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Abstract

For various k-uniform hypergraphs F , we give tight lower bounds on the number of

copies of F in a k-uniform hypergraph with a prescribed number of vertices and edges.

These are the first such results for hypergraphs, and extend earlier theorems of various

authors who proved that there is one copy of F .

A sample result is the following: Füredi-Simonovits [11] and independently Keevash-

Sudakov [16] settled an old conjecture of Sós [29] by proving that the maximum number

of triples in an n vertex triple system (for n sufficiently large) that contains no copy

of the Fano plane is p(n) =
(dn/2e

2

)
bn/2c +

(bn/2c
2

)
dn/2e. We prove that there is an

absolute constant c such that if n is sufficiently large and 1 ≤ q ≤ cn2, then every n

vertex triple system with p(n) + q edges contains at least

6q

((
bn/2c

4

)
+ (dn/2e − 3)

(
bn/2c

3

))
copies of the Fano plane. This is sharp for q ≤ n/2− 2.

Our proofs use the recently proved hypergraph removal lemma and stability results

for the corresponding Turán problem.
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1 Introduction

Mantel proved that a graph with n vertices and bn2/4c + 1 edges contains a triangle.

Rademacher extended this by showing that there are at least bn/2c copies of a triangle.

Subsequently, Erdős [4, 5] proved that if q < cn for some small constant c, then bn2/4c + q

edges guarantees at least qbn/2c triangles. Later Lovász and Simonovits [17] proved that

the same statement holds with c = 1/2, thus confirming an old conjecture of Erdős. They

also proved similar results for complete graphs.

In this paper (the second in a series) we initiate the study of this phenomenon to k-uniform

hypergraphs (k-graphs for short). In the first paper of this series [19], we had extended

the results of Erdős and Lovász-Simonovits in two ways. First, we proved such statements

for the broader class of color critical graphs. Second, we showed that all the copies of the

required subgraph were incident to a small number of edges or vertices. For example, in a

graph with n vertices and bn2/4c + q edges, [4, 5, 17] do not give information about how

the qbn/2c triangles are distributed. In [19], we proved that as long as q = o(n) there are

(1− o(1))qn/2 triangles incident with at most q vertices.

The main new tool we have at our disposal is the recently proved hypergraph removal lemma,

which is a consequence of the hypergraph regularity lemma (see Gowers [12], Nagle-Rödl-

Schacht [23], Rödl-Skokan [27], Tao [30]). The novelty in this project is the use of the removal

lemma to count substructures in hypergraphs rather precisely.

Theorem 1. (Hypergraph Removal Lemma [12, 23, 27, 30]) Fix k ≥ 2 and a k-graph

F with f vertices. For every β > 0, there exist γ > 0 and n0 such that the following holds.

Suppose that n > n0 and an n vertex k-graph H has at most γnf copies of F . Then there is

a set of edges in H of size less than βnk whose removal from H results in a k-graph with no

copies of F .

Given a k-graph F , let ex(n, F ), the Turán number of F , be the maximum number of edges

in an n vertex k-graph with no copy of F . For k > 2, determining the Turán number is a very

difficult problem, and there are only sporadic results. Many of these were obtained recently

by using the so-called stability approach first introduced by Erdős and Simonovits [28] in

the late 1960’s. Here we take this project one step further by giving asymptotically sharp

results on the number of copies of a k-graph F in a k-graph with n vertices and ex(n, F ) + q

edges. In two cases we are able to count the exact minimum number of copies even though

2



this number is quite complicated (see the abstract).

In essentially all cases where ex(n, F ) is known, it turns out that one is guaranteed many

copies of F as long as there are ex(n, F ) + 1 edges, so we extend all previous results that

determine ex(n, F ). It is somewhat surprising that although determining ex(n, F ) for these

hypergraphs F is quite difficult (in some cases they were decades old conjectures that were

only recently settled), we are able to count quite precisely the number of copies of F as long

as the number of extra edges q is not too large. Typically we can allow q = o(nk−1) for the

k-graphs we consider.

Here we should also mention the relationship between this project and recent work of Niki-

forov [22] and Razborov [26] that gives asymptotically sharp estimates on the minimum

number of triangles in a graph with n vertices and bn2/4c+q edges, where q = Ω(n2). There

are at present no such results for k-graphs for k > 2, and little hope of achieving them.

Moreover, even if such results were to be proved, they would apply only when q = Ω(nk),

so the results of the type [22, 26] will not overlap with ours. We are currently not even able

to offer a conjecture about the number of copies of the k-graphs considered here (even the

Fano plane) in this range.

Our proofs all have the following basic structure: Suppose we are given H with sufficiently

many edges and we wish to find many copies of F in H. First we observe that if the number

of copies of F is very large, then we already have the bound sought. Consequently, we can

use the hypergraph removal lemma to delete a small proportion of edges of H so that the

resulting k-graph has no copies of F . Next we use the stability results that guarantee the

approximate structure of H. At this point the techniques depend highly on the particular

structure of F and of H. The technical details are more involved than for the usual Turán

problem, since it is not enough to find just one copy of F . At the end of the analysis, we

are able to describe quite precisely how the copies of F are distributed within H.

We illustrate our approach on every excluded hypergraph problem for which an extremal and

stability result is known. This includes many examples that have been extensively studied.

Definition 2. Let F have the property that for sufficiently large n, there is a unique (up to

isomorphism) k-graph H(n, F ) with ex(n, F ) edges. Let c(n, F ) be the minimum number of

copies of F in the k-graph obtained from H(n, F ) by adding an edge, where the minimum is

taken over all possible ways to add an edge.
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Our theorems all say that if H is an n vertex k-graph with ex(n, F ) + q edges, then the

number of copies of F in H is essentially at least qc(n, F ). In the next subsections we will

state our results precisely. We will then give a proof of the first of these results (concerning

the Fano plane) and give proofs of all other results in an Appendix to this paper which can

be found on the arXiv or on the author’s web page.

Notation: We associate a hypergraph with its edge set. The number of edges in a hypergraph

H is |H|. Given hypergraphs F,H (F has f vertices), a copy of F inH is a subset of f vertices

and |F | edges of H such that the subhypergraph formed by this set of vertices and edges is

isomorphic to F . In other words, if we denote Aut(F ) to be the number of automorphisms

of F , then the number of copies of F in H is the number of edge-preserving injections from

V (F ) to V (H) divided by Aut(F ). For a set S of vertices, define dH(S) to be the number of

edges of H containing S. If S = {v}, we simply write dH(v). We will omit floor and ceiling

symbols whenever they are not crucial, so that the presentation is clearer.

2 Triple systems

In this section we state our results for 3-graphs.

2.1 Fano plane

Let F be the projective plane of order two over the finite field of order two. An explicit

description of F is {124, 235, 346, 457, 561, 672, 713}, obtained from the difference set {1, 2, 4}
over Z7. It is well known that F is not 2-colorable, hence it cannot be a subgraph of any

2-colorable 3-graph. Say that a 3-graph H is bipartite (or 2-colorable) if it has a vertex

partition A ∪ B such that every edge intersects both parts. Let P 3(n) be the bipartite

3-graph with the maximum number of edges. Note that

p3(n) := |P 3(n)| = max
a

{(
a

2

)
(n− a) +

(
n− a

2

)
a

}
= (3/4 + o(1))

(
n

3

)
is uniquely achieved by choosing a ∈ {bn/2c, dn/2e}.

Sós [29] conjectured, and Keevash-Sudakov [16] and Füredi-Simonovits [11] independently

proved that among all n vertex 3-graphs (n sufficiently large) containing no copy of F, the
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unique one with the maximum number of edges is P 3(n). Thus c(n,F) is defined and in fact

c(n,F) := 6

((
bn/2c

4

)
+ (dn/2e − 3)

(
bn/2c

3

))
= (20 + o(1))(n/4)4. (1)

This is achieved by adding an edge to the part of size dn/2e. Indeed, if we add a triple 123

to this part, then one way to make a copy of F is to take four points a, b, c, d from the other

part, partition the six pairs among {a, b, c, d} into three perfect matchings m1,m2,m3, and

use the edges {i} ∪ p where p ∈ mi, for each i to form a copy of F. There are
(bn/2c

4

)
ways

to pick a, b, c, d and for each such choice there are six ways to choose m1,m2,m3. The only

other way to form a copy of F using 123 is to pick four points a, b, c, d with a in the same part

as 1 and b, c, d in the other part. Then proceeding as before, we obtain 6(dn/2e − 3)
(bn/2c

3

)
copies of F. Altogether we obtain c(n,F) copies.

Our first result shows that a 3-graph with p3(n) + q edges has at least as many copies of F

as a 3-graph obtained from P 3(n) by adding q edges in an optimal way. The precise number

we can add is

q(n,F) =



n if n is even and n/2 ≡ 0 (mod 4)

n− 2 if n is even and n/2 ≡ 1 (mod 4)

n− 4 if n is even and n/2 ≡ 2, 3 (mod 4)

dn/2e if n is odd and dn/2e ≡ 0 (mod 4)

dn/2e − 1 if n is odd and dn/2e ≡ 1 (mod 4)

dn/2e − 2 if n is odd and dn/2e ≡ 2, 3 (mod 4).

(2)

Theorem 3. There exists an absolute constant ε > 0 such that if n is sufficiently large and

1 ≤ q ≤ εn2, then the following hold:

• Every n vertex 3-graph with p3(n) + q edges contains at least qc(n,F) copies of F. This is

sharp for all q ≤ q(n,F).

• If q > q(n,F), then every n vertex 3-graph with p3(n)+q edges contains at least qc(n,F)+1

copies of F.

Remark. For q > q(n,F), our proof actually gives at least qc(n,F) + 2
(bn/2c

2

)
copies of F.

Theorem 3 is asymptotically sharp in a much larger range of q. In particular, we have the

following.
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Proposition 4. For every ε > 0 there exists δ > 0 and n0 such that the following holds

for all n > n0 and q < δn2. There is an n vertex 3-graph with p3(n) + q edges and at most

(1 + ε)qc(n,F) copies of F.

2.2 Cancellative triple-systems

Say that a 3-graph is cancellative if whenever A∪B = A∪C we have B = C. An equivalent

definition is to simply say that the 3-graph does not contain a copy of two particular 3-

graphs: F5 = {123, 124, 345} and K3−
4 = {123, 124, 234}. A 3-graph is 3-partite if it has a

vertex partition into three parts such that every edge has a vertex in all three parts. Write

t3(n) =
⌊n

3

⌋ ⌊n+ 1

3

⌋⌊
n+ 2

3

⌋
for the number of edges in T 3(n), the complete 3-partite 3-graph with the maximum number

of edges. It is easy to see that T 3(n) is cancellative.

Katona conjectured, and Bollobás [2] proved, that the maximum number of edges in an n

vertex cancellative 3-graph is t3(n), and equality holds only for T 3(n). Later Frankl and

Füredi [7] refined this by proving the same result (for n > 3000) even if we just forbid F5.

Recently, Keevash and the author [14] gave a new proof of the Frankl-Füredi result while

reducing the smallest n value to 33.

It is easy to see that c(n, F5) = 3(n/3)2 + Θ(n) and this is achieved by adding a triple to

T 3(n) with two points in the largest part. In fact, even if we add a triple within one of the

parts we get almost the same number of copies of F5. Our second result shows that this is

optimal, even when we are allowed to add as many as o(n) edges.

Theorem 5. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Let H be a 3-graph with t3(n) + q edges where q < δn. Then the number of copies of

F5 in H is at least q(1− ε)c(n, F5). This is asymptotically sharp for 1 ≤ q < δn. Moreover,

if the number of copies is less than δn3, then there is a collection of q distinct edges that

each lie in (1 − ε)c(n, F5) copies of F5 with no two of these edges accounting for the same

copy of F5.
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2.3 Independent neighborhoods

The neighborhood of a (k − 1)-set S of vertices in a k-graph is the set of vertices v whose

union with S forms an edge. A set is independent if it contains no edge. We can rephrase

Mantel’s theorem as follows: the maximum number of edges in a 2-graph with independent

neighborhoods is bn2/4c. This formulation can be generalized to k > 2 and there has

been quite a lot of recent activity on this question. We focus here on k = 3, and observe

that a 3-graph has independent neighborhoods if and only if it contains no copy of B5 =

{123, 124, 125, 345}. A 3-graph H has a (2, 1)-partition if it has a vertex partition A ∪ B
such that |e∩A| = 2 for all e ∈ H. Let B3(n) be the 3-graph with the maximum number of

edges among all those that have n vertices and a (2, 1)-partition. Note that

b3(n) := |B3(n)| = max
a

(
a

2

)
(n− a) = (4/9 + o(1))

(
n

3

)
is achieved by choosing a = b2n/3c or a = d2n/3e.

The author and Rödl [21] conjectured, and Füredi, Pikhurko, and Simonovits [9] proved,

that among all n vertex 3-graphs (n sufficiently large) containing no copy of B5, the unique

one with the maximum number of edges is B3(n).

It is easy to see that c(n,B5) = 2(n/3)2 + Θ(n) and this is achieved by adding a triple to

T 3(n) contained in the larger part. In fact, even if we add a triple within the smaller part

we get almost the same number of copies of B5. Our third result shows that this is optimal,

even when we are allowed to add as many as o(n2) edges.

Theorem 6. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Let H be a 3-graph with b3(n)+q edges where q < δn2. Then the number of copies of

B5 in H is at least q(1−ε)c(n,B5). This is asymptotically sharp for 1 ≤ q < δn2. Moreover,

if the number of copies is less than δn4, then there is a collection of q distinct edges that

each lie in (1 − ε)c(n,B5) copies of B5 with no two of these edges accounting for the same

copy of B5.

2.4 Expanded Cliques

Let Lr be the 3-graph obtained from the complete graph Kr by enlarging each edge with a

new vertex. These new vertices are distinct for each edge, so Lr has lr = r +
(
r
2

)
=
(
r+1
2

)
7



vertices and
(
r
2

)
edges. Write T 3

r (n) for the complete r-partite 3-graph with the maximum

number of edges. So T 3
r (n) has vertex partition V1∪· · ·∪Vr, where ni := |Vi| = b(n+i−1)/rc,

and all triples with at most one point in each Vi. Define

t3r(n) := |T 3
r (n)| =

∑
S∈([r]

3 )

∏
i∈S

ni.

Every set of r + 1 vertices in T 3
r (n) contains two vertices in the same part, and these two

vertices lie in no edge. Consequently, Lr+1 6⊂ T 3
r (n).

The author [18] conjectured, and Pikhurko [24] proved, that among all n vertex 3-graphs

containing no copy of Lr+1 (r ≥ 3 fixed, n sufficiently large), the unique one with the

maximum number of edges is T 3
r (n). Thus c(n, Lr+1) is defined and in fact

c(n, Lr+1) = (1 + o(1))

((
1− 2

r

)
n

)(r+1
2 )−1

×
(n
r

)r−1
= Θ(nlr+1−3)

and this is achieved by adding a triple with exactly two points in a largest part. Our final

results shows that this is asymptotically optimal, even when we are allowed to add as many

as o(n2) edges.

Theorem 7. (Asymptotic Counting) Fix r ≥ 3. For every ε > 0 there exists δ > 0

and n0 such that the following holds for n > n0. Let H be a 3-graph with t3r(n) + q edges

where q < δn2. Then the number of copies of Lr+1 in H is at least q(1 − ε)c(n, Lr+1).

The expression q is sharp for 1 ≤ q < δn2. Moreover, if the number of copies is less than

δn(r+1
2 )−1, then there is a collection of q distinct edges that each lie in (1−ε)c(n, Lr+1) copies

of Lr+1 with no two of these edges accounting for the same copy of Lr+1.

Our next result improves the asymptotic counting result above to an exact result, with a

more restricted range for q.

Theorem 8. (Exact Counting) Fix r ≥ 3, q > 0 and let n be sufficiently large. Every n

vertex triple system with t3r(n) + q edges contains at least qc(n, Lr+1) copies of Lr+1.

