On the VC-dimension of Uniform Hypergraphs

Dhruv Mubayi *
Department of Mathematics, Statistics, and Computer Science
University of Illinois
Chicago, IL 60607

Yi Zhao ${ }^{\dagger}$
Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303

Abstract

Let \mathcal{F} be a k-uniform hypergraph on $[n]$ where $k-1$ is a power of some prime p and $n \geq n_{0}(k)$. Our main result says that if $|\mathcal{F}|>\binom{n}{k-1}-\log _{p} n+k!k^{k}$, then there exists $E_{0} \in \mathcal{F}$ such that $\left\{E \cap E_{0}: E \in \mathcal{F}\right\}$ contains all subsets of E_{0}. This improves a longstanding bound of $\binom{n}{k-1}$ due to Frankl and Pach [7].

1. Introduction

Let G be a set system (or hypergraph) on X and S be a subset of X. The trace of G on S is defined as $\left.G\right|_{S}=\{E \cap S: E \in G\}$. We treat $\left.G\right|_{S}$ as a set and therefore omit multiplicity. We say that S is shattered by G if $\left.G\right|_{S}=2^{S}$, the set of all subsets of S. The VapnikChervonenkis dimension ($V C$ dimension) of G is the maximum size of a set shattered by G. Extremal problems on traces started from determining the maximum size of a set system on n vertices with VC dimension $k-1$ (equivalently, without a shattered k-set). Sauer [10], Perles and Shelah [11], and Vapnik and Chervonenkis [12] independently proved that this maximum is $\binom{n}{0}+\ldots+\binom{n}{k-1}$. This and other results on traces have found numerous applications in geometry and computational learning theory (see Füredi and Pach [9] and Section 7.4 Babai and Frankl [3]).
Given two set systems G and F, if there exists a set S such that $\left.G\right|_{S}$ contains a copy of F as a subhypergraph, we say that G contains F as a trace. In this case we write $G \rightarrow F(G \nrightarrow F$ otherwise $)$. Let $\binom{X}{r}$ denote the set of all r-subsets of X. We call G

[^0]an r-uniform hypergraph (r-graph) on X if $G \subseteq\binom{X}{r}$ and call the members of G edges. We define $\operatorname{Tr}^{r}(n, F)$ as the maximum number of edges in an r-graph on $[n]=\{1, \ldots, n\}$ not containing F as a trace. Frankl and Pach [7] considered the maximum size of uniform hypergraphs with fixed VC dimension. They showed that $\operatorname{Tr}^{r}\left(n, 2^{[k]}\right) \leq\binom{ n}{k-1}$ for $k \leq r \leq n$. They conjectured that $\operatorname{Tr}^{k}\left(n, 2^{[k]}\right)=\binom{n-1}{k-1}$ for sufficiently large n. Obviously if a k-graph G contains a shattered edge, then G contains two disjoint edges (since the empty set appears in the trace). Therefore the conjecture of Frankl and Pach, if true, generalizes the wellknown Erdős-Ko-Rado Theorem [5]. However, Ahlswede and Khachatrian [1] disproved it by constructing a $G \subseteq\binom{[n]}{k}$ of size $\binom{n-1}{k-1}+\binom{n-4}{k-3}$ that contains no shattered k-set when $k \geq 3$ and $n \geq 2 k$. Combining this with the upper bound in [7], for $k \geq 3$ and $n \geq 2 k$,
\[

$$
\begin{equation*}
\binom{n-1}{k-1}+\binom{n-4}{k-3} \leq \operatorname{Tr}^{k}\left(n, 2^{[k]}\right) \leq\binom{ n}{k-1} . \tag{1}
\end{equation*}
$$

\]

Our main result improves the upper bound in (1) in the case that $k-1$ is a prime power and n is large.

Theorem 1. Let p be a prime, t be a positive integer, $k=p^{t}+1$, and $n \geq n_{0}(k)$. If \mathcal{F} is a k-uniform hypergraph on $[n]$ with more than $\binom{n}{k-1}-\log _{p} n+k!k^{k}$ edges, then there is a k-set shattered by \mathcal{F}. In other words,

$$
\operatorname{Tr}^{k}\left(n, 2^{[k]}\right) \leq\binom{ n}{k-1}-\log _{p} n+k!k^{k}
$$

In addition,we find exponentially many k-graphs achieving the lower bound in (1).
Proposition 2. Let $P(n, r)$ denote the number of non-isomorphic r-graphs on [n]. Then for $k \geq 3$, there are at least $P(n-4, k-1) / 2$ non-isomorphic k-graphs \mathcal{F} on [n] such that $|\mathcal{F}|=\binom{n-1}{k-1}+\binom{n-4}{k-3}$ and $\mathcal{F} \nrightarrow 2^{[k]}$.

