On the VC-dimension of Uniform Hypergraphs

Dhruv Mubayi *

Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago, IL 60607

Yi Zhao †

Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303

Abstract

Let \mathcal{F} be a k-uniform hypergraph on [n] where k-1 is a power of some prime p and $n \geq n_0(k)$. Our main result says that if $|\mathcal{F}| > \binom{n}{k-1} - \log_p n + k! k^k$, then there exists $E_0 \in \mathcal{F}$ such that $\{E \cap E_0 : E \in \mathcal{F}\}$ contains all subsets of E_0 . This improves a longstanding bound of $\binom{n}{k-1}$ due to Frankl and Pach [7].

1. Introduction

Let G be a set system (or hypergraph) on X and S be a subset of X. The trace of G on S is defined as $G|_S = \{E \cap S : E \in G\}$. We treat $G|_S$ as a set and therefore omit multiplicity. We say that S is shattered by G if $G|_S = 2^S$, the set of all subsets of S. The Vapnik-Chervonenkis dimension (VC dimension) of G is the maximum size of a set shattered by G. Extremal problems on traces started from determining the maximum size of a set system on n vertices with VC dimension k-1 (equivalently, without a shattered k-set). Sauer [10], Perles and Shelah [11], and Vapnik and Chervonenkis [12] independently proved that this maximum is $\binom{n}{0} + \ldots + \binom{n}{k-1}$. This and other results on traces have found numerous applications in geometry and computational learning theory (see Füredi and Pach [9] and Section 7.4 Babai and Frankl [3]).

Given two set systems G and F, if there exists a set S such that $G|_S$ contains a copy of F as a subhypergraph, we say that G contains F as a trace. In this case we write $G \to F$ ($G \not\to F$ otherwise). Let $\binom{X}{r}$ denote the set of all r-subsets of X. We call G

^{*}Research supported in part by NSF grants DMS-0400812 and an Alfred P. Sloan Research Fellowship.

 $^{^{\}dagger}$ Research supported in part by NSA grant H98230-05-1-0079. Part of this research was done while working at University of Illinois at Chicago.

an r-uniform hypergraph (r-graph) on X if $G \subseteq {N \choose r}$ and call the members of G edges. We define $\operatorname{Tr}^r(n,F)$ as the maximum number of edges in an r-graph on $[n]=\{1,\ldots,n\}$ not containing F as a trace. Frankl and Pach [7] considered the maximum size of uniform hypergraphs with fixed VC dimension. They showed that $\operatorname{Tr}^r(n,2^{[k]}) \leq {n \choose k-1}$ for $k \leq r \leq n$. They conjectured that $\operatorname{Tr}^k(n,2^{[k]}) = {n-1 \choose k-1}$ for sufficiently large n. Obviously if a k-graph G contains a shattered edge, then G contains two disjoint edges (since the empty set appears in the trace). Therefore the conjecture of Frankl and Pach, if true, generalizes the well-known Erdős-Ko-Rado Theorem [5]. However, Ahlswede and Khachatrian [1] disproved it by constructing a $G \subseteq {n \choose k}$ of size ${n-1 \choose k-1} + {n-4 \choose k-3}$ that contains no shattered k-set when $k \geq 3$ and $n \geq 2k$. Combining this with the upper bound in [7], for $k \geq 3$ and $n \geq 2k$,

$$\binom{n-1}{k-1} + \binom{n-4}{k-3} \le \operatorname{Tr}^k(n, 2^{[k]}) \le \binom{n}{k-1}.$$
 (1)

Our main result improves the upper bound in (1) in the case that k-1 is a prime power and n is large.

Theorem 1. Let p be a prime, t be a positive integer, $k = p^t + 1$, and $n \ge n_0(k)$. If \mathcal{F} is a k-uniform hypergraph on [n] with more than $\binom{n}{k-1} - \log_p n + k!k^k$ edges, then there is a k-set shattered by \mathcal{F} . In other words,

$$\operatorname{Tr}^{k}(n, 2^{[k]}) \le \binom{n}{k-1} - \log_{p} n + k! k^{k}.$$

In addition, we find exponentially many k-graphs achieving the lower bound in (1).

Proposition 2. Let P(n,r) denote the number of non-isomorphic r-graphs on [n]. Then for $k \geq 3$, there are at least P(n-4,k-1)/2 non-isomorphic k-graphs \mathcal{F} on [n] such that $|\mathcal{F}| = \binom{n-1}{k-1} + \binom{n-4}{k-3}$ and $\mathcal{F} \neq 2^{[k]}$.

