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Abstract

Let F be a k-uniform hypergraph on [n] where k − 1 is a power of some prime p
and n ≥ n0(k). Our main result says that if |F| >

(
n

k−1

)
− logp n + k!kk, then there

exists E0 ∈ F such that {E ∩ E0 : E ∈ F} contains all subsets of E0. This improves a
longstanding bound of

(
n

k−1

)
due to Frankl and Pach [7].

1. Introduction

Let G be a set system (or hypergraph) on X and S be a subset of X. The trace of G on S
is defined as G|S = {E ∩S : E ∈ G}. We treat G|S as a set and therefore omit multiplicity.
We say that S is shattered by G if G|S = 2S , the set of all subsets of S. The Vapnik-
Chervonenkis dimension (VC dimension) of G is the maximum size of a set shattered by G.
Extremal problems on traces started from determining the maximum size of a set system
on n vertices with VC dimension k − 1 (equivalently, without a shattered k-set). Sauer
[10], Perles and Shelah [11], and Vapnik and Chervonenkis [12] independently proved that
this maximum is

(
n
0

)
+ . . . +

(
n

k−1
)
. This and other results on traces have found numerous

applications in geometry and computational learning theory (see Füredi and Pach [9] and
Section 7.4 Babai and Frankl [3]).

Given two set systems G and F , if there exists a set S such that G|S contains a copy
of F as a subhypergraph, we say that G contains F as a trace. In this case we write
G → F (G 6→ F otherwise). Let

(
X
r

)
denote the set of all r-subsets of X. We call G
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an r-uniform hypergraph (r-graph) on X if G ⊆
(
X
r

)
and call the members of G edges.

We define Trr(n, F ) as the maximum number of edges in an r-graph on [n] = {1, . . . , n}
not containing F as a trace. Frankl and Pach [7] considered the maximum size of uniform
hypergraphs with fixed VC dimension. They showed that Trr(n, 2[k]) ≤

(
n

k−1
)

for k ≤ r ≤ n.

They conjectured that Trk(n, 2[k]) =
(
n−1
k−1
)

for sufficiently large n. Obviously if a k-graph G
contains a shattered edge, then G contains two disjoint edges (since the empty set appears
in the trace). Therefore the conjecture of Frankl and Pach, if true, generalizes the well-
known Erdős-Ko-Rado Theorem [5]. However, Ahlswede and Khachatrian [1] disproved it

by constructing a G ⊆
([n]
k

)
of size

(
n−1
k−1
)

+
(
n−4
k−3
)

that contains no shattered k-set when
k ≥ 3 and n ≥ 2k. Combining this with the upper bound in [7], for k ≥ 3 and n ≥ 2k,(

n− 1

k − 1

)
+

(
n− 4

k − 3

)
≤ Trk(n, 2[k]) ≤

(
n

k − 1

)
. (1)

Our main result improves the upper bound in (1) in the case that k − 1 is a prime power
and n is large.

Theorem 1. Let p be a prime, t be a positive integer, k = pt + 1, and n ≥ n0(k). If F is
a k-uniform hypergraph on [n] with more than

(
n

k−1
)
− logp n + k!kk edges, then there is a

k-set shattered by F . In other words,

Trk(n, 2[k]) ≤
(

n

k − 1

)
− logp n+ k!kk.

In addition,we find exponentially many k-graphs achieving the lower bound in (1).

Proposition 2. Let P (n, r) denote the number of non-isomorphic r-graphs on [n]. Then
for k ≥ 3, there are at least P (n− 4, k − 1)/2 non-isomorphic k-graphs F on [n] such that
|F| =

(
n−1
k−1
)

+
(
n−4
k−3
)

and F 6→ 2[k].

Note that the gap between the upper and lower bounds in (1) is
(
n−1
k−2
)
−
(
n−4
k−3
)
. Theorem 1

reduces this gap by essentially log n for certain values of k. Though this improvement
is small, the value of Theorem 1 is perhaps mainly in its proof – a mixture of algebraic
and combinatorial arguments. The main tool in proving Trk(n, 2[k]) ≤

(
n

k−1
)

in [7] is the
so-called higher-order inclusion matrix, whose rows are labeled by edges of a hypergraph
F ⊆

([n]
k

)
. It was shown that if F contains no shattered k-sets, then the rows of this matrix

are linearly independent. Consequently |F|, the number of the rows, equals to the rank of
the matrix, which is at most

(
n

k−1
)
. The main idea in proving Theorem 1 is to enlarge the

inclusion matrix of F by adding more rows such that the rows in the enlarged matrix are
still linearly independent. The method of adding independent vectors (or functions) to a
space has been used before, e.g., on the two-distance problem by Blokhuis [4] and a proof
of the Ray-Chaudhuri–Wilson Theorem by Alon, Babai and Suzuki [2].

