L^{p}\left(n, K_{t}^{q}\right)=L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right) .
$$

In fact, the second equality of (3) in Theorem 1.4, $L^{t-1}\left(n, K_{t}^{q}\right)=\operatorname{ex}\left(n, H_{q, t}^{t-1}\right)+o\left(n^{t-1}\right)$, follows from Proposition 1.3 (note that the second condition in (1) still holds because $t-1 \geq q)$. Furthermore, we claim that

$$
\begin{equation*}
L^{p}\left(n, K_{t}^{q}\right) \geq L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right) . \tag{8}
\end{equation*}
$$

To see this, first observe that Proposition 2.1 implies that $L^{p}\left(n, K_{t}^{q}\right) \geq L^{t-1}\left(n-p+t-1, K_{t}^{q}\right)$. Proposition 1.3 further gives that $L^{p}\left(n, K_{t}^{q}\right) \geq \operatorname{ex}\left(n-p+t-1, H_{q, t}^{t-1}\right)+o\left(n^{t-1}\right)$. Now we recall a fact on the Turán number, which immediately follows from the existence of $\lim _{n \rightarrow \infty} \operatorname{ex}(n, \mathcal{F}) /\binom{n}{p}$. Given a family \mathcal{F} of r-graphs and an integer $c>0$,

$$
\begin{equation*}
\operatorname{ex}(n, \mathcal{F})-\operatorname{ex}(n-c, \mathcal{F})=o\left(n^{r}\right) \tag{9}
\end{equation*}
$$

Therefore $L^{p}\left(n, K_{t}^{q}\right) \geq \operatorname{ex}\left(n, H_{q, t}^{t-1}\right)+o\left(n^{t-1}\right)$ and (8) follows after applying Proposition 1.3 again.

Therefore the main task is to verify

$$
\begin{equation*}
L^{p}\left(n, K_{t}^{q}\right) \leq L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right) . \tag{10}
\end{equation*}
$$

for $q \in\{t-2, t-1\}$ or $p \in\{t, t+1\}$. The $q=t-1$ case (Section 3.1) is the easiest: its main idea is to find a one-to-one function from a p-graph G with $G \nrightarrow K_{t}^{q}$ to a $(t-1)$-graph G^{\prime} such that $G^{\prime} \nsupseteq K_{t}^{t-1}$. The remaining cases are harder: we present two lemmas in Section 3.2, and complete the proofs in Section 3.3. The main tools include the Erdős-Ko-Rado theorem, the Kruskal-Katona theorem and a lemma on sunflowers due to Füredi.

3.1. $q=t-1$.

Let G be a hypergraph and S be a subset of its vertex set. The degree of S in $G, \operatorname{deg}_{G}(S)$, or $\operatorname{deg}(S)$ if the underlying hypergraph is clear from the context, is the number of edges in G containing S (frequently called codegree when $|S| \geq 2$). Given a p-graph G, if every edge $E \in G$ contains at least one p^{\prime}-subset E^{\prime} with $\operatorname{deg}_{G}\left(E^{\prime}\right)=1$, then $\phi(E)=E^{\prime}$ defines a one-to-one function from G to $G^{\prime}=\left\{E^{\prime}: E \in G\right\}$ (if more than one p^{\prime}-subsets are of degree 1 , then arbitrarily pick one of them to be $\phi(E)$).

Proposition 3.1. Let G be a p-graph such that $G \nrightarrow K_{t}^{q}$. If there exists a function ϕ mapping every edge $E \in G$ to a q-set $E^{\prime} \subset E$ such that $\operatorname{deg}_{G}\left(E^{\prime}\right)=1$, then $\phi(G)=\{\phi(E)$: $E \in G\}$ contains no K_{t}^{q} as a subgraph.

Proof. Suppose instead, that G^{\prime} contains a subgraph G_{1}^{\prime} on a t-set T such that $G_{1} \cong K_{t}^{q}$. Clearly ϕ is one-to-one. Let ϕ^{-1} be the inverse function. We claim that each edge $E \in G$ with $\phi(E) \in G_{1}^{\prime}$ satisfies that $E \cap T=\phi(E)$ and therefore $\left.G\right|_{T} \supseteq K_{t}^{q}$, contradicting the assumption that $G \nrightarrow K_{t}^{q}$. In fact, if $E \cap T \supsetneq \phi(E)$, then $E \cap T$ contains another q-set $Q \in G_{1}^{\prime}$. Clearly $E \neq \phi^{-1}(Q)$ because ϕ is a function. The fact that both E and $\phi^{-1}(Q)$ contain Q implies that $\operatorname{deg}_{G}(Q) \geq 2$, a contradiction.

