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Abstract

Let n ≥ ℓ ≥ 2 and q ≥ 2. We consider the minimum N such that whenever we have N points
in the plane in general position and the ℓ-subsets of these points are colored with q colors, there
is a subset S of n points all of whose ℓ-subsets have the same color and furthermore S is in
convex position. This combines two classical areas of intense study over the last 75 years: the
Ramsey problem for hypergraphs and the Erdős-Szekeres theorem on convex configurations in
the plane. For the special case ℓ = 2, we establish a single exponential bound on the minimum
N , such that every complete N -vertex geometric graph whose edges are colored with q colors,
yields a monochromatic convex geometric graph on n vertices.

For fixed ℓ ≥ 2 and q ≥ 4, our results determine the correct exponential tower growth rate for
N as a function of n, similar to the usual hypergraph Ramsey problem, even though we require
our monochromatic set to be in convex position. Our results also apply to the case of ℓ = 3
and q = 2 by using a geometric variation of the stepping up lemma of Erdős and Hajnal. This
is in contrast to the fact that the upper and lower bounds for the usual 3-uniform hypergraph
Ramsey problem for two colors differ by one exponential in the tower.

1 Introduction

The classic 1935 paper of Erdős and Szekeres [13] entitled A Combinatorial Problem in Geometry
was a starting point of a very rich discipline within combinatorics: Ramsey theory (see, e.g.,
[16]). The term Ramsey theory refers to a large body of deep results in mathematics which have
a common theme: “Every large system contains a large well-organized subsystem.” Motivated by
the observation that any five points in the plane in general position1 must contain four members
in convex position, Esther Klein asked the following.

Problem 1.1. For every integer n ≥ 2, determine the minimum f(n), such that any set of f(n)
points in the plane in general position, contains n members in convex position.

Celebrated results of Erdős and Szekeres [13, 14] imply that

2n−1 + 1 ≤ f(n) ≤

(
2n− 4

n− 2

)

≤ 22n(1−o(1)). (1)
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1A planar point set P is in general position, if no three members are collinear.
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They conjectured that f(n) = 2n−1+1, and Erdős offered a $500 reward for a proof. Despite much
attention over the last 75 years, the constant factors in the exponents have not been improved.

In the same paper [13], Erdős and Szekeres gave another proof of a classic result due to Ramsey
[24] on hypergraphs. An ℓ-uniform hypergraph H is a pair (V,E), where V is the vertex set and
E ⊂

(
V
ℓ

)
is the set of edges. We denote Kℓ

n = (V,E) to be the complete ℓ-uniform hypergraph on

an n-element set V , where E =
(V
ℓ

)
. When ℓ = 2, we write K2

n = Kn. Motivated by obtaining
good quantitative bounds on f(n), Erdős and Szekeres looked at the following problem.

Problem 1.2. For every integer n ≥ 2, determine the minimum integer r(Kn,Kn), such that any
two-coloring on the edges of a complete graph G on r(Kn,Kn) vertices, yields a monochromatic
copy of Kn.

Erdős and Szekeres [13] showed that r(Kn,Kn) ≤ 22n. In [10], Erdős gave a construction showing
that r(Kn,Kn) > 2n/2. Despite much attention over the last 65 years, the constant factors in the
exponents have not been improved.

Generalizing Problem 1.2 to q-colors and ℓ-uniform hypergraphs has also be studied extensively.
Let r(Kℓ

n; q) be the least integer N , such that any q-coloring on the edges of a complete N -vertex
ℓ-uniform hypergraph H, yields a monochromatic copy of Kℓ

n. We will also write

r(Kℓ
n; q) = r(Kℓ

n,K
ℓ
n, ...,K

ℓ
n

︸ ︷︷ ︸

q times

).