Note that the gap between the upper and lower bounds in (1) is $\binom{n-1}{k-2}-\binom{n-4}{k-3}$. Theorem 1 reduces this gap by essentially $\log n$ for certain values of k. Though this improvement is small, the value of Theorem 1 is perhaps mainly in its proof - a mixture of algebraic and combinatorial arguments. The main tool in proving $\operatorname{Tr}^{k}\left(n, 2^{[k]}\right) \leq\binom{ n}{k-1}$ in [7] is the so-called higher-order inclusion matrix, whose rows are labeled by edges of a hypergraph $\mathcal{F} \subseteq\binom{[n]}{k}$. It was shown that if \mathcal{F} contains no shattered k-sets, then the rows of this matrix are linearly independent. Consequently $|\mathcal{F}|$, the number of the rows, equals to the rank of the matrix, which is at most $\binom{n}{k-1}$. The main idea in proving Theorem 1 is to enlarge the inclusion matrix of \mathcal{F} by adding more rows such that the rows in the enlarged matrix are still linearly independent. The method of adding independent vectors (or functions) to a space has been used before, e.g., on the two-distance problem by Blokhuis [4] and a proof of the Ray-Chaudhuri-Wilson Theorem by Alon, Babai and Suzuki [2].
In order to prove Theorem 1, we also need more combinatorial tools. In particular, the sunflower lemma of Erdős and Rado [6], which is used to prove Lemma 3 below. Note that Lemma 3 and Theorem 4 together prove Theorem 1. Let $2^{[k]-}=2^{[k]} \backslash \emptyset$.

Lemma 3. For any $k \leq n$,

$$
\operatorname{Tr}^{k}\left(n, 2^{[k]}\right) \leq \operatorname{Tr}^{k}\left(n, 2^{[k]-}\right)+k!k^{k} .
$$

Theorem 4. Let p be a prime, t be a positive integer, and $k=p^{t}+1$. Then $\operatorname{Tr}^{k}\left(n, 2^{[k]-}\right) \leq$ $\binom{n}{k-1}-\log _{p} n$ for $n \geq n_{0}(k)$.

In next section we prove Proposition 2 and Lemma 3. We prove Theorem 4 in Section 3 and give concluding remarks in the last section.

2. Proofs of Proposition 2 and Lemma 3.

Proof of Proposition 2. We construct $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2}$ such that \mathcal{F}_{0} is the set of all k-sets containing 1 and 2 , edges in \mathcal{F}_{1} contain 1 but avoid 2 , and edges in \mathcal{F}_{2} contain 2 but avoid 1. If we let $G_{i}=\left\{E \backslash\{i\}: E \in \mathcal{F}_{i}\right\}$ denote the link graph of i in \mathcal{F}_{i}, then G_{1} and G_{2} are ($k-1$)-graphs on $V^{\prime}=\{3,4, \ldots, n\}$. Let G_{1} and G_{2} further satisfy the following conditions:

1. $G_{1} \cup G_{2}=\binom{V^{\prime}}{k-1}$
2. $G_{1} \cap G_{2}=\left\{E \in\binom{V^{\prime}}{k-1}: E \supseteq\{3,4\}\right\}$
3. $G_{1} \supseteq\left\{E \in\binom{V^{\prime}}{k-1}: E \ni 3, E \not \supset 4\right\}, G_{2} \supseteq\left\{E \in\binom{V^{\prime}}{k-1}: E \ni 4, E \not \supset 3\right\}$.

It is easy to see that $|\mathcal{F}|=\binom{n-1}{k-1}+\binom{n-4}{k-3}$, since $\left|\mathcal{F}_{0}\right|=\binom{n-2}{k-2}$ and

$$
\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|=\left|G_{1}\right|+\left|G_{2}\right|=\left|G_{1} \cup G_{2}\right|+\left|G_{1} \cap G_{2}\right|=\binom{n-2}{k-1}+\binom{n-4}{k-3} .
$$