The following lemma is the key observation for proving the $q=t-1$ case of (10).
Lemma 3.2. Let $2 \leq t \leq p$. Suppose that S is a p-set and H is a family of proper subsets of S. If every $(t-1)$-subset of S is contained in some member of H, then $H \rightarrow K_{t}^{t-1}$.

Proof. We do induction on p for fixed $t \geq 2$. The base case $p=t$ is trivial, since every $(t-1)$-subset of S is a member of H, or $\binom{S}{p-1} \subseteq H$. For the induction step, let $p>t$ and consider two cases. If $\binom{S}{p-1} \subseteq H$, then for a fixed t-set $T \subset S$, we have $\left.H\right|_{T} \supseteq\binom{T}{t-1}$ because each $(t-1)$-subset T^{\prime} of T is contained in $T^{\prime} \cup(S \backslash T)$, which is a member of H. Otherwise $\binom{S}{p-1} \nsubseteq H$, and there exists an $(p-1)$-set $S^{\prime} \notin H$. It is easy to see that $\left.H\right|_{S^{\prime}}$ satisfies the assumption of the lemma with $p-1$ instead of p. We then apply the induction hypothesis to S^{\prime} and $\left.H\right|_{S^{\prime}}$ obtaining that $\left.H\right|_{S^{\prime}} \rightarrow K_{t}^{t-1}$ and consequently $H \rightarrow K_{t}^{t-1}$.

Proof of (10) for $q=t-1$. Let G be an n-vertex p-graph not having K_{t}^{t-1} as a trace. Each edge $E \in G$ must contain a $(t-1)$-subset E^{\prime} with $\operatorname{deg}_{G}\left(E^{\prime}\right)=1$, otherwise we apply Lemma 3.2 with $S=E$ and $H=\left.G\right|_{E}-\{E\}$ to conclude that $G \rightarrow K_{t}^{t-1}$. We thus define $\phi(E)=E^{\prime}$ and ϕ is a one-to-one function from G to $\binom{[n]}{t-1}$. By Proposition 3.1, the resulting $(t-1)$-graph G^{\prime} contains no K_{t}^{t-1} as a subgraph, thus $|G|=\left|G^{\prime}\right| \leq \operatorname{ex}\left(n, K_{t}^{t-1}\right)=$ $L^{t-1}\left(n, K_{t}^{t-1}\right)$.

3.2. Two Lemmas

Fix $G \subseteq\binom{[n]}{p}$ with $|G| \geq 2$. The following partition of G will be needed in our proofs. Define a function $f: G \rightarrow[p]$ such that for $E \in G$,

$$
f(E)=\min \{|D|: D \subseteq E, \operatorname{deg}(D)=1 \text { and } \forall S \subset D, \operatorname{deg}(S) \geq 2\} .
$$

(Throughout this subsection $\operatorname{deg}=\operatorname{deg}_{G}$.) Since $\operatorname{deg}(E)=1$ and $\operatorname{deg}(\emptyset)=|G| \geq 2$, there always exists a subset $D \subset E$ such that $\operatorname{deg}(D)=1$ but $\operatorname{deg}(S) \geq 2$ for all $S \subset D$. Hence f
is well defined. For $1 \leq i \leq p$, let $G_{i}=\{E \in G: f(E)=i\}$. Clearly, $G_{p}+G_{p-1}+\ldots+G_{1}$ is a partition of G.

Furthermore, for $k \leq p$, let $\partial^{k} G$ denote the shadow of G at level k, namely, $\partial^{k} G=\{D$: $|D|=k, D \subseteq E$ for some $E \in G\}$. In particular, $\partial G=\partial^{p-1} G$. Let

$$
G^{i}=\left\{D \in \partial^{i} G: \operatorname{deg}(D)=1 \text { and } \forall S \subset D, \operatorname{deg}(S) \geq 2\right\} .
$$

If we map each $D \in G^{i}$ to the unique $E \in G$ such that $D \subseteq E$, then we obtain an onto function from G^{i} to G_{i}. Hence $\left|G_{i}\right| \leq\left|G^{i}\right|$ for $1 \leq i \leq p$. We are ready to state two lemmas, which are the key ingredients in our proofs.