Erdős, Hajnal, and Rado [11, 12] showed that there are positive constants c and c′ such that

2cn
2
< r(K3

n,K
3
n) < 22

c′n
. (2)

They also conjectured that r(K3
n,K

3
n) > 22

cn
for some constant c > 0, and Erdős offered a $500

reward for a proof. For ℓ ≥ 4, there is also a difference of one exponential between the known upper
and lower bounds for r(Kℓ

n,K
ℓ
n), namely,

twrℓ−1(cn
2) ≤ r(Kℓ

n,K
ℓ
n) ≤ twrℓ(c

′n), (3)

where c and c′ depend only on ℓ, and the tower function twrℓ(x) is defined by twr1(x) = x and
twri+1 = 2twri(x). As Erdős and Rado have shown [12], the upper bound in equation (3) easily
generalizes to q colors, implying that r(Kℓ

n; q) ≤ twrℓ(c
′n), where c′ = c′(ℓ, q). On the other

hand, for q ≥ 4 colors, Erdős and Hajnal (see [16]) showed that r(Kℓ
n; q) does indeed grow as a

ℓ-fold exponential tower in n, proving that r(Kℓ
n; q) = twrℓ(Θ(n)). For q = 3 colors, Conlon, Fox,

and Sudakov [6] modified the construction of Erdős and Hajnal to show that r(Kℓ
n,K

ℓ
n,K

ℓ
n, ) >

twrℓ(c log
2 n).

Interestingly, both Problems 1.1 and 1.2 can be asked simultaneously for geometric graphs, and
a similar-type problem can be asked for geometric ℓ-hypergraphs. A geometric ℓ-hypergraph H in
the plane is a pair (V,E), where V is a set of points in the plane in general position, and E ⊂

(V
ℓ

)

is a collection of ℓ-tuples from V . When ℓ = 2 (ℓ = 3), edges are represented by straight line
segments (triangles) induced by the corresponding vertices. The sets V and E are called the vertex
set and edge set of H, respectively. A geometric hypergraph H is convex, if its vertices are in
convex position.

Geometric graphs (ℓ = 2) have been studied extensively, due to their wide range of applications
in combinatorial and computational geometry (see [23], [18, 19]). Complete convex geometric
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graphs are very well understood, and are some of the most well-organized geometric graphs (if
not the most). Many long standing problems on complete geometric graphs, such as its crossing
number [2], number of halving-edges [27], and size of crossing families [3], become trivial when its
vertices are in convex position. There has also been a lot of research on geometric 3-hypergraphs
in the plane, due to its connection to the k-set problem in R

3 (see [22],[25],[8]). In this paper, we
study the following problem which combines Problems 1.1 and 1.2.

Problem 1.3. Determine the minimum integer g(Kℓ
n; q), such that any q-coloring on the edges

of a complete geometric ℓ-hypergraph H on g(Kℓ
n; q) vertices, yields a monochromatic convex ℓ-

hypergraph on n vertices.

Another chromatic variant of the Erdős-Szekeres convex polygon problem was studied by Dev-
illers et al. [7], where they considered colored points in the plane rather than colored edges.

We will also write

g(Kℓ
n; q) = g(Kℓ

n, ...,K
ℓ
n

︸ ︷︷ ︸

q times

).

Clearly we have g(Kℓ
n; q) ≥ max{r(Kℓ

n; q), f(n)}. An easy observation shows that by combining
equations (1) and (3), we also have

g(Kℓ
n; q) ≤ f(r(Kℓ

n; q)) ≤ twrℓ+1(cn),

where c = c(ℓ, q). Our main results are the following two exponential improvements on the upper
bound of g(Kℓ

n; q).

Theorem 1.4. For geometric graphs, we have

2q(n−1) < g(Kn; q) ≤ 28qn
2 log(qn).

The argument used in the proof of Theorem 1.4 above extends easily to hypergraphs, and for
each fixed ℓ ≥ 3 it gives the bound g(Kℓ

n; q) < twrℓ(O(n2)). David Conlon pointed out to us that
one can improve this slightly as follows.

