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Abstract

Let F be a k-uniform hypergraph on [n] where k — 1 is a power of some prime p
and n > ng(k). Our main result says that if |F| > (,",) — log,n + k!k*, then there
exists Eg € F such that {E N FEy : E € F} contains all subsets of Ey. This improves a
longstanding bound of (kﬁl) due to Frankl and Pach [7].

1. Introduction

Let G be a set system (or hypergraph) on X and S be a subset of X. The trace of G on S
is defined as G|g = {ENS : E € G}. We treat G|s as a set and therefore omit multiplicity.
We say that S is shattered by G if G|s = 27, the set of all subsets of S. The Vapnik-
Chervonenkis dimension ( VC dimension) of G is the maximum size of a set shattered by G.
Extremal problems on traces started from determining the maximum size of a set system
on n vertices with VC dimension k& — 1 (equivalently, without a shattered k-set). Sauer
[10], Perles and Shelah [11], and Vapnik and Chervonenkis [12] independently proved that
this maximum is (3) +... 4+ (kfl) This and other results on traces have found numerous
applications in geometry and computational learning theory (see Fiiredi and Pach [9] and
Section 7.4 Babai and Frankl [3]).

Given two set systems G and F, if there exists a set S such that G|g contains a copy
of F' as a subhypergraph, we say that G contains F' as a trace. In this case we write
G — F (G 4 F otherwise). Let ()f) denote the set of all r-subsets of X. We call G
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an r-uniform hypergraph (r-graph) on X if G C ()f) and call the members of G edges.
We define Tr"(n, F') as the maximum number of edges in an r-graph on [n] = {1,...,n}
not containing F' as a trace. Frankl and Pach [7] considered the maximum size of uniform
hypergraphs with fixed VC dimension. They showed that Tr"(n, 2[@) < (kﬁl) fork <r<n.
They conjectured that Tr*(n, 2[k]) = (Z:}) for sufficiently large n. Obviously if a k-graph G
contains a shattered edge, then G contains two disjoint edges (since the empty set appears
in the trace). Therefore the conjecture of Frankl and Pach, if true, generalizes the well-
known Erdés-Ko-Rado Theorem [5]. However, Ahlswede and Khachatrian [1] disproved it
by constructing a G C ([Z}) of size (nfl) + (n74) that contains no shattered k-set when

k—1 k-3
k > 3 and n > 2k. Combining this with the upper bound in [7], for £ > 3 and n > 2k,

(o) (o =mon=(,,)

Our main result improves the upper bound in (1) in the case that k — 1 is a prime power
and n is large.

Theorem 1. Let p be a prime, t be a positive integer, k = p* + 1, and n > no(k). If F is
a k-uniform hypergraph on [n] with more than (,",) — log, n + k\k* edges, then there is a
k-set shattered by F. In other words,

k k n k
T* (n, 2F) < <k—1> —log,n + Kk".

In addition,we find exponentially many k-graphs achieving the lower bound in (1).

Proposition 2. Let P(n,r) denote the number of non-isomorphic r-graphs on [n]. Then
for k > 3, there are at least P(n — 4,k — 1)/2 non-isomorphic k-graphs F on [n] such that
\Fl = (7)) + (173) and F 4 2H.

Note that the gap between the upper and lower bounds in (1) is (Z:;) - (Z:g) Theorem 1
reduces this gap by essentially logn for certain values of k. Though this improvement
is small, the value of Theorem 1 is perhaps mainly in its proof — a mixture of algebraic
and combinatorial arguments. The main tool in proving Tr¥(n, 2) < (L") in [7) is the
so-called higher-order inclusion matriz, whose rows are labeled by edges of a hypergraph
FC ([Z]). It was shown that if F contains no shattered k-sets, then the rows of this matrix
are linearly independent. Consequently |F|, the number of the rows, equals to the rank of
the matrix, which is at most (kfl) The main idea in proving Theorem 1 is to enlarge the
inclusion matrix of F by adding more rows such that the rows in the enlarged matrix are
still linearly independent. The method of adding independent vectors (or functions) to a
space has been used before, e.g., on the two-distance problem by Blokhuis [4] and a proof
of the Ray-Chaudhuri-Wilson Theorem by Alon, Babai and Suzuki [2].

In order to prove Theorem 1, we also need more combinatorial tools. In particular, the
sunflower lemma of Erdés and Rado [6], which is used to prove Lemma 3 below. Note that
Lemma 3 and Theorem 4 together prove Theorem 1. Let 2= = 2l ¢



Lemma 3. For any k < n,
Tr* (n, 2[k]) < Tr¥(n, 2[1’“]_) + kKR

Theorem 4. Let p be a prime, t be a positive integer, and k = p* +1. Then Trk(n, Q[k]_) <
(") —log,n for n > ng(k).