Lemma 3.3. Let $t \leq k \leq p$ and $G \subseteq\binom{[n]}{p}$. If $G \nrightarrow K_{t}^{q}$, then $\left|\partial^{t}\left(G^{k}\right)\right|=O\left(n^{t-2}\right)$.
Lemma 3.4. Let $t \leq i \leq k \leq p$ and $G \subseteq\binom{[n]}{p}$. If $G \nrightarrow K_{t}^{t-2}$, then $\left|\partial^{i}\left(G^{k}\right)\right|=O\left(n^{t-2}\right)$.

In order to prove Lemma 3.3. We need the following lemma on sunflowers, which is an easy corollary of a result of Füredi [7] and the Erdős-Ko-Rado Theorem [4]. A sunflower (or Δ-system) with k petals and a core Y is a collection of distinct sets S_{1}, \ldots, S_{k} such that $S_{i} \cap S_{j}=Y$ for all $i \neq j$.

Lemma 3.5. Given k and r, there exists $C=C(k, r)$ such that every $F \subseteq\binom{[n]}{k}$ with $|F| \geq C n^{k-i}$ contains an r-petal sunflower with a core of size less than i.

Proof. Füredi [7] extended the well-known Sunflower Lemma of Erdős and Rado [3] as follows: given k and r, there exists $c=c(k, r)$ such that every $F \subseteq\binom{[n]}{k}$ contains a subfamily F^{\prime} such that $\left|F^{\prime}\right|>c|F|$ and for all distinct $E_{1}, E_{2} \in F^{\prime}, F^{\prime}$ contains an r-petal sunflower with core $E_{1} \cap E_{2}$. (The original statement in $[7]$ is actually stronger.) Let $C=1 / c$. We apply this result to $F \subseteq\binom{[n]}{k}$ with $|F| \geq n^{k-i} / c$. Since $\left|F^{\prime}\right| \geq n^{k-i}>\binom{n-i}{k-i}$, by the Erdős-Ko-Rado Theorem [4], F^{\prime} contains E_{1}, E_{2} such that $\left|E_{1} \cap E_{2}\right|<i$. Then F^{\prime} contains an r-petal sunflower with core $E_{1} \cap E_{2}$ of size less than i.

Fix $i \in[p]$. We say that a hypergraph $H \subseteq \partial^{i} G$ satisfies the property (\diamond) if

$$
\text { for all } D \in H \text { and } x \in D \text {, there exists } E \in G \text { s.t. } D \backslash\{x\} \subset E, x \notin E \text {. }
$$

We claim that $\partial^{i} G^{k}$ satisfies (\diamond) for all $t \leq i \leq k$. First we show that G^{k} satisfies (\diamond). Pick $D \in G^{k}$ and $x \in D$. Since $D \in G^{k}$, there exists a unique $E_{1} \in G$ such that $D \subseteq E_{1}$. Since $\operatorname{deg}(D \backslash\{x\}) \geq 2$, there exists $E \in G, E \neq E_{1}$ such that $D \backslash\{x\} \subset E$. In addition, $x \notin E$,
otherwise $D \subseteq E$, contradicting $\operatorname{deg}(D)=1$. We next observe that if H satisfies (\diamond), then ∂H also satisfies (\diamond). In fact, let $S \in \partial H$ and $x \in S$. Suppose that $S \subset D \in H$. Then there exists $E \in G$ such that $D \backslash\{x\} \subset E, x \notin E$, in particular, $S \backslash\{x\} \subset E$.

Given a function $\phi: A \rightarrow B$ and $y \in B$, let $\phi^{-1}(y)=\{x \in A: \phi(x)=y\}$.
Proof of Lemma 3.3. Let $H=\partial^{t}\left(G^{k}\right)$. Since $G \nrightarrow K_{t}^{q}$, each $D \in H$ contains at least one q-element subset Q such that $Q \notin G_{D}$. We denote such a Q by $\psi(D)$ (arbitrarily pick one if more than one set can be chosen). In order to show that $|H|=O\left(n^{t-2}\right)$, it suffices to show that for each set $Q \in\binom{[n]}{q}$, we have $\left|\psi^{-1}(Q)\right|=O\left(n^{t-2-q}\right)$. Define a $(t-q)$-graph $F=\left\{D-Q: D \in \psi^{-1}(Q)\right\}$. Suppose to the contrary, that $\left|\psi^{-1}(Q)\right|=|F|>C n^{t-q-2}$ for the constant $C=C(t-q, p-t+3)$ from Lemma 3.5. By Lemma 3.5, F contains a sunflower S_{1}, \ldots, S_{p-t+3} with core Y of size at most 1 . For all i, let $D_{i}=S_{i} \cup Q \in H$.