Note that the gap between the upper and lower bounds in (1) is $\binom{n-1}{k-2} - \binom{n-4}{k-3}$. Theorem 1 reduces this gap by essentially $\log n$ for certain values of k. Though this improvement is small, the value of Theorem 1 is perhaps mainly in its proof – a mixture of algebraic and combinatorial arguments. The main tool in proving $\operatorname{Tr}^k(n,2^{[k]}) \leq \binom{n}{k-1}$ in [7] is the so-called higher-order inclusion matrix, whose rows are labeled by edges of a hypergraph $\mathcal{F} \subseteq \binom{[n]}{k}$. It was shown that if \mathcal{F} contains no shattered k-sets, then the rows of this matrix are linearly independent. Consequently $|\mathcal{F}|$, the number of the rows, equals to the rank of the matrix, which is at most $\binom{n}{k-1}$. The main idea in proving Theorem 1 is to enlarge the inclusion matrix of \mathcal{F} by adding more rows such that the rows in the enlarged matrix are still linearly independent. The method of adding independent vectors (or functions) to a space has been used before, e.g., on the two-distance problem by Blokhuis [4] and a proof of the Ray-Chaudhuri-Wilson Theorem by Alon, Babai and Suzuki [2].

In order to prove Theorem 1, we also need more combinatorial tools. In particular, the sunflower lemma of Erdős and Rado [6], which is used to prove Lemma 3 below. Note that Lemma 3 and Theorem 4 together prove Theorem 1. Let $2^{[k]} = 2^{[k]} \setminus \emptyset$.

Lemma 3. For any $k \leq n$,

$$\operatorname{Tr}^{k}(n, 2^{[k]}) \le \operatorname{Tr}^{k}(n, 2^{[k]-}) + k!k^{k}.$$

Theorem 4. Let p be a prime, t be a positive integer, and $k = p^t + 1$. Then $\operatorname{Tr}^k(n, 2^{[k]-}) \le \binom{n}{k-1} - \log_p n$ for $n \ge n_0(k)$.

In next section we prove Proposition 2 and Lemma 3. We prove Theorem 4 in Section 3 and give concluding remarks in the last section.

2. Proofs of Proposition 2 and Lemma 3.

Proof of Proposition 2. We construct $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2$ such that \mathcal{F}_0 is the set of all k-sets containing 1 and 2, edges in \mathcal{F}_1 contain 1 but avoid 2, and edges in \mathcal{F}_2 contain 2 but avoid 1. If we let $G_i = \{E \setminus \{i\} : E \in \mathcal{F}_i\}$ denote the link graph of i in \mathcal{F}_i , then G_1 and G_2 are (k-1)-graphs on $V' = \{3, 4, \ldots, n\}$. Let G_1 and G_2 further satisfy the following conditions:

1.
$$G_1 \cup G_2 = \binom{V'}{k-1}$$

2.
$$G_1 \cap G_2 = \{ E \in \binom{V'}{k-1} : E \supseteq \{3,4\} \}$$

3.
$$G_1 \supseteq \{E \in \binom{V'}{k-1} : E \ni 3, E \not\ni 4\}, G_2 \supseteq \{E \in \binom{V'}{k-1} : E \ni 4, E \not\ni 3\}.$$

It is easy to see that $|\mathcal{F}| = \binom{n-1}{k-1} + \binom{n-4}{k-3}$, since $|\mathcal{F}_0| = \binom{n-2}{k-2}$ and

$$|\mathcal{F}_1| + |\mathcal{F}_2| = |G_1| + |G_2| = |G_1 \cup G_2| + |G_1 \cap G_2| = \binom{n-2}{k-1} + \binom{n-4}{k-3}.$$

We claim that $\mathcal{F} \not\to 2^{[k]}$. Suppose to the contrary that some $E \in \binom{[n]}{k}$ is shattered. Then $E \in \mathcal{F}$. Note that every edge in \mathcal{F} contains either 1 or 2. If $\{1,2\} \subset E$, then $E \setminus \{1,2\}$ is not contained in $\mathcal{F}|_E$. Without loss of generality, assume that $E \ni 1$ and $E \not\ni 2$. Since $E \setminus \{1\} \in G_1$ is contained in $\mathcal{F}|_E$, we have $(E \setminus \{1\}) \cup \{2\} \in \mathcal{F}$ and consequently $E \setminus \{1\} \in G_1 \cap G_2$. Therefore $E \supseteq \{3,4\}$. In order to have $E \setminus \{1,4\} \in \mathcal{F}|_E$, there must be one edge of G_2 containing 3 and not containing 4. But this is impossible because of the third condition on G_1 and G_2 .