In order to prove Theorem 1, we also need more combinatorial tools. In particular, the
sunflower lemma of Erdős and Rado [6], which is used to prove Lemma 3 below. Note that
Lemma 3 and Theorem 4 together prove Theorem 1. Let 2[k]− = 2[k] \ ∅.

2



Lemma 3. For any k ≤ n,

Trk(n, 2[k]) ≤ Trk(n, 2[k]−) + k!kk.

Theorem 4. Let p be a prime, t be a positive integer, and k = pt + 1. Then Trk(n, 2[k]−) ≤(
n

k−1
)
− logp n for n ≥ n0(k).

In next section we prove Proposition 2 and Lemma 3. We prove Theorem 4 in Section 3
and give concluding remarks in the last section.

2. Proofs of Proposition 2 and Lemma 3.

Proof of Proposition 2. We construct F = F0 ∪ F1 ∪ F2 such that F0 is the set of all
k-sets containing 1 and 2, edges in F1 contain 1 but avoid 2, and edges in F2 contain 2 but
avoid 1. If we let Gi = {E \ {i} : E ∈ Fi} denote the link graph of i in Fi, then G1 and
G2 are (k − 1)-graphs on V ′ = {3, 4, . . . , n}. Let G1 and G2 further satisfy the following
conditions:

1. G1 ∪G2 =
(

V ′

k−1
)

2. G1 ∩G2 = {E ∈
(

V ′

k−1
)

: E ⊇ {3, 4}}

3. G1 ⊇ {E ∈
(

V ′

k−1
)

: E 3 3, E 63 4}, G2 ⊇ {E ∈
(

V ′

k−1
)

: E 3 4, E 63 3}.

It is easy to see that |F| =
(
n−1
k−1
)

+
(
n−4
k−3
)
, since |F0| =

(
n−2
k−2
)

and

|F1|+ |F2| = |G1|+ |G2| = |G1 ∪G2|+ |G1 ∩G2| =
(
n− 2

k − 1

)
+

(
n− 4

k − 3

)
.

We claim that F 6→ 2[k]. Suppose to the contrary that some E ∈
([n]
k

)
is shattered. Then

E ∈ F . Note that every edge in F contains either 1 or 2. If {1, 2} ⊂ E, then E \ {1, 2}
is not contained in F|E . Without loss of generality, assume that E 3 1 and E 63 2.
Since E \ {1} ∈ G1 is contained in F|E , we have (E \ {1}) ∪ {2} ∈ F and consequently
E \ {1} ∈ G1 ∩ G2. Therefore E ⊇ {3, 4}. In order to have E \ {1, 4} ∈ F|E , there must
be one edge of G2 containing 3 and not containing 4. But this is impossible because of the
third condition on G1 and G2.

In the above construction, every E ∈
(

V ′

k−1
)

with E 63 3, E 63 4 could be in either G1 or

G2. These undecided edges form a complete (k− 1)-graph Kk−1
n−4 on {5, . . . , n}. Recall that

P (n − 4, k − 1) is the number of non-isomorphic (k − 1)-graphs on n − 4 vertices, or the
number of non-isomorphic 2-edge-colorings of Kk−1

n−4. We claim that the number of non-
isomorphic F satisfying our construction is P (n − 4, k − 1)/2. To see this, let us consider
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vertex degrees in F . Let deg(x) be the number of edges in F containing a vertex x. It is
not hard to see that no matter what the undecided edges are, deg(1) and deg(2) are always
greater than deg(3) = deg(4), which is greater than deg(x) for all x > 4, and deg(x) is fixed
for all x > 4. Therefore two constructions F and F ′ are isomorphic if and only if F|{5,...,n}
and F ′|{5,...,n} are isomorphic or one is the complement of the other (since the vertices 1
and 2 are identical).

Note that the construction in [1] is isomorphic to the case when all undecided E are in G1.

A sunflower (or ∆-system) with r petals and a core C is a collection of distinct sets
S1, . . . , Sr such that Si ∩ Sj = C for all i 6= j. Erdős and Rado [6] proved the follow-
ing simple but extremely useful and fundamental lemma.