Theorem 1.5. For geometric ℓ-hypergraphs, when ℓ ≥ 3 and fixed, we have

g(Kℓ
n; q) ≤ twrℓ(cn),

where c = O(q log q).

By combining Theorems 1.4, 1.5, and the fact that g(Kℓ
n; q) ≥ r(Kℓ

n; q), we have the following
corollary.

Corollary 1.6. For fixed ℓ and q ≥ 4, we have g(Kℓ
n; q) = twrℓ(Θ(n)).

As mentioned above, there is an exponential difference between the known upper and lower
bounds for r(K3

n,K
3
n). Hence, for two-colorings on geometric 3-hypergraphs in the plane, equation

(2) implies

g(K3
n,K

3
n) ≥ r(K3

n,K
3
n) ≥ 2cn

2
.
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Our next result establishes an exponential improvement in the lower bound of g(K3
n,K

3
n), showing

that g(K3
n,K

3
n) does indeed grow as a 3-fold exponential tower in a power of n. One noteworthy

aspect of this lower bound is that the construction is a geometric version of the famous stepping
up lemma of Erdős and Hajnal [11] for sets. The lemma produces a q′-coloring χ′ of

([2n]
ℓ+1

)
from a

q-coloring χ of
([n]

ℓ

)
for appropriate q′ > q, where the largest monochromatic clique of (ℓ+ 1)-sets

under χ′ is not too much larger than the largest monochromatic clique of ℓ-sets under χ (see [16]
for more details about the stepping up lemma). While it is a major open problem to apply this
method to r(K3

n,K
3
n) and improve the lower bound in equation (2), we are able to achieve this in

the geometric setting as shown below.

Theorem 1.7. For geometric 3-hypergraphs in the plane, we have

g(K3
n,K

3
n) ≥ 22

cn
,

where c is an absolute constant. In particular, g(K3
n,K

3
n) = twr3(Θ(n)).

We systemically omit floor and ceiling signs whenever they are not crucial for the sake of clarity
of presentation. All logarithms are in base 2.

2 Proof of Theorems 1.4 and 1.5

Before proving Theorems 1.4 and 1.5, we will first define some notation. Let V = {p1, ..., pN}
be a set of N points in the plane in general position ordered from left to right according to x-
coordinate, that is, for pi = (xi, yi) ∈ R

2, we have xi < xi+1 for all i. For i1 < · · · < it, we say that
X = (pi1 , ..., pit) forms an t-cup (t-cap) if X is in convex position and its convex hull is bounded
above (below) by a single edge. See Figure 1. When t = 3, we will just say X is a cup or a cap.
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Figure 1: A 4-cup and a 5-cap.

Proof of Theorem 1.4. We first prove the upper bound. Let G = (V,E) be a complete geometric
graph on N = 28qn

2 log(qn) vertices, such that the vertices V = {v1, ..., vN} are ordered from left
to right according to x-coordinate. Let χ be a q-coloring on the edge set E. We will recursively
construct a sequence of vertices p1, ..., pt from V and a subset St ⊂ V , where t = 0, 1, ..., qn2 (when
t = 0 there are no vertices in the sequence), such that the following holds.

1. for any vertex pi, all pairs (pi, p) where p ∈ {pj : j > i} ∪ St have the same color, which we
denote by χ′(pi),

2. for every pair of vertices pi and pj, where i < j, either (pi, pj , p) is a cap for all p ∈ {pk : k >
j} ∪ St, or (pi, pj , p) is a cup for all p ∈ {pk : k > j} ∪ St,
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3. the set of points St lies to the right of the point pt, and

4. |St| ≥
N
qtt! − t.