We claim that $\mathcal{F} \nrightarrow 2^{[k]}$. Suppose to the contrary that some $E \in\binom{[n]}{k}$ is shattered. Then $E \in \mathcal{F}$. Note that every edge in \mathcal{F} contains either 1 or 2 . If $\{1,2\} \subset E$, then $E \backslash\{1,2\}$ is not contained in $\left.\mathcal{F}\right|_{E}$. Without loss of generality, assume that $E \ni 1$ and $E \not \not 2$. Since $E \backslash\{1\} \in G_{1}$ is contained in $\left.\mathcal{F}\right|_{E}$, we have $(E \backslash\{1\}) \cup\{2\} \in \mathcal{F}$ and consequently $E \backslash\{1\} \in G_{1} \cap G_{2}$. Therefore $E \supseteq\{3,4\}$. In order to have $\left.E \backslash\{1,4\} \in \mathcal{F}\right|_{E}$, there must be one edge of G_{2} containing 3 and not containing 4 . But this is impossible because of the third condition on G_{1} and G_{2}.
In the above construction, every $E \in\binom{V^{\prime}}{k-1}$ with $E \not \supset 3, E \not \supset 4$ could be in either G_{1} or G_{2}. These undecided edges form a complete ($k-1$)-graph K_{n-4}^{k-1} on $\{5, \ldots, n\}$. Recall that $P(n-4, k-1)$ is the number of non-isomorphic ($k-1$)-graphs on $n-4$ vertices, or the number of non-isomorphic 2 -edge-colorings of K_{n-4}^{k-1}. We claim that the number of nonisomorphic \mathcal{F} satisfying our construction is $P(n-4, k-1) / 2$. To see this, let us consider
vertex degrees in \mathcal{F}. Let $\operatorname{deg}(x)$ be the number of edges in \mathcal{F} containing a vertex x. It is not hard to see that no matter what the undecided edges are, $\operatorname{deg}(1)$ and $\operatorname{deg}(2)$ are always greater than $\operatorname{deg}(3)=\operatorname{deg}(4)$, which is greater than $\operatorname{deg}(x)$ for all $x>4$, and $\operatorname{deg}(x)$ is fixed for all $x>4$. Therefore two constructions \mathcal{F} and \mathcal{F}^{\prime} are isomorphic if and only if $\left.\mathcal{F}\right|_{\{5, \ldots, n\}}$ and $\left.\mathcal{F}^{\prime}\right|_{\{5, \ldots, n\}}$ are isomorphic or one is the complement of the other (since the vertices 1 and 2 are identical).
Note that the construction in [1] is isomorphic to the case when all undecided E are in G_{1}.
A sunflower (or Δ-system) with r petals and a core C is a collection of distinct sets S_{1}, \ldots, S_{r} such that $S_{i} \cap S_{j}=C$ for all $i \neq j$. Erdős and Rado [6] proved the following simple but extremely useful and fundamental lemma.
Lemma 5 (Sunflower Lemma). Let G be a k-graph with $|G|>k!(r-1)^{k}$. Then G contains a sunflower with r petals.

We call a set S almost-shattered by \mathcal{F} if $\left.\mathcal{F}\right|_{S}$ contains $2^{S} \backslash \emptyset$.
Proof of Lemma 3. Let \mathcal{F} be a k-graph on $[n]$ with $|\mathcal{F}|>\operatorname{Tr}^{k}\left(n, 2^{[k]-}\right)+k!k^{k}$. We need to show that \mathcal{F} contains a shattered set. Since $|\mathcal{F}|>\operatorname{Tr}^{k}\left(n, 2^{[k]-}\right)$, we may find an almost-shattered k-set $E_{1} \in \mathcal{F}$. Since $\left|\mathcal{F} \backslash\left\{E_{1}\right\}\right|>\operatorname{Tr}^{k}\left(n, 2^{[k]-}\right)$, we may find an almostshattered k-set $E_{2} \in \mathcal{F} \backslash\left\{E_{1}\right\}$. Repeating this process, we find distinct almost-shattered sets $E_{1}, E_{2}, \ldots, E_{k!k^{k}} \in \mathcal{F}$. By the Sunflower Lemma, $\mathcal{F}^{\prime}=\left\{E_{1}, \ldots, E_{k!k^{k}}\right\}$ contains a sunflower with $k+1$ petals. Let us simply denote it by E_{1}, \ldots, E_{k+1} and $C=\cap_{i=1}^{k+1} E_{i}$. Since E_{1} is almost-shattered by \mathcal{F} and $E_{1} \backslash C \neq \emptyset$, there is $E_{0} \in \mathcal{F}$ such that $E_{0} \cap E_{1}=E_{1} \backslash C$. Now $E_{1} \cap E_{0}, E_{2} \cap E_{0}, \ldots, E_{k+1} \cap E_{0}$ are pairwise disjoint. Since $\left|E_{0}\right|=k<k+1$, there exists $i \neq 1$ such that $E_{i} \cap E_{0}=\emptyset$. This means that $\left.\emptyset \in \mathcal{F}\right|_{E_{i}}$. Consequently E_{i} is shattered by \mathcal{F}.