Case 1: $Y=\emptyset$. Since $D_{1} \in \partial^{t}\left(G^{k}\right)$, there exists $E \in G$ such that $D_{1} \subset E$. At most $\left|E \backslash D_{1}\right|=p-t$ petals have non-empty intersection with $E \backslash D_{1}$. Since the total number of petals is greater than $p-t+1$, there exists $j \neq 1$ such that $S_{j} \cap\left(E \backslash D_{1}\right)=\emptyset$, or $D_{j} \cap E=Q$, a contradiction.

Case 2: $Y=\{x\}$. Since H satisfies (\diamond), there exists $E \in G$ such that $D_{1} \backslash\{x\} \subset E$ and $x \notin E$. At most $\left|E \backslash\left(D_{1} \backslash\{x\}\right)\right|=p-t+1$ petals have non-empty intersection with $E \backslash\left(D_{1} \backslash\{x\}\right)$. Since the total number of petals is $p-t+3$, there exists $j, j \neq 1$ such that $S_{j} \cap\left(E \backslash\left(D_{1} \backslash\{x\}\right)\right)=\emptyset$. Since $x \notin E$ but $x \in D_{j}$, we have $D_{j} \cap E=Q$, a contradiction.

Proof of Lemma 3.4. We do induction on $i \geq t$. The base case $i=t$ holds because of Lemma 3.3. Let $H=\partial^{i} G^{k}$. For each $D \in H$, arbitrarily pick one of its t-subsets S. Since $G \nrightarrow K_{t}^{t-2}, S$ contains a $(t-2)$-subset Q such that $\left.Q \notin G\right|_{S}$. Suppose $S \backslash Q=\{x, y\}$. Let $\psi(D)=D-\{y\}$ and $\phi(D)=(\psi(D), Q, x)$. We claim that $\left|\psi^{-1}(D-\{y\})\right| \leq\binom{ i-1}{t-1}(t-1)(p-$ $i+2)$. By the pigeonhole principle, it suffices to show that $\left.\mid \phi^{-1}(D-\{y\}, Q, x)\right) \mid \leq p-i+2$ (for a fixed $D-\{y\}$, there are $\binom{i-1}{t-1}(t-1)$ ways of choosing a $(t-2)$-set Q and an element $x \notin Q)$. Suppose instead, that there exist $D_{1}, \ldots, D_{p-i+3} \in H$ forming a sunflower with core $D-\{y\}$ and petals $\left\{y_{j}\right\}, 1 \leq j \leq p-i+3$ such that $\left.Q \notin G\right|_{S_{j}}$ for $S_{j}=Q \cup\left\{x, y_{j}\right\}$. Since H satisfies (\diamond), there exists $E \in G$ such that $D_{1} \backslash\{x\} \subset E$ and $x \notin E$. At most $\left|E \backslash\left(D_{1} \backslash\{x\}\right)\right|=p-i+1$ petals have non-empty intersection with $E \backslash\left(D_{1} \backslash\{x\}\right)$. Since the total number of petals is $p-t+3$, there exists $j \neq 1$ such that $y_{j} \notin E$. Since $x \notin E$ but $x \in D_{j}$, we have $S_{j} \cap E=Q$, a contradiction.

We thus have $|H| \leq C|\psi(H)|$, where $C=\binom{i-1}{t-1}(t-1)(p-i+2)$. Since $\psi(H) \subseteq \partial^{i-1} G^{k}$, the
induction hypothesis gives $|\psi(H)| \leq\left|\partial^{i-1} G^{k}\right|=O\left(n^{t-2}\right)$. Consequently $|H|=O\left(n^{t-2}\right)$.