In the above construction, every $E \in \binom{V'}{k-1}$ with $E \not\ni 3, E \not\ni 4$ could be in either G_1 or G_2 . These undecided edges form a complete (k-1)-graph K_{n-4}^{k-1} on $\{5,\ldots,n\}$. Recall that P(n-4,k-1) is the number of non-isomorphic (k-1)-graphs on n-4 vertices, or the number of non-isomorphic 2-edge-colorings of K_{n-4}^{k-1} . We claim that the number of non-isomorphic $\mathcal F$ satisfying our construction is P(n-4,k-1)/2. To see this, let us consider

vertex degrees in \mathcal{F} . Let $\deg(x)$ be the number of edges in \mathcal{F} containing a vertex x. It is not hard to see that no matter what the undecided edges are, $\deg(1)$ and $\deg(2)$ are always greater than $\deg(3) = \deg(4)$, which is greater than $\deg(x)$ for all x > 4, and $\deg(x)$ is fixed for all x > 4. Therefore two constructions \mathcal{F} and \mathcal{F}' are isomorphic if and only if $\mathcal{F}|_{\{5,\dots,n\}}$ and $\mathcal{F}'|_{\{5,\dots,n\}}$ are isomorphic or one is the complement of the other (since the vertices 1 and 2 are identical).

Note that the construction in [1] is isomorphic to the case when all undecided E are in G_1 .

A sunflower (or Δ -system) with r petals and a core C is a collection of distinct sets S_1, \ldots, S_r such that $S_i \cap S_j = C$ for all $i \neq j$. Erdős and Rado [6] proved the following simple but extremely useful and fundamental lemma.

Lemma 5 (Sunflower Lemma). Let G be a k-graph with $|G| > k!(r-1)^k$. Then G contains a sunflower with r petals.

We call a set S almost-shattered by \mathcal{F} if $\mathcal{F}|_S$ contains $2^S \setminus \emptyset$.

Proof of Lemma 3. Let \mathcal{F} be a k-graph on [n] with $|\mathcal{F}| > \operatorname{Tr}^k(n, 2^{[k]-}) + k!k^k$. We need to show that \mathcal{F} contains a shattered set. Since $|\mathcal{F}| > \operatorname{Tr}^k(n, 2^{[k]-})$, we may find an almost-shattered k-set $E_1 \in \mathcal{F}$. Since $|\mathcal{F} \setminus \{E_1\}| > \operatorname{Tr}^k(n, 2^{[k]-})$, we may find an almost-shattered k-set $E_2 \in \mathcal{F} \setminus \{E_1\}$. Repeating this process, we find distinct almost-shattered sets $E_1, E_2, \ldots, E_{k!k^k} \in \mathcal{F}$. By the Sunflower Lemma, $\mathcal{F}' = \{E_1, \ldots, E_{k!k^k}\}$ contains a sunflower with k+1 petals. Let us simply denote it by E_1, \ldots, E_{k+1} and $C = \bigcap_{i=1}^{k+1} E_i$. Since E_1 is almost-shattered by \mathcal{F} and $E_1 \setminus C \neq \emptyset$, there is $E_0 \in \mathcal{F}$ such that $E_0 \cap E_1 = E_1 \setminus C$. Now $E_1 \cap E_0, E_2 \cap E_0, \ldots, E_{k+1} \cap E_0$ are pairwise disjoint. Since $|E_0| = k < k+1$, there exists $i \neq 1$ such that $E_i \cap E_0 = \emptyset$. This means that $\emptyset \in \mathcal{F}|_{E_i}$. Consequently E_i is shattered by \mathcal{F} .