In next section we prove Proposition 2 and Lemma 3. We prove Theorem 4 in Section 3
and give concluding remarks in the last section.

2. Proofs of Proposition 2 and Lemma 3.

Proof of Proposition 2. We construct F = Fy U F; U Fy such that Fy is the set of all
k-sets containing 1 and 2, edges in J7 contain 1 but avoid 2, and edges in F> contain 2 but
avoid 1. If we let G; = {FE \ {i} : E € F;} denote the link graph of ¢ in F;, then G; and
Go are (k — 1)-graphs on V' = {3,4,...,n}. Let G; and Go further satisfy the following
conditions:

1. GiUGy = (k‘ill)
2. GiNGy={Ee () :E2{3.4}}
3. Gi2{Eec (V) :E33,E#4}, G 2{Ee (V) :E>4,E#3}.

It is easy to see that |F| = (Zj) + (Z:g), since | Fo| = (Z:g) and

AL+ 1Rl = (61 + (6] =[G uGal +GinGal = (1 1) + ()

We claim that F - 281, Suppose to the contrary that some E € ([Z]) is shattered. Then
E € F. Note that every edge in F contains either 1 or 2. If {1,2} C E, then E \ {1,2}
is not contained in F|g. Without loss of generality, assume that £ > 1 and E # 2.
Since E \ {1} € G is contained in F|g, we have (E \ {1}) U{2} € F and consequently
E\ {1} € G1 N Gy. Therefore £ D {3,4}. In order to have E \ {1,4} € F|g, there must
be one edge of G2 containing 3 and not containing 4. But this is impossible because of the
third condition on G; and Go.

In the above construction, every E € (k‘i/l) with £ F 3, E # 4 could be in either GGy or

Gy. These undecided edges form a complete (k — 1)-graph K"~} on {5,...,n}. Recall that
P(n — 4,k — 1) is the number of non-isomorphic (k — 1)-graphs on n — 4 vertices, or the
number of non-isomorphic 2-edge-colorings of Kff:i. We claim that the number of non-
isomorphic F satisfying our construction is P(n — 4,k — 1)/2. To see this, let us consider



vertex degrees in F. Let deg(x) be the number of edges in F containing a vertex z. It is
not hard to see that no matter what the undecided edges are, deg(1) and deg(2) are always
greater than deg(3) = deg(4), which is greater than deg(z) for all z > 4, and deg(z) is fixed
for all x > 4. Therefore two constructions F and F’ are isomorphic if and only if F l¢5,....n}
and }"’|{5,._7n} are isomorphic or one is the complement of the other (since the vertices 1
and 2 are identical). O

Note that the construction in [1] is isomorphic to the case when all undecided E are in Gj.

A sunflower (or A-system) with r petals and a core C is a collection of distinct sets
Si,...,8r such that §; NS; = C for all i # j. Erd6s and Rado [6] proved the follow-
ing simple but extremely useful and fundamental lemma.

Lemma 5 (Sunflower Lemma). Let G be a k-graph with |G| > k!(r—1)*. Then G contains
a sunflower with r petals. O

We call a set S almost-shattered by F if F|g contains 25 \ 0.

Proof of Lemma 3. Let F be a k-graph on [n] with |F| > Tr*(n, 2F7) + klIEF. We
need to show that F contains a shattered set. Since |F| > Tr¥(n,2F~), we may find an
almost-shattered k-set E; € F. Since |F \ {E1}| > Tr*(n,2-), we may find an almost-
shattered k-set E2 € F\{E1}. Repeating this process, we find distinct almost-shattered sets
Ey,Es, ..., Epe € F. By the Sunflower Lemma, F' = {Ey, ..., Eyx } contains a sunflower
with k£ + 1 petals. Let us simply denote it by FEi,..., Exi1 and C = ﬂfjllEi. Since Ej is
almost-shattered by F and F;j \ C # (), there is Ey € F such that Ey N E; = E; \ C. Now
EiNEy, EaNEy,...,Ek N Ey are pairwise disjoint. Since |Ey| = k < k + 1, there exists
i # 1 such that E; N Ey = (. This means that ) € F|g,. Consequently E; is shattered by
F. O

3. Proof of Theorem 4

3.1. Inclusion Matrices and Proof Outline

The proof of Theorem 4 needs the concept of higher-order inclusion matrices. Let F be a
set system on X. The incidence matriz M (F, < s) of F over (fs) is the matrix whose rows
(incidence vectors) are labeled by the edges of F, columns are labeled by subsets of [n] of
size at most s, and entry (E,S), E € F, |S| < s,is 1if S C F and 0 otherwise. Throughout
this paper, we fix s = k— 1 and simply write M (F) instead of M (F, < k—1). In particular,

“ = ()= () =)

For each E C [n], the incidence vector vg is a (0, 1)-vector of length (§) +---+ ("), whose
coordinates are labeled by all subsets of [n] of size at most k — 1. Note that vy always has
a 1 in the position corresponding to (). Let e; = vy, for each i € [n].