We start with no vertices in the sequence, and set S0 = V . After obtaining vertices {p1, ..., pt}
and St, we define pt+1 and St+1 as follows. Let pt+1 = (xt+1, yt+1) ∈ R

2 be the smallest indexed
element in St (the left-most point), and let H be the right half-plane x > xt+1. We define t lines
l1, ...lt such that li is the line going through points pi, pt+1. Notice that the arrangement ∪t

i=1li
partitions the right half-plane H into t + 1 cells. See Figure 2. Since V is in general position, by
the pigeonhole principle, there exists a cell ∆ ⊂ H that contains at least (|St| − 1)/(t + 1) points
of St.
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St

p
t+1

H

Figure 2: Lines partitioning the half-plane H.

Let us call two elements v′1, v
′
2 ∈ ∆ ∩ St equivalent if χ(pt+1, v

′
1) = χ(pt+1, v

′
2). Hence, there

are at most q equivalence classes. By setting St+1 to be the largest of those classes, we have the
recursive formula

|St+1| ≥
|St| − 1

(t+ 1)q
.

Substituting in the lower bound on |St|, we obtain the desired bound

|St+1| ≥
N

(t+ 1)!qt+1
− (t+ 1).

This shows that we can construct the sequence p1, . . . , pt+1 and the set St+1 with the desired
properties. For N = 28qn

2 log(qn), we have

|Sqn2 | ≥
28qn

2 log(qn)

(qn2)!qqn2 − qn2 ≥ 1. (4)

Hence, P1 = {p1, ..., pqn2} is well defined. Since χ′ is a q-coloring on P1, by the pigeonhole principle,
there exists a subset P2 ⊂ P1 such that |P2| = n2, and every vertex has the same color. By
construction of P2, every pair in P2 has the same color. Hence these vertices induce a monochromatic
geometric graph.

Now let P2 = {p′1, ..., p
′
n2}. We define partial orders ≺1,≺2 on P2, where p′i ≺1 p′j (p′i ≺2 p′j)

if and only if i < j and the set of points P2 \ {p
′
1, ..., p

′
j} lie above (below) the line going through
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points p′i and p′j. See Figure 3. By construction of P2, ≺1,≺2 are indeed partial orders and every
two elements in P2 are comparable by either ≺1 or ≺2. By a corollary to Dilworth’s Theorem [9]
(see also Theorem 1.1 in [15]), there exists a chain p∗1, ..., p

∗
n of length n with respect to one of

the partial orders. Hence (p∗1, ..., p
∗
n) forms either an n-cap or an n-cup. Therefore, these vertices

induce a monochromatic convex geometric graph.
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(a) Example of p′i ≺1 p′j .
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(b) Example of p′i ≺2 p′j .

Figure 3: Partial orders ≺1,≺2.

For the lower bound, we proceed by induction on q. The base case q = 1 follows by taking the
complete geometric graph on 2n−1 vertices, whose vertex set does not have n members in convex
position. This is possible by the construction of Erdős and Szekeres [14]. Let G0 denote this
geometric graph. For q > 1, we inductively construct a complete geometric graph G = (V,E) on
2(q−1)(n−1) vertices, and a coloring χ : E → {1, 2, ..., q − 1} on the edges of G, such that G does not
contain a monochromatic convex geometric graph on n vertices. Now we replace each vertex vi ∈ G
with a small enough copy2 of G0, which we will denote as Gi, where all edges in Gi are colored
with the color q, and all edges between Gi and Gj have color χ(vivj). Then we have a complete
geometric graph G′ on

2(q−1)(n−1)2n−1 = 2q(n−1)

vertices, such that G′ does not contain a monochromatic convex graph on n vertices.
�

By following the proof above, one can show that g(Kℓ
n; q) ≤ twrℓ(O(n2)). However, the following

short argument due to David Conlon gives a better bound. The proof uses an old idea of M. Tarsi
(see [22] Chapter 3) that gave an upper bound on f(n).

Lemma 2.1. For geometric 3-hypergraphs, we have g(K3
n; q) ≤ r(K3

n; 2q) ≤ 22
cn
, where c =

O(q log q).