3. Proof of Theorem 4

3.1. Inclusion Matrices and Proof Outline

The proof of Theorem 4 needs the concept of higher-order inclusion matrices. Let \mathcal{F} be a set system on X. The incidence matrix $M(\mathcal{F}, \leq s)$ of \mathcal{F} over $\binom{X}{\leq s}$ is the matrix whose rows (incidence vectors) are labeled by the edges of \mathcal{F}, columns are labeled by subsets of $[n]$ of size at most s, and entry $(E, S), E \in \mathcal{F},|S| \leq s$, is 1 if $S \subseteq E$ and 0 otherwise. Throughout this paper, we fix $s=k-1$ and simply write $M(\mathcal{F})$ instead of $M(\mathcal{F}, \leq k-1)$. In particular, let

$$
I(k)=M\left(\binom{[n]}{k}\right)=M\left(\binom{[n]}{k}, \leq k-1\right) .
$$

For each $E \subset[n]$, the incidence vector v_{E} is a $(0,1)$-vector of length $\binom{n}{0}+\cdots+\binom{n}{k-1}$, whose coordinates are labeled by all subsets of $[n]$ of size at most $k-1$. Note that v_{E} always has a 1 in the position corresponding to \emptyset. Let $e_{i}=v_{\{i\}}$ for each $i \in[n]$.

Let q be 0 or a prime number. As usual, \mathbb{F}_{q} denotes a field of q elements when q is a prime. Let us define \mathbb{F}_{0} to be \mathbb{Q}, the field of rational numbers. Given a hypergraph \mathcal{F}, a weight function of \mathcal{F} over \mathbb{F}_{q} is a function $\alpha: \mathcal{F} \rightarrow \mathbb{F}_{q}$. If $\alpha(E)=0$ for all $E \in \mathcal{F}$, then we call α the zero function and write $\alpha \equiv 0$. We define

$$
v(\mathcal{F}, \alpha)=\sum_{E \in \mathcal{F}} \alpha(E) v_{E}
$$

and write $v(\mathcal{F})=\sum_{E \in \mathcal{F}} v_{E}$. We say that \mathcal{F} is linearly independent in characteristic q if the rows of $M(\mathcal{F})$ are linearly independent over \mathbb{F}_{q}, namely, $v(\mathcal{F}, \alpha)=0(\bmod q)$ implies that $\alpha \equiv 0$.
Part 1 of Lemma 6 below is the key observation to the proof of the upper bound in (1). It implies that if $\mathcal{F} \subseteq\binom{[n]}{k}$ contains no shattered sets, then it is linearly independent in any characteristic. Our proof of Theorem 4 also needs Part 2. We call a set S near-shattered by \mathcal{F} if $\left.\mathcal{F}\right|_{S}$ contains $2^{S} \backslash(\{i\} \cup \emptyset)$ for some $i \in S$.
Lemma 6. Let q be 0 or a prime number. Suppose that $\mathcal{F} \subseteq\binom{[n]}{k}$ and $\alpha: \mathcal{F} \rightarrow \mathbb{F}_{q}$ is a non-zero weight function. Define $d(S)=\sum_{S \subseteq E \in \mathcal{F}} \alpha(E)$ for every subset $S \subset[n]$. Fix $A \in \mathcal{F}$ with $\alpha(A) \neq 0$.

1. If $d(S)=0 \bmod q$ for all $S \subset A$, then A is shattered by \mathcal{F}.
2. Let $i \in A$. If $d(S)=0 \bmod q$ for all $S \subset A$ with $S \neq \emptyset$ and $S \neq\{i\}$, then A is near-shattered.

Proof. Part 1 and Part 2 have almost the same proofs. Since Part 1 was proved in [7] and [3] (Theorem 7.27), we only prove Part 2 here.
Since \mathcal{F} is k-uniform, we have $d(A)=\alpha(A) \neq 0$. For $B \subseteq A$, we define $d(A, B)=$ $\sum_{E \in \mathcal{F}, E \cap A=B} \alpha(E)$. The following equality can be considered as a variant of the InclusionExclusion formula.

$$
\begin{equation*}
d(A, B)=\sum_{B \subseteq S \subseteq A}(-1)^{|S-B|} d(S) . \tag{2}
\end{equation*}
$$

In fact, because $d(B)=d(A, B)+\sum_{E \in \mathcal{F}, B \subset E \cap A} \alpha(E)$, (2) is equivalent to

$$
\sum_{E \in \mathcal{F}, B \subset E \cap A} \alpha(E)+\sum_{B \subset S \subseteq A}(-1)^{|S-B|} d(S)=0 .
$$

This holds because on the left side, each $\alpha(E)$ with $r=|E \cap A|-|B|>0$ has coefficient $1-\binom{r}{1}+\ldots+(-1)^{r}\binom{r}{r}=0$.
Pick any $B \subset A$ with $B \neq \emptyset$ and $B \neq\{i\}$. We now show that there exists $E \in \mathcal{F}$ such that $E \cap A=B$. We use (2) and the assumption that $d(S)=0 \bmod q$ for all S with $B \subseteq S \subset A$ to derive

$$
\sum_{E \in \mathcal{F}, E \cap A=B} \alpha(E)=d(A, B)=\sum_{B \subseteq S \subseteq A}(-1)^{|S-B|} d(S)=(-1)^{|A-B|} d(A) \neq 0 \quad \bmod q .
$$

