Erdős-Ko-Rado for three sets

Dhruv Mubayi *

March 29, 2005

Abstract

Fix integers $k \geq 3$ and $n \geq 3 k / 2$. Let \mathcal{F} be a family of k-sets of an n-element set so that whenever $A, B, C \in \mathcal{F}$ satisfy $|A \cup B \cup C| \leq 2 k$, we have $A \cap B \cap C \neq \emptyset$. We prove that $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ with equality only when $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$. This settles a conjecture of Frankl and Füredi [2], who proved the result for $n \geq k^{2}+3 k$.

1 Introduction

We write $[n]$ for $\{1, \ldots, n\}$ and X^{k} for the family of all k-element subsets of a finite set X. A family of sets is a star if there is a fixed element contained in all members of the family. Our starting point is the fundamental result of Erdős-Ko-Rado (EKR) which states that for $n \geq 2 k$, the maximum size of an intersecting family of k-sets of $[n]$ is $\binom{n-1}{k-1}$, and if $n>2 k$ then equality holds only for a star. Rephrasing, if $\mathcal{F} \subset[n]^{k}$ and for every $A, B \in \mathcal{F}$ (for which naturally $|A \cup B| \leq 2 k$) we have $A \cap B \neq \emptyset$, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. Frankl [1] generalized this to more than two sets by proving the following result.

Theorem 1. (Frankl) Let $\mathcal{F} \subset[n]^{k}$ and let $d \geq 2$ and $n \geq d k /(d-1)$. Suppose that every d sets of \mathcal{F} have nonempty intersection. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Katona asked whether the conclusion of Theorem 1 holds for an appropriately defined larger class of families \mathcal{F}. Specifically, he made the following definition.

Definition. Let $k \leq s \leq 3 k$. Then $f(n, k, s)$ denotes the maximum size of a family $\mathcal{F} \subset[n]^{k}$ so that whenever $A, B, C \in \mathcal{F}$ satisfy $|A \cup B \cup C| \leq s$, we have $A \cap B \cap C \neq \emptyset$.

Frankl and Füredi [2] proved that for every $2 k \leq s \leq 3 k, f(n, k, s)=\binom{n-1}{k-1}$ as long as $n \geq k^{2}+3 k$, and observed that $f(n, k, 2 k-1)=\Omega\left(n^{k}\right)$ for fixed k. Note that the lower bound $f(n, k, s) \geq\binom{ n-1}{k-1}$

[^0]is valid for all $s \in\{2 k, \ldots, 3 k\}$ by simply letting \mathcal{F} be a maximum sized star. Moreover, by definition $f(n, k, s+1) \leq f(n, k, s)$, hence Frankl and Füredi's first result follows by proving the upper bound just for $s=2 k$. They conjectured that $f(n, k, 2 k)=\binom{n-1}{k-1}$ for all $k \geq 3$ and $n \geq 3 k / 2$, with equality only for a star. The threshold $3 k / 2$ follows from the fact that for smaller n, three sets $A, B, C \in \mathcal{F}$ whose intersection is empty cannot exist (so in particular, we can have $|\mathcal{F}|=\binom{n}{k}$).

Frankl and Füredi [2] proved their conjecture for $k=3$, and commented (without proof) that their approach also works for $k=4,5$ and more generally for $n>k^{2} / \log k$. Their proof is somewhat complicated since it uses the Hilton-Milner theorem on nontrivial intersecting families. In this note we prove their conjecture.

Theorem 2. Let $k \geq 3$ and $n \geq 3 k / 2$. Then $f(n, k, 2 k)=\binom{n-1}{k-1}$ with equality only for a star.
Our proof is shorter than in [2], and perhaps simpler, since it uses only EKR. The main idea is to reduce the problem to a situation where we have a partition of the ground set into pairwise disjoint k-sets. The problem in this environment is then handled in the following (somewhat technical) lemma.