Proof. Let H = (V,E) be a complete geometric 3-hypergraph on N = r(K3
n; 2q) vertices, and let

χ be a q coloring on the edges of H. By fixing an ordering on the vertices V = {v1, ..., vN}, we say
that a triple (vi1 , vi2 , vi3), i1 < i2 < i3, has a clockwise (counterclockwise) orientation, if vi1 , vi2 , vi3
appear in clockwise (counterclockwise) order along the boundary of conv(vi1 ∪ vi2 ∪ vi3). Hence by

2Obtained by an affine transformation.
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Ramsey’s theorem, there are n points from V for which every triple has the same color and the
same orientation. As observed by Tarsi (see Theorem 3.8 in [26]), these vertices must be in convex
position.

Lemma 2.2. For ℓ ≥ 4 and n ≥ 4ℓ, we have g(Kℓ
n; q) ≤ r(Kℓ

n; q + 1) ≤ twrℓ(cn), where c =
O(q log q).

Proof. Let H = (V,E) be a complete geometric ℓ-hypergraph on N = r(Kℓ
n; q + 1) vertices, and

let χ be a q coloring on the ℓ-tuples of V with colors 1, 2, ..., q. Now if an ℓ-tuple from V is not in
convex position, we change its color to the new color q + 1. By Ramsey’s theorem, there is a set
S ⊂ V of n points for which every ℓ-tuple has the same color. Since n ≥ 4ℓ, by the Erdős-Szekeres
Theorem, S contains ℓ members in convex position. Hence, every ℓ-tuple in S is in convex position,
and has the same color which is not the new color q + 1. Therefore S induces a monochromatic
convex geometric ℓ-hypergraph.

Theorem 1.5 now follows by combining Lemma 2.1 and 2.2.

3 A lower bound construction for geometric 3-hypergraphs

In this section, we will prove Theorem 1.7, which follows immediately from the following lemma.

Lemma 3.1. For sufficiently large n, there exists a complete geometric 3-hypergraph H = (V,E)

in the plane with 22
⌊n/2⌋

vertices, and a two-coloring χ′ on the edge set E, such that H does not
contain a monochromatic convex 3-hypergraph on 2n vertices.

Proof. Let G be the complete graph on 2n/2 vertices, where V (G) = {1, ..., 2n/2}, and let χ be
a red-blue coloring on the edges of G such that G does not contain a monochromatic complete
subgraph on n vertices. Such a graph does indeed exist by a result of Erdős [10], who showed that
r(Kn,Kn) > 2n/2. We will use G and χ to construct a complete geometric 3-hypergraph H on

22
n/2

vertices, and a coloring χ′ on the edges of H, with the desired properties.
Set M = 2n/2. We will recursively construct a point set Pt of 2

t points in the plane as follows.
Let P1 be a set of two points in the plane with distinct x-coordinates. After obtaining the point
set Pt, we define Pt+1 follows. We inductively construct two copies of Pt, L = Pt and R = Pt, and
place L to the left of R such that all lines determined by pairs of points in L go below R and all
lines determined by pairs of points of R go above L. Then set Pt+1 = L ∪R. See Figure 4.
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L=P t

R=Pt

Figure 4: Constructing Pt+1 from Pt.
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Let PM = {p1, ..., p2M } be the set of 2M points in the plane, ordered by increasing x-coordinate,
from our construction. Notice that PM contains 2M−t disjoint copies of Pt. For i < j, we define

δ(pi, pj) = max{t : pi, pj lies inside a copy of Pt = L ∪R, and pi ∈ L, pj ∈ R}.

Notice that

Property A: δ(pi, pj) 6= δ(pj , pk) for every triple i < j < k,

Property B: for i1 < · · · < in, δ(pi1 , pin) = max1≤j≤n−1 δ(pij , pij+1).