Theorem 8 is clearly tight, as we may add an appropriate set of q pairwise disjoint edges to

T 3
r (n) such that each edge lies in exactly c(n, Lr+1) copies of Lr+1.
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3 Quadruple systems

There are two types of 4-graphs we will be concerned with in this paper, books and expanded

triangles. These represent all known cases of a 4-graph F where ex(n, F ) has been exactly

determined.

For 2 ≤ l ≤ 4, the l-book Pl is the 4-graph with l + 1 edges l of which share the same three

points, and another edge that contains the remaining point in each of the l edges together

with 4− l new points. Explicitly

P2 = {123a, 123b, abcd}

P3 = {123a, 123b, 123c, abcd}

P4 = {123a, 123b, 123c, 123d, abcd}

The expanded triangle C3 is the 4-graph obtained from a graph triangle by replacing each

vertex by a pair of vertices. Formally,

C3 = {1234, 3456, 1256}.

In the next two subsections will discuss H(n, F ) and c(n, F ) for F ∈ {P2, P3, P4, C3} and

then we will state our results.

3.1 Books

P2 = {123a, 123b, abcd}. Write

t4(n) =
⌊n

4

⌋⌊n+ 1

4

⌋⌊
n+ 2

4

⌋⌊
n+ 3

4

⌋
for the number of edges in T 4(n), the complete 4-partite 4-graph with the maximum number

of edges. It is easy to see that T 4(n) contains no copy of P2. Frankl and Füredi [7] conjec-

tured, and Pikhurko [25] proved, that ex(n, P2) = t4(n) for n sufficiently large. This shows

that c(n, P2) is defined and one achieves c(n, P2) by adding an edge to T 4(n) with two points

in each of two parts, and no point in the remaining two parts. We then see that

c(n, P2) = 2(n/4)3 −O(n2) = Θ(n3).
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P3 = {123a, 123b, 123c, abcd}. Say that a 4-graph has a (2, 2)-partition if it has a vertex

partition into two parts so that every edge intersects each part in two points. Write

d4(n) =

(
bn/2c

2

)(
dn/2e

2

)
for the number of edges in D4(n), the n vertex 4-graph with a (2, 2)-partition having the

maximum number of edges. It is easy to see that D4(n) contains no copy of P3. Füredi,

Simonovits and Pikhurko [10] proved that ex(n, P3) = d4(n) for n sufficiently large. This

shows that c(n, P3) is defined and one achieves c(n, P2) by adding an edge to D4(n) with

exactly three points in the part of size dn/2e. We then see that

c(n, P3) = 4

(
bn/2c − 1

2

)
(dn/2e − 3) = 2(n/2)3 −O(n2) = Θ(n3).

P4 = {123a, 123b, 123c, 123c, abcd}. A 4-graph H is odd if it has a vertex partition A ∪ B
such that every edge intersects both parts in an odd number of vertices. Let B4(n) be the

odd 4-graph with the maximum number of edges. Note that

b4(n) := |B4(n)| = max
1≤a≤n

(
a

3

)
(n− a) +

(
n− a

3

)
a

is not achieved by choosing a = bn/2c, but it can easily be shown that |a−n/2| <
√

3n/2+1.

Füredi, Mubayi and Pikhurko [8] proved that ex(n, P4) = b4(n) for n sufficiently large. This

shows that c(n, P4) is defined and one achieves c(n, P2) by adding an edge to D4(n) with two

points in each part. We then see that

c(n, P4) = 4

(
n/2

3

)
−O(n2) = Θ(n3).

Now we state our result about counting books.

Theorem 9. Fix l ∈ {2, 3, 4}. For every ε > 0 there exists δ > 0 and n0 such that the

following holds for n > n0. Let H be an n vertex 4-graph with ex(n, Pl) + q edges where

q < δn. Then the number of copies of Pl in H is at least q(1− ε)c(n, Pl). The expression q

is sharp for 1 ≤ q < δn. Moreover, if the number of copies is less than δn4, then there is a

collection of q distinct edges that each lie in (1− ε)c(n, Pl) copies of Pl with no two of these

edges accounting for the same copy of Pl.
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3.2 Expanded triangle

The expanded triangle is a 4-uniform example whose extremal value has been studied by

Frankl [6], Sidorenko, Keevash and Sudakov [15]. Recall that C3 = {1234, 3456, 1256} is the

4-graph obtained from a graph triangle by expanding each vertex to a set of size two. Frankl

[6] proved that every n vertex 4-graph containing no copy of C3 has at most (1 + o(1))b4(n)

edges. Recently, Keevash and Sudakov [15] sharpened this by proving that the unique 4-

graph that achieves this maximum is B4(n). Adding an edge to B4(n) results in at least

c(n,C3) = 3(n/2)2 −O(n) = Θ(n2)

copies of C3.

Theorem 10. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Let H be an n vertex 4-graph with b4(n) + q edges where q < δn2. Then the number

of copies of C3 in H is at least q(1− ε)c(n,C3). The expression q is sharp for 1 ≤ q < δn2.

Moreover, if the number of copies is less than δn4, then there is a collection of q distinct

edges that each lie in (1− ε)c(n,C3) copies of C3 with no two of these edges accounting for

the same copy of C3.

We remark that although our proof follows the same general structure as that in [15], some

new ideas are needed. In particular, since we start our proof with an application of the

removal lemma, we do not have such fine control over the size of the parts in the underlying

hypergraph as in [15]. Thus our approach is somewhat more robust, although the approach

in [15] extends to the k-uniform case which we do not address here.

Throughout the paper we will frequently use the notation δ � ε, which means that δ, and

any function of δ (that tends to zero with δ) used in a proof is smaller than any function of

ε used in the proof. It is pretty difficult to write the precise dependence between δ and ε as

one of the constraints comes from an application of the removal lemma.

4 Counting Fano’s

In this section we will prove Theorem 3 and Proposition 4. We need some lemmas about

binomial coefficients.
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Lemma 11. Let x, y, t > 0 be integers with x + y = n, t < n2 and s = d
√

2t/(n− 2)e.
Suppose that n is sufficiently large and(

x

2

)
y +

(
y

2

)
x ≥ p3(n)− t.

Then bn/2c − s ≤ x ≤ dn/2e+ s and if t < (n− 2)/2, then bn/2c − s < x < dn/2e+ s.

Proof. Suppose for contradiction that x > dn/2e + s (the upper bound on t ensures that

s < 2
√
n and hence x < 3n/4). Write

f(x) =

(
x

2

)
(n− x) +

(
n− x

2

)
x =

1

2
(n− 2)x(n− x).

Note that p3(n) = f(bn/2c) = f(dn/2e). Our goal therefore is to obtain the contradiction

f(x) < f(dn/2e)− t. Observe that

f(a+ 1) = f(a)− 1

2
(n− 2)(2a+ 1− n).

Applying this repeatedly beginning with a = dn/2e we obtain

f(x) < f(dn/2e+ s) = f(dn/2e)− 1

2
(n− 2)

dn/2e+s−1∑
a=dn/2e

(2a+ 1− n)

= f(dn/2e)− 1

2
s(n− 2)(s+ 2dn/2e − n).

The choice of s gives

1

2
s(n− 2)(s+ 2dn/2e − n) ≥ 1

2
s2(n− 2) ≥ t (3)

and therefore f(x) < f(dn/2e)−t. We conclude that x ≤ dn/2e+s. Repeating this argument

with x replaced by y gives y ≤ dn/2e+ s and hence x ≥ bn/2c − s.

If t < (n−2)/2, and x ≥ dn/2e+s, then we only have f(x) ≤ f(dn/2e+s). However the last

inequality in (3) is strict (since s ≥ 1) and we again get the same contradiction. Therefore

x < dn/2e+ s and by a similar argument, x > bn/2c − s.

Recall from (1) that

c(n,F) := 6

((
bn/2c

4

)
+ (dn/2e − 3)

(
bn/2c

3

))
.
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Lemma 12. Let x, y, s be positive integers with x + y = n sufficiently large, bn/2c − s ≤
x ≤ dn/2e+ s and s < n/10. Then

6

(
y

4

)
+ 6(x− 3)

(
y

3

)
≥ c(n,F)− (s+ 3)n3.

Proof. Define f(y) = 6
(
y
4

)
+ 6(n− y − 3)

(
y
3

)
and a = bn/2c. Then c(n,F) = f(a). We first

observe that f(y) is increasing for 1 < y < n− 4. Indeed,

f(y + 1)− f(y) = 6

((
y

3

)
+ (n− y − 4)

(
y + 1

3

)
− (n− y − 3)

(
y

3

))
= 6

(
y

2

)
(n− y − 4)

and the condition on y shows that this is positive. The condition bn/2c− s ≤ x ≤ dn/2e+ s

implies that 1 < a− s ≤ y ≤ a+ 1 + s < n− 4 and so f(y) ≥ f(a− s). Therefore

c(n,F)− f(y) ≤ f(a)− f(a− s)

= 6

((
a

4

)
+ (n− a− 3)

(
a

3

)
−
(
a− s

4

)
− (n− a+ s− 3)

(
a− s

3

))
≤ 6

(
a4

4!
− (a− s− 3)4

4!
+ (n− a− 3)

a3

6
− (n− a+ s− 3)

(a− s− 2)3

6

)
≤ 6

(
a4

4!
− a4 − 4a3s− 12a3

4!
+

(n− a− 3)

6
(a3 − (a3 − 3a2s− 6a2)

)
(4)

= 6

(
4a3s+ 12a3

4!
+

(n− a− 3)(3a2s+ 6a2)

6

)
< a3s+ 3a3 + 3a2sn+ 6a2n

< (s+ 3)n3.

Note that (4) follows from the inequalities (a − b)4 > a4 − 4a3b and (a − b)3 > a3 − 3a2b

which hold for 0 < b < 3a/2; since s < n/10 we have 0 < s+ 2 < 3a/2− 1. This completes

the proof of the Lemma.

We will need the following stability result proved independently by Keevash-Sudakov [16]

and Füredi-Simonovits [11].

Theorem 13. (F Stability [11, 16]) For every β > 0, there exist γ > 0 and n0 such that

the following holds. Suppose that n > n0 and H is a 3-graph with n vertices and p3(n)− γn3

edges that contains no copy of F. Then there is a partition of the vertex set of H into X ∪Y
so that the number of edges that are within X or within Y is at most βn3.

13



Proof of Theorem 3. Let 0 < δ � ε � 1. Write oδ(1) for any function that approaches

zero as δ approaches zero and moreover, oδ(1) � ε. We emphasize that ε is an absolute

constant. Let n be sufficiently large and let H be an n vertex 3-graph with p3(n) + q edges

with q < εn2. Write #F for the number of copies of F in H.

If #F ≥ n6, then since c(n,F) < n4, we have #F > εn2c(n,F) ≥ qc(n,F) and we are done

so assume that #F < n6 = (1/n)n7. Since n is sufficiently large, by the Removal lemma

there is a set of at most δn3 edges of H whose removal results in a 3-graph H′ with no copies

of F. Since |H′| > p3(n) − δn3, by Theorem 13, we conclude that there is a partition of

V (H′) (and also of V (H)) such that the number of edges contained entirely within a part is

oδ(n
3). Now pick a partition X ∪ Y of V (H) that maximizes e(X, Y ), the number of edges

that intersect both parts. We know that e(X, Y ) ≥ p3(n)− oδ(n3), and an easy calculation

also shows that each of X, Y has size n/2± oδ(n).

Let B be the set of edges of H that lie entirely within X or entirely within Y and let

G = H−B. Let M be the set of triples which intersect both parts that are not edges of H.

Then G ∪M is bipartite so it has at most p3(n) triples. Consequently,

q + |M | ≤ |B| ≤ oδ(n
3).

Also, |H| = |G|+ |B| so we may suppose that |G| = p3(n)− t and |B| = q+ t for some t ≥ 0.

For an edge e ∈ B, let #F(e) be the number of copies of F in H containing the unique edge

e from B.

If t = 0, then G ∼= P 3(n) and #F(e) ≥ c(n,F) for every e ∈ B by (1) so we immediately

obtain #F ≥ qc(n,F). If q > q(n,F) and #F(e) = c(n,F) for every e ∈ B, then by (2) there

are two edges e, e′ ∈ B such that |e ∩ e′| = 1. To see this when n is even, observe that if

no two such edges exist, then every two edges of B within X intersect in zero or two points,

and the same holds for the edges of B within Y . The maximum number of edges that one

can add to P 3(n) with this property is q(n,F), as every component is either a subset of K3
4

or a sunflower with core of size two. For n odd we can only have edges in the larger part

and again the same argument applies.

We deduce that the number of copies of F containing e or e′ is at least #F(e) + #F(e′) +

#F(e, e′) where #F(e, e′) is the number of copies of F in H containing both e and e′. It is

easy to see that #F(e, e′) ≥ 1 (in fact, we have #F(e, e′) ≥ 2
(bn/2c

2

)
).

We may therefore assume that t ≥ 1 and we will now show that #F > qc(n,F). Partition

14



B = B1 ∪B2, where

B1 = {e ∈ B : #F(e) > (1− ε)c(n,F)}.

Claim 1. |B1| ≥ (1− ε)|B|

Proof of Claim. Suppose to the contrary that |B2| ≥ ε|B|. Pick e = uvw ∈ B2. Write

B2 = BXXX ∪ BY Y Y , where the subscripts have the obvious meaning (later we will use

the subscript XY Y for edges with exactly two points in Y ). Assume by symmetry that

e ∈ BXXX . For each Y ′ = {y1, . . . , y4} ∈
(
Y
4

)
, we can form a copy of F as follows: Partition

the six pairs of Y ′ into three perfect matchings Lu = {eu, e′u}, Lv = {ev, e′v}, Lw = {ew, e′w}
and for each x ∈ e, add the two triples x∪ ex and x∪ e′x. A potential copy of F is a copy of

F in G∪M ∪B that uses exactly one edge of B. There are six ways to choose the matchings

Lu, Lv, Lw, so each choice of Y ′ gives six potential copies of F containing e. Altogether we

obtain 6
(|Y |

4

)
potential copies of F. The only other way to form a copy of F using e is to

pick four points a, b, c, d with a ∈ X − e and {b, c, d} ∈
(
Y
3

)
. Then proceeding as before, we

obtain 6(|X| − 3)
(|Y |

3

)
copies of F. This gives a total of (1 − oδ(1))c(n,F) potential copies

of F containing e. At least (ε/2)c(n,F) of these potential copies of F have a triple from M ,

for otherwise

#F(e) ≥ (1− oδ(1)− ε/2)c(n,F) > (1− ε)c(n,F)

which contradicts the definition of B2. The triple from M referenced above lies in at most

2(|X||Y |+
(|Y |

2

)
) < n2 copies of F, so by (1), the number of triples in M counted here is at

least
(ε/2)c(n,F)

n2
> (ε/30)n2.

At least a third of these triples from M are incident with the same vertex of e, so we conclude

that there exists x ∈ e such that dM(x) > (ε/100)n2. Let V = X ∪ Y and let

A = {v ∈ V : dM(v) > (ε/100)n2}.