3. Proof of Theorem 4

3.1. Inclusion Matrices and Proof Outline

The proof of Theorem 4 needs the concept of higher-order inclusion matrices. Let \mathcal{F} be a set system on X. The incidence matrix $M(\mathcal{F}, \leq s)$ of \mathcal{F} over $\binom{X}{\leq s}$ is the matrix whose rows (incidence vectors) are labeled by the edges of \mathcal{F} , columns are labeled by subsets of [n] of size at most s, and entry (E, S), $E \in \mathcal{F}$, $|S| \leq s$, is 1 if $S \subseteq E$ and 0 otherwise. Throughout this paper, we fix s = k-1 and simply write $M(\mathcal{F})$ instead of $M(\mathcal{F}, \leq k-1)$. In particular, let

$$I(k) = M\left(\binom{[n]}{k}\right) = M\left(\binom{[n]}{k}, \le k-1\right).$$

For each $E \subset [n]$, the incidence vector v_E is a (0,1)-vector of length $\binom{n}{0} + \cdots + \binom{n}{k-1}$, whose coordinates are labeled by all subsets of [n] of size at most k-1. Note that v_E always has a 1 in the position corresponding to \emptyset . Let $e_i = v_{\{i\}}$ for each $i \in [n]$.

Let q be 0 or a prime number. As usual, \mathbb{F}_q denotes a field of q elements when q is a prime. Let us define \mathbb{F}_0 to be \mathbb{Q} , the field of rational numbers. Given a hypergraph \mathcal{F} , a weight function of \mathcal{F} over \mathbb{F}_q is a function $\alpha: \mathcal{F} \to \mathbb{F}_q$. If $\alpha(E) = 0$ for all $E \in \mathcal{F}$, then we call α the zero function and write $\alpha \equiv 0$. We define

$$v(\mathcal{F}, \alpha) = \sum_{E \in \mathcal{F}} \alpha(E) v_E$$

and write $v(\mathcal{F}) = \sum_{E \in \mathcal{F}} v_E$. We say that \mathcal{F} is linearly independent in characteristic q if the rows of $M(\mathcal{F})$ are linearly independent over \mathbb{F}_q , namely, $v(\mathcal{F}, \alpha) = 0 \pmod{q}$ implies that $\alpha \equiv 0$.

Part 1 of Lemma 6 below is the key observation to the proof of the upper bound in (1). It implies that if $\mathcal{F} \subseteq {[n] \choose k}$ contains no shattered sets, then it is linearly independent in any characteristic. Our proof of Theorem 4 also needs Part 2. We call a set S near-shattered by \mathcal{F} if $\mathcal{F}|_S$ contains $2^S \setminus (\{i\} \cup \emptyset)$ for some $i \in S$.

Lemma 6. Let q be 0 or a prime number. Suppose that $\mathcal{F} \subseteq \binom{[n]}{k}$ and $\alpha : \mathcal{F} \to \mathbb{F}_q$ is a non-zero weight function. Define $d(S) = \sum_{S \subseteq E \in \mathcal{F}} \alpha(E)$ for every subset $S \subset [n]$. Fix $A \in \mathcal{F}$ with $\alpha(A) \neq 0$.

- 1. If $d(S) = 0 \mod q$ for all $S \subset A$, then A is shattered by \mathcal{F} .
- 2. Let $i \in A$. If $d(S) = 0 \mod q$ for all $S \subset A$ with $S \neq \emptyset$ and $S \neq \{i\}$, then A is near-shattered.

Proof. Part 1 and Part 2 have almost the same proofs. Since Part 1 was proved in [7] and [3] (Theorem 7.27), we only prove Part 2 here.

Since \mathcal{F} is k-uniform, we have $d(A) = \alpha(A) \neq 0$. For $B \subseteq A$, we define $d(A, B) = \sum_{E \in \mathcal{F}, E \cap A = B} \alpha(E)$. The following equality can be considered as a variant of the Inclusion-Exclusion formula.

$$d(A,B) = \sum_{B \subseteq S \subseteq A} (-1)^{|S-B|} d(S).$$
 (2)

In fact, because $d(B) = d(A, B) + \sum_{E \in \mathcal{F}, B \subset E \cap A} \alpha(E)$, (2) is equivalent to

$$\sum_{E \in \mathcal{F}, B \subset E \cap A} \alpha(E) + \sum_{B \subset S \subseteq A} (-1)^{|S-B|} d(S) = 0.$$

This holds because on the left side, each $\alpha(E)$ with $r = |E \cap A| - |B| > 0$ has coefficient $1 - \binom{r}{1} + \ldots + (-1)^r \binom{r}{r} = 0$.