Now we define a red-blue coloring χ′ on the triples of PM as follows. For i < j < k,

χ′(pi, pj, pk) = χ(δ(pi, pj), δ(pj , pk)).

Now we claim that the geometric 3-hypergraph H = (PM , E) does not contain a monochromatic
convex 3-hypergraph on 2n vertices. For sake of contradiction, let S = {q1, ..., q2n} be a set of 2n
points from PM , ordered by increasing x-coordinate, that induces a red convex 3-hypergraph. Set
δi = δ(qi, qi+1).

Case 1. Suppose that there exists a j such that δj , δj+1, ..., δj+n−1 forms a monotone sequence.
First assume that

δj > δj+1 > · · · > δj+n−1.

Since G does not contain a red complete subgraph on n vertices, there exists a pair j ≤ i1 < i2 ≤
j + n − 1 such that (δi1 , δi2) is blue. But then the triple (qi1 , qi2 , qi2+1) is blue, a contradiction.
Indeed, by Property B,

δ(qi1 , qi2) = δ(qi1 , qi1+1) = δi1 .

Therefore, since δi1 > δi2 and (δi1 , δi2) is blue, the triple (qi1 , qi2 , qi2+1) must also be blue. A similar
argument holds if δj < δj+1 < · · · < δj+n−1.

Case 2. Suppose we are not in Case 1. For 2 ≤ i ≤ 2n, we say that i is a local minimum if
δi−1 > δi < δi+1, a local maximum if δi−1 < δi > δi+1, and a local extremum if it is either a local
minimum or a local maximum. This is well defined by Property A.

Observation 3.2. For 2 ≤ i ≤ 2n, i is never a local minimum.

Proof. Suppose δi−1 > δi < δi+1 for some i, and suppose that δi−1 ≥ δi+1. We claim that qi+1 ∈
conv(qi−1, qi, qi+2). Indeed, since δi−1 ≥ δi+1 > δi, this implies that qi−1, qi, qi+1, qi+2 lies inside a
copy of Pδi−1

= L ∪ R, where qi−1 ∈ L and qi, qi+1, qi+2 ∈ R. Since δi+1 > δi, this implies that
qi, qi+1, qi+2 lie inside a copy Pδi+1

= L′ ∪R′ ⊂ R, where qi, qi+1 ∈ L′ and qi+2 ∈ R′.
Notice that all lines determined by qi, qi+1, qi+2 go above the point qi−1. Therefore qi+1 must

lie above the line that goes through the points qi−1, qi+2, and furthermore, qi+1 must lie below the
line that goes through the points qi−1, qi. Since δi+1 > δi, the line through qi, qi+1 must go below
the point qi+2, and therefore qi+1 ∈ conv(qi−1, qi, qi+2). See Figure 5. If δi−1 < δi+1, then a similar
argument shows that qi ∈ conv(qi−1, qi+1, qi+2).
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Figure 5: Point qi+1 ∈ conv(qi−1, qi, qi+2) .

Since δ1, . . . , δ2n does not have a monotone subsequence of length n, it must have at least two
local extrema. Since between any two local maximums there must be a local minimum, we have a
contradiction by Observation 3.2. This completes the proof.

4 Concluding remarks

For q ≥ 4 colors and ℓ ≥ 3, we showed that g(Kℓ
n; q) = twrℓ(Θ(n)). Our bounds on g(Kℓ

n; q) for
q ≤ 3 can be summarized in the following table.

q = 2 q = 3

ℓ = 2 2Ω(n) < g(Kn,Kn) ≤ 2O(n2 logn) 2Ω(n) < g(Kn; 3) ≤ 2O(n2 logn)

ℓ = 3 g(K3
n,K

3
n) = 22

Θ(n)
g(K3

n; 3) = 22
Θ(n)

ℓ ≥ 4 twrℓ−1(Ω(n
2)) ≤ g(Kℓ

n,K
ℓ
n) ≤ twrℓ(O(n)) twrℓ(Ω(log

2 n)) ≤ g(Kℓ
n; 3) ≤ twrℓ(O(n))