Lemma 5 (Sunflower Lemma). Let G be a k-graph with |G| > k !(r−1)k. Then G contains
a sunflower with r petals.

We call a set S almost-shattered by F if F|S contains 2S \ ∅.

Proof of Lemma 3. Let F be a k-graph on [n] with |F| > Trk(n, 2[k]−) + k!kk. We
need to show that F contains a shattered set. Since |F| > Trk(n, 2[k]−), we may find an
almost-shattered k-set E1 ∈ F . Since |F \ {E1}| > Trk(n, 2[k]−), we may find an almost-
shattered k-set E2 ∈ F\{E1}. Repeating this process, we find distinct almost-shattered sets
E1, E2, . . . , Ek!kk ∈ F . By the Sunflower Lemma, F ′ = {E1, . . . , Ek!kk} contains a sunflower
with k + 1 petals. Let us simply denote it by E1, . . . , Ek+1 and C = ∩k+1

i=1Ei. Since E1 is
almost-shattered by F and E1 \ C 6= ∅, there is E0 ∈ F such that E0 ∩ E1 = E1 \ C. Now
E1 ∩ E0, E2 ∩ E0, . . . , Ek+1 ∩ E0 are pairwise disjoint. Since |E0| = k < k + 1, there exists
i 6= 1 such that Ei ∩ E0 = ∅. This means that ∅ ∈ F|Ei . Consequently Ei is shattered by
F .

3. Proof of Theorem 4

3.1. Inclusion Matrices and Proof Outline

The proof of Theorem 4 needs the concept of higher-order inclusion matrices. Let F be a
set system on X. The incidence matrix M(F ,≤ s) of F over

(
X
≤s
)

is the matrix whose rows
(incidence vectors) are labeled by the edges of F , columns are labeled by subsets of [n] of
size at most s, and entry (E,S), E ∈ F , |S| ≤ s, is 1 if S ⊆ E and 0 otherwise. Throughout
this paper, we fix s = k−1 and simply write M(F) instead of M(F ,≤ k−1). In particular,
let

I(k) = M

((
[n]

k

))
= M

((
[n]

k

)
,≤ k − 1

)
.

For each E ⊂ [n], the incidence vector vE is a (0, 1)-vector of length
(
n
0

)
+ · · ·+

(
n

k−1
)
, whose

coordinates are labeled by all subsets of [n] of size at most k − 1. Note that vE always has
a 1 in the position corresponding to ∅. Let ei = v{i} for each i ∈ [n].
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Let q be 0 or a prime number. As usual, Fq denotes a field of q elements when q is a prime.
Let us define F0 to be Q, the field of rational numbers. Given a hypergraph F , a weight
function of F over Fq is a function α : F → Fq. If α(E) = 0 for all E ∈ F , then we call α
the zero function and write α ≡ 0. We define

v(F , α) =
∑
E∈F

α(E)vE

and write v(F) =
∑

E∈F vE . We say that F is linearly independent in characteristic q if
the rows of M(F) are linearly independent over Fq, namely, v(F , α) = 0 (mod q) implies
that α ≡ 0.

Part 1 of Lemma 6 below is the key observation to the proof of the upper bound in (1). It

implies that if F ⊆
([n]
k

)
contains no shattered sets, then it is linearly independent in any

characteristic. Our proof of Theorem 4 also needs Part 2. We call a set S near-shattered
by F if F|S contains 2S \ ({i} ∪ ∅) for some i ∈ S.

Lemma 6. Let q be 0 or a prime number. Suppose that F ⊆
([n]
k

)
and α : F → Fq is

a non-zero weight function. Define d(S) =
∑

S⊆E∈F α(E) for every subset S ⊂ [n]. Fix
A ∈ F with α(A) 6= 0.

1. If d(S) = 0 mod q for all S ⊂ A, then A is shattered by F .

2. Let i ∈ A. If d(S) = 0 mod q for all S ⊂ A with S 6= ∅ and S 6= {i}, then A is
near-shattered.

Proof. Part 1 and Part 2 have almost the same proofs. Since Part 1 was proved in [7] and
[3] (Theorem 7.27), we only prove Part 2 here.

Since F is k-uniform, we have d(A) = α(A) 6= 0. For B ⊆ A, we define d(A,B) =∑
E∈F ,E∩A=B α(E). The following equality can be considered as a variant of the Inclusion-

Exclusion formula.
d(A,B) =

∑
B⊆S⊆A

(−1)|S−B|d(S). (2)

In fact, because d(B) = d(A,B) +
∑

E∈F ,B⊂E∩A α(E), (2) is equivalent to∑
E∈F ,B⊂E∩A

α(E) +
∑

B⊂S⊆A
(−1)|S−B|d(S) = 0.