Hence the sum on the left side is not empty.
By Lemma 6 Part 1, if \mathcal{F} contains no shattered sets, then the rows of $M(\mathcal{F})$ are linearly independent (over \mathbb{Q}) and consequently $|\mathcal{F}|=\operatorname{rank}(M)$. Clearly $\operatorname{rank}(M) \leq \operatorname{rank}(I(k))$. It is well-known that $\operatorname{rank}_{\mathbb{Q}}(I(k))=\binom{n}{k-1}$ (e.g., see [3] section 7.3). This immediately gives $\operatorname{Tr}^{k}\left(n, 2^{[k]}\right) \leq\binom{ n}{k-1}$, the result of Frankl and Pach [7].
The proof of Theorem 4 proceeds as follows. Suppose that $\mathcal{F} \subseteq\binom{[n]}{k}$ satisfies $\mathcal{F} \nrightarrow 2^{[k]-}$. Recall that $k=p^{t}+1$ for some prime p and positive integer t. We will construct a matrix M^{\prime} obtained from $M=M(\mathcal{F})$ by adding $\log _{p} n$ new rows. The new rows have the form $e_{S}=\sum_{i \in S} e_{i}$, for some set S of size $m=p^{t+1}$. In other words, a new row has entry 1 at m coordinates corresponding to m singletons and 0 otherwise (the entry at \emptyset is 0 because $m=0 \bmod p)$. The main step is to show that these new rows lie in the row space of $I(k)$, and all the rows of M^{\prime} are still linearly independent. Consequently,

$$
|\mathcal{F}|+\log _{p} n=\operatorname{rank}_{\mathbb{F}_{p}}\left(M^{\prime}\right) \leq \operatorname{rank}_{\mathbb{F}_{p}}(I(k)) \leq \operatorname{rank}_{\mathbb{Q}}(I(k))=\binom{n}{k-1},
$$

which implies that $|\mathcal{F}| \leq\binom{ n}{k-1}-\log _{p} n$.
We now divide the main step into three lemmas, which we will prove in the next subsection.
Lemma 7. Suppose that $k=p^{t}+1$ and $m=p^{t+1}$ for prime p and $t>0$. Then for every $S \in\binom{[n]}{m}$, e_{S} is in the row space of $I(k)$ over \mathbb{F}_{p}.

Lemma 8 is the key to our proof. For $a, b \in[n]$, let $e_{a,-b}=e_{a}-e_{b}$. Thus $e_{a,-b}$ is the vector with a 1 in position $\{a\}$, a -1 in position $\{b\}$, and 0 everywhere else. Lemma 8 says that $e_{a,-b}$ is outside the row space of M for every $a \neq b$.

Lemma 8. Let $k \geq 2$ and $n \geq n_{0}(k)$. Suppose that $\mathcal{F} \subseteq\binom{n}{k}$ contains no almost-shattered set, i.e., $\mathcal{F} \nrightarrow 2^{[k]-}$. If $|\mathcal{F}|>\binom{n}{k-1}-\log _{p} n$, then for every two distinct $a, b \in[n]$, the set $\left\{v_{E}: E \in \mathcal{F}\right\} \cup\left\{e_{a,-b}\right\}$ is linearly independent in any characteristic.

Lemma 9. Given a prime p and $m \geq 1$, let $n \geq n_{0}(p, m)$ and $r=\log _{p} n$. Suppose that for every two distinct $a, b \in[n]$, the set $\left\{v_{E}: E \in \mathcal{F}\right\} \cup\left\{e_{a,-b}\right\}$ is linearly independent in characteristic p. Then there exist subsets $S_{1}, \ldots, S_{r} \in\binom{[n]}{m}$ such that the set $\left\{v_{E}: E \in\right.$ $\mathcal{F}\} \cup\left\{e_{S_{1}}, \ldots, e_{S_{r}}\right\}$ is linearly independent in characteristic p.