Lemma 3. Fix $k, t \geq 2$ and $1 \leq l \leq k$. Let S_{1}, \ldots, S_{t} be pairwise disjoint k-sets and $X=\bigcup_{i} S_{i}$. Suppose that $\mathcal{F} \subset X^{l}$ with $S_{i} \in \mathcal{F}$ for all i if $l=k$ and $\mathcal{F}=\left\{S_{1}, S_{2}\right\}$ if $t=2$ as well. Suppose that for every $A, B \in \mathcal{F}$ and $i \in[t], A \cap B \cap S_{i}=\emptyset$ implies that $\left|(A \cup B)-S_{i}\right|>l$. Then $|\mathcal{F}|<\binom{t k-1}{l-1}$.
Proof. We proceed by induction on t. For the base case, suppose that $t=2$. If $l=k$, then $|\mathcal{F}|=$ $2<\binom{2 k-1}{k-1}$, so assume that $l<k$. If $A, B \in \mathcal{F}$ are disjoint l-sets, then either $\left|A \cap S_{1}\right|+\left|B \cap S_{1}\right| \leq l$ or $\left|A \cap S_{2}\right|+\left|B \cap S_{2}\right| \leq l$. Say the first inequality holds. Then $A, B, 2$ violate the hypothesis of the lemma, since $\left|(A \cup B)-S_{2}\right|=\left|A \cap S_{1}\right|+\left|B \cap S_{1}\right| \leq l$. Consequently, \mathcal{F} is an intersecting family, and by EKR, we have $|\mathcal{F}| \leq\binom{ 2 k-1}{l-1}$. If equality holds, then since $2 l<2 k$, again by EKR we obtain $\bigcap_{F \in \mathcal{F}} F=\{x\}$, and \mathcal{F} consists of all l-sets containing x. We may assume without loss of generality that $x \in S_{1}$. Now take two different sets $A, B \in \mathcal{F}$ with $A \subset S_{1}$ and $B \cap S_{1}=\{x\}$. Then $A, B, 2$, violate the hypothesis of the lemma, hence equality cannot hold.

Next suppose that $t \geq 3$ and the result holds for $t-1$. We first consider the case $l<k$. If there exist $A, B \in \mathcal{F}$ and $i \neq j$ for which $A \subset S_{i}$ and $B \subset S_{j}$, then A, B, i (and also A, B, j) violate the hypothesis. Hence we may assume that there is an i_{0}, such that no $A \in \mathcal{F}$ satisfies $A \subset S_{i_{0}}$. By relabelling if necessary, assume $i_{0}=t$.

Now consider any $F \in \mathcal{F}$. Write F as $F_{1} \cup F_{2}$, where $F_{1}=F \cap S_{t}$ and $F_{2}=F-F_{1}$. For a fixed F_{1} of size $l-r(1 \leq r \leq l)$, let \mathcal{F}_{r} be the family of all r-sets $F_{2} \subset \bigcup_{i=1}^{t-1} S_{i}$ such that $F_{1} \cup F_{2} \in \mathcal{F}$. If there exist $C, D \in \mathcal{F}_{r}$ and $i \in[t-1]$ for which $C \cap D \cap S_{i}=\emptyset$ and $\left|(C \cup D)-S_{i}\right| \leq r$, then $C_{1}=C \cup F_{1}, D_{1}=D \cup F_{1}, i$ violate the hypothesis of the lemma, since $C_{1} \cap D_{1} \cap S_{i}=\emptyset$ and

$$
\left|\left(C_{1} \cup D_{1}\right)-S_{i}\right|=\left|(C \cup D)-S_{i}\right|+\left|F_{1}\right| \leq r+(l-r)=l .
$$

Hence by induction, we conclude that $\left|\mathcal{F}_{r}\right|<\binom{(t-1) k-1}{r-1}$. Recalling that $\mathcal{F} \cap\left(S_{t}\right)^{l}=\emptyset$, we obtain

$$
|\mathcal{F}|<\sum_{r=1}^{l}\binom{\left|S_{t}\right|}{l-r}\binom{(t-1) k-1}{r-1}=\sum_{r=1}^{l}\binom{k}{l-r}\binom{(t-1) k-1}{r-1}=\binom{t k-1}{l-1} .
$$

Next we consider the case $l=k$. In this case $S_{t} \in \mathcal{F}$, so a similar argument as above yields

$$
|\mathcal{F}| \leq \sum_{r=1}^{k}\binom{k}{k-r}\left(\binom{(t-1) k-1}{r-1}-1\right)+1=\binom{t k-1}{k-1}-\sum_{r=1}^{k}\binom{k}{r}+1<\binom{t k-1}{k-1}
$$

where the last inequality holds since $k \geq 2$.
To settle the cases of small n, we need a recent result of the author and Verstraëte [3] who proved that for $3 k / 2 \leq n \leq 2 k$, every family $\mathcal{F} \subset[n]^{k}$ containing no three sets A, B, C for which $A \cap B \cap C=\emptyset$ satisfies $|\mathcal{F}| \leq\binom{ n-1}{k-1}$, and equality holds only if \mathcal{F} is a star (the bound $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ was proved much earlier by Frankl [1], but he didn't characterize the case of equality).