This holds because on the left side, each α(E) with r = |E ∩ A| − |B| > 0 has coefficient
1−

(
r
1

)
+ . . .+ (−1)r

(
r
r

)
= 0.

Pick any B ⊂ A with B 6= ∅ and B 6= {i}. We now show that there exists E ∈ F such that
E ∩A = B. We use (2) and the assumption that d(S) = 0 mod q for all S with B ⊆ S ⊂ A
to derive∑

E∈F ,E∩A=B

α(E) = d(A,B) =
∑

B⊆S⊆A
(−1)|S−B|d(S) = (−1)|A−B|d(A) 6= 0 mod q.
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Hence the sum on the left side is not empty.

By Lemma 6 Part 1, if F contains no shattered sets, then the rows of M(F) are linearly
independent (over Q) and consequently |F| = rank(M). Clearly rank(M) ≤ rank(I(k)).
It is well-known that rankQ(I(k)) =

(
n

k−1
)

(e.g., see [3] section 7.3). This immediately gives

Trk(n, 2[k]) ≤
(

n
k−1
)
, the result of Frankl and Pach [7].

The proof of Theorem 4 proceeds as follows. Suppose that F ⊆
([n]
k

)
satisfies F 6→ 2[k]−.

Recall that k = pt + 1 for some prime p and positive integer t. We will construct a matrix
M ′ obtained from M = M(F) by adding logp n new rows. The new rows have the form
eS =

∑
i∈S ei, for some set S of size m = pt+1. In other words, a new row has entry 1 at

m coordinates corresponding to m singletons and 0 otherwise (the entry at ∅ is 0 because
m = 0 mod p). The main step is to show that these new rows lie in the row space of I(k),
and all the rows of M ′ are still linearly independent. Consequently,

|F|+ logp n = rank Fp(M ′) ≤ rank Fp(I(k)) ≤ rank Q(I(k)) =

(
n

k − 1

)
,

which implies that |F| ≤
(

n
k−1
)
− logp n.

We now divide the main step into three lemmas, which we will prove in the next subsection.

Lemma 7. Suppose that k = pt + 1 and m = pt+1 for prime p and t > 0. Then for every
S ∈

(
[n]
m

)
, eS is in the row space of I(k) over Fp.

Lemma 8 is the key to our proof. For a, b ∈ [n], let ea,−b = ea− eb. Thus ea,−b is the vector
with a 1 in position {a}, a −1 in position {b}, and 0 everywhere else. Lemma 8 says that
ea,−b is outside the row space of M for every a 6= b.

Lemma 8. Let k ≥ 2 and n ≥ n0(k). Suppose that F ⊆
(
n
k

)
contains no almost-shattered

set, i.e., F 6→ 2[k]−. If |F| >
(

n
k−1
)
− logp n, then for every two distinct a, b ∈ [n], the set

{vE : E ∈ F} ∪ {ea,−b} is linearly independent in any characteristic.

Lemma 9. Given a prime p and m ≥ 1, let n ≥ n0(p,m) and r = logp n. Suppose that
for every two distinct a, b ∈ [n], the set {vE : E ∈ F} ∪ {ea,−b} is linearly independent in

characteristic p. Then there exist subsets S1, . . . , Sr ∈
(
[n]
m

)
such that the set {vE : E ∈

F} ∪ {eS1 , . . . , eSr} is linearly independent in characteristic p.

3.2. Proof of Lemmas

Given a hypergraph F on X and a subset A ⊆ X, we define the degree degF (A) to be the
number of edges in F containing A.

Proof of Lemma 7. Let K =
(
S
k

)
. It suffices to prove that

∑
E∈K vE = c · eS for some

nonzero c ∈ Fp. Equivalently, we need to show that for T ⊂ S, degK(T ) = 0 mod p when
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|T | ≥ 2 or |T | = 0, and deg(T ) = c 6= 0 mod p when |T | = 1. Since K is a complete

k-graph, degK(T ) =
(m−|T |
k−|T |

)
. By a well-known result of Kummer, the binomial coefficient(

a
b

)
is divisible by a prime p if and only if, when writing a and b as two numbers in base

p, a = (aj · · · a1a0)p and b = (bj · · · b1b0)p, there exists i ≤ j, such that bi > ai. Since
m is a power of p, for any 1 ≤ k ≤ m − 1, p divides