Pick any $B \subset A$ with $B \neq \emptyset$ and $B \neq \{i\}$. We now show that there exists $E \in \mathcal{F}$ such that $E \cap A = B$. We use (2) and the assumption that $d(S) = 0 \mod q$ for all S with $B \subseteq S \subset A$ to derive

$$\sum_{E\in\mathcal{F}, E\cap A=B}\alpha(E)=d(A,B)=\sum_{B\subseteq S\subseteq A}(-1)^{|S-B|}d(S)=(-1)^{|A-B|}d(A)\neq 0\mod q.$$

Hence the sum on the left side is not empty.

By Lemma 6 Part 1, if \mathcal{F} contains no shattered sets, then the rows of $M(\mathcal{F})$ are linearly independent (over \mathbb{Q}) and consequently $|\mathcal{F}| = rank(M)$. Clearly $rank(M) \leq rank(I(k))$. It is well-known that $rank_{\mathbb{Q}}(I(k)) = \binom{n}{k-1}$ (e.g., see [3] section 7.3). This immediately gives $\operatorname{Tr}^k(n, 2^{[k]}) \leq \binom{n}{k-1}$, the result of Frankl and Pach [7].

The proof of Theorem 4 proceeds as follows. Suppose that $\mathcal{F} \subseteq {[n] \choose k}$ satisfies $\mathcal{F} \not\to 2^{[k]-}$. Recall that $k=p^t+1$ for some prime p and positive integer t. We will construct a matrix M' obtained from $M=M(\mathcal{F})$ by adding $\log_p n$ new rows. The new rows have the form $e_S = \sum_{i \in S} e_i$, for some set S of size $m=p^{t+1}$. In other words, a new row has entry 1 at m coordinates corresponding to m singletons and 0 otherwise (the entry at \emptyset is 0 because $m=0 \mod p$). The main step is to show that these new rows lie in the row space of I(k), and all the rows of M' are still linearly independent. Consequently,

$$|\mathcal{F}| + \log_p n = rank_{\mathbb{F}_p}(M') \le rank_{\mathbb{F}_p}(I(k)) \le rank_{\mathbb{Q}}(I(k)) = \binom{n}{k-1},$$

which implies that $|\mathcal{F}| \leq \binom{n}{k-1} - \log_p n$.

We now divide the main step into three lemmas, which we will prove in the next subsection.

Lemma 7. Suppose that $k = p^t + 1$ and $m = p^{t+1}$ for prime p and t > 0. Then for every $S \in {[n] \choose m}$, e_S is in the row space of I(k) over \mathbb{F}_p .

Lemma 8 is the key to our proof. For $a, b \in [n]$, let $e_{a,-b} = e_a - e_b$. Thus $e_{a,-b}$ is the vector with a 1 in position $\{a\}$, a -1 in position $\{b\}$, and 0 everywhere else. Lemma 8 says that $e_{a,-b}$ is outside the row space of M for every $a \neq b$.

Lemma 8. Let $k \geq 2$ and $n \geq n_0(k)$. Suppose that $\mathcal{F} \subseteq \binom{n}{k}$ contains no almost-shattered set, i.e., $\mathcal{F} \not\to 2^{[k]-}$. If $|\mathcal{F}| > \binom{n}{k-1} - \log_p n$, then for every two distinct $a, b \in [n]$, the set $\{v_E : E \in \mathcal{F}\} \cup \{e_{a,-b}\}$ is linearly independent in any characteristic.

Lemma 9. Given a prime p and $m \ge 1$, let $n \ge n_0(p,m)$ and $r = \log_p n$. Suppose that for every two distinct $a, b \in [n]$, the set $\{v_E : E \in \mathcal{F}\} \cup \{e_{a,-b}\}$ is linearly independent in characteristic p. Then there exist subsets $S_1, \ldots, S_r \in \binom{[n]}{m}$ such that the set $\{v_E : E \in \mathcal{F}\} \cup \{e_{S_1}, \ldots, e_{S_r}\}$ is linearly independent in characteristic p.

3.2. Proof of Lemmas

Given a hypergraph \mathcal{F} on X and a subset $A \subseteq X$, we define the $degree \deg_{\mathcal{F}}(A)$ to be the number of edges in \mathcal{F} containing A.