Off-diagonal. The Ramsey number r(Ks,Kn) is the minimum integer N such that every red-
blue coloring on the edges of a complete N -vertex graph G, contains either a red clique of size
s, or a blue clique of size n. The off-diagonal Ramsey numbers, i.e., r(Ks,Kn) with s fixed and
n tending to infinity, have been intensively studied. For example, it is known [1, 4, 5, 21] that
R2(3, n) = Θ(n2/ log n) and, for fixed s > 3,

c1(log n)
1/(s−2)

(
n

log n

)(s+1)/2

≤ r(Ks,Kn) ≤ c2
ns−1

logs−2 n
. (5)

Another interesting variant of Problem 1.3 is the following off-diagonal version.

Problem 4.1. Determine the minimum integer g(Ks,Kn), such that any red-blue coloring on the
edges of a complete geometric graph G on g(Ks,Kn) vertices, yields either a red convex geometric
graph on s vertices, or a blue convex geometric graph on n vertices.

9



For fixed s, one can show that g(Ks,Kn) grows single exponentially in n. In particular

2n−1 + 1 ≤ g(Ks,Kn) ≤ 44
sn.

The lower bound follows from the fact that g(Ks,Kn) ≥ f(n). The upper bound follows from the
inequalities

g(Ks,Kn) ≤ r(K4s ,K4n) ≤ (4n)4
s

.

Indeed, by the Erdős-Szkeres theorem, if G contains a red-clique of size 4s, then there must be
a red convex geometric graph on s vertices. Likewise, If G contains a blue clique of size 4n, then
there must be a blue convex geometric graph on n vertices.

Higher dimensions. Generalizing Problem 1.1 to higher dimensions has also been studied. Let
fd(n) be the smallest integer such that any set of at least fd(n) points in R

d in general position3

contains n members in convex position. The following upper and lower bounds were obtained by
Károlyi [17] and Károlyi and Valtr [20] respectively,

2cn
1/(d−1)

≤ fd(n) ≤

(
2n− 2d− 1

n− d

)

+ d = 22n(1−o(1)).

A geometric ℓ-hypergraph H in d-space is a pair (V,E), where V is a set of points in general
position in R

d, and E ⊂
(V
ℓ

)
is a collection of ℓ-tuples from V . When ℓ ≤ d + 1, ℓ-tuples are

represented by (ℓ− 1)-dimensional simplices induced by the corresponding vertices.

Problem 4.2. Determine the minimum integer gd(K
ℓ
n; q), such that any q-coloring on the edges

of a complete geometric ℓ-hypergraph H in d-space on gd(K
ℓ
n; q) vertices, yields a monochromatic

convex ℓ-hypergraph on n vertices.

When d = 2, we write g2(K
ℓ
n; q) = g(Kℓ

n; q). Clearly gd(K
ℓ
n; q) ≥ max{fd(n), R(Kℓ

n; q)}. One
can also show that gd(K

ℓ
n; q) ≤ g(Kℓ

n; q). Indeed, for any complete geometric ℓ-hypergraph H =
(V,E) in d-space with a q-coloring χ on E(H), one can obtain a complete geometric ℓ-hypergraph
in the plane H ′ = (V ′, E′), by projecting H onto a 2-dimensional subspace L ⊂ R

d such that V ′ is
in general position in L. Thus we have

gd(Kn; q) ≤ g(Kn; q) ≤ 2cn
2 logn,

where c = O(q log q), and for ℓ ≥ 3

gd(K
ℓ
n; q) ≤ g(Kℓ

n; q) ≤ twrℓ(c
′n2),

where c′ = c′(q, ℓ).

Acknowledgment. We thank David Conlon for showing us an improved version of Theorem 1.5.

3A point set P in R
d is in general position, if no d+ 1 members lie on a common hyperplane.
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