We have argued above that every e ∈ B2 has a vertex in A. Consequently,

3
∑
v∈A

dB2(v) ≥ 3|B2| ≥ 3ε|B| > 3ε|M | ≥ ε
∑
v∈A

dM(v) > ε|A|(ε/100)n2,

and there exists a vertex u ∈ A such that dB2(u) ≥ (ε2/300)n2. Assume wlog that u ∈ X so

that dBXXX
(u) ≥ (ε2/300)n2.
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Let HXY Y be the set of edges in H with exactly one point in X. We may assume that

dHXY Y
(u) ≥ dBXXX

(u), for otherwise we may move u to Y and increase e(X, Y ), thereby

contradicting the choice of X, Y . Consider

e = uvw, f = uy1y2, f ′ = uy′1y
′
2,

with e ∈ BXXX and f, f ′ ∈ HXY Y , f ∩ f ′ = {u}. The number of choices of (e, {f, f ′}) is at

least

dBXXX
(u)×

((
dHXY Y

(u)

2

)
− n3

)
> ε1n

6

where ε1 = ε6/1010. If for at least half of the choices of (e, {f, f ′}), these three edges span at

least one copy of F, then by (1), #F > (ε1/2)n6 > qc(n,F), a contradiction. So for at least

half of the choices of (e, {f, f ′}) above, e∪ f ∪ f ′ do not span a copy of F. This implies that

at least one of the triples xyy′ ∈ M where x ∈ e − {u}, y ∈ f − {u}, y′ ∈ f ′ − {u}. Since

each such triple of M is counted at most |X||Y |2 < n3 times, we obtain the contradiction

(ε1/2)n6/n3 < |M | = oδ(n
3). This concludes the proof of the Claim.

If t ≥ 4εq, then counting copies of F from edges of B1 and using Claim 1 we get

#F ≥
∑
e∈B1

(1− ε)c(n,F) ≥ |B1|(1− ε)c(n,F)

≥ (1− ε)2|B|c(n,F)

> (1− 2ε)(q + t)c(n,F)

≥ (q + 2εq − 8ε2q)c(n,F) ≥ qc(n,F)

and we are done. So we may assume that t < 4εq < 4ε2n2. Let x = |X|, y = |Y | and

s =
⌈√

2t/(n− 2)
⌉
.

Claim 2. bn/2c − s ≤ x ≤ dn/2e+ s and if t < (n− 2)/2, then bn/2c − s < x < dn/2e+ s.

Proof of Claim. We know that

p3(n)− t = |G| ≤
(
x

2

)
y +

(
y

2

)
x.

Now the Claim follows immediately from Lemma 11.

Observe that |M | ≤ t for otherwise |G ∪M | > p3(n) which is impossible. Pick e ∈ B and

assume wlog that e ⊂ X. Since t > 0, we have 1 ≤ s ≤
√

2t/(n− 2) + 1 < n/10. The
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number of potential copies of F containing e, denoted #pF(e), is 6
(
y
4

)
+ 6(x − 3)

(
y
3

)
. Now

Claim 2, Lemma 12 and s ≥ 1 imply that

#pF(e) ≥ c(n,F)− (s+ 3)n3 ≥ c(n,F)− 4sn3.

Not all of these copies of F are in H, in fact, a triple from M lies in at most 2n2 potential

copies counted above (we pick either two more vertices in Y or one in each of Y and X, and

there are two ways to complete a potential copy of F containing e). We conclude that

#F(e) ≥ #pF(e)− 2n2|M | ≥ c(n,F)− 4sn3 − 2n2|M | ≥ c(n,F)− 4sn3 − 2tn2. (5)

Suppose first that t < (n−2)/2. Then Claim 2 gives bn/2c−s < x < dn/2e+s. Since s = 1

and x is an integer, |x− n/2| < 1. By (1),

#pF(e) ≥ min

{
6

(
y

4

)
+ 6(x− 3)

(
y

3

)
: x ∈ {bn/2c, dn/2e}

}
≥ c(n,F).

Consequently, we can refine the bound in (5) to

#F(e) ≥ c(n,F)− 2tn2.

Altogether,

#F ≥
∑
e∈B

#F(e) ≥ (q + t)(c(n,F)− 2tn2) = qc(n,F) + tc(n,F)− 2qtn2 − 2t2n2.

Let us recall that q ≤ εn2 and 0 < t < 4εq. Then by (1), 2qtn2 < 2εtn4 < (t/2)c(n,F)

and 2t2n2 = 2t(tn2) < (8εq)tn2 < 8ε2tn4 < (t/2)c(n,F). Consequently, #F > qc(n,F) as

required.

Next we suppose that t ≥ (n−2)/2 > n/4. This implies that s ≤
√

2t/(n− 2) + 1 ≤ 4
√
t/n

and
√
t ≤ 2t/

√
n. Therefore

4qsn3 < 16qn3
√
t/n = 16q

√
tn2.5 ≤ 32qtn2 ≤ 32εtn4 < (t/5)c(n,F).

So we again use (5) to deduce that #F is at least∑
e∈B

#F(e) ≥ (q+t)(c(n,F)−4sn3−2tn2) ≥ qc(n,F)+tc(n,F)−4qsn3−2qtn2−4tsn3−2t2n2.

As t < q < εn2 we have, using (1), the bounds

2qtn2 < (t/5)c(n,F), 4tsn3 < 4qsn3 < (t/5)c(n,F), 2t2n2 < (t/5)c(n,F).
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This shows that #F > qc(n,F) as required.

To see that the result is tight for q ≤ q(n,F) observe that we may add q edges to P 3(n)

with every two edges sharing zero or two points. If n is even, we do this by adding to each

part of P 3(n) the maximum number of edge that pairwise share zero or two points. This is

achieved by adding disjoint copies of K3
4 , the complete 3-graph on four points, or collections

of edges that pairwise share the same two points. If n is odd, then we add edges only to the

larger part. Each added edge lies in exactly c(n,F) copies of F and no two added edges lie

in any copy of F. So the total number of copies of F is exactly qc(n,F). This completes the

proof of the theorem.

We end this section by proving that this result is asymptotically sharp.

Proof of Proposition 4. Let 0 < δ � ε. Consider the following construction: Add a

collection of q edges to P 3(n) within the part of size dn/2e such that the following two

conditions hold.

(1) every two added edges have at most one point in common and

(2) the added edges do not form a Pasch configuration, which is the six vertex 3-graph

obtained from F by deleting a vertex.

It is well-known that such triple systems exist of size δn2 (in fact such Steiner triple systems

also exist [13]). Each new edge lies in at most c(n,F) copies of F that contain a unique

new edge. Now suppose that two of these new edges, say e, e′ lie in a copy C of F. Then

there are at most n2 choices for the remaining two vertices of C. So the number of copies

of F containing two new edges is at most q2n2 ≤ δqn4 < εqc(n,F). There are no copies of

F using three new edges since three edges of F either span seven vertices or form a Pasch

configuration. In either case we would have a Pasch configuration among the added edges.

Consequently, the number of copies of F is at most q(1 + ε)c(n,F).

5 Concluding Remarks

• We have given counting results for every k-graph for which a stability result is known

except for one family which is derived from the expanded cliques. This was studied in [20],

and included the triple system {123, 145, 167, 357} which is the smallest non-3-partite linear
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(every two edges share at most one vertex) 3-graph. It appears that our approach will give

appropriate counting results for this problem as well and we did not feel motivated to carry

out the details.

• Our results suggest that whenever one can obtain stability and exact results for an ex-

tremal problem, one can also obtain counting results. However, in each case the argument

is different. It would be interesting to unify this approach (at least for certain classes) so

one does not have to use new methods for each F . We formulate this as a conjecture. Say

that a k-graph F is stable if ex(n, F ) is achieved uniquely by the n vertex 3-graph H(n) for

sufficiently large n, and every n vertex 3-graph with (1− o(1))ex(n, F ) edges and no copy of

F can be obtained from H(n) by changing at most o(n3) edges.

Conjecture 14. Let F be a non k-partite stable k-graph. For every positive integer q,

the following holds for sufficiently large n: Every n vertex k-graph with ex(n, F ) + q edges

contains at least qc(n, F ) copies of F .

•We have not been able to prove exact counting results for most k-graphs we consider. The

reason for this is that we need to use the minimum degree condition in the proofs and we

don’t know how to get around this technical difficulty.

• All our theorems find α(1− o(1))nβ copies of F on an edge, or δnγ copies of F altogether,

for suitable α, β, γ, δ. However, in each case our proofs give δnγ copies of F on a single

vertex.

• Our results for F5 (among 3-graphs) appear to be weaker than the other results. In

particular, we only allow q < δn unlike in the other cases where we allow q < δn2. However,

using our approach this cannot be improved further. Indeed, for any ε > 0 (take ε = 1/2

for example) and all n, there exists an n vertex 3-graph H with t3(n) + εn edges and the

following two properties:

(1) for every edge e ∈ H, the number of copies of F5 containing e is less than (3− ε)(n/3)2

(2) the number of copies of F5 in H is less then εn3.

To see this, let T 3(n) have parts X, Y, Z and construct H as follows. Pick (x, y) ∈ X × Y ,

delete εn/3 edges of the form xyz with z ∈ Z, and add 4εn/3 edges of the form xixy with

xi ∈ X. Then |H| = t3(n) + εn. A copy of F5 in H must contain an edge ei = xixy, and

the number of copies containing ei is at most (3 − ε)(n/3)2. Therefore the total number of

copies of F5 in H is at most (4εn/3)(3− ε)(n/3)2 < εn3.
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• Our results for Lr can be extended to the k-uniform case without too much difficulty. We

describe some of the details below. For r > k ≥ 2, Let Lkr be the k-graph obtained from the

complete graph Kr by enlarging each edge with a set of k − 2 new vertices. These sets of

new vertices are disjoint for each edge, so Lkr has r+ (k− 2)
(
r
2

)
vertices and

(
r
2

)
edges. Write

T kr (n) for the complete r-partite k-graph with the maximum number of edges. So T kr (n) has

vertex partition V1 ∪ · · · ∪ Vr, where ni := |Vi| = b(n+ i− 1)/rc, and all k-sets with at most

one point in each Vi. Define

tkr(n) := |T kr (n)| =
∑
S∈([r]

k )

∏
i∈S

ni.

Every set of r + 1 vertices in T kr (n) contains two vertices in the same part, and these

two vertices lie in no edge. Consequently, Lkr+1 6⊂ T kr (n). The author [18] conjectured,

and Pikhurko [24] proved, that among all n vertex k-graphs containing no copy of Lkr+1

(r ≥ k ≥ 2 fixed, n sufficiently large), the unique one with the maximum number of edges is

T kr (n). Define ckr+1(n) to be the minimum number of copies of Lkr+1 in a k-graph obtained

from T kr (n) by adding one edge. The following theorem can be proved by extending the ideas

of [24] and Theorem 7’s proof in the obvious way.

Theorem 15. Fix r ≥ k ≥ 3. For every ε > 0 there exists δ > 0 and n0 such that the

following holds for n > n0. Let H be a k-graph with tkr(n) + q edges where q < δnk−1. Then

the number of copies of Lkr+1 in H is at least q(1− ε)ckr+1(n). The expression q is sharp for

1 ≤ q < δnk−1. Moreover, if the number of copies is less than δnr+(k−2)(r+1
2 ), then there is

a collection of q distinct edges that each lie in (1 − ε)ckr+1(n) copies of Lkr+1 with no two of

these edges accounting for the same copy of Lkr+1.

The exact result for this situation can also be proved using the same methods.

Alon and Pikhurko [1] proved that ex(n, Lk(G)) = tkr(n) (for n > n0) where Lk(G) is the

k-graph obtained from an r-color critical graph G by expanding each edge of G by a new

set of k − 2 vertices. In [14] we had proved the corresponding counting result for L2(G)

and those ideas combined with the ones in this paper can be used to give similar results for

Lk(G).
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7 Appendix

7.1 Counting F5’s

Theorem 5 follows from the following result. Recall that c(n, F5) = (3 + o(1))(n/3)2.

Theorem 16. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n-vertex 3-graph with t3(n) + 1 edges contains either

• an edge that lies in at least (3− ε)(n/3)2 copies of F5, or

• at least δn3 copies of F5.

Proof of Theorem 5. Remove q − 1 edges from H and apply Theorem 16. If we find δn3

copies of F5, then since q < δn, the number of copies is much larger than q(1 − ε)c(n, F5)

and we are done. Consequently, we find an edge e1 in at least (3− ε)(n/3)2 > (1− ε)c(n, F5)

copies of F5. Now remove q − 2 edges from H − e1 and repeat this argument to obtain e2.

In this way we obtain edges e1, . . . , eq as required.
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Sharpness follows by adding a 3-partite triple system to one of the parts of T 3(n). It is easy

to see that each added edge lies in c(n, F5) − O(1) copies of F5 and no copy of F5 contains

two of the new edges. Consequently, the copies of F5 are counted exactly once.

We will need the following stability theorem for F5 proved by Keevash and the first author

[14].

Theorem 17. (F5 Stability [14]) Let H be a 3-graph with n vertices and t3(n) − o(n3)

edges that contains no copy of F5. Then there is a partition of the vertex set of H into three

parts so that the number of edges with at least two vertices in some part is o(n3). In other

words, H can be obtained from T 3(n) by adding and deleting a set of o(n3) edges.

Proof of Theorem 16. Given ε let 0 < δ � ε. Write oδ(1) for a function that approaches

zero as δ approaches zero and moreover, oδ(1)� ε for the set of functions used in this proof.

Let n be sufficiently large and let H be an n vertex 3-graph with t3(n) + 1 edges. Write #F5

for the number of copies of F5 in H.

We first argue that we may assume that H has minimum degree at least d = (2/9)(1−δ1)
(
n
2

)
,

where δ1 = δ1/4. Indeed, if this is not the case, then remove a vertex of degree less than d to

form the 3-graph H1 with n− 1 vertices. Continue removing a vertex of degree less than d

if such a vertex exists. If we could continue this process for δ2n steps, where δ2 = δ1/2, then

the resulting 3-graph H′ has (1− δ2)n vertices and number of edges at least

2

9
(1− δ/2)

(
n

3

)
− (δ2n)

2

9
(1− δ1)

(
n

2

)
≥ 2

9
(1− δ − 3δ2(1− δ1))

(
n

3

)
>

2

9
(1 + δ)(1− δ2)3

(
n

3

)
>

2

9
(1 + δ)

(
(1− δ2)n

3

)
.

By the result of Keevash-Mubayi [14] and Erdős-Simonovits supersaturation we conclude

that H has at least δ′n5 copies of F 5 (for some fixed δ′ > 0) and we are done. So we may

assume that this process of removing vertices of degree less than d terminates in fewer than

δ2n steps, and when it terminates we are left with a 3-graph H′ on n′ > (1 − δ2)n vertices

and minimum degree at least d.

Now suppose that we could prove that there is an edge of H′ that lies in at least (3 −
ε/2)(n′/3)2 copies of F5. Since δ � ε, this is greater than (3− ε)(n/3)2 and we are done. If
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on the other hand H′ contains at least 2δn′3 copies of F5, then again this is at least δn3 and

we are done. So if we could prove the result for H′ with 2δ, ε/2, then we could prove the

result for H (with δ, ε). Consequently, we may assume that H has minimum degree at least

(2/9− oδ(1))
(
n
2

)
= (1− oδ(1))(n/3)2.

If #F5 ≥ δn5, then we are done so assume that #F5 < δn4. Then by the Removal lemma,

there is a set of at most oδ(n
3) edges ofH whose removal results in a 3-graphH′ with no copies

of F5. Since |H′| > t3(n) − oδ(n3), by Theorem 17, we conclude that there is a 3-partition

of H′ (and also of H) such that the number of edges with at least two points in a part is

oδ(n
3). Now pick a partition X ∪Y ∪Z of H that maximizes e(X, Y, Z) = H∩ (X ×Y ×Z).

We know that e(X, Y, Z) ≥ t3(n) − oδ(n3), and an easy calculation also shows that each of

X, Y, Z has size n/3 + oδ(n).

Let B = H− (X × Y × Z) be the set of edges of H that have at least two points in one of

the partition classes and set G = H − B. Let M = (X × Y × Z) −H be the set of triples

with one point in each of X, Y, Z that are not edges of H. Then G ∪M = (H− B) ∪M is

3-partite so it has at most t3(n) triples. Since |H| = t3(n) + 1, we conclude that

0 ≤ |M | < |B| = oδ(n
3).

Claim. For every vertex v of H we have dM(v) < ε′(n/3)2 for ε′ = ε/106.