Proof of Lemma 7. Let $K = \binom{S}{k}$. It suffices to prove that $\sum_{E \in K} v_E = c \cdot e_S$ for some nonzero $c \in \mathbb{F}_p$. Equivalently, we need to show that for $T \subset S$, $\deg_K(T) = 0 \mod p$ when

 $|T| \geq 2$ or |T| = 0, and $\deg(T) = c \neq 0 \mod p$ when |T| = 1. Since K is a complete k-graph, $\deg_K(T) = \binom{m-|T|}{k-|T|}$. By a well-known result of Kummer, the binomial coefficient $\binom{a}{b}$ is divisible by a prime p if and only if, when writing a and b as two numbers in base p, $a = (a_j \cdots a_1 a_0)_p$ and $b = (b_j \cdots b_1 b_0)_p$, there exists $i \leq j$, such that $b_i > a_i$. Since m is a power of p, for any $1 \leq k \leq m-1$, p divides $\binom{m}{k}$. Hence $\deg_K(\emptyset) = \binom{m}{k} = 0$ mod p. Now consider $|T| = s \geq 2$. Since $k = p^t + 1$, we know $k - s < p^t$ and thus write $k - s = (a_{t-1} \dots a_0)_p$. Since $m = p^{t+1}$, we have $m - s = p^{t+1} - s = (p-1)p^t + k - s - 1$. We thus have $m - s = (p-1)p^t + k - s - 1$. Hence there exists $i \leq t-1$ such that the value of m - s at bit i is less than a_i and consequently $\binom{m-s}{k-s}$ is divisible by p. When |T| = 1, we have $m - 1 = p^{t+1} - 1$ and therefore $\binom{m-1}{k-1}$ is not divisible by p for any $1 \leq k \leq m-1$. \square

Proof of Lemma 8. We prove the contrapositive of the claim: If $\mathcal{F} \neq 2^{[k]-}$ and there exists a non-zero function $\alpha: \mathcal{F} \to \mathbb{F}_q$ such that $v(\mathcal{F}, \alpha) = e_{a,-b}$ for some $a, b \in [n]$ $(a \neq b)$, then $|\mathcal{F}| \leq \binom{n}{k-1} - \log_p n$. We claim that it suffices to show that $\deg_{\mathcal{F}}(\{a\}) = O(n^{k-3})$. In fact, suppose $\deg_{\mathcal{F}}(\{a\}) \leq c_k n^{k-3}$ for some constant c_k and $|\mathcal{F}| > \binom{n}{k-1} - \log_p n$. After we remove a and all the edges containing a, we obtain a k-graph $\tilde{\mathcal{F}} \subseteq \mathcal{F}$ with n-1 vertices satisfying

$$|\tilde{\mathcal{F}}| > {n \choose k-1} - \log_p n - c_k n^{k-3}$$

$$= {n-1 \choose k-1} + {n-1 \choose k-2} - \log_p n - c_k n^{k-3}$$

$$\geq {n-1 \choose k-1}$$

where the last inequality holds because $\binom{n-1}{k-2} \ge \log_p n + c_k n^{k-3}$ for $n \ge n_0(k)$. But we showed that $\operatorname{Tr}^k(n, 2^{[k]}) \le \binom{n}{k-1}$ for any $k \le n$, therefore $\tilde{\mathcal{F}} \to 2^{[k]}$, a contradiction.

Suppose that $\sum_{E\in\mathcal{F}}\alpha(E)v_E=e_{a,-b}$. Let $\mathcal{F}'=\{E\in\mathcal{F}:\alpha(E)\neq0\}$ and $V'=[n]\setminus\{a,b\}$. For a subset $A\subset[n]$, let $d(A)=\sum_{A\subseteq E\in\mathcal{F}'}\alpha(E)$ mod q. Our assumption $v(\mathcal{F},\alpha)=e_{a,-b}$ implies that $d(\{a\})=1$, $d(\{b\})=-1$, and d(A)=0 for every $A\neq\{a\},\{b\}$ and $|A|\leq k-1$. Applying Lemma 6 Part 1, we conclude that no $E\in\mathcal{F}'$ satisfies $E\subseteq V'$. In other words, every edge in \mathcal{F}' contains either a or b. Next observe that if \mathcal{F}' contains an edge E such that $a\in E$ and $b\notin E$, then \mathcal{F}' also contains $(E\setminus\{a\})\cup\{b\}$. Otherwise E is the only edge in \mathcal{F}' containing $E\setminus\{a\}$ and consequently $d(E\setminus\{a\})=\alpha(E)\neq0$, a contradiction.