Proof of Theorem 2: The cases $3 k / 2 \leq n \leq 2 k$ are settled by the result of [3], so we consider $n>2 k$. Suppose that $\mathcal{F} \subset[n]^{k}$ such that $A, B, C \in \mathcal{F}$ and $|A \cup B \cup C| \leq 2 k$ implies that $A \cap B \cap C \neq \emptyset$. We will show that $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ with equality only if \mathcal{F} is a star.

Let S_{1}, \ldots, S_{t} be a maximum subfamily of pairwise disjoint k-sets from \mathcal{F}. If $t=1$, then \mathcal{F} is in fact intersecting, and the theorem follows from EKR, so assume that $t \geq 2$. If $n=t k$, then set $l=k$. The condition on \mathcal{F} in the theorem implies the condition on \mathcal{F} in Lemma 3 (with S_{i} in the statement of the lemma playing the role of $C \in \mathcal{F}$ above). Hence we may apply Lemma 3 directly and obtain $|\mathcal{F}|<\binom{n-1}{k-1}$.

We now suppose that $n>t k$ and let $Y=[n]-\bigcup_{i} S_{i}$. As in the proof of Lemma 3, each $F \in \mathcal{F}$ can be written as $F_{1} \cup F_{2}$, where $F_{1}=F \cap Y$, and $F_{2}=F-F_{1}$. By construction of S_{1}, \ldots, S_{t}, no $A \in \mathcal{F}$ satisfies $A \subset Y$. Now fix $F_{1} \subset Y^{k-l}(1 \leq l \leq k)$, and consider the family \mathcal{F}_{l} of all l-sets $F_{2} \subset \bigcup_{i=1}^{t} S_{i}$ such that $F_{1} \cup F_{2} \in \mathcal{F}$. Suppose first that $l<k$. If there exist $A, B \in \mathcal{F}_{l}$ and $i \in[t]$ for which $A \cap B \cap S_{i}=\emptyset$ and $\left|(A \cup B)-S_{i}\right| \leq l$, then consider the three sets $A_{1}=A \cup F_{1}, B_{1}=B \cup F_{1}, S_{i}$. Clearly $A_{1} \cap B_{1} \cap S_{i}=\emptyset$ and

$$
\left|A_{1} \cup B_{1} \cup S_{i}\right|=\left|S_{i}\right|+\left|(A \cup B)-S_{i}\right|+\left|F_{1}\right| \leq k+l+(k-l)=2 k .
$$

If $l=k$ then observe that $S_{i} \in \mathcal{F}_{k}$ for all $i \in[t]$, and if in addition $t=2$, then $\mathcal{F}_{k}=\left\{S_{1}, S_{2}\right\}$, since a third set in \mathcal{F}_{k} is prohibited by the conditions on \mathcal{F}. Consequently, \mathcal{F}_{l} satisfies the hypothesis of Lemma 3, and we obtain $\left|\mathcal{F}_{l}\right|<\binom{t k-1}{l-1}$ for all $1 \leq l \leq k$. Therefore, noting again that $\mathcal{F} \cap Y^{k}=\emptyset$,

$$
|\mathcal{F}|<\sum_{l=1}^{k}\binom{|Y|}{k-l}\binom{t k-1}{l-1}=\sum_{l=1}^{k}\binom{n-t k}{k-l}\binom{t k-1}{l-1}=\binom{n-1}{k-1} .
$$

We end by conjecturing an extension of this problem to more than three sets.
Conjecture 4. Let $k \geq d \geq 3$ and $n \geq d k /(d-1)$. Suppose that $\mathcal{F} \subset[n]^{k}$ such that for every $A_{1}, \ldots, A_{d} \in \mathcal{F}$ satisfying $\left|\bigcup_{i} A_{i}\right| \leq 2 k$ we have $\bigcap_{i} A_{i} \neq \emptyset$. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$, with equality only if \mathcal{F} is a star.

References

[1] P. Frankl, On Sperner families satisfying an additional condition. J. Combinatorial Theory Ser. A 20 (1976), no. 1, 1-11
[2] P. Frankl, Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem. Combinatorica 3 (1983), no. 3-4, 341-349
[3] D. Mubayi, J. Verstraëte, Proof of a conjecture of Erdős on triangles in set systems. to appear, Combinatorica.

[^0]: *Department of Mathematics, Statistics, and Computer Science, University of Illinois, 851 S. Morgan Street, Chicago, IL 60607-7045; research supported in part by the National Science Foundation under grant DMS-0400812, and an Alfred P. Sloan Research Fellowship

 2000 Mathematics Subject Classification: 05C35, 05C65, 05D05
 Keywords: set system, nontrivial family, Erdős-Ko-Rado