4



Let g be 0 or a prime number. As usual, I, denotes a field of ¢ elements when ¢ is a prime.
Let us define Fy to be Q, the field of rational numbers. Given a hypergraph F, a weight
function of F over Fy is a function o : F — F,. If a(E) = 0 for all E € F, then we call «
the zero function and write o = 0. We define

v(F,a) = Z a(E)vg

EeF

and write v(F) = Y pcrve. We say that F is linearly independent in characteristic ¢ if
the rows of M (F) are linearly independent over Fy, namely, v(F,«) = 0 (mod ¢) implies
that a = 0.

Part 1 of Lemma 6 below is the key observation to the proof of the upper bound in (1). It
implies that if F C ([z]) contains no shattered sets, then it is linearly independent in any
characteristic. Our proof of Theorem 4 also needs Part 2. We call a set S near-shattered
by F if F|g contains 2\ ({i} U @) for some i € S.

Lemma 6. Let g be 0 or a prime number. Suppose that F C ([Z]) and o : F — Fy is
a non-zero weight function. Define d(S) = 3 gcper a(E) for every subset S C [n]. Fiz
A € F with a(A) # 0.

1. If d(S) = 0 mod q for all S C A, then A is shattered by F.
2. Leti € A. If d(S) = 0 mod q for all S C A with S # 0 and S # {i}, then A is

near-shattered.

Proof. Part 1 and Part 2 have almost the same proofs. Since Part 1 was proved in [7] and
[3] (Theorem 7.27), we only prove Part 2 here.

Since F is k-uniform, we have d(A) = a(A) # 0. For B C A, we define d(A,B) =
Y me F.ENA=B a(FE). The following equality can be considered as a variant of the Inclusion-

d(A,B)= > (-1)*Pld(s). (2)

BCSCA
In fact, because d(B) = d(A, B) + > per pcpna @(E), (2) is equivalent to

SoaE+ > (-)PFPlAS) =o.

EcF,BCENA BCSCA

Exclusion formula.

This holds because on the left side, each a(E) with » = |[E N A| — |B| > 0 has coefficient
1-()+...+=0) () =o0.

Pick any B C A with B # () and B # {i}. We now show that there exists E € F such that
ENA= B. We use (2) and the assumption that d(S) = 0 mod ¢ for all S with BC S C A
to derive

Y aB)=dA,B)= > (-)FPlAS) = (-1 Pld(4) #£0 mod .

EcF,ENA=B BCSCA



Hence the sum on the left side is not empty. O

By Lemma 6 Part 1, if F contains no shattered sets, then the rows of M (F) are linearly
independent (over Q) and consequently |F| = rank(M). Clearly rank(M) < rank(I(k)).
It is well-known that rankg(I(k)) = (,",) (e.g., see [3] section 7.3). This immediately gives

Tk (n, 2K < (,",), the result of Frankl and Pach [7].

The proof of Theorem 4 proceeds as follows. Suppose that F C ([Z]) satisfies F 4 2[k—
Recall that k = p' + 1 for some prime p and positive integer t. We will construct a matrix
M’ obtained from M = M (F) by adding log, n new rows. The new rows have the form
es = y ;g €i, for some set S of size m = pt+f In other words, a new row has entry 1 at
m coordinates corresponding to m singletons and 0 otherwise (the entry at () is 0 because
m = 0 mod p). The main step is to show that these new rows lie in the row space of I(k),
and all the rows of M’ are still linearly independent. Consequently,

| F| +log, n = rank le(M/) <ranky,(I(k)) < rankq(I(k)) = (k i 1)’

which implies that |F| < (") — log, n.

We now divide the main step into three lemmas, which we will prove in the next subsection.

Lemma 7. Suppose that k = pt +1 and m = ptt! for prime p and t > 0. Then for every
S e ([;fb]), es is in the row space of 1(k) over F,.