Let $G_a = \{E \setminus \{a\} : E \in \mathcal{F}', a \in E, b \notin E\}$ and define G_b similarly. By the previous observation, we have $G := G_a = G_b$. We then observe that $G \neq \emptyset$ otherwise every edge (of \mathcal{F}') containing a also contains b, and consequently $1 = d(\{a\}) = d(\{a,b\}) = 0$.

Fix an edge $E_0 \in \mathcal{F}'$ containing a but not b. Applying Lemma 6 Part 2, we conclude that E_0 is near-shattered, *i.e.*, all subsets of E_0 are in the trace $\mathcal{F}'|_{E_0}$ except for $\{a\}$ and \emptyset . If another edge $E \in \mathcal{F}$ satisfies $E \cap E_0 = \{a\}$, then E_0 becomes almost-shattered, contradicting the assumption that $F \not\to 2^{[k]-}$. We may therefore assume that every $E \in \mathcal{F}$ containing

a also contains some other element of E_0 . Below we show that there exists $H \subseteq G$ with at most 2k vertices and transversal number at least 2 (*i.e.*, no element lies in all sets of H). Therefore every $E \in \mathcal{F}$ containing a has at least two vertices in H and consequently $\deg_{\mathcal{F}}(\{a\}) \leq {2k \choose 2}{n-3 \choose k-3} = O(n^{k-3})$.

Pick $A \in G_a$ (thus |A| = k - 1). We claim that for every $S \subset A$, |S| = k - 2, there exists $B \in G_a$ such that $A \cap B = S$. Suppose instead, that for some $S \in \binom{A}{k-2}$, no such B exists. In this case, $A \cup \{a\}$ and $S \cup \{a,b\}$ are the only possible edges in \mathcal{F}' containing $S \cup \{a\}$. We thus have $S \cup \{a,b\} \in \mathcal{F}'$, otherwise $d(S \cup \{a\}) = \alpha(A \cup \{a\}) \neq 0$. Because $G_a = G_b$, no $B \in G_b$ satisfies $A \cap B = S$. We now have a contradiction since

$$d(S) = \alpha(A \cup \{a\}) + \alpha(A \cup \{b\}) + \alpha(S \cup \{a,b\}) = d(A) + \alpha(S \cup \{a,b\}) = \alpha(S \cup \{a,b\}) \neq 0.$$

Now, for every $S \in \binom{A}{k-2}$, we choose exactly one set $B = B(S) \in G_a$ such that $A \cap B = S$. Let $H = \{A\} \cup \{B(S) : S \in \binom{A}{k-2}\}$. Clearly H contains at most 2k vertices. It is easy to see that there is no $x \in \cap_{E \in H} E$. In fact, if such $x \in A$, then $B(A \setminus \{x\})$ misses x. If $x \notin A$, then A misses x. Therefore the transversal number of H is at least 2, and the proof is complete.

Proof of Lemma 9. Let M be the inclusion matrix of \mathcal{F} . We sequentially add vectors e_{S_1}, \ldots, e_{S_i} with $S_1, \ldots, S_i \in \binom{[n]}{m}$ to M such that e_{S_1}, \ldots, e_{S_i} and the rows of M are linearly independent. We claim that this can be done as long as $i \leq \log_p n$. Suppose to the contrary, that there exists $i \leq \log_p n - 1$ such that we fail to add a new vector at step i + 1. In other words, we have chosen e_{S_1}, \ldots, e_{S_i} successfully, but for every $S \in \binom{[n]}{m} \setminus \{S_1, \ldots, S_i\}$, there exist a weight function α and $c_1, \ldots, c_i \in \mathbb{F}_p$ such that

$$e_S = v(\mathcal{F}, \alpha) + \sum_{j=1}^{i} c_j \ e_{S_j}. \tag{3}$$

We observe that for fixed c_1, \ldots, c_i , the set of m-sets satisfying (3) forms a partial Steiner system PS(n, m, m-1) (an m-graph on [n] such that each (m-1)-subset of [n] is contained in at most one edge). In fact, if two m-sets S, S' with $|S \cap S'| = m-1$ both satisfy (3), with weight functions α_1 and α_2 respectively, then $v(\mathcal{F}, \alpha_1 - \alpha_2) = e_{a,-b}$, where $\{a\} = S \setminus S'$ and $\{b\} = S' \setminus S$. This is a contradiction to our assumption. Consequently for fixed c_1, \ldots, c_i , the number of m-sets satisfying (3) is at most $\binom{n}{m-1}/m$. As a result, the number of m-sets that cannot be chosen is at most $p^i\binom{n}{m-1}/m$. We thus obtain

$$\left| \binom{[n]}{m} \setminus \{S_1, \dots, S_i\} \right| = \binom{n}{m} - i \le p^i \frac{1}{m} \binom{n}{m-1},$$

which implies that

$$(n-m+1)-\frac{im}{\binom{n}{m-1}} \leq p^i.$$

Since $i \leq \log_p n - 1$, we have $p^i \leq n/p$, and consequently $n - m + 1 - im/\binom{n}{m-1} \leq n/p$, which is impossible for fixed $p \geq 2$, m and sufficiently large n.