3.3. Proofs for $p \in\{t, t+1\}$ and $q=t-2$

We need a proposition, which can be considered as an extension of Proposition 3.1.
Proposition 3.6. Let $q \leq p^{\prime} \leq p$, and $m=\binom{t}{q}(p-q)+1$. Suppose that G is a p-graph on $[n]$ and ϕ is a function from G to $\binom{[n]}{p^{\prime}}$ such that $\phi(E) \subseteq E$ for each $E \in G$. If $G \nrightarrow K_{t}^{q}$, then $\phi(G) \nrightarrow K_{t}^{q}(m)$.

Proof. Suppose instead, that $\phi(G) \rightarrow K_{t}^{q}(m)$. Then there are disjoint vertex sets $X_{1}, X_{2}, \ldots, X_{t}$ of size m such that the following holds. Let \mathcal{Q} be the family of q-sets having non-empty intersection with exactly q of $X_{1}, X_{2}, \ldots, X_{t}$. For each $Q \in \mathcal{Q}$, there exists $E \in G$ such that $Q \subseteq \phi(E) \subseteq E$. Denote such E by E_{Q}. We say that a set $Q \in \mathcal{Q}$ is bad if there exists j such that $Q \cap X_{j}=\emptyset$ and $\left(E_{Q} \backslash Q\right) \cap X_{j} \neq \emptyset$. Given a bad $Q \in \mathcal{Q}$, a t-tuple x_{1}, \ldots, x_{t} with $x_{i} \in X_{i}$ is called bad because of Q if $\left\{x_{1}, \ldots, x_{t}\right\}$ contains Q and at least one vertex from $E_{Q} \backslash Q$. A t-tuple from $X_{1} \times \cdots \times X_{t}$ is called bad if it is bad because of some Q. For fixed bad $Q \in \mathcal{Q}$, the number of bad t-tuples because of Q is at most $(p-q) m^{t-q-1}$ (first select a vertex from $E_{Q} \backslash Q$ and then decide the remaining $t-q-1$ coordinates). The total number of bad t-tuples is thus at most $\binom{t}{q} m^{q}(p-q) m^{t-q-1}$. When $m>\binom{t}{q}(p-q)$, we have $\binom{t}{q} m^{q}(p-q) m^{t-q-1}<m^{t}$, or the number of bad t-tuples is less than the total number of t-tuples in $X_{1} \times \cdots \times X_{t}$. Hence there always exists a good t-tuple T and consequently $\left.G\right|_{T} \supseteq K_{t}^{q}$, a contradiction.

Proof of (10) for $p=t$. Given $G \subseteq\binom{[n]}{t}$ such that $G \nrightarrow K_{t}^{q}$, we partition G into $G_{t}+\ldots+G_{1}$ as in the beginning of Section 3.2. By Lemma 3.3, $\left|G^{t}\right|=O\left(n^{t-2}\right)$ and consequently $\left|G_{t}\right| \leq\left|G^{t}\right|=O\left(n^{t-2}\right)$. Trivially $\left|G_{i}\right| \leq\left|G^{i}\right|=O\left(n^{t-2}\right)$ for $i \leq t-2$. It remains to show that $\left|G_{t-1}\right| \leq L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right)$. In fact, for each $E \in G_{t-1}$, we define $\phi(E)=D$ where D is one of the $(t-1)$-subsets of E satisfying $\operatorname{deg}(D)=1$. Proposition 3.6 implies that $\phi(G) \nrightarrow K_{t}^{q}(m)$ for $m=\binom{t}{q}(p-q)+1$. So

$$
|G|=|\phi(G)| \leq L^{t-1}\left(n, K_{t}^{q}(m)\right) \leq L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right),
$$

where the last inequality follows from Lemma 2.4.
Proof of (10) for $p=t+1$. We need Lovász's version [11] of the Kruskal-Katona Theorem: let H be a $(t+1)$-graph with $|H|=\binom{x}{t+1}$ for some real number x. Then $\partial H \geq\binom{ x}{t}$. This
implies that if $|\partial H|=O\left(n^{k}\right)$, then $|H|=O\left(n^{\frac{k(t+1)}{t}}\right)$. To see this, suppose that $|\partial H| \leq C n^{k}$ for some $C>0$. Since $\left(\frac{x}{t}\right)^{t} \leq\binom{ x}{t} \leq|\partial H| \leq C n^{k}$, we have $\frac{x}{t} \leq C^{\frac{1}{t}} n^{\frac{k}{t}}$ and

$$
|H|=\binom{x}{t+1}=\binom{x}{t} \frac{x-t}{t+1} \leq C n^{k} C^{\frac{1}{t}} n^{\frac{k}{t}}=O\left(n^{\frac{k(t+1)}{t}}\right) .
$$