(
m
k

)
. Hence degK(∅) =

(
m
k

)
= 0

mod p. Now consider |T | = s ≥ 2. Since k = pt + 1, we know k − s < pt and thus write
k− s = (at−1 . . . a0)p. Since m = pt+1, we have m− s = pt+1− s = (p− 1)pt +k− s− 1. We
thus have m− s = (p− 1 at−1 . . . a0)p − 1. Hence there exists i ≤ t− 1 such that the value
of m− s at bit i is less than ai and consequently

(
m−s
k−s
)

is divisible by p. When |T | = 1, we

have m− 1 = pt+1 − 1 and therefore
(
m−1
k−1
)

is not divisible by p for any 1 ≤ k ≤ m− 1.

Proof of Lemma 8. We prove the contrapositive of the claim: If F 6→ 2[k]− and there
exists a non-zero function α : F → Fq such that v(F , α) = ea,−b for some a, b ∈ [n] (a 6= b),
then |F| ≤

(
n

k−1
)
− logp n. We claim that it suffices to show that degF ({a}) = O(nk−3). In

fact, suppose degF ({a}) ≤ cknk−3 for some constant ck and |F| >
(

n
k−1
)
− logp n. After we

remove a and all the edges containing a, we obtain a k-graph F̃ ⊆ F with n − 1 vertices
satisfying

|F̃ | >

(
n

k − 1

)
− logp n− cknk−3

=

(
n− 1

k − 1

)
+

(
n− 1

k − 2

)
− logp n− cknk−3

≥
(
n− 1

k − 1

)
where the last inequality holds because

(
n−1
k−2
)
≥ logp n + ckn

k−3 for n ≥ n0(k). But we

showed that Trk(n, 2[k]) ≤
(

n
k−1
)

for any k ≤ n, therefore F̃ → 2[k], a contradiction.

Suppose that
∑

E∈F α(E)vE = ea,−b. Let F ′ = {E ∈ F : α(E) 6= 0} and V ′ = [n] \ {a, b}.
For a subset A ⊂ [n], let d(A) =

∑
A⊆E∈F ′ α(E) mod q. Our assumption v(F , α) = ea,−b

implies that d({a}) = 1, d({b}) = −1, and d(A) = 0 for every A 6= {a}, {b} and |A| ≤ k− 1.
Applying Lemma 6 Part 1, we conclude that no E ∈ F ′ satisfies E ⊆ V ′. In other words,
every edge in F ′ contains either a or b. Next observe that if F ′ contains an edge E such
that a ∈ E and b 6∈ E, then F ′ also contains (E \ {a}) ∪ {b}. Otherwise E is the only edge
in F ′ containing E \ {a} and consequently d(E \ {a}) = α(E) 6= 0, a contradiction.

Let Ga = {E \ {a} : E ∈ F ′, a ∈ E, b 6∈ E} and define Gb similarly. By the previous
observation, we have G := Ga = Gb. We then observe that G 6= ∅ otherwise every edge (of
F ′) containing a also contains b, and consequently 1 = d({a}) = d({a, b}) = 0.

Fix an edge E0 ∈ F ′ containing a but not b. Applying Lemma 6 Part 2, we conclude that
E0 is near-shattered, i.e., all subsets of E0 are in the trace F ′|E0 except for {a} and ∅. If
another edge E ∈ F satisfies E∩E0 = {a}, then E0 becomes almost-shattered, contradicting
the assumption that F 6→ 2[k]−. We may therefore assume that every E ∈ F containing
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a also contains some other element of E0. Below we show that there exists H ⊆ G with
at most 2k vertices and transversal number at least 2 (i.e., no element lies in all sets of
H). Therefore every E ∈ F containing a has at least two vertices in H and consequently
degF ({a}) ≤

(
2k
2

)(
n−3
k−3
)

= O(nk−3).

Pick A ∈ Ga (thus |A| = k − 1). We claim that for every S ⊂ A, |S| = k − 2, there exists
B ∈ Ga such that A ∩B = S. Suppose instead, that for some S ∈

(
A

k−2
)
, no such B exists.

In this case, A ∪ {a} and S ∪ {a, b} are the only possible edges in F ′ containing S ∪ {a}.
We thus have S ∪ {a, b} ∈ F ′, otherwise d(S ∪ {a}) = α(A ∪ {a}) 6= 0. Because Ga = Gb,
no B ∈ Gb satisfies A ∩B = S. We now have a contradiction since

d(S) = α(A∪ {a}) +α(A∪ {b}) +α(S ∪ {a, b}) = d(A) +α(S ∪ {a, b}) = α(S ∪ {a, b}) 6= 0.