Proof of Claim. Suppose for contradiction that dM(v) ≥ ε′(n/3)2 for some vertex v. Then

(1− oδ(1))(n/3)2 ≤ dH(v) = dG(v) + dB(v) ≤ (1 + oδ(1))(n/3)2 − ε′(n/3)2 + dB(v).

We conclude that dB(v) ≥ (ε′ − oδ(1))(n/3)2 > (ε′/2)(n/3)2. Assume wlog that v ∈ X.

Case 1: dBXXX
(v) > (ε′/10)(n/3)2. Suppose that e = uvw satisfies v ∈ e ∈ BXXX and

(y, z) ∈ Y × Z. The number of such choices for (e, (y, z)) is at least dBXXX
(v)|Y ||Z| >

(ε′/20)(n/3)4. If for at least half of these choices e ∪ {y, z} forms a copy of F5 via the edges

e, uyz, wyz then we have #F5 > (ε′/40)(n/3)4 > δn3, a contradiction. So for at least half of

the choices of (e, (y, z)) above, xyz 6∈ H for some x ∈ {u,w} (i.e. xyz ∈M). Since each such

triple of M is counted at most |X| < n times (as v is fixed), we obtain the contradiction

(ε′/40n)(n/3)4 < |M | = oδ(n
3). This concludes the proof in this case.

Case 2: dBXXY
(v) > (ε′/10)(n/3)2 or dBXXZ

(v) > (ε′/10)(n/3)2. Assume by symmetry that

dBXXY
(v) > (ε′/10)(n/3)2. We may assume that dG(v) ≥ dBXXY

(v) for otherwise we can
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move v to Z and contradict the choice of the partition. Suppose that e = uvw satisfies

v ∈ e ∈ BXXY with u ∈ X,w ∈ Y . Let (y, z) ∈ (Y − {w})× Z be such that vyz ∈ H. The

number of such choices for (e, (y, z)) is at least dBXXY
(v)(dG(v) − |Z|) > (ε′/11)2(n/3)4. If

for at least half of these choices e∪ {y, z} forms a copy of F5 via the triples e, uyz, vyz then

we have #F5 > (ε′/20)2(n/3)4 > δn3, a contradiction. So for at least half of the choices of

(e, (y, z)) above, uyz 6∈ H (i.e. uyz ∈ M). Since each such triple of M is counted at most

|Y | < n times (as v is fixed), we obtain the contradiction (ε′/20)2(n/3)4/n < |M | = oδ(n
3).

This concludes the proof in this case.

Case 3: dBXY Y
(v) > (ε′/10)(n/3)2 or dBXZZ

(v) > (ε′/10)(n/3)2. Assume by symmetry

that dBXY Y
(v) > (ε′/10)(n/3)2. Suppose that e = uvw satisfies v ∈ e ∈ BXXY with

u,w ∈ Y . Pick (x, z) ∈ (X − {v}) × Z. The number of such choices for (e, (x, z)) is at

least dBXY Y
(v)(|X| − 1)|Z| > (ε′/11)2(n/3)4. If for at least half of these choices e ∪ {x, z}

forms a copy of F5 via the triples xzu, xzw, e then we have #F5 > (ε′/20)2(n/3)4 > δn3, a

contradiction. So for at least (ε′/20)2(n/3)4 of the choices of (e, (x, z)) above, xyz 6∈ H for

some y ∈ {u,w} (i.e. xyz ∈ M). For at least half of these choices, we may assume that

y = u. Since each such triple of M is counted at most |Y | < n times (as v is fixed), we

obtain the contradiction (ε′/20)2(n/3)4/2n < |M | = oδ(n
3). This concludes the proof of the

Claim.

Let B1 = BXXX∪BY Y Y ∪BZZZ ⊂ B, where the subscripts have the obvious meaning (BXXX

is the set of edges in B with three points in X etc.), and let B2 = B −B1, so B2 consists of

those edges of H that have two points in one part and one point in some other part.

Suppose that e = uvw ∈ BXXX . For each (y, z) ∈ Y × Z the points u, v, w, y, z form a

potential copy of F5 via e and two triples involving y, z. For at least (ε/2)(n/3)2 of these

potential copies, xyz ∈M for x ∈ e, otherwise e lies in (3−oδ(1)−ε/2)(n/3)2 > (3−ε)(n/3)2

copies of F5 and we are done. Each such triple of M is counted at most twice, hence the

number of triples intersecting e is at least (ε/4)(n/3)2, and at least a third of these triples

contain the same vertex x ∈ e. We conclude that dM(x) > (ε/12)(n/3)3 ≥ ε′(n/3)2 which

contradicts the Claim. The argument above works for any e ∈ B1, so we have shown that

B1 = ∅.

Let e = uvw ∈ B2 = B, where u, v are in the same part, say X, and w is in another part,

say Y . For each (y, z) ∈ (Y − {w})×Z, there are three types of potential copies of F5 with

vertices u, v, w, y, z:
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Type 1: uyz, vyz, e

Type 2: uwz, e, vyz or vwz, e, uyz

The number of Type i potential copies of F5 is (|Y | − 1)|Z| = (1 − oδ(1))(n/3)2. We may

assume that the number of Type 1 (real, not potential) copies of F5 is at most (1−ε/3)(n/3)2,

or that the number of Type 2 (real, not potential) copies of F5 is at most (2− 2ε/3)(n/3)2.

Otherwise e lies in at least (3− ε)(n/3)2 copies of F5 and we are done.

Suppose that the number of Type 1 copies of F5 is at most (1− ε/3)(n/3)2. The number of

pairs (y, z) ∈ (Y − {w})× Z for which either uyz ∈M or vyz ∈M is at least

(|Y | − 1)|Z| − (1− ε/3)(n/3)2 > (1− oδ(1)− 1 + ε/3)(n/3)2 > (ε/4)(n/3)2.

Hence there exists x ∈ {u, v} such that xyz ∈M for at least (ε/8)(n/3)2 pairs (y, z) ∈ Y ×Z.

In other words, dM(x) > (ε/8)(n/3)2 ≥ ε′(n/3)2. This contradicts the Claim.

We may therefore suppose that the number of Type 2 copies of F5 is at most (2−2ε/3)(n/3)2.

Assume by symmetry that there are at most (1 − ε/3)(n/3)2 Type 2 copies of the form

uwz, e, vyz. Arguing as above, the number of pairs (y, z) ∈ Y ×Z for which either uwz ∈M
or vyz ∈ M is at least (ε/4)(n/3)2. If at least half of the time we have vyz ∈ M , then we

obtain dM(v) > (ε/8)(n/3)2 ≥ ε′(n/3)2 and contradict the Claim. We therefore conclude that

for at least (ε/8)(n/3)2 pairs (y, z) ∈ Y ×Z, we have uwz ∈M . Consequently, the number of

z ∈ Z for which uwz ∈M is at least (ε/10)(n/3). We write this as dM(uw) ≥ (ε/10)(n/3).

We have argued that for every edge e = uvw ∈ B with u, v in the same part and w in a

different part, either dM(uw) ≥ εn/30 or dM(vw) ≥ εn/30. Form a bipartite graph with

parts B and M . Let e ∈ B be adjacent to f ∈ M if |e ∩ f | = 2. We have shown above

that each e ∈ B has degree at least εn/30. Since |B| > |M |, we conclude that there exists

f ∈ M which is adjacent to at least εn/30 different e ∈ B. Each of these e ∈ B has two

points in common point with f , so there is a pair of vertices u, v in different parts of H
that lie is at least εn/90 different e ∈ B. Assume wlog that u ∈ X, v ∈ Y , and also that

there are xi ∈ X for 1 ≤ i ≤ εn/180 such that uvxi ∈ B for each i. For each xi, consider

(y, z) ∈ (Y −{v})×Z and triples xivz, xivu, uyz. The number of such choices for (i, y, z) is

at least (εn/200)(n/3)2. If for at least half of these choices these three triples are edges of H,

then we obtain #F5 ≥ (εn/400)(n/3)2 > δn3 and we are done. So for at least half of these

choices of (i, y, z) we have either xivz ∈ M or uyz ∈ M . Each such triple of M is counted

at most n times so we obtain at least (ε/400)(n/3)2 triples from M incident to some vertex
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of e. At least one third of these triples are incident to the same vertex of e, so we obtain

x ∈ e with dM(x) ≥ (ε/1200)(n/3)2 ≥ ε′(n/3)2. The contradicts the Claim and completes

the proof.

7.2 Counting B5’s

Theorem 6 follows from the following result. Recall that c(n,B5) = (2 + o(1))(n/3)2.

Theorem 18. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n-vertex 3-graph with b3(n) + 1 edges contains either

• an edge that lies in at least (2− ε)(n/3)2 copies of B5, or

• at least δn4 copies of B5.

Proof of Theorem 6. Remove q − 1 edges from H and apply Theorem 18. If we find δn4

copies of B5, then since q < δn2, the number of copies is much larger than (1 − ε)c(n,B5)

and we are done. Consequently, we find an edge e1 in at least (2−ε)(n/3)2 > (1−ε)c(n,B5)

copies of B5. Now remove q − 2 edges from H − e1 and repeat this argument to obtain e2.

In this way we obtain edges e1, . . . , eq as required.

Sharpness follows by adding a partial Steiner triple system to B3(n) where each added edge

is entirely within X. In other words, we are adding a collection of triples within X such that

every two have at most one point in common. It is easy to see that each added edge lies

in c(n,B5) − O(1) copies of B5 and moreover, since these edges have at most one common

point, these copies are counted exactly once.

We will need the following stability theorem for B5 proved by Füredi-Pikhurko-Simonovits

[9].

Theorem 19. (B5 stability [9]) Let H be a 3-graph with n vertices and b3(n)−o(n3) edges

that contains no copy of B5. Then there is a partition of the vertex set of H into X ∪ Y so

that the number of edges that are not of the form XXY is o(n3). In other words, H can be

obtained from B3(n) by adding and deleting a set of o(n3) edges.

Proof of Theorem 18. Given ε let 0 < δ � ε. Write oδ(1) for any function that

approaches zero as δ approaches zero and moreover, oδ(1) � ε. Let n be sufficiently large
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and let H be an n-vertex 3-graph with b3(n) + 1 edges. Write #B5 for the number of copies

of B5 in H.

We first argue that we may assume that H has minimum degree at least d = (4/9)(1−δ1)
(
n
2

)
,

where δ1 = δ1/4. Indeed, if this is not the case, then remove a vertex of degree less than d to

form the 3-graph H1 with n− 1 vertices. Continue removing a vertex of degree less than d

if such a vertex exists. If we could continue this process for δ2n steps, where δ2 = δ1/2, then

the resulting 3-graph H′ has (1− δ2)n vertices and number of edges at least

4

9
(1− δ − 3δ2(1− δ1)

(
n

3

)
>

4

9
(1 + δ)

(
(1− δ2)n

3

)
.

By the result of Füredi-Pikhurko-Simonovits [9] and Erdős-Simonovits supersaturation we

conclude that H has at least δ′n5 copies of B5 (for some fixed δ′ > 0) and we are done. So

we may assume that this process of removing vertices of degree less than d terminates in

at most δ2n steps, and when it terminates we are left with a 3-graph H′ on n′ > (1 − δ2)n
vertices and minimum degree at least d.

Now suppose that we could prove that there is an edge of H′ that lies in at least (2 −
ε/2)(n′/3)2 copies of B5. Since δ � ε, this is greater than (2 − ε)(n/3)2 and we are done.

If on the other hand H′ contains at least 2δn′4 copies of B5, then again this is at least δn4

and we are done. So if we could prove the result for H′ with 2δ, ε/2, then we could prove

the result for H (with δ, ε). Consequently, we may assume that H has minimum degree at

least (4/9− oδ(1))
(
n
2

)
.

If #B5 ≥ δn4, then we are done so assume that #B5 < δn4. Then by the Removal lemma,

there is a set of at most oδ(n
3) edges of H whose removal results in a 3-graph H′ with no

copies of B5. Since |H′| > b3(n)−oδ(n3), by Theorem 19, we conclude that there is a partition

X ∪ Y of the vertex set of H′ (and also of H) such that the number of edges with 0, 1, or

3 points in X is oδ(n
3). Now pick a partition X ∪ Y of H that maximizes e(X,X, Y ) the

number of edges with exactly two points in X. We know that e(X,X, Y ) ≥ b3(n)− oδ(n3),

and an easy calculation also shows that |X| = 2n/3 + oδ(n) and |Y | = n/3 + oδ(n).

Let B be the set of edges of H that do not have exactly two points in X. Let M be the set

of triples with exactly two points in X that are not edges of H and let G = H−B be the set

of edges of H with exactly two points in X. Then H−B ∪M has a (2, 1)-partition X ∪ Y ,

so it has at most b3(n) edges. We conclude that

|M | < |B| = oδ(n
3).
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In particular, B 6= ∅. Partition B = BXXX ∪ BXY Y ∪ BY Y Y , where BXiY 3−i is the set of

edges in B with i points in X and 3− i points in Y .

Claim 1. For every vertex v of H we have dBXXX
(v) < ε1n

2, where ε1 = ε2/106.

Proof of Claim 1. Suppose for contradiction that dBXXX
(v) > ε1n

2 for some vertex v.

Let B(v) be the set of edges in BXXX that contain v, so |B(v)| = dBXXX
(v). First observe

that dG(v) ≥ dBXXX
(v), for otherwise we can move v to Y and contradict the choice of the

partition X, Y . Now for each e = vab ∈ B(v) and f = vxy ∈ H with {a, b, x} ∈
(
X−{v}

3

)
, y ∈

Y , consider the two triples axy, bxy. We see that e, f, axy, bxy forms a (potential) copy of

B5. For each e, the number of f is at least dG(v)− n ≥ |B(v)| − n > |B(v)|/2, since f must

omit a, b and there are at most |Y | pairs containing either of them. Hence the number of

choices for (e, f) is at least |B(v)|2/2. If for at least half of these choices of (e, f), we obtain

a copy of B5 in H, then #B5 > |B(v)|2/4 > δn4, a contradiction. So for at least half of the

choices of (e, f) above, one of the triples axy, bxy is in M . A given triple in M is counted

at most |X| < n times, so we obtain the contradiction |B(v)|2/(4n) < |M | = oδ(n
3). This

finishes the proof of the Claim.

Case 1. |BXXX | ≥ |B|/3.

For each e = uvw ∈ BXXX , and (x, y) ∈ (X−e)×Y , there is a potential copy of B5 consisting

of vertices u, v, w, x, y and edges uxy, vxy, wxy, e. This gives a total of (|X| − 3)|Y | > (2−
oδ(1))(n/3)2 potential copies of B5. At least (2ε/3)(n/3)2 of these potential copies of B5 have

a triple from M , for otherwise e would lie in at least (2−oδ(1)−2ε/3)(n/3)2 > (2−ε)(n/3)2

copies of B5 and we are done. The triple from M referenced above cannot be e (since e ∈ H),

and therefore lies in exactly one copy of B5 that was counted above. At least a third of these

triples from M are incident with the same vertex of e, hence there exists z ∈ e such that

dM(z) > (2ε/9)(n/3)2.

Let V = X ∪ Y and let

A = {v ∈ V : dM(v) > (2ε/9)(n/3)2}.

We have argued above that every e ∈ BXXX has a vertex in A. Consequently,

9
∑
v∈A

dBXXX
(v) ≥ 9|BXXX | ≥ 3|B| > 3|M | ≥

∑
v∈A

dM(v) > |A|(2ε/9)(n/3)2,

and there exists a vertex v ∈ X ∩ A such that dBXXX
(v) > (ε/50)(n/3)2 > ε1n

2. This

contradicts Claim 1 and concludes the proof in this case.
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Case 2. |BY Y Y | ≥ |B|/3.