Now given $G \subseteq\binom{[n]}{t+1}$ such that $G \nrightarrow K_{t}^{q}$, we partition G into $G_{t+1}+G_{t}+\ldots+G_{1}$. The proof of the $p=t$ case shows $\sum_{i=1}^{t}\left|G_{i}\right| \leq L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right)$. It suffices to show that $\left|G_{t+1}\right|=o\left(n^{t-1}\right)$, or $\left|G^{t+1}\right|=o\left(n^{t-1}\right)$. Lemma 3.3 guarantees that $\partial^{t}\left(G^{t+1}\right)=O\left(n^{t-2}\right)$ and consequently, by the result of Lovász, $\left|G^{t+1}\right|=O\left(n^{\frac{(t-2)(t+1)}{t}}\right)=o\left(n^{t-1}\right)$.

Proof of (10) for $q=t-2$. Given $G \subseteq\binom{[n]}{p}$ such that $G \nrightarrow K_{t}^{t-2}$, we partition G into $G_{p}+\ldots+G_{t}+G_{t-1}+\ldots+G_{1}$. The proof of the $p=t$ case shows $\sum_{i=1}^{t}\left|G_{i}\right| \leq$ $L^{t-1}\left(n, K_{t}^{q}\right)+o\left(n^{t-1}\right)$. For $t<k \leq p$, we apply Lemma 3.4 with $i=k$ and obtain that $\left|G_{k}\right| \leq\left|G^{k}\right| \leq \partial^{k}\left(G^{k}\right)=O\left(n^{t-2}\right)$, thus completing the proof.

4. An Exact Result

In order to prove Theorem 1.7, we need the following lemma, which can be proved by following the original proof of Mantel's Theorem [12]. We use + instead of \cup for a disjoint union. In a graph G, given a vertex set A and a vertex $x, N(x, A)$ denotes the neighborhood of x in A, and $d(x, A)=|N(x, A)|$, in particular $d(x)=d(x, V(G))$. For disjoint vertex sets X and Y, we denote by $e(X, Y)$ the number of edges between X and Y. For simplicity we write $a b$ instead of $\{a, b\}$.

Lemma 4.1. Let $G=(V, E)$ be a triangle-free graph such that

$$
\text { for every } a b \in E \text {, there exists } c \in V \text {, such that } a c \notin E \text { and } b c \notin E \text {. }
$$

Then $|E| \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$ with equality only when G has the following structure: $V(G)=$ $A+B+\{z\}$, there exist $a \in A$ and a non-empty set $B_{z} \subseteq B$ such that $E(G)=A \times B-\{a b$: $\left.b \in B_{z}\right\}+\left\{z b: b \in B_{z}\right\}+\{a z\}$.

Proof. Let $x y$ be an edge. Since G is triangle-free, we have $N(x) \cap N(y)=\emptyset$. With (\star), we further derive that $d(x)+d(y) \leq n-1$.

If $d(x)+d(y) \leq n-2$ for every edge $x y$ in G, then following Mantel's proof of his theorem, we have

$$
\begin{gathered}
\frac{4|E|^{2}}{n}=\frac{\left(\sum_{x \in V} d(x)\right)^{2}}{n} \leq \sum_{x \in V}(d(x))^{2}=\sum_{x y \in E}(d(x)+d(y)) \leq(n-2)|E|, \\
|E| \leq \frac{n(n-2)}{4}<\frac{(n-1)^{2}}{4}<\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1 .
\end{gathered}
$$

Otherwise assume that $d(x)+d(y)=n-1$ for some $e=\{x, y\}$. Let $A=N(y)$ and $B=N(x)$. We know that $A \cap B=\emptyset$ and $A \cup B=V-\{z\}$ for some vertex z. Let $d_{1}=d(z, A)$ and $d_{2}=d(z, B)$.