3.2. Proof of Lemmas

Given a hypergraph \mathcal{F} on X and a subset $A \subseteq X$, we define the $\operatorname{degree}^{\operatorname{deg}} \mathcal{F}_{\mathcal{F}}(A)$ to be the number of edges in \mathcal{F} containing A.
Proof of Lemma 7. Let $K=\binom{S}{k}$. It suffices to prove that $\sum_{E \in K} v_{E}=c \cdot e_{S}$ for some nonzero $c \in \mathbb{F}_{p}$. Equivalently, we need to show that for $T \subset S$, $\operatorname{deg}_{K}(T)=0 \bmod p$ when
$|T| \geq 2$ or $|T|=0$, and $\operatorname{deg}(T)=c \neq 0 \bmod p$ when $|T|=1$. Since K is a complete k-graph, $\operatorname{deg}_{K}(T)=\binom{m-|T|}{k-|T|}$. By a well-known result of Kummer, the binomial coefficient $\binom{a}{b}$ is divisible by a prime p if and only if, when writing a and b as two numbers in base $p, a=\left(a_{j} \cdots a_{1} a_{0}\right)_{p}$ and $b=\left(b_{j} \cdots b_{1} b_{0}\right)_{p}$, there exists $i \leq j$, such that $b_{i}>a_{i}$. Since m is a power of p, for any $1 \leq k \leq m-1, p$ divides $\binom{m}{k}$. Hence $\operatorname{deg}_{K}(\emptyset)=\binom{m}{k}=0$ $\bmod p$. Now consider $|T|=s \geq 2$. Since $k=p^{t}+1$, we know $k-s<p^{t}$ and thus write $k-s=\left(a_{t-1} \ldots a_{0}\right)_{p}$. Since $m=p^{t+1}$, we have $m-s=p^{t+1}-s=(p-1) p^{t}+k-s-1$. We thus have $m-s=\left(p-1 a_{t-1} \ldots a_{0}\right)_{p}-1$. Hence there exists $i \leq t-1$ such that the value of $m-s$ at bit i is less than a_{i} and consequently $\binom{m-s}{k-s}$ is divisible by p. When $|T|=1$, we have $m-1=p^{t+1}-1$ and therefore $\binom{m-1}{k-1}$ is not divisible by p for any $1 \leq k \leq m-1$.

Proof of Lemma 8. We prove the contrapositive of the claim: If $\mathcal{F} \nrightarrow 2^{[k]-}$ and there exists a non-zero function $\alpha: \mathcal{F} \rightarrow \mathbb{F}_{q}$ such that $v(\mathcal{F}, \alpha)=e_{a,-b}$ for some $a, b \in[n](a \neq b)$, then $|\mathcal{F}| \leq\binom{ n}{k-1}-\log _{p} n$. We claim that it suffices to show that $\operatorname{deg}_{\mathcal{F}}(\{a\})=O\left(n^{k-3}\right)$. In fact, suppose $\operatorname{deg}_{\mathcal{F}}(\{a\}) \leq c_{k} n^{k-3}$ for some constant c_{k} and $|\mathcal{F}|>\binom{n}{k-1}-\log _{p} n$. After we remove a and all the edges containing a, we obtain a k-graph $\tilde{\mathcal{F}} \subseteq \mathcal{F}$ with $n-1$ vertices satisfying

$$
\begin{aligned}
|\tilde{\mathcal{F}}| & >\binom{n}{k-1}-\log _{p} n-c_{k} n^{k-3} \\
& =\binom{n-1}{k-1}+\binom{n-1}{k-2}-\log _{p} n-c_{k} n^{k-3} \\
& \geq\binom{ n-1}{k-1}
\end{aligned}
$$