For each e = uvw ∈ BY Y Y and x, x′ ∈ X, there is a potential copy of B5 consisting of vertices

u, v, w, x, x′ and edges xx′u, xx′v, xx′w, e. This gives a total of
(|X|

2

)
> (2 − oδ(1))(n/3)2

potential copies of B5. At least (2ε/3)(n/3)2 of these potential copies of B5 have a triple

from M , for otherwise e would lie in at least (2− oδ(1)− 2ε/3)(n/3)2 > (2− ε)(n/3)2 copies

of B5 and we are done. The triple from M referenced above cannot be e (since e ∈ H), and

therefore lies in exactly one copy of B5. At least a third of these triples from M are incident

with the same vertex of e, hence there exists z ∈ e such that dM(z) > (2ε/9)(n/3)2. As in

Case 1, let V = X ∪ Y and A = {v ∈ V : dM(v) > (2ε/9)(n/3)2}. We have argued above

that every e ∈ BY Y Y has a vertex in A. Consequently,

9
∑
v∈A

dBY Y Y
(v) ≥ 9|BY Y Y | ≥ 3|B| > 3|M | ≥

∑
v∈A

dM(v) > |A|(2ε/9)(n/3)2,

and there exists a vertex v ∈ Y ∩A such that dBY Y Y
(v) > (ε/50)(n/3)2. Let B(v) be the set

of edges in BY Y Y that contain v, so |B(v)| = dBY Y Y
(v).

Next we observe that dBXY Y
(v) ≤ dG(v) otherwise we can move v to X and contradict the

choice of the partition X, Y . We also recall that H has minimum degree at least (4/9 −
oδ(1))

(
n
2

)
, so

dBY Y Y
(v) + dG(v) + dBXY Y

(v) ≥ (4/9− oδ(1))

(
n

2

)
.

Since dBY Y Y
(v) ≤

(|Y |
2

)
< (1/9 + oδ(1))

(
n
2

)
, we conclude that

dG(v) >
1

2

(
4

9
− 1

9
− oδ(1)

)(
n

2

)
=

(
1

6
− oδ(1)

)(
n

2

)
.

Now for each e = vyy′ ∈ B(v) and f = vxx′ ∈ G (x, x′ ∈ X), consider the two triples

xx′y, xx′y′. We see that e, f, xx′y, xx′y′ forms a potential copy of B5. The number of choices

of (e, f) above is at least |B(v)|dG(v) = dBY Y Y
(v)dG(v). If for at least half of these choices

of (e, f), we obtain a copy of B5 in H, then #B5 > dBY Y Y
(v)dG(v)/2 > δn4, a contradiction.

So for at least half of the choices of (e, f) above, one of the triples xx′y, xx′y′ is in M .

A given triple in M is counted at most |Y | < n times, so we obtain the contradiction

dBY Y Y
(v)dG(v)/(2n) < |M | = oδ(n

3). This concludes the proof in this case.

Case 3. |BXY Y | ≥ |B|/3.

Let

B1 = {e ∈ BXY Y : there exists v ∈ e ∩ Y with dM(v) > ε(n/3)2}.
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Subcase 3.1. |B1| ≥ |BXY Y |/2. Let

A = {v ∈ Y : dM(v) > (ε/2)(n/3)2}.

By definition, every e ∈ B1 has a vertex in A. Therefore

18
∑
v∈A

dB1(v) ≥ 18|B1| ≥ 9|BXY Y | ≥ 3|B| > 3|M | ≥
∑
v∈A

dM(v) > |A|(ε/2)(n/3)2,

and there exists a vertex v ∈ Y such that

dBXY Y
(v) ≥ dB1(v) > (ε/36)(n/3)2.

Recall that G is the set of edges ofH with exactly two points in X. Next observe that dG(v) ≥
dBXY Y

(v) for otherwise we can move v to X which increases e(X,X, Y ) and contradicts the

choice of X, Y . It follows that dG(v) > (ε/36)(n/3)2.

Now for each e = uvw ∈ BXY Y and f = xx′v ∈ G with {u, x, x′} ∈
(
X
3

)
, and w ∈ Y , consider

the two triples uwx, uwx′. We see that e, uwx, uwx′, xx′v forms a potential copy of B5. The

number of choices of (e, f) above is at least dBXY Y
(v) × (dG(v) − |X|) > dBXY Y

(v)dG(v)/2.

If for at least half of these choices of (e, f), we obtain a copy of B5 in H, then

#B5 >
dBXY Y

(v)dG(v)

4
>

ε2

105

(n
3

)4
> δn4,

a contradiction. So for at least half of the choices of (e, f) above, one of the triples uwx, uwx′

is in M . A given triple in M is counted at most |X| < n times, so we obtain the contradiction

ε2

105

(
n3

34

)
<
dBXY Y

(v)dG(v)

4n
< |M | = oδ(n

3).

This concludes the proof in this subcase.

Subcase 3.2. |B1| < |BXY Y |/2. So in this subcase we have |B2| ≥ |BXY Y |/2, where

B2 = {e ∈ BXY Y : for every v ∈ e ∩ Y we have dM(v) ≤ (ε/2)(n/3)2}.

Fix e = uvw ∈ B2 with u ∈ X and v, w ∈ Y .

Claim 2. There exist sets Xv, Xw ⊂ X such that

• xuv ∈M for every x ∈ Xv and xuw ∈M for every x ∈ Xw and

• |Xv| > (ε/20)n and |Xw| > (ε/20)n
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Proof of Claim 2. Let Xv = {x ∈ X : xuv ∈M}. We will show that |Xv| ≥ (ε/20)n. The

same argument will apply to Xw.

Suppose for contradiction that |Xv| < (ε/20)n. Pick x, x′ ∈ X−Xv and consider u, v, w, x, x′.

The triples uvx, uvx′, e, xx′w form a potential copy of B5. Since x, x′ ∈ X − Xv, we have

uvx ∈ H and uvx′ ∈ H. So if these four edges do not form a copy of B5 in H then xx′w ∈M .

Since e ∈ B2, the number of pairs {x, x′} ∈
(
X
2

)
such that xx′w ∈M is at most (ε/2)(n/3)2.

Consequently, the number of pairs x, x′ ∈ X −Xv with xx′w ∈ H is at least(
|X −Xv| − 1

2

)
− ε

2

(n
3

)2
>

(
(1− oδ(1)− 3ε

40
)2n

3

2

)
− ε

2

(n
3

)2
>

(
2
(

1− ε

10

)2
− ε

2

)(n
3

)2
=

(
2− 9ε

10
+
ε2

50

)(n
3

)2
> (2− ε)

(n
3

)2
.

This gives us the required number of copies of B5 containing the edge e and concludes the

proof of the Claim.

For each edge e = uvw ∈ B2 with u ∈ X, v, w ∈ Y , Claim 2 shows that are at least

(ε/20)n triples of the form xuv ∈M . Form the bipartite graph with parts B2 and M , where

uvw ∈ B2 is adjacent to all such xuv ∈M . Then since every vertex of B2 has degree at least

(ε/20)n, and |B2| ≥ |BXY Y |/2 ≥ |B|/6 > |M |/6, we conclude that there exists xuv ∈ M

(with v ∈ Y ) which is adjacent to at least (ε/120)n edges in B2. Each of these edges of B2

contains v, and either x or u, so we may assume by symmetry that at least half of them

contain u. So we have uvwi ∈ B2, where u ∈ X and v, wi ∈ Y for i = 1, . . . , (ε/240)n. For

each wi, consider the set Xwi
defined in Claim 2. We know that x′uwi ∈ M for each wi

and x′ ∈ Xwi
. Since these triples are distinct for distinct wi or distinct x′, we conclude that

dM(u) ≥ (ε/240)n(ε/20)n = (ε2/4800)n2. Recalling the minimum degree condition on H,

we have

(4/9− oδ(1))

(
n

2

)
≤ dH(u) = dG(u) + dB(u) ≤ (4/9− oδ(1))

(
n

2

)
− dM(u) + dB(u).

We conclude that dB(u) ≥ (ε2/5000)n2. By Claim 1 we know that dBXXX
(u) < ε1n

2 where

ε1 = ε2/105. As dB(u) = dBXXX
(u) + dBXY Y

(u), we obtain

d := dBXY Y
(u) = dB(u)− dBXXX

(u) > (ε2/5000)n2 − ε1n2 ≥ 2ε1n
2.
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Say that uyy′ ∈ BXY Y is bad if

|{x ∈ X : xuy ∈M or xuy′ ∈M}| > (1− ε1)(2n/3).

Let

S =

{
{y, y′} ∈

(
|Y |
2

)
: uyy′ is bad

}
.

Now suppose that |S| ≥ (0.9)d. For each e = uyy′ ∈ BXY Y with {y, y′} ∈ S there is a set

Xe ⊂ X with |Xe| ≥ (1 − ε1)(2n/3) such that xuy ∈ M or xuy′ ∈ M for all x ∈ Xe. Each

of these triples in M is counted at most |Y | times so we obtain

dM(u) ≥ |S|(1− ε1)(2n/3)

(1 + oδ(1))n/3
= 2(1− 2ε1)|S| ≥ (1.8)(1− 2ε1)d > (1.7)d. (6)

Again recalling the minimum degree condition on H, we have

(4/9− oδ(1))

(
n

2

)
≤ dH(u) = dBXXX

(u) + dG(u) + dBXY Y
(u)

= dBXXX
(u) +

(
(4/9 + oδ(1))

(
n

2

)
− dM(u)

)
+ d.

Using (6) and d > ε1n
2 we obtain dBXXX

(u) > (0.7)d − oδ(n
2) > ε1n

2. This contradicts

Claim 1 and concludes the proof if |S| ≥ (0.9)d.

Next suppose that |S| < (0.9)d. So for at least (0.1)d edges e = uyy′ ∈ BXY Y we have a set

Xe ⊂ X such that

|Xe| ≥ (ε1 − oδ(1))(2n/3) > (ε1/3)n

and uyx ∈ H for all x ∈ Xe (also uy′x ∈ H but we wont use this).

Let x, x′ ∈ Xe and consider the triple xx′y′. We see that e, uyx, uyx′, xx′y′ forms a potential

copy of B5. The number of choices for (e, {x, x′}) above is at least

(0.1)d×
(

(ε1/3)n

2

)
> (ε1/5)n2 × (ε21/20)n2 = (ε31/100)n4.

If for at least half of these choices of (e, {x, x′}), we have xx′y′ ∈ H, then

#B5 > (ε31/200)n4 > δn4,

a contradiction. So for at least half of the choices of (e, {x, x′}) above, xx′y′ ∈ M . A given

triple xx′y′ ∈M is counted at most |Y | < n/2 times, so we obtain the contradiction

ε31
200

n3 ≤
(0.1)d×

(|Xe|
2

)
n

< |M | = oδ(n
3).

This completes the proof of the subcase and the Theorem.
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7.3 Counting Expansions of Cliques

In this section we will prove Theorems 7 and 8.

7.3.1 Asymptotic Counting

Theorem 7 follows from the following result. Recall that lr+1 =
(
r+2
2

)
is the number of

vertices of Lr+1 and c(n, Lr+1) = Θ(nlr+1−3).

Theorem 20. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n vertex 3-graph with t3r(n) + 1 edges contains either

• at least δnlr+1−1 copies of Lr+1, or

• an edge that lies in at least c(n, Lr+1) copies of Lr+1, or

• two edges that each lie in at least (1− ε)c(n, Lr+1) copies of Lr+1 with none of these copies

containing both edges.

Proof of Theorem 7. Remove q−1 edges fromH and apply Theorem 20. If we find δnlr+1−1

copies of Lr+1, then since q < δn2, the number of copies is much larger than q(1−ε)c(n, Lr+1)

and we are done. Consequently, we find an edge e1 in at least (1 − ε)c(n, Lr+1) copies of

Lr+1. Now remove q − 2 edges from H − e1 and repeat this argument to obtain e2. In this

way we obtain edges e1, . . . , eq as required.

Sharpness follows by the following construction: Take T 3
r (n) with parts V1, . . . , Vr, pick any

point y ∈ V2, and add q edges of the form xx′y with x, x′ ∈ V1. Each added edge lies in

at most (1 + ε)c(n, Lr+1) copies of Lr+1, and no two added edges lie in a common copy of

Lr+1, since Lr+1 has the property that for every two edges e, e′ containing a common vertex

v, there is another edge f containing a point from each of e − {v} and e′ − {v} and v 6∈ f .

Taking two edges containing y, we see that there is no edge that can play the role of f

above.

We will need the following stability result proved by Pikhurko [24] (see also [18]).

Theorem 21. (Lr+1 Stability [24]) Let H be a 3-graph with n vertices and t3r(n)− o(n3)

edges that contains no copy of Lr+1. Then there is a partition of the vertex set of H into r
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parts so that the number of edges that intersect some part in at least two points is o(n3). In

other words, H can be obtained from T 3
r (n) by adding and deleting a set of o(n3) edges.

Proof of Theorem 20. Given ε let 0 < δ � ε. Write oδ(1) for any function that approaches

zero as δ approaches zero and moreover, oδ(1)� ε. Let n be sufficiently large and let H be

an n vertex 3-graph with t3r(n) + 1 edges. Write #Lr+1 for the number of copies of Lr+1 in

H.

If #Lr+1 ≥ δnlr+1−1, then we are done so assume that #Lr+1 < δnlr+1−1. Then by the

Removal lemma, there is a set of at most oδ(n
3) edges of H whose removal results in a

3-graph H′ with no copies of Lr+1. Since |H′| > t3r(n)− oδ(n3), by Theorem 21, we conclude

that there is an r-partition V1 ∪ · · · ∪Vr of H′ (and also of H) such that the number of edges

that intersect some part in at least two points is oδ(n
3). Now pick a partition V1 ∪ · · · ∪ Vr

of H that maximizes h1 + 2h2 + 3h3, where hi is the number of edges of H that intersect

precisely i of the parts. The partition guaranteed by Theorem 21 satisfies h1 + 2h2 = oδ(n
3),

and hence for this particular partition h1 + 2h2 + 3h3 ≥ 3|H|− 2(h1 + h2) > 3t3r(n)− oδ(n3).

Since h1 + 2h2 + 3h3 ≤ 3|H| − (h1 + h2) we conclude that for the partition that maximizes

h1 + 2h2 + 3h3 we have h1 + 2h2 = oδ(n
3) and h3 ≥ t3r(n) − oδ(n3). A standard calculation

also shows that for this partition each Vi has size n/r ± oδ(n).

Let B = H−
∏r

i=1 Vi, let G = H− B and M =
∏r

i=1 Vi −G. Then H− B ∪M is r-partite

so it has at most t3r(n) edges. We conclude that

|M | < |B| = oδ(n
3),

in particular |B| ≥ 1. We will now argue that we can improve this to |B| ≥ 2. We may

suppose that ni := |Vi| satisfy n1 ≥ n2 ≥ . . . ≥ nr. Pick e1 ∈ B. If H − e1 ∼= T 3
r (n),

then clearly e1 lies in at least c(n, Lr+1) copies of Lr+1 and we are done. So assume that

H− e1 6∼= T 3
r (n). Suppose that B ∩ (H− e1) = ∅. Then either nr ≥ n1 − 1 and

t3r(n) = |H − e1| ≤

 ∑
S∈([r]

3 )

∏
i∈S

ni

− 1 < t3r(n),

or nr < n1 − 1 and

t3r(n) = |H − e1| ≤
∑
S∈([r]

3 )

∏
i∈S

ni < t3r(n).
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In either case we have a contradiction, so we may assume that B ∩ (H − e1) 6= ∅. In other

words, there exists e2 6= e1 such that e2 ∈ B and therefore |B| ≥ 2. We will now show that

every e ∈ B lies in at least (1− ε)c(n, Lr+1) copies of Lr+1 in H and each copy uses a unique

edge from B.