Case 1: $d_{1}=0$, or $d_{2}=0$.
Say, $d_{1}=0$. For each $b \in N(z, B)$, there exists $a \in A$ such that $a b \notin E$, since otherwise edge $x b$ does not satisfy (\star). This implies that

$$
|E|=e(A, B)+d(z, B) \leq|A||B| \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor
$$

Case 2: $d_{1}, d_{2}>0$.
In this case $d_{1} d_{2}-d_{1}-d_{2}+1=\left(d_{1}-1\right)\left(d_{2}-1\right) \geq 0$ with equality if and only if at least one of d_{1}, d_{2} is 1 . Since G is triangle-free, there is no edge between $N(z, A)$ and $N(z, B)$. Thus $e(A, B) \leq|A||B|-d_{1} d_{2}$ and

$$
|E|=e(A, B)+d(z, A)+d(z, B) \leq|A||B|-d_{1} d_{2}+d_{1}+d_{2} \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1
$$

where equality holds only when G has the desired structure.

Proof of Theorem 1.7. To show that $L^{3}\left(n, K_{3}\right) \geq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$, we enlarge each edge of $K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$ with the same new vertex.

To prove the upper bound, we consider a 3 -graph H on $[n]$ such that $H \nrightarrow K_{3}$. The proof of the $q=t-1$ case of Theorem 1.4 implies that each triple $T \in H$ contains a pair $\phi(T)$ with $\operatorname{deg}_{H}(\phi(T))=1$. We thus obtain a graph G on $[n]$ with edge set $E=\{\phi(T): T \in H\}$. Clearly $|E|=|H|$, and G satisfies (\star) because

$$
\begin{equation*}
\text { if } \phi(\{a, b, c\})=a b, \text { then } a c \notin E \text { and } b c \notin E . \tag{11}
\end{equation*}
$$

Next we claim that $G \neq G *$, where $G *$ is a graph causing the equality in Lemma 4.1. Suppose, to the contrary, that $G=G *$. Let us consider edges $z a$ and $z b$ for any $b \in B_{z}$. By (11), $\phi^{-1}(z a)=\{z, a, x\}$ for some $x \in A \backslash\{a\}$, and $\phi^{-1}(z b)=\{z, b, y\}$ for some $y \in B \backslash B_{z}$. Since a is the unique vertex which is non-adjacent to both x and b, we have $\phi^{-1}(x b)=$ $\{a, b, x\}$. The trace of $\{z, a, x\},\{z, b, y\},\{a, b, x\}$ on $\{z, a, b\}$ is a K_{3}, contradicting $H \nrightarrow K_{3}$. Finally we apply Lemma 4.1 and obtain that $|H|=|E| \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$.

5. Concluding Remarks and Open Problems

A less ambitious goal than proving Conjecture 1.6 is to verify (3), or equivalently (10), for $p \geq t+2$ and $q \leq t-3$. This will reduce the trace problem to determining ex $\left(n, H_{q, t}^{t-1}\right)$, which is only known for $q=2$. To obtain the asymptotic value of $L^{p}\left(n, K_{t}^{q}\right)$ in other cases, one should try to verify (6) for $p \geq t+2$ and $t \geq 5$; the smallest open case is to prove that

$$
L^{7}\left(n, K_{5}\right)=\left|T_{4}^{4}(n)\right|+o\left(n^{4}\right)=\left(\frac{n}{4}\right)^{4}+o\left(n^{4}\right) .
$$

Following the ideas in Sections 3.2 and 3.3, in order to extend Theorem 1.4 for all $p \geq t$, one needs to show that $G^{k}=o\left(n^{t-1}\right)$ for $t \leq k \leq p$. When $p \geq t+2$, this does not follow from Lemma 3.3 and the Kruskal-Katona theorem. The proof of Lemma 3.4 relies on the assumption $q=t-2$, and does not seem to generalize to other values of q.

A general uniform trace problem is to determine $L^{p}(n, F)$ for arbitrary p and F. Because of the close connection between trace problems and Turán problems, as seen in Proposition 1.3 and Theorem 1.4, it is very hard to determine $L^{p}(n, F)$ in general. Let us consider $L^{3}(n, F)$ when F is a graph. Fix $t=\chi(F)$. When $t \geq 4$, we have

$$
L^{3}(n, F)=\left|T_{t-1}^{3}(n)\right|+o\left(n^{3}\right)=\binom{t-1}{3}\left(\frac{n}{t-1}\right)^{3}+o\left(n^{3}\right) .
$$

In fact, the lower bound for $L^{3}(n, F)$ follows from $T_{t-1}^{3}(n) \nrightarrow F$, where $T_{t-1}^{3}(n)$ is the generalized Turán graph defined in the introduction. The reason for $T_{t-1}^{3}(n) \nrightarrow F$ is that when embedding F into a ($t-1$)-partite graph, some partition set must contain both ends of an edge of F. The upper bound follows from (5) and Lemma 2.4. The same arguments actually show that $L^{p}(n, F)=\left|T_{t-1}^{p}(n)\right|+o\left(n^{t-1}\right)$ for every F with $t=\chi(F)>p$.