where the last inequality holds because $\binom{n-1}{k-2} \geq \log _{p} n+c_{k} n^{k-3}$ for $n \geq n_{0}(k)$. But we showed that $\operatorname{Tr}^{k}\left(n, 2^{[k]}\right) \leq\binom{ n}{k-1}$ for any $k \leq n$, therefore $\tilde{\mathcal{F}} \rightarrow 2^{[k]}$, a contradiction.
Suppose that $\sum_{E \in \mathcal{F}} \alpha(E) v_{E}=e_{a,-b}$. Let $\mathcal{F}^{\prime}=\{E \in \mathcal{F}: \alpha(E) \neq 0\}$ and $V^{\prime}=[n] \backslash\{a, b\}$. For a subset $A \subset[n]$, let $d(A)=\sum_{A \subseteq E \in \mathcal{F}^{\prime}} \alpha(E) \bmod q$. Our assumption $v(\mathcal{F}, \alpha)=e_{a,-b}$ implies that $d(\{a\})=1, d(\{b\})=-1$, and $d(A)=0$ for every $A \neq\{a\},\{b\}$ and $|A| \leq k-1$. Applying Lemma 6 Part 1, we conclude that no $E \in \mathcal{F}^{\prime}$ satisfies $E \subseteq V^{\prime}$. In other words, every edge in \mathcal{F}^{\prime} contains either a or b. Next observe that if \mathcal{F}^{\prime} contains an edge E such that $a \in E$ and $b \notin E$, then \mathcal{F}^{\prime} also contains $(E \backslash\{a\}) \cup\{b\}$. Otherwise E is the only edge in \mathcal{F}^{\prime} containing $E \backslash\{a\}$ and consequently $d(E \backslash\{a\})=\alpha(E) \neq 0$, a contradiction.
Let $G_{a}=\left\{E \backslash\{a\}: E \in \mathcal{F}^{\prime}, a \in E, b \notin E\right\}$ and define G_{b} similarly. By the previous observation, we have $G:=G_{a}=G_{b}$. We then observe that $G \neq \emptyset$ otherwise every edge (of $\left.\mathcal{F}^{\prime}\right)$ containing a also contains b, and consequently $1=d(\{a\})=d(\{a, b\})=0$.
Fix an edge $E_{0} \in \mathcal{F}^{\prime}$ containing a but not b. Applying Lemma 6 Part 2 , we conclude that E_{0} is near-shattered, i.e., all subsets of E_{0} are in the trace $\left.\mathcal{F}^{\prime}\right|_{E_{0}}$ except for $\{a\}$ and \emptyset. If another edge $E \in \mathcal{F}$ satisfies $E \cap E_{0}=\{a\}$, then E_{0} becomes almost-shattered, contradicting the assumption that $F \nrightarrow 2^{[k]-}$. We may therefore assume that every $E \in \mathcal{F}$ containing
a also contains some other element of E_{0}. Below we show that there exists $H \subseteq G$ with at most $2 k$ vertices and transversal number at least 2 (i.e., no element lies in all sets of $H)$. Therefore every $E \in \mathcal{F}$ containing a has at least two vertices in H and consequently $\operatorname{deg}_{\mathcal{F}}(\{a\}) \leq\binom{ 2 k}{2}\binom{n-3}{k-3}=O\left(n^{k-3}\right)$.
Pick $A \in G_{a}$ (thus $|A|=k-1$). We claim that for every $S \subset A,|S|=k-2$, there exists $B \in G_{a}$ such that $A \cap B=S$. Suppose instead, that for some $S \in\binom{A}{k-2}$, no such B exists. In this case, $A \cup\{a\}$ and $S \cup\{a, b\}$ are the only possible edges in \mathcal{F}^{\prime} containing $S \cup\{a\}$. We thus have $S \cup\{a, b\} \in \mathcal{F}^{\prime}$, otherwise $d(S \cup\{a\})=\alpha(A \cup\{a\}) \neq 0$. Because $G_{a}=G_{b}$, no $B \in G_{b}$ satisfies $A \cap B=S$. We now have a contradiction since
$d(S)=\alpha(A \cup\{a\})+\alpha(A \cup\{b\})+\alpha(S \cup\{a, b\})=d(A)+\alpha(S \cup\{a, b\})=\alpha(S \cup\{a, b\}) \neq 0$.
Now, for every $S \in\binom{A}{k-2}$, we choose exactly one set $B=B(S) \in G_{a}$ such that $A \cap B=S$. Let $H=\{A\} \cup\left\{B(S): S \in\binom{A}{k-2}\right\}$. Clearly H contains at most $2 k$ vertices. It is easy to see that there is no $x \in \cap_{E \in H} E$. In fact, if such $x \in A$, then $B(A \backslash\{x\})$ misses x. If $x \notin A$, then A misses x. Therefore the transversal number of H is at least 2 , and the proof is complete.

Proof of Lemma 9. Let M be the inclusion matrix of \mathcal{F}. We sequentially add vectors $e_{S_{1}}, \ldots, e_{S_{i}}$ with $S_{1}, \ldots, S_{i} \in\binom{[n]}{m}$ to M such that $e_{S_{1}}, \ldots, e_{S_{i}}$ and the rows of M are linearly independent. We claim that this can be done as long as $i \leq \log _{p} n$. Suppose to the contrary, that there exists $i \leq \log _{p} n-1$ such that we fail to add a new vector at step $i+1$. In other words, we have chosen $e_{S_{1}}, \ldots, e_{S_{i}}$ successfully, but for every $S \in\binom{[n]}{m} \backslash\left\{S_{1}, \ldots, S_{i}\right\}$, there exist a weight function α and $c_{1}, \ldots, c_{i} \in \mathbb{F}_{p}$ such that

$$
\begin{equation*}
e_{S}=v(\mathcal{F}, \alpha)+\sum_{j=1}^{i} c_{j} e_{S_{j}} \tag{3}
\end{equation*}
$$

We observe that for fixed c_{1}, \ldots, c_{i}, the set of m-sets satisfying (3) forms a partial Steiner system $P S(n, m, m-1$) (an m-graph on $[n]$ such that each $(m-1)$-subset of $[n]$ is contained in at most one edge). In fact, if two m-sets S, S^{\prime} with $\left|S \cap S^{\prime}\right|=m-1$ both satisfy (3), with weight functions α_{1} and α_{2} respectively, then $v\left(\mathcal{F}, \alpha_{1}-\alpha_{2}\right)=e_{a,-b}$, where $\{a\}=S \backslash S^{\prime}$ and $\{b\}=S^{\prime} \backslash S$. This is a contradiction to our assumption. Consequently for fixed c_{1}, \ldots, c_{i}, the number of m-sets satisfying (3) is at most $\binom{n}{m-1} / m$. As a result, the number of m-sets that cannot be chosen is at most $p^{i}\binom{n}{m-1} / m$. We thus obtain