Let e = xyz ∈ B. We may assume by symmetry that x, y ∈ V1. Pick (v2, . . . , vr) ∈
V2×· · ·×Vr with vi 6= z for all i. For every pair of distinct vertices {a, b} with a ∈ {v2, . . . , vr}
and b ∈ {x, y, v2, . . . , vr} (there are

(
r−1
2

)
+ 2(r − 1) such {a, b}), let vab be a vertex in a

part different from a, b that is distinct from all other vertices being considered. The number

of choices for the (
(
r+1
2

)
+ r − 2)-tuple (v2, . . . , vr, {vab}a,b) is at least (1 − oδ(1))c(n, Lr+1).

Moreover, the
(
r+1
2

)
edges e and {abvab}a,b form a potential copy of Lr+1 with x, y, v2, . . . , vr

forming the original Kr+1 whose edges have been expanded. At least (ε/2)c(n, Lr+1) of

these potential copies of Lr+1 have a triple from M , otherwise e would lie in at least (1 −
oδ(1) − ε/2)c(n, Lr+1) > (1 − ε)c(n, Lr+1) copies of Lr+1 and we are done. Suppose that at

least (ε/4)c(n, Lr+1) of these potential copies of Lr+1 have the triple from M omitting e.

Since each such triple from M is counted at most nlr+1−6 times, we obtain the contradiction

(ε/4)c(n, Lr+1)/n
lr+1−6 ≤ |M | < oδ(n

3). So at least (ε/4)c(n, Lr+1) of these potential copies

of Lr+1 have a triple from M containing x or y. Each such triple from M is counted at most

nlr+1−5 times, so there are at least (ε/4)c(n, Lr+1)/n
lr+1−5 = ε′n2 triples from M containing

x or y (for suitable ε′ > 0 depending only on r). We may assume by symmetry that

dM(x) > (ε′/2)n2.

We have shown above that for each e ∈ B, there is a vertex x ∈ e that lies in the (unique)

part that has at least two points from e, with dM(x) > (ε′/2)n2. Form a bipartite graph

with parts B and M , where each e ∈ B is adjacent to those f in M for which e ∩ f = {x}
and x lies in the part that has at least two points of e. Then each vertex of B has degree

at least (ε′/2)n2. Since |B| > |M | we conclude that there exists f ∈ M adjacent to at least

(ε′/2)n2 different e ∈ B in the way specified above. At least (ε′/6)n2 of these e ∈ B contain

the same point x ∈ f . Assume wlog that x ∈ V1.

For each i ∈ [r] and ε1 = ε′/100, define

Ai = {y ∈ Vi : dH(xy) ≥ ε1n}.

Claim. |Ai| < ε1n for some i ∈ [r].

Proof of Claim. Suppose to the contrary that |Ai| ≥ ε1n for each i. Then the number
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of choices (v1, . . . , vr) ∈ A1 × · · · × Ar is at least (ε1n)r. For every pair of distinct vertices

{a, b} ⊂ {v1, . . . , vr}, let wab 6= x be a vertex in a part different from a, b (there are at

least (1 − 2/r)n > n/2r choices for wab). For every vertex c ⊂ {v1, . . . , vr}, let wc be a

vertex such that xcwc ∈ H. By definition of Ai, we know that the number of such wc is at

least ε1n. Consequently, the number of choices for the (lr+1 − 1)-tuple of distinct vertices

(v1, . . . , vr, {wab}a,b, {wc}c) is at least

(ε1n)r(n/2r)(
r
2)(ε1n)r > (ε1/r)

r2nlr+1−1 = ε2n
lr+1−1.

Moreover, the
(
r+1
2

)
triples xcwc, abwab over all choices of a, b, c form a potential copy of

Lr+1 with x, v1, . . . , vr forming the original Kr+1 whose edges have been expanded. At least

(ε2/2)nlr+1−1 of these potential copies of Lr+1 have a triple from M , otherwise #Lr+1 ≥
(ε2/2)nlr+1−1 > δnlr+1−1 and we are done. Each such triple from M omits x and is therefore

counted at most nlr+1−4 times (since x is fixed and Lr+1 has lr+1 vertices) so we obtain the

contradiction (ε2/2)nlr+1−1/nlr+1−4 ≤ |M | < oδ(n
3). This completes the proof of the Claim.

Let B(x) be the set of edges of B containing x with at least two vertices in V1. Then we had

earlier shown that |B(x)| ≥ (ε′/6)n2 > 10ε1n
2.

Let H(x) be the set of pairs {y, z} such that xyz ∈ B(x), so one of y, z ∈ V1 and |H(x)| =
|B(x)|. Now |A1| ≥ ε1n for otherwise we obtain the contradiction

|B(x)| ≤
∑
v∈V1

dH(x)(v) =
∑
v∈A1

dH(x)(v) +
∑

v∈V1−A1

dH(x)(v) ≤ (ε1n)n+ (n/2)(ε1n) < 2ε1n
2.

The Claim implies that one of |A2|, . . . , |Ar| is less than ε1n. By symmetry, we may assume

that |Ar| < ε1n. The number of edges in H containing x and some vertex of Vr is at most

|Ar|n+ |Vr|ε1n < 2ε1n
2. Hence the number of edges in B(x) that have no vertex in Vr is at

least |B(x)| − 2ε1n
2 > 8ε1n

2.

Now let us contemplate moving x from V1 to Vr. The edges of H containing x whose

contribution to
∑

i ihi decreases (by at most one) must have a vertex in Vr, and their number

is at most 2ε1n
2. The edges in B(x) that have no vertex in Vr give an increased contribution

to
∑

i ihi (each edge contributes an increase of exactly one), and their number is at least

8ε1n
2. All other edges containing x (i.e. those with r − 1 vertices in V2 ∪ · · · ∪ Vr−1) do not

change their contribution to
∑

i ihi. The net contribution to
∑

i ihi therefore increases by at

least 6ε1n
2 > 0, thus contradicting the choice of the partition and completing the proof.

38



7.3.2 Exact Counting

In this subsection we will use Theorem 20 to prove Theorem 8.

Proof of Theorem 8. Given q ≥ 1, let 0 < ε ≤ 1/(q + 1). Then 2(1 − ε)c(n, Lr+1) ≥
c(n, Lr+1). Let δ and n0 be the outputs of Theorem 7 with input ε. Choose n > n0 such that

it also satisfies δnlr+1−1 > q × c(n, Lr+1) (this is a triviality since c(n, Lr+1) = O(nlr+1−3)).

Suppose that H is an n vertex 3-graph with t3r(n) + q edges. Write #Lr+1 for the number of

copies of Lr+1 in H. Let us prove by induction on q that #Lr+1 ≥ q × c(n, Lr+1). If q = 1,

then Theorem 20 and the definitions of ε, δ, n imply that

#Lr+1 ≥ min{δnlr+1−1, c(n, Lr+1), 2(1− ε)c(n, Lr+1)} ≥ c(n, Lr+1).

Let us assume that q > 1 and the result holds for q − 1.

Let e1 be an edge of H that lies in the maximum number of copies of Lr+1, say that it lies

in c1(n) copies. If c1(n) ≥ c(n, Lr+1), then let H1 = H − e1. By induction, H1 has at least

(q − 1)c(n, Lr+1) copies of Lr+1. These copies are distinct from those containing e1 so we

obtain

#Lr+1 ≥ c1(n) + (q − 1)c(n, Lr+1) ≥ qc(n, Lr+1)

and we are done.

We may therefore assume that c1(n) < c(n, Lr+1). Let e2 be an edge of H1 that lies in the

maximum number c2(n) of copies of Lr+1 in H1. Since H1 ⊂ H, clearly c2(n) ≤ c1(n). Let

H2 = H1 − e2 and continue this process to obtain e1, . . . , eq−1. For each i ≤ q − 1, Theorem

20 implies that #Lr+1 ≥ δnlr+1−1 > qc(n, Lr+1) or ci(n) ≥ (1 − ε)c(n, Lr+1). In the former

case we are done, so we may assume that

(1− ε)c(n, Lr+1) ≤ cq−1(n) ≤ · · · ≤ c1(n) < c(n, Lr+1).

Consider Hq−1 = H− e1 − e2 . . .− eq−1. Then

|Hq−1| = |H| − (q − 1) = t3r(n) + q − (q − 1) = t3r(n) + 1.

Since cq−1(n) < c(n, Lr+1), Theorem 20 implies that Hq−1 has at least 2(1 − ε)c(n, Lr+1)

copies of Lr+1. Altogether we have

#Lr+1 ≥ 2(1− ε)c(n, Lr+1) +

q−1∑
i=1

ci(n) ≥ (1− ε)(q + 1)c(n, Lr+1) ≥ qc(n, Lr+1)

where the last equality follows from ε ≤ 1/(q + 1). This completes the proof.
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7.4 Counting P2’s

Recall that c(n, P2) = 2(n/4)3 + Θ(n2). Theorem 9 for l = 2 follows from the following

result.

Theorem 22. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n vertex 4-graph with t4(n) + 1 edges contains either

• an edge that lies in at least (2− ε)(n/4)3 copies of P2, or

• at least δn4 copies of P2.

Proof of Theorem 9 for l = 2. Remove q − 1 edges from H and apply Theorem 22.

If we find δn4 copies of P2, then since q < δn, the number of copies is much larger than

(1−ε)qc(n, P2) and we are done. Consequently, we find an edge e1 in at least (2−ε)(n/4)3 >

(1− ε)c(n, P2) copies of P3. Now remove q − 2 edges from H− e1 and repeat this argument

to obtain e2. In this way we obtain edges e1, . . . , eq as required.

The bound is sharp due to the following construction. Suppose that T 4(n) has parts

W,X, Y, Z. Fix a pair of points a, b ∈ W , and add q edges of the form abcd where c, d ∈ X.

It is easy to see that each added edge lies in 2(n/4)3 +O(n2) copies of P2 and no copy of P2

contains two of the new edges. Consequently, the copies of P2 are counted exactly once.

We will need the following stability theorem for P2 proved by Pikhurko [24]

Theorem 23. (P2 stability [24]) Let H be a 4-graph with n vertices and t4(n) − o(n4)

edges that contains no copy of P2. Then there is a partition of the vertex set of H into

W ∪ X ∪ Y ∪ Z so that the number of edges that intersect a part in at least two points is

o(n4). In other words, H can be obtained from T 4(n) by adding and deleting a set of o(n4)

edges.

Proof of Theorem 22. Given ε let 0 < δ � ε. Write oδ(1) for any function that approaches

zero as δ approaches zero and moreover, oδ(1)� ε. Let n be sufficiently large and let H be

an n vertex 4-graph with t4(n) + 1 edges. Write #P2 for the number of copies of P2 in H.

We first argue that we may assume thatH has minimum degree at least d = (3/32)(1−δ1)
(
n
3

)
,

where δ1 = δ1/4. Indeed, if this is not the case, then remove a vertex of degree less than d to

form the 4-graph H1 with n− 1 vertices. Continue removing a vertex of degree less than d
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if such a vertex exists. If we could continue this process for δ2n steps, where δ2 = δ1/2, then

the resulting 4-graph H′ has (1− δ2)n vertices and number of edges at least

t4(n)− δ2nd >
3

32
(1− δ − 4δ2(1− δ1))

(
n

4

)
=

3

32
(1− δ − 4δ2 + 4δ1δ2)

(
n

4

)
>

3

32
(1− δ − 4δ2 + (2δ + 6δ22 + 6δ22δ − 4δ2δ))

(
n

4

)
=

3

32
(1 + δ)(1− 4δ2 + 6δ22)

(
n

4

)
>

3

32
(1 + δ)(1− δ2)4

(
n

4

)
>

3

32
(1 + δ)

(
(1− δ2)n

4

)
.

By the result of Pikhurko [24] and Erdős-Simonovits supersaturation we conclude that H
has at least δ′n7 > δn4 copies of P2 (for some fixed δ′ > 0 depending on δ) and we are done.

So we may assume that this process of removing vertices of degree less than d terminates in

at most δ2n steps, and when it terminates we are left with a 4-graph H′ on n′ > (1 − δ2)n
vertices and minimum degree at least d.

Now suppose that we could prove that there is an edge of H′ that lies in at least (2 −
ε/2)(n′/4)3 copies of P2. Since δ � ε, this is greater than (2− ε)(n/4)3 and we are done. If

on the other hand H′ contains at least 2δn′4 copies of P2, then again this is at least δn4 and

we are done. So if we could prove the result for H′ with 2δ, ε/2, then we could prove the

result for H (with δ, ε). Consequently, we may assume that H has minimum degree at least

(3/32− oδ(1))
(
n
3

)
= (1− oδ(1))(n/4)3.

If #P2 ≥ δn4, then we are done so assume that #P2 < δn4 = (δ/n3)n7. Then by the

Removal lemma, there is a set of at most δn4 edges of H whose removal results in a 4-graph

H′ with no copies of P2. Since |H′| > t4(n)− δn4, by Theorem 23, we conclude that there is

a partition of H′ (and also of H) into four parts such that the number of edges intersecting

some part in at least two points is oδ(n
4). Now pick a partition W ∪ X ∪ Y ∪ Z of H

that maximizes e(W,X, Y, Z), the number of edges that intersect each part. We know that

e(W,X, Y, Z) ≥ t4(n) − oδ(n4), and an easy calculation also shows that each of W,X, Y, Z

has size n/4± oδ(n).

Let B be the set of edges of H that intersect some part in at least two points. Let G = H−B
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be the set of edges of H that intersect each part. Let M be the set of 4-tuples which intersect

each part and are not edges of H. Then H − B ∪M = G ∪M is a 4-partite 4-graph with

partition W,X, Y, Z, so it has at most t4(n) edges. We conclude that

|M | < |B| < oδ(n
4), (7)

in particular B 6= ∅.

Claim. For every vertex a of H we have dM(a) < ε1(n/4)3, where ε1 = ε/105.

Proof of Claim. Suppose for contradiction that dM(a) ≥ ε1(n/4)3 for some vertex a. Then

(1− oδ(1))(n/4)3 ≤ dH(a) = dG(a) + dB(a) ≤ (1 + oδ(1))(n/4)3 − ε1(n/4)3 + dB(a).

We conclude that dB(a) ≥ (ε1 − oδ(1))(n/4)3 > (ε1/2)(n/4)3. Let L = L(a) be the set

of triples {b, c, d} such that abcd ∈ B. So |L| = dB(a) > (ε1/2)(n/4)3. Partition L =

L1 ∪ L2 ∪ L3, where Li consists of those triples that intersect precisely i parts.

Case 1: |L1| > (ε1/10)(n/4)3. Let us assume by symmetry that the number of triples

bcd ∈ L1 with b, c, d ∈ W is at least (ε1/40)(n/4)3. For each choice of (x, y, z) ∈ X × Y × Z
with a 6= x, y, z, the three 4-tuples bxyz, cxyz, abcd form a potential copy of P2. The number

of such choices of ({b, c, d}, x, y, z) is at least (1 − oδ(1))(ε1/40)(n/4)6 > δn6 so for at least

half of these choices, one of the 4-tuples bxyz, cxyz must be in M . Each of these 4-tuples is

counted at most n2 times, since a is fixed. We obtain the contradiction (ε1/100n2)(n/4)6 <

|M | = oδ(n
4). This concludes the proof in this case.

Case 2: |L2| > (3ε1/10)(n/4)3. Pick bcd ∈ L2. There are 2 ×
(
4
2

)
= 12 possibilities for the

way the points b, c, d are distributed within the parts. Let us assume by symmetry that the

number of triples bcd ∈ L2 with b, c ∈ W , d ∈ X is at least (ε1/40)(n/4)3. Now proceed

exactly as in the proof of Case 1.