Problem 5.1. Determine the order of magnitude of $L^{3}(n, F)$ for every F with $\chi(F) \leq 3$.

This seems no easier than determining the order of magnitude of the Turán numbers for bipartite graphs. We can derive an upper bound for $L^{3}(n, F)$ as follows. A result of Erdős [2] implies that $\operatorname{ex}\left(n, K_{3}^{3}(m)\right)=O\left(n^{3-\frac{1}{m^{2}}}\right)$. For a 3-graph H, it is clear that $K_{3}^{3}(m) \subseteq H$ implies that $H \rightarrow K_{3}(m-1)$. For each F with $\chi(F) \leq 3$, there exists m such that $F \subseteq K_{3}(m)$. Hence $L^{3}(n, F) \leq L^{3}\left(n, K_{3}(m)\right) \leq \operatorname{ex}\left(n, K_{3}^{3}(m+1)\right)=O\left(n^{3-c}\right)$, where $c=1 /(m+1)^{2}$. However, we do not have a matching lower bound. For example, we only know $L^{3}\left(n, K_{3}(2)\right)=\Omega\left(n^{5 / 2}\right)$, in contrast to the upper bound $O\left(n^{26 / 9}\right)$ derived by above arguments (or $O\left(n^{11 / 4}\right)$ by some extra ideas). This lower bound can be seen from the 3partite 3 -graph with partition sets A, B, C of size n, and the edge set $\{e \cup v: v \in C, e \in G\}$, where G is a maximum C_{4}-free bipartite graph on (A, B) with $\Omega\left(n^{3 / 2}\right)$ edges.

References

[1] J. Balogh, P. Keevash and B. Sudakov, Disjoint representability of sets and their complements, J. Combin. Theory Ser. B 95 (2005), no. 1, 12-28.
[2] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
[3] P. Erdős, R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[4] P. Erdős, Chao Ko, R. Rado, Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
[5] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs. Combinatorica 3 (1983), no. 2, 181-192.
[6] P. Frankl, J. Pach, On disjointly representable sets, Combinatorica 4 (1984), 39-45.
[7] Z. Füredi, On finite system whose every intersection is a kernal for a star, Discrete Math. 47 (1983), 129-132.
[8] Z. Füredi, Turán type problems. Surveys in combinatorics, 1991 (Guildford, 1991), 253300, London Math. Soc. Lecture Note Ser., 166, Cambridge Univ. Press, Cambridge, 1991.
[9] Z. Füredi, J. Pach, Traces of finite sets: extremal problems and geometric applications. Extremal problems for finite sets (Visegrád, 1991), 251-282, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994.
[10] Z. Füredi, F. Quinn, Traces of finite sets. Ars Combin. 18 (1984), 195-200.
[11] L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, 1979.
[12] W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907), 60-61.
[13] D Mubayi, A hypergraph extension of Turan's theorem, J. Combin. Theory Ser. B 96 (2006), no. 1, 122-134.
[14] O. Pikhurko, Exact Computation of the Hypergraph Turan Function for Expanded Complete 2-Graphs, J. Combin. Theory Ser. B, accepted.
[15] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
[16] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacifc J. Math. 41 (1972), 247-261.
[17] P. Turán, On an extremal problem in graph theory. Mat. Fiz. Lapok 48 (1941), 436-452.
[18] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971), 264-280.

[^0]: ${ }^{*}$ Research supported in part by NSF grants DMS-0400812 and an Alfred P. Sloan Research Fellowship. Email: mubayi@math.uic.edu
 ${ }^{\dagger}$ Research supported in part by NSA grant H98230-06-1-0140. Part of the research conducted while working at University of Illinois at Chicago as a NSF VIGRE postdot. Email: yizhao@mathstat.gsu.edu