$$
\left|\binom{[n]}{m} \backslash\left\{S_{1}, \ldots, S_{i}\right\}\right|=\binom{n}{m}-i \leq p^{i} \frac{1}{m}\binom{n}{m-1}
$$

which implies that

$$
(n-m+1)-\frac{i m}{\binom{n}{m-1}} \leq p^{i}
$$

Since $i \leq \log _{p} n-1$, we have $p^{i} \leq n / p$, and consequently $n-m+1-i m /\binom{n}{m-1} \leq n / p$, which is impossible for fixed $p \geq 2, m$ and sufficiently large n.

4. Concluding Remarks

We believe the lower bound in (1) is correct, though verifying this for all k may be hard because Proposition 2 gives exponentially many extremal hypergraphs. In order to reduce the bound in Theorem 1, one probably wants to look for a better way to find independent vectors than the greedy algorithm we used in the proof of Lemma 9 . It may not be very hard to check this for the $k=3$ case, namely, to verify that $\operatorname{Tr}^{3}\left(n, 2^{[3]}\right)=\binom{n-1}{2}+1$. Using more involved combinatorial arguments, instead of the Sunflower Lemma, we can prove that $\operatorname{Tr}^{3}\left(n, 2^{[3]}\right) \leq\binom{ n}{2}-\log _{2} n$.
Improving the upper bound further for other values of k will most likely need some new ideas. Our approach uses incidence vectors of a family of singletons. The following proposition shows that this approach requires $k-1$ to be a prime power.

Proposition 10. Let p be a prime and $k \geq 2$. Suppose that $\mathcal{F} \subseteq\binom{[n]}{k}$ and $\alpha: \mathcal{F} \rightarrow \mathbb{F}_{p}$ is a non-zero weight function. Define $d(S)=\sum_{S \subseteq E \in \mathcal{F}} \alpha(E)$ for every subset $S \subset[n]$. If there exists a vertex $x \in[n]$ such that $d(\{x\}) \neq 0$ and $d(S)=0 \bmod p$ for every $S \ni x$ with $2 \leq|S| \leq k-1$, then $k-1$ is a power of p.

Proof. Let $2 \leq s \leq k-1$. When we sum up $d(S)$ for all $S \ni x$ with $|S|=s$, we over-count $d(\{x\})$ by a factor of $\binom{k-1}{s-1}$. In other words,

$$
d(\{x\})=\frac{1}{\binom{k-1}{s-1}} \sum_{x \in S,|S|=s} d(S) .
$$

Since $d(\{x\}) \neq 0$ but $d(S)=0 \bmod p$ for all S in the right side, it must be the case that p divides $\binom{k-1}{s-1}$. We thus conclude that p divides $\binom{k-1}{i}$ for all $1 \leq i \leq k-1$. By the result of Kummer on binomial coefficients, this happens only if $k-1$ is a power of p.

5. Acknowledgments

We thanks the referees for their comments, which improved the presentation of the paper and in particular, shortened the proof of Lemma 9 .

References

[1] R. Ahlswede, L.H. Khachatrian, Counterexample to the Frankl-Pach conjecture for uniform, dense families. Combinatorica 17 (1997), no. 2, 299-301.
[2] N. Alon, L. Babai, H. Suzuki, Multilinear polynomials and Frankl-Ray-ChaudhuriWilson type intersection theorems. J. Combin. Theory Ser. A 58 (1991), no. 2, 165-180.
[3] L. Babai, P. Frankl, Linear Algebra Method in Combinatorics, preliminary version 2, University of Chicago, 1992.
[4] A. Blokhuis, A new upper bound for the cardinality of 2-distance sets in Euclidean space. Convexity and graph theory (Jerusalem, 1981), 65-66, North-Holland Math. Stud., 87, North-Holland, Amsterdam, 1984.
[5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
[6] P. Erdős, R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960) 85-90.
[7] P. Frankl, J. Pach, On disjointly representable sets, Combinatorica 4 (1984) 39-45.
[8] K. Friedl, L. Rónyai, Order shattering and Wilson's theorem. Discrete Math. 270 (2003), no. 1-3, 127-136.
[9] Z. Füredi, J. Pach, Traces of finite sets: extremal problems and geometric applications. Extremal problems for finite sets (Visegrád, 1991), 251-282, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994.
[10] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
[11] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacifc J. Math. 41 (1972), 247-261.
[12] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971), 264-280.

[^0]: *Research supported in part by NSF grants DMS-0400812 and an Alfred P. Sloan Research Fellowship.
 ${ }^{\dagger}$ Research supported in part by NSA grant H98230-05-1-0079. Part of this research was done while working at University of Illinois at Chicago.