Case 3: |L3| > (ε1/10)(n/4)3. Assume wlog that a ∈ W . Pick bcd ∈ L3. There are 3

possibilities for the way the points b, c, d are distributed within the parts (one point must

be in W , the part containing a). Let us assume by symmetry that the number of triples

bcd ∈ L3 with (b, c, d) ∈ W × X × Y is at least (ε1/30)(n/4)3. We may assume that

dG(a) ≥ (ε1/30)(n/4)3 for otherwise we can move a to Z and increase e(W,X, Y, Z) thereby

contradicting the choice of the partition. Now pick bcd ∈ L3 as above and (x, y, z) ∈
(X − {c}) × (Y − {d}) × Z with axyz ∈ G. For each choice of (b, c, d, x, y, z) the three

4-tuples abcd, axyz, bxyz form a copy of P2. The number of such choices of (b, c, d, x, y, z)
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is at least (ε1/30)2(n/4)6 > δn6 so for at least half of these choices, one of the 4-tuples

bxyz ∈ M . Each of these 4-tuples is counted at most n2 times, since a is fixed. We obtain

the contradiction (ε1/30n)2(n/4)6 < |M | = oδ(n
4). This concludes the proof of this case and

the Claim.

Partition B = B1 ∪B2, where B2 consists of those edges of B with exactly two points in one

part, one point in a second part and one point in a third part (for example a WWXY edge

would be in B2). Suppose that B1 6= ∅ and pick e = abcd ∈ B1. Some two points of e must

lie in the same part, so assume wlog that a, b ∈ W .

Let us first suppose that c or d is in W , say c ∈ W . For every (x, y, z) ∈ X×Y ×Z (x, y, z 6=
d), we get three potential copies of P2 of the form wxyz, w′xyz, e where w,w′ ∈ {a, b, c}. At

least (n/4)3 of these potential copies of P2 contains a 4-tuple from M , otherwise we obtain

(2 − oδ(1))(n/4)3 copies of P2 containing e and we are done. Each such 4-tuple from M is

counted at most twice, so we obtain at least (1/2)(n/4)3 4-tuples from M that contain some

vertex in {a, b, c}. Consequently, there exists w ∈ e with dM(w) ≥ (1/6)(n/4)3 and this

contradicts the Claim.

We may therefore assume that a, b ∈ W and c, d lie in the same part different from W , say

c, d ∈ X. There are at least (ε/3)(n/4)3 choices (x, y, z) ∈ (X−{c, d})×Y×Z with vxyz ∈M
for some v ∈ {a, b} or there are at least (ε/3)(n/4)3 choices (w, y, z) ∈ (W −{a, b})×Y ×Z
with vxyz ∈ M for some v ∈ {c, d}. This is because otherwise e would lie in at least

(2− oδ(1)− 2ε/3)(n/4)3 > (2− ε)(n/4)3 copies of P2. In either case, we conclude that there

exists v ∈ e with dM(v) > (ε/6)(n/4)3 thus contradicting the Claim.

We conclude from the arguments above that B1 = ∅. Pick e = abcd ∈ B2 and assume wlog

that a, b ∈ W, c ∈ X, d ∈ Y . For (x, y, z) ∈ (X−{c})× (Y −{d})×Z, consider the following

two potential copies of P2:

e, bcdz, axyz e, acdz, bxyz.

The number of these potential copies of P2 is twice the number of choices of (x, y, z) and this

is at least (2−oδ(1))(n/4)3. At least (ε/2)(n/4)3 of these potential P2’s has a 4-tuple from M ,

otherwise we obtain at least (2−ε)(n/4)3 copies of P2 containing e and we are done. If for at

least (ε/4)(n/4)3 of these potential P2’s, the 4-tuple from M is of the form wxyz, w ∈ {a, b}
(i.e., the third in the lists), then there exists v ∈ {a, b} with dM(v) ≥ (ε/8)(n/4)3 > ε1n

3

thereby contradicting the Claim. So for at least (ε/4)(n/4)3 of these potential P2’s, the 4-
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tuple from M is of the form wcdz, w ∈ {a, b} (i.e., the second in the lists). Each such 4-tuple

from M is counted at most |X||Y | times, so there are at least (ε/4)(n/4)3/(|X||Y |) > (ε/20)n

4-tuples from M that intersect e in three points.

Form the bipartite graph with parts B = B2 and M where e ∈ B is adjacent to f ∈ M

if |e ∩ f | = 3. We have shown above that each e ∈ B has degree at least (ε/20)n. Since

|B| > |M |, we conclude that there exists f = abcd ∈M (with (a, b, c, d) ∈ W ×X × Y × Z)

that is adjacent to at least (ε/20)n different e’s from B. Assume wlog that at least (ε/80)n

of these e’s contain a, b, c. We may also assume wlog that at least (ε/240)n of these e’s have

their fourth vertex in the same part as a, namely W .

Now for each j = 1, . . . , (ε/240)n, let ej = wjabc ∈ B with wj ∈ W . For every (x, y, z) ∈
(X − {b})× (Y − {c})× Z, consider the potential copy of P2 given by wjxyz, axyz, ej. The

number of choices for (j, x, y, z) is at least (ε/240)n|X||Y ||Z| > (4ε/105)n4 > 2δn4. If for

at least half of these choices of (j, x, y, z) the potential copy of P2 is a real copy of P2 in H,

then #P2 ≥ δn4 and we are done. So we may assume that for at least half of the choices

of (j, x, y, z) (i.e. for at least (2ε/105)n4 choices), the potential copy of P2 referenced above

has a 4-tuple g ∈ M . If at least half the time a 6∈ g, then we obtain the contradiction

(ε/105)n4 ≤ |M | = oδ(n
4). So at least half the time a ∈ g. Each such g containing a is

counted at most n times (once for each wj), so we obtain dM(a) > (ε/105)n3 ≥ ε1n
3. This

contradicts the Claim and completes the proof of the theorem.

7.5 Counting P3’s

Recall that c(n, P3) = 2(n/2)3 − Θ(n2). Theorem 9 for l = 3 follows from the following

result.

Theorem 24. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n vertex 4-graph with d4(n) + 1 edges contains either

• an edge that lies in at least (2− ε)(n/2)3 copies of P3, or

• at least δn4 copies of P3.

Proof of Theorem 9 for l = 3. Remove q − 1 edges from H and apply Theorem 24.

If we find δn4 copies of P3, then since q < δn, the number of copies is much larger than
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q(1−ε)c(n, P3) and we are done. Consequently, we find an edge e1 in at least (2−ε)(n/2)3 >

(1− ε)c(n, P3) copies of P3. Now remove q − 2 edges from H− e1 and repeat this argument

to obtain e2. In this way we obtain edges e1, . . . , eq as required.

The bound is sharp due to the following construction. Add a collection of q pairwise disjoint

edges within one part of D4(n). It is easy to see that each added edge lies in 2(n/2)3 +O(n2)

copies of P3 and clearly no copy of P3 contains two of the new edges. Consequently, the

copies of P3 are counted exactly once.

We will need the following stability theorem for P3 proved by Füredi-Pikhurko-Simonovits

[9]

Theorem 25. (P3 stability [9]) Let H be a 4-graph with n vertices and d4(n)−o(n4) edges

that contains no copy of P3. Then there is a partition of the vertex set of H into X ∪ Y so

that the number of edges that intersect some part in 0, 1, 3 or 4 points is o(n4). In other

words, H can be obtained from D4(n) by adding and deleting a set of o(n4) edges.

Proof of Theorem 24. Given ε let 0 < δ � ε. Write oδ(1) for any function that approaches

zero as δ approaches zero and moreover, oδ(1)� ε. Let n be sufficiently large and let H be

an n vertex 4-graph with d4(n) + 1 edges. Write #P3 for the number of copies of P3 in H.

As in the proof of Theorem 22 (just replacing 3/32 by 3/8), we may assume that H has

minimum degree at least d = (3/8)(1− oδ(1))
(
n
3

)
If #P3 ≥ δn4, then we are done so assume that #P3 < δn4 = (δ/n3)n7. Then by the

Removal lemma, there is a set of at most δn4 edges of H whose removal results in a 4-

graph H′ with no copies of P3. Since |H′| > d4(n)− δn4, by Theorem 25, we conclude that

there is a partition of H′ (and also of H) into two parts such that the number of edges

intersecting some part in 0,1,3, or 4 points is oδ(n
4). Now pick a partition X ∪ Y of H that

maximizes e(X, Y ), the number of edges that intersect each part in two points. We know

that e(X, Y ) ≥ d4(n)− oδ(n4), and an easy calculation also shows that each of X, Y has size

n/2± oδ(n).

Let B be the set of edges of H that intersect some part in 0,1,3 or 4 points. Let G = H−B
be the set of edges of H that intersect each part in two points. Let M be the set of 4-tuples

which intersect each part in two points and are not edges of H. Then H−B ∪M = G ∪M
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is a 4-graph with (2, 2)-partition X ∪ Y , so it has at most d4(n) edges. We conclude that

|M | < |B| < oδ(n
4), (8)

in particular B 6= ∅.

Claim. For every vertex a of H we have dM(a) < ε1(n/2)3, where ε1 = ε/106.

Proof of Claim. Suppose for contradiction that dM(a) ≥ ε1(n/2)3 for some vertex a. Then

(1/2− oδ(1))(n/2)3 ≤ dH(a) = dG(a) + dB(a) ≤ (1/2 + oδ(1))(n/2)3 − ε1(n/2)3 + dB(a).

We conclude that dB(a) ≥ (ε1 − oδ(1))(n/2)3 > (ε1/2)(n/2)3. Let L = L(a) be the set of

triples {b, c, d} such that abcd ∈ B. So |L| = dB(a) > (ε1/2)(n/2)3. Assume wlog that

a ∈ X. Partition L = LXXX ∪ LXXY ∪ LY Y Y , where LXiY 3−i consists of those triples that

intersect X in precisely i points (note that LXY Y = ∅ by definition of B).

Case 1: |LXXX | > (ε1/6)(n/2)3 or |LY Y Y | > (ε1/6)(n/2)3. Let us first assume that |LXXX | >
(ε1/6)(n/2)3. For each bcd ∈ LXXX with e = abcd and (x, {y, y′}) ∈ (X − e)×

(
Y
2

)
, the four

4-tuples bxyy′, cxyy′, dxyy′, e form a potential copy of P3. The number of such choices of

(e, x, {y, y′}) is at least (ε1/13)(n/2)6 > δn6 so for at least half of these choices, one of the

4-tuples bxyy′, cxyy′, dxyy′ must be in M . Each of these 4-tuples in M is counted at most

|X|2 < n2 times, since a is fixed. We obtain the contradiction (ε1/13n2)(n/2)6 < |M | =

oδ(n
4). If |LY Y Y | > (ε1/6)(n/2)3, then the same proof works by replacing (x, {y, y′}) with

({x, x′}, y) ∈
(
X
2

)
× (Y − e). This concludes the proof in this case.

Case 2: |LXXY | > (ε1/6)(n/2)3. We may assume that dG(a) ≥ |LXXY | for otherwise we can

move a to Y and increase e(X, Y ) thereby contradicting the choice of the partition. Pick

bcd ∈ LXXY with b, c ∈ X and d ∈ Y . Consider x, y, y′ with x ∈ X − e, y, y′ ∈ Y − e and

axyy′ ∈ G. For each choice of (e, x, {y, y′}) the four 4-tuples bcdy, bcdy′, e, axyy′ form a copy

of P3. The number of such choices of (e, x, {y, y′}) is at least

dG(a)|LXXY | ≥ |LXXY |2 > 2(ε1/105)2n6 > 2δn6

so for at least half of these choices, one of the 4-tuples bcdy, bcdy′ ∈ M . Each of these

4-tuples of M is counted at most n2 times, since a is fixed. We obtain the contradiction

(ε1/105)2n4 < |M | = oδ(n
4). This concludes the proof of this case and the Claim.

Partition B = B1 ∪ B2, where B2 consists of those edges of B that intersect both parts in

an odd number of points. Suppose that B1 6= ∅, pick e = abcd ∈ B1 and assume wlog that
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e ⊂ X. For every (x, {y, y′}) ∈ (X − e)×
(
Y
2

)
, we get four potential copies of P3 of the form

w1xyy
′, w2xyy

′, w3xyy
′, e where {w1, w2, w3} ⊂ e and wi 6= wj. At least (ε/2)(n/2)3 of these

potential copies of P3 contains a 4-tuple from M , otherwise we obtain

4(|X| − 4)

(
|Y |
2

)
− (ε/2)(n/2)3 = (2− oδ(1)− ε/2)(n/2)3 > (2− ε)(n/2)3 (9)

copies of P3 containing e and we are done. Each such 4-tuple from M contains some point

of e so there exists w ∈ e with dM(w) ≥ (ε/8)(n/2)3 > ε1(n/2)3 and this contradicts the

Claim.

We conclude the B1 = ∅. Pick e = abcd ∈ B2 and assume wlog that a, b, c ∈ X, d ∈ Y . For

(x, {y, y′}) ∈ (X − e)×
(
Y−e
2

)
, consider the following types of potential copies of P3:

Type 1: xyy′a, xyy′b, xyy′c, e

Type 2: e, abdy, abdy′, xcyy′; e, acdy, acdy′, xbyy′; e, bcdy, bcdy′, xayy′.

At least (ε/2)(n/2)3 of these potential copies of P3 contains a 4-tuple from M , otherwise we

obtain at least (2− ε)(n/2)2 copies of P3 containing e (as in (9)) and we are done. Suppose

that at least half the time, the 4-tuple from M is in one of the Type 1 copies, or the last

4-tuple in one of the type two copies (i.e., xcyy′, xbyy′, xayy′). Each such 4-tuple is counted

at most twice, and so we obtain at least (ε/8)(n/2)3 4-tuples of M that intersect e. We

conclude that there exists w ∈ e with dM(w) ≥ (ε/32)(n/2)3 > ε1(n/2)3 and this contradicts

the Claim.

We may therefore assume that for at least (ε/4)(n/2)3 of these potential copies of P3, the

4-tuple from M is one of the two middle ones of the Type 2 copies, and so it intersects e in

three points. Each such 4-tuple is counted at most |X||Y | < (1 + oδ(1))(n/2)2 times, so we

obtain at least (ε/10)n 4-tuples from M that intersect e in three points. We have argued

that for every e ∈ B2 = B, there are at least (ε/10)n different f ∈M for which |e ∩ f | = 3.

Since |B| > |M |, we conclude that there exists f ′ ∈M with at least (ε/10)n different e′ ∈ B2

such that |e′ ∩ f ′| = 3. At least (ε/40)n of these e′’s intersect f in the same three points.

Consequently, we may assume wlog that there are a, b ∈ X, d ∈ Y and x1, . . . , xt ∈ X with

t = (ε/40)n such that ei = abxid ∈ B.

Fix i, set e = ei and consider the Type 1 potential copies of P3 referenced in the notation

above with c = xi, i.e., consider xyy′a, xyy′b, xyy′c, e. Recall that there are at least (1 −
oδ(1))|X|

(|Y |
2

)
> (1/20)n3 such copies. If at least εn3 of these potential copies of P3 have a

4-tuple from M , then we find a vertex w ∈ {a, b, xi} with dM(w) > (ε/4)n3 > ε1n
3 and this
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contradicts the Claim. We conclude that each ei = abcxi lies in at least (1/20− ε)n3 > εn3

copies of P3, and these copies are clearly distinct for distinct i. Altogether we therefore have

#P3 ≥ tεn3 = (ε2/40)n4 > δn4 and we are done.

7.6 Counting P4’s

Recall that c(n, P4) = (4+o(1))
(
n/2
3

)
= Θ(n3). Theorem 9 for l = 4 follows from the following

result.

Theorem 26. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n vertex 3-graph with b4(n) + 1 edges contains either

• an edge that lies in at least (1− ε)c(n, P4) copies of P4, or

• at least δn4 copies of P4.

Proof of Theorem 9 for l = 4. Remove q − 1 edges from H and apply Theorem 26.