4. Concluding Remarks

We believe the lower bound in (1) is correct, though verifying this for all k may be hard because Proposition 2 gives exponentially many extremal hypergraphs. In order to reduce the bound in Theorem 1, one probably wants to look for a better way to find independent vectors than the greedy algorithm we used in the proof of Lemma 9. It may not be very hard to check this for the k = 3 case, namely, to verify that $\operatorname{Tr}^3(n, 2^{[3]}) = \binom{n-1}{2} + 1$. Using more involved combinatorial arguments, instead of the Sunflower Lemma, we can prove that $\operatorname{Tr}^3(n, 2^{[3]}) \leq \binom{n}{2} - \log_2 n$.

Improving the upper bound further for other values of k will most likely need some new ideas. Our approach uses incidence vectors of a family of singletons. The following proposition shows that this approach requires k-1 to be a prime power.

Proposition 10. Let p be a prime and $k \geq 2$. Suppose that $\mathcal{F} \subseteq \binom{[n]}{k}$ and $\alpha : \mathcal{F} \to \mathbb{F}_p$ is a non-zero weight function. Define $d(S) = \sum_{S \subseteq E \in \mathcal{F}} \alpha(E)$ for every subset $S \subset [n]$. If there exists a vertex $x \in [n]$ such that $d(\{x\}) \neq 0$ and d(S) = 0 mod p for every $S \ni x$ with $2 \leq |S| \leq k-1$, then k-1 is a power of p.

Proof. Let $2 \le s \le k-1$. When we sum up d(S) for all $S \ni x$ with |S| = s, we over-count $d(\lbrace x \rbrace)$ by a factor of $\binom{k-1}{s-1}$. In other words,

$$d(\{x\}) = \frac{1}{\binom{k-1}{s-1}} \sum_{x \in S, |S| = s} d(S).$$

Since $d(\{x\}) \neq 0$ but $d(S) = 0 \mod p$ for all S in the right side, it must be the case that p divides $\binom{k-1}{s-1}$. We thus conclude that p divides $\binom{k-1}{i}$ for all $1 \leq i \leq k-1$. By the result of Kummer on binomial coefficients, this happens only if k-1 is a power of p.

5. Acknowledgments

We thanks the referees for their comments, which improved the presentation of the paper and in particular, shortened the proof of Lemma 9.

References

- [1] R. Ahlswede, L.H. Khachatrian, Counterexample to the Frankl-Pach conjecture for uniform, dense families. Combinatorica 17 (1997), no. 2, 299–301.
- [2] N. Alon, L. Babai, H. Suzuki, Multilinear polynomials and Frankl–Ray-Chaudhuri–Wilson type intersection theorems. J. Combin. Theory Ser. A 58 (1991), no. 2, 165–180.

- [3] L. Babai, P. Frankl, Linear Algebra Method in Combinatorics, preliminary version 2, University of Chicago, 1992.
- [4] A. Blokhuis, A new upper bound for the cardinality of 2-distance sets in Euclidean space. Convexity and graph theory (Jerusalem, 1981), 65–66, North-Holland Math. Stud., 87, North-Holland, Amsterdam, 1984.
- [5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12 (1961) 313–320.
- [6] P. Erdős, R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960) 85–90.
- [7] P. Frankl, J. Pach, On disjointly representable sets, Combinatorica 4 (1984) 39-45.
- [8] K. Friedl, L. Rónyai, Order shattering and Wilson's theorem. Discrete Math. 270 (2003), no. 1-3, 127–136.
- [9] Z. Füredi, J. Pach, Traces of finite sets: extremal problems and geometric applications. Extremal problems for finite sets (Visegrád, 1991), 251–282, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994.
- [10] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147.
- [11] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247–261.
- [12] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971), 264–280.