Now, for every S ∈
(

A
k−2
)
, we choose exactly one set B = B(S) ∈ Ga such that A ∩B = S.

Let H = {A} ∪ {B(S) : S ∈
(

A
k−2
)
}. Clearly H contains at most 2k vertices. It is easy

to see that there is no x ∈ ∩E∈HE. In fact, if such x ∈ A, then B(A \ {x}) misses x. If
x 6∈ A, then A misses x. Therefore the transversal number of H is at least 2, and the proof
is complete.

Proof of Lemma 9. Let M be the inclusion matrix of F . We sequentially add vectors
eS1 , . . . , eSi with S1, . . . , Si ∈

(
[n]
m

)
to M such that eS1 , . . . , eSi and the rows of M are linearly

independent. We claim that this can be done as long as i ≤ logp n. Suppose to the contrary,
that there exists i ≤ logp n− 1 such that we fail to add a new vector at step i+ 1. In other

words, we have chosen eS1 , . . . , eSi successfully, but for every S ∈
(
[n]
m

)
\ {S1, . . . , Si}, there

exist a weight function α and c1, . . . , ci ∈ Fp such that

eS = v(F , α) +

i∑
j=1

cj eSj . (3)

We observe that for fixed c1, . . . , ci, the set of m-sets satisfying (3) forms a partial Steiner
system PS(n,m,m−1) (an m-graph on [n] such that each (m−1)-subset of [n] is contained
in at most one edge). In fact, if two m-sets S, S′ with |S∩S′| = m−1 both satisfy (3), with
weight functions α1 and α2 respectively, then v(F , α1−α2) = ea,−b, where {a} = S \S′ and
{b} = S′ \ S. This is a contradiction to our assumption. Consequently for fixed c1, . . . , ci,
the number of m-sets satisfying (3) is at most

(
n

m−1
)
/m. As a result, the number of m-sets

that cannot be chosen is at most pi
(

n
m−1

)
/m. We thus obtain∣∣∣∣([n]

m

)
\ {S1, . . . , Si}

∣∣∣∣ =

(
n

m

)
− i ≤ pi 1

m

(
n

m− 1

)
,

which implies that

(n−m+ 1)− im(
n

m−1
) ≤ pi.

Since i ≤ logp n − 1, we have pi ≤ n/p, and consequently n −m + 1 − im/
(

n
m−1

)
≤ n/p,

which is impossible for fixed p ≥ 2,m and sufficiently large n.
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4. Concluding Remarks

We believe the lower bound in (1) is correct, though verifying this for all k may be hard
because Proposition 2 gives exponentially many extremal hypergraphs. In order to reduce
the bound in Theorem 1, one probably wants to look for a better way to find independent
vectors than the greedy algorithm we used in the proof of Lemma 9. It may not be very
hard to check this for the k = 3 case, namely, to verify that Tr3(n, 2[3]) =

(
n−1
2

)
+ 1. Using

more involved combinatorial arguments, instead of the Sunflower Lemma, we can prove that
Tr3(n, 2[3]) ≤

(
n
2

)
− log2 n.

Improving the upper bound further for other values of k will most likely need some new ideas.
Our approach uses incidence vectors of a family of singletons. The following proposition
shows that this approach requires k − 1 to be a prime power.

Proposition 10. Let p be a prime and k ≥ 2. Suppose that F ⊆
([n]
k

)
and α : F → Fp

is a non-zero weight function. Define d(S) =
∑

S⊆E∈F α(E) for every subset S ⊂ [n]. If
there exists a vertex x ∈ [n] such that d({x}) 6= 0 and d(S) = 0 mod p for every S 3 x with
2 ≤ |S| ≤ k − 1, then k − 1 is a power of p.

Proof. Let 2 ≤ s ≤ k− 1. When we sum up d(S) for all S 3 x with |S| = s, we over-count
d({x}) by a factor of

(
k−1
s−1
)
. In other words,

d({x}) =
1(

k−1
s−1
) ∑

x∈S,|S|=s

d(S).

Since d({x}) 6= 0 but d(S) = 0 mod p for all S in the right side, it must be the case that p
divides

(
k−1
s−1
)
. We thus conclude that p divides

(
k−1
i

)
for all 1 ≤ i ≤ k− 1. By the result of

Kummer on binomial coefficients, this happens only if k − 1 is a power of p.
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