Lemma 8 is the key to our proof. For a,b € [n], let e, _, = e, — ep. Thus e, _p is the vector
with a 1 in position {a}, a —1 in position {b}, and 0 everywhere else. Lemma 8 says that
€q,—p is outside the row space of M for every a # b.

Lemma 8. Let k > 2 and n > ng(k). Suppose that F C (Z) contains no almost-shattered
set, i.e., F 4 2K— If |F| > (kﬁl) —log,n, then for every two distinct a,b € [n], the set
{ve : E € F} U{eq—sp} is linearly independent in any characteristic.

Lemma 9. Given a prime p and m > 1, let n > ng(p,m) and r = log,n. Suppose that
for every two distinct a,b € [n], the set {vg : E € F}U{eq s} is linearly independent in

characteristic p. Then there exist subsets Sq,...,5, € ([”m]) such that the set {vgp : E €
FrU{es,,...,es,} is linearly independent in characteristic p.

3.2. Proof of Lemmas

Given a hypergraph F on X and a subset A C X, we define the degree degr(A) to be the
number of edges in F containing A.

Proof of Lemma 7. Let K = (‘Z) It suffices to prove that ZEGK vg = ¢ - eg for some
nonzero ¢ € F),. Equivalently, we need to show that for 7' C S, degy(7T') = 0 mod p when



|T| > 2 or |T| = 0, and deg(T) = ¢ # 0 mod p when |T'| = 1. Since K is a complete
k-graph, deg (T) = (TZ:”TT"). By a well-known result of Kummer, the binomial coefficient
(‘Z) is divisible by a prime p if and only if, when writing a and b as two numbers in base
p, a = (aj---aiag), and b = (b;---biby)p, there exists i < j, such that b; > a;. Since
m is a power of p, for any 1 < k < m — 1, p divides (). Hence degg(0) = () =0
mod p. Now consider |T| = s > 2. Since k = p' + 1, we know k — s < p' and thus write
k—s=(at-1...a0)p. Since m = p!™! we have m —s =p'™! —s = (p—1)p' + k—s—1. We
thus have m —s = (p — 1 a;—1...ap)p, — 1. Hence there exists ¢ <t — 1 such that the value
of m — s at bit 7 is less than a; and consequently (ZL:SS) is divisible by p. When |T| =1, we
have m — 1 = p*t! — 1 and therefore (Tknjll) is not divisible by p for any 1 <k <m —1. [
Proof of Lemma 8. We prove the contrapositive of the claim: If F -4 2%~ and there
exists a non-zero function « : F — [, such that v(F, «) = e, for some a,b € [n] (a # b),
then |F| < (,,) — log, n. We claim that it suffices to show that degz({a}) = O(n*73). In
fact, suppose degr({a}) < ¢xn*3 for some constant ¢; and |F| > (,",) — log, n. After we

remove o and all the edges containing a, we obtain a k-graph F C F with n — 1 vertices
satisfying

|F| > < " )—logpn—cknk?’

AV
Ry
> 3
[
— =
N————

where the last inequality holds because (Z:l) > log,n + cxn®=3 for n > ng(k). But we
showed that Trk(n, 2[k]) < (kﬁl) for any k < n, therefore F — 2[F a contradiction.

Suppose that Y- pc r (E)vp = €4 —p. Let F' = {E € F: o(E) # 0} and V' = [n] \ {a, b}.
For a subset A C [n], let d(A) = > 4c per a(E) mod q. Our assumption v(F, ) = eq
implies that d({a}) =1, d({b}) = —1, and d(A) = 0 for every A # {a},{b} and |A| < k—1.
Applying Lemma 6 Part 1, we conclude that no E € F’ satisfies £ C V’. In other words,
every edge in F’ contains either a or b. Next observe that if 7’ contains an edge E such
that a € F and b ¢ F, then F’ also contains (F \ {a}) U{b}. Otherwise F is the only edge
in F’ containing F \ {a} and consequently d(E \ {a}) = a(FE) # 0, a contradiction.

Let G, = {E\{a} : E € Fl,a € E,b ¢ E} and define G} similarly. By the previous
observation, we have G := G, = G;. We then observe that G # ) otherwise every edge (of
F') containing a also contains b, and consequently 1 = d({a}) = d({a,b}) = 0.

Fix an edge Ey € F' containing a but not b. Applying Lemma 6 Part 2, we conclude that
E) is near-shattered, i.e., all subsets of Ej are in the trace F'|g, except for {a} and (. If
another edge E € F satisfies ENEy = {a}, then Ey becomes almost-shattered, contradicting
the assumption that F 4 2K1= We may therefore assume that every E € F containing



a also contains some other element of Ey. Below we show that there exists H C G with
at most 2k vertices and transversal number at least 2 (i.e., no element lies in all sets of
H). Therefore every E € F containing a has at least two vertices in H and consequently
degr({a}) < (%) (123) = O(n*3).

Pick A € G, (thus |A| = k —1). We claim that for every S C A, |S| = k — 2, there exists
B € G, such that AN B = S. Suppose instead, that for some S € (kéQ), no such B exists.
In this case, AU {a} and S U {a,b} are the only possible edges in F’ containing S U {a}.
We thus have S U {a,b} € F, otherwise d(S U {a}) = a(AU {a}) # 0. Because G, = Gj,
no B € Gy, satisfies AN B = 5. We now have a contradiction since

d(S) =a(AU{a}) + a(AU{b}) + a(SU{a,b}) = d(A) + a(SU{a,b}) = a(SU{a,b}) # 0.

Now, for every S € (kéZ)’ we choose exactly one set B = B(S) € G, such that ANB = S.

Let H = {A}U{B(S) : S € (kéz)} Clearly H contains at most 2k vertices. It is easy
to see that there is no x € NpegE. In fact, if such x € A, then B(A \ {z}) misses x. If
x & A, then A misses x. Therefore the transversal number of H is at least 2, and the proof

is complete. ]

Proof of Lemma 9. Let M be the inclusion matrix of F. We sequentially add vectors
€sys.-.,es, with S1,...,5; € ([;:L]) to M such that eg,, ..., es, and the rows of M are linearly
independent. We claim that this can be done as long as ¢ < log,, n. Suppose to the contrary,
that there exists ¢ < log,n — 1 such that we fail to add a new vector at step 7 + 1. In other

words, we have chosen eg,, ..., eg, successfully, but for every S € (["m]) \ {S1,..., S}, there
exist a weight function o and ¢y, ..., ¢; € Fp, such that
i
eg:v(]-",a)+ch es;- (3)
j=1
We observe that for fixed ¢, ..., ¢;, the set of m-sets satisfying (3) forms a partial Steiner

system PS(n,m,m—1) (an m-graph on [n] such that each (m —1)-subset of [n] is contained
in at most one edge). In fact, if two m-sets S, S” with |[SNS’| = m — 1 both satisfy (3), with
weight functions aq and ag respectively, then v(F, a1 —ag) = e, —p, where {a} = S\ S’ and
{b} = S"\ S. This is a contradiction to our assumption. Consequently for fixed ¢y, ...,¢;,
the number of m-sets satisfying (3) is at most (, " ,)/m. As a result, the number of m-sets
that cannot be chosen is at most p’ (m711) /m. We thus obtain

()= ()-8

m

which implies that

(n—m+1)— s <
(m—l)
Since i < log,n — 1, we have p' < n/p, and consequently n —m + 1 — zm/(mril) < n/p,
which is impossible for fixed p > 2, m and sufficiently large n. ]



4. Concluding Remarks

We believe the lower bound in (1) is correct, though verifying this for all ¥ may be hard
because Proposition 2 gives exponentially many extremal hypergraphs. In order to reduce
the bound in Theorem 1, one probably wants to look for a better way to find independent
vectors than the greedy algorithm we used in the proof of Lemma 9. It may not be very
hard to check this for the k = 3 case, namely, to verify that Tr®(n, 2P%) = ("51) + 1. Using
more involved combinatorial arguments, instead of the Sunflower Lemma, we can prove that
Tr3(n, 2B) < (1) — logy n.

Improving the upper bound further for other values of k will most likely need some new ideas.

Our approach uses incidence vectors of a family of singletons. The following proposition
shows that this approach requires £ — 1 to be a prime power.

Proposition 10. Let p be a prime and k > 2. Suppose that F C ([2}) and o : F — F)
is a non-zero weight function. Define d(S) = > gcper (E) for every subset S C [n]. If
there exists a verter x € [n] such that d({z}) # 0 and d(S) = 0 mod p for every S > x with
2<|S| < k-1, then k — 1 is a power of p.

Proof. Let 2 < s <k —1. When we sum up d(S) for all S > x with |S| = s, we over-count
d({z}) by a factor of (lzj) In other words,

d({z}) =

> d(s

s—1 x€S|S\—s

Since d({z}) # 0 but d(S) = 0 mod p for all S in the right side, it must be the case that p
divides (];7 1) We thus conclude that p divides (k 1) for all 1 <1i < k—1. By the result of
Kummer on binomial coefficients, this happens only if £ — 1 is a power of p. O
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