If we find δn4 copies of P4, then since q < δn, the number of copies is much larger than

q(1− ε)c(n, P4) and we are done. Consequently, we find an edge e1 in at least (1− ε)c(n, P4)

copies of P4. Now remove q − 2 edges from H − e1 and repeat this argument to obtain e2.

In this way we obtain edges e1, . . . , eq as required.

The result is asymptotically tight as we can add q pairwise disjoint 4-tuples to B4(n), each

intersecting both parts in two points.

We need the following stability result proved in [8].

Theorem 27. (P4 stability [8]) Let H be a 4-graph with n vertices and b4(n)−o(n4) edges

that contains no copy of P4. Then there is a partition of the vertex set of H into X ∪ Y
so that the number of edges that intersect X or Y in an even number of points is o(n4). In

other words, H can be obtained from B4(n) by adding and deleting a set of o(n4) edges.

Proof of Theorem 26. Given ε let 0 < δ � ε. Write oδ(1) for any function that approaches

zero as δ approaches zero and moreover, oδ(1)� ε. Let n be sufficiently large and let H be

an n vertex 4-graph with b4(n) + 1 edges. Write #P4 for the number of copies of P4 in H.
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As in the proof of Theorem 22 (just replacing 3/32 by 1/2), we may assume that H has

minimum degree at least d = (1/2− oδ(1))
(
n
3

)
.

If #P4 ≥ δn4, then we are done so assume that #P4 < δn4. Then by the Removal lemma,

there is a set of at most δn4 edges of H whose removal results in a 4-graph H′ with no copies

of P4. Since |H′| > b4(n)− δn4, by Theorem 27, we conclude that there is a partition of H′

(and also of H) into two parts such that the number of edges intersecting some part in an

even number of points is oδ(n
4). Now pick a partition X ∪ Y of H that maximizes e(X, Y ),

the number of edges that intersect each part in an odd number of points. We know that

e(X, Y ) ≥ b4(n) − oδ(n
4), and an easy calculation also shows that each of X, Y has size

n/2± oδ(n).

Let B be the set of edges of H that intersect one (and therefore both) of X, Y in an even

number of points. Let G = H − B be the set of edges of H that intersect both X, Y in an

odd number of points. Let M be the set of 4-tuples which intersect both parts in an odd

number of points and are not edges of H. Then H − B ∪M = G ∪M is an odd 4-graph

with partition X, Y , so it has at most b4(n) edges. We conclude that

|M | < |B| < oδ(n
4), (10)

in particular B 6= ∅. Let BXiY 4−i (HXiY 4−i) be the set of edges in B (H) with exactly i

points in X. Let

ε1 = min{ε/200, ε2/104, ε3/103}.

Claim. For every vertex a of H we have dM(a) < ε1n
3.

Proof of Claim. Suppose for a contradiction that dM(a) > ε1n
3. Since

(1/2− oδ(1))

(
n

3

)
≤ dH(a) = dG(a) + dB(a) ≤

(
(1/2 + oδ(1))

(
n

3

)
− dM(a)

)
+ dB(a)

we conclude that dB(a) > dM(a) − oδ(n
3) > (ε1/2)n3. Assume wlog that a ∈ X. Then

dB(a) = dBXXXX
(a) + dBXXY Y

(a).

Case 1. dBXXXX
(a) ≥ (ε1/4)n3

We may assume that dG(a) ≥ dBXXXX
(a) otherwise moving a from X to Y increases e(X, Y )

and contradicts the choice of the partition. Pick e = abcd ∈ BXXXX and f = auvw ∈ G.

The number of choices for (e, f) is at least dBXXXX
(a)2 ≥ (ε1/4)4n6. For each such (e, f),

consider the five 4-tuples

uvwb, uvwc, uvwd, f, e.
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This gives at least (ε21/16)n6 > 2δn6 potential copies of P4 so at least (ε21/32)n6 of them have

a 4-tuple not in H. Since e, f ∈ H, the absent 4-tuple is of the form uvwz where z ∈ {b, c, d}.
Notice that uvwz ∈M since auvw ∈ G and a, z ∈ X. Each such 4-tuple of M is counted at

most 3n2 times, as there are at most three choices for |e ∩ f | and
(|X|

2

)
< n2 choices for the

two vertices of e− f − {a}. This yields the contradiction (ε21/32)n6/(3n2) < |M | = oδ(n
4).

Case 2. dBXXY Y
(a) ≥ (ε1/4)n3

Suppose that dHXY Y Y
(a) ≥ (ε1/2)n3. Then pick e = abcd ∈ BXXY Y and f = auvw ∈ HXY Y Y

(so u, v, w ∈ Y ) with |e ∩ f | = 1. The number of such pairs (e, f) is at least (ε21/10)n6. For

each such (e, f), consider the potential copy of P4 given by

bcdu, bcdv, bcdw, e, f.

Since (ε21/10)n6 > 2δn6 at least half of them have a 4-tuple from M . Each such 4-tuple is

counted at most 3n2 times, so we obtain the contradiction (ε21/20)n6/(3n2) ≤ |M | = oδ(n
4).

We may therefore assume that

(i) dHXY Y Y
(a) < (ε1/2)n3 and

(ii) dBXXXX
(a) < (ε1/4)n3.

Define L(a) = {bcd : abcd ∈ H}, so |L(a)| = dH(a) ≥ (1/2−oδ(1))
(
n
3

)
. Consider the partition

L(a) = LXXX ∪ LXXY ∪ LXY Y ∪ LY Y Y ,

where the subscripts have the obvious meaning. Then (i) and (ii) translate to

|LY Y Y |+ |LXXX | < ε1n
3.

For (u, v) ∈ X × Y , let dL(uv) be the number of w such that uvw ∈ L(a). Then∑
(u,v)∈X×Y

dL(u, v) = 2(|LXXY |+ |LXY Y |)

= 2(|L(a)| − |LY Y Y | − |LXXX |)

> 2(|L(a)| − ε1n3)

≥ 2(1/2− oδ(1))

(
n

3

)
− 2ε1n

3

≥ (1− 13ε1 − oδ(1))

(
n

3

)
.
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Consequently, there exists (b, c) ∈ X × Y such that

dL(bc) >
(1− 13ε1 − oδ(1))

(
n
3

)
(1/4 + oδ(1))n2

> (2/3− 9ε1)n.

We conclude that there exists S ⊂ X,T ⊂ Y such that

min{|S|, |T |} ≥ (2/3− 9ε1 − 1/2− oδ(1))n > (1/6− 10ε1)n

and abcd ∈ H for every d ∈ S ∪ T . Now pick s1, s2, s3 ∈ S and t ∈ T and consider the

potential P4

abcs1, abcs2, abcs3, abct, s1s2s3t. (11)

The number of choice for ({s1, s2, s3}, t) is at least
(|S|

3

)
|T | > 10−4n4. If for at least half

of these choices of ({s1, s2, s3}, t) we get a copy of P4 in H as shown above, then #P4 >

(1/2)10−4n4 > δn4, a contradiction. So for at least half of the choices, one of the 4-tuples in

(11) is not in H. By definition of S and T , the first four are in H, so the last one is in M .

This is counted exactly once, so we obtain the contradiction (1/2)10−4n4 < |M | = oδ(n
4).

This completes the proof of the Claim.

Partition B = B1 ∪BXXY Y where

B1 = BXXXX ∪BY Y Y Y

Case 1. |B1| ≥ ε|B|.

Pick e = abcd ∈ B1, and assume wlog that e ∈ BXXXX . Let e′ ⊂ e with |e′| = 3. Assume

wlog that e′ = bcd. Let {y1, y2, y3} ∈
(
Y
3

)
and consider the five 4-tuples

bcdy1, bcdy2, bcdy3, e, ay1y2y3.

These 4-tuples from a potential copy of P4. The number of choices for (e′, {y1, y2, y3}) is at

least 4(1− oδ(1))
(
n/2
3

)
. For at least 2ε

(
n/2
3

)
of these choices, one of the 4-tuples above must

not be in H, otherwise #P4 ≥ 4(1− oδ(1))
(
n/2
3

)
− 2ε

(
n/2
3

)
> (1− ε)c(n, P4) and we are done.

If for at least ε
(
n/2
3

)
of these choices, the missing 4-tuple is the last one in the list, then we

obtain dM(x) > (ε/4)
(
n/2
3

)
> ε1n

3 for some x ∈ e (since ε1 ≤ ε/200). This contradicts the

Claim. We may therefore assume that for at least ε
(
n/2
3

)
of these choices, the 4-tuple from

M has exactly three points in e. Each such 4-tuple is counted at most
(|Y |

2

)
times giving at

least (ε/7)n 4-tuples from M with three points in e.
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We have argued above that for every e ∈ B1, there are more than (ε/7)n different f ∈ M
with |e ∩ f | = 3. Form the bipartite graph with parts B1,M , where e ∈ B1 is adjacent

to f ∈ M if |e ∩ f | = 3. Then each vertex in B1 has degree more than (ε/7)n, and

since |B1| ≥ ε|B| > ε|M |, we conclude that there exists f ∈ M that is adjacent to more

than |B1|(ε/7)n/|M | > (ε2/7)n different e ∈ B1. Consequently, there exist a, b, c such that

dB1(abc) > (ε2/7)n. Assume wlog that a, b, c ∈ X.

For each choice of d with e = abcd ∈ B1 and {y1, y2, y3} ∈
(
Y
3

)
five 4-tuples y1y2y3x where

x ∈ e together with e form a potential copy of P4. The number of choices for (d, {y1, y2, y3}) is

at least dB1(abc)
(|Y |

3

)
> 6ε1n

4 > 2δn4 (since ε1 ≤ ε2/104). If for at least half of them, we get

a copy of P4 in H, then #P4 > δn4 and we are done. So for at least 3ε1n
4 of the choices, one

of the five 4-tuples is not in H. If for at least ε1n
4 choices the missing 4-tuple is of the form

y1y2y3d, then we obtain the contradiction ε1n
4 ≤ |M | = oδ(n

4). So for at least 2ε1n
4 choices

the missing 4-tuple is of the form y1y2y3x, x 6= d. Each such missing 4-tuple is counted at

most |X| < n times. We conclude that there exists x ∈ e with dM(x) > 2ε1n
4/n > ε1n

3.

This contradicts the Claim and completes the proof in this case.

Case 2. |B1| < ε|B|.

In this case we have |BXXY Y | ≥ (1− ε)|B|. Partition BXXY Y = B2 ∪B3 where

B2 = {e ∈ BXXY Y : dM(e′) > (1− ε)(n/2) for every e′ ⊂ e with |e′| = 3}.

Suppose that |B2| ≥ (1−ε)|BXXY Y |. Then we count 4-tuples of M from sets in B2. For each

set in B2, there are four choices for e′ ⊂ e with |e′| = 3, and given e′, there are (1− ε)(n/2)

4-tuples of M containing e′. Each 4-tuple from M is counted at most 3 max{|X|, |Y |} times.

This gives the contradiction

|M | ≥ 4(1− ε)(n/2)|B2|
3 max{|X|, |Y |}

>
4(1− 2ε)|B2|

3
≥ 4(1− 2ε)(1− ε)2|B|

3
> |B| > |M |.

We may therefore suppose that |B3| > ε|BXXY Y | > (ε/2)|B|. We may also assume that no

edge of B lies in at least (1 − ε)c(n, P4) copies of P4, otherwise we are done. Using this

observation we conclude that we have at least (ε/4)n 4-tuples in M . To see this we pick

an edge e ∈ B and consider potential copies of P4 containing e. We know that at least

(ε/2)c(n, P4) of these potential copies have a 4-tuple from M , for otherwise e lies in at least

(1 − ε)c(n, P4) copies of P4. Each such 4-tuple is counted at most max{
(|X|

2

)
,
(|Y |

2

)
} times.

So we may assume that

|B| > |M | > (ε/4)n.
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Now pick an edge e = abcd ∈ B3. By definition of B3, there exists e′ = bcd ⊂ e with

dM(bcd) ≤ (1− ε)n/2. Assume wlog that b ∈ X, c, d ∈ Y . Then there is a set Y ′ ⊂ Y such

that bcdy ∈ H for every y ∈ Y ′ and

|Y ′| ≥ |Y | − 2− dM(bcd) ≥ (1− oδ(1))(n/2)− (1− ε)(n/2) > (ε/4)n.

By the Claim and ε1 ≤ ε3/103, we know that the number of {y1, y2, y3} ∈
(
Y ′

3

)
with ay1y2y3 ∈

H is at least (
|Y ′|
3

)
− dM(a) >

(
(ε/4)n

3

)
− ε1n3 > 2ε1n

3 − ε1n3 = ε1n
3.

Each such {y1, y2, y3} ∈
(
Y ′

3

)
yields the P4 given by

bcdy1, bcdy2, bcdy3, e, ay1y2y3.

We have argued above that for each e ∈ B3 there are at least ε1n
3 copies of P4 containing e.

Each such copy of P4 contains a unique edge of B3. Consequently, we obtain

#P4 ≥ |B3|(ε1n3) > (ε/2)|B|(ε1n3) > (ε2ε1/8)n4 > δn4.

This contradiction completes the proof of the theorem.

7.7 Counting Expanded triangles

Recall that c(n,C3) = 3(n/2)2 + Θ(n). Theorem 10 follows from the following result.

Theorem 28. For every ε > 0 there exists δ > 0 and n0 such that the following holds for

n > n0. Every n vertex 4-graph with b4(n) + 1 edges contains either

• an edge that lies in at least (3− ε)(n/2)2 copies of C3, or

• at least δn4 copies of C3.

Proof of Theorem 10. Remove q− 1 edges from H and apply Theorem 28. If we find δn4

copies of C3, then since q < δn2, the number of copies is much larger than q(1 − ε)c(n,C3)

and we are done. Consequently, we find an edge e1 in at least (3− ε)(n/2)2 > (1− ε)c(n,C3)

copies of C3. Now remove q − 2 edges from H − e1 and repeat this argument to obtain e2.

In this way we obtain edges e1, . . . , eq as required.
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Sharpness follows by the following construction: Add a collection of q 4-tuples to B4(n)

within one of the parts (say X) such that every two 4-tuples have at most one point in

common. It is well-known that such quadruple-systems exist of size δn2 (in fact such Steiner

systems also exist for an appropriate congruence class of n). It is easy to see that each added

4-tuple lies in at most 3(n/2)2 copies of C3, since there are three ways to partition the edge

into two disjoint pairs, and for each of these ways, there are at most (n/2)2 copies of C3

using this partition. Moreover, no two added edges lie in a copy of C3 since they share at

most one point. Consequently, the number of copies of C3 is at most 3q(n/2)2.

We need the following stability result proved by Keevash and Sudakov [15].

Theorem 29. (C3 stability [15]) Let H be a 4-graph with n vertices and b4(n) − o(n4)

edges that contains no copy of C3. Then there is a partition of the vertex set of H into X∪Y
so that the number of edges that intersect X or Y in an even number of points is o(n4). In

other words, H can be obtained from B4(n) by adding and deleting a set of o(n4) edges.

Proof of Theorem 28. Given ε let 0 < δ � ε. Write oδ(1) for any function that approaches

zero as δ approaches zero and moreover, oδ(1)� ε. Let n be sufficiently large and let H be

an n vertex 4-graph with b4(n) + 1 edges. Write #C3 for the number of copies of C3 in H.

As in the proof of Theorem 22 (just replacing 3/32 by 1/2), we may assume that H has

minimum degree at least d = (1/2− oδ(1))
(
n
3

)
.

If #C3 ≥ δn4, then we are done so assume that #C3 < δn4 = (δ/n2)n6. Then by the

Removal lemma, there is a set of at most δn4 edges of H whose removal results in a 4-graph

H′ with no copies of C3. Since |H′| > b4(n)− δn4, by Theorem 29, we conclude that there is

a partition of H′ (and also of H) into two parts such that the number of edges intersecting

some part in an even number of points is oδ(n
4). Now pick a partition X ∪ Y of H that

maximizes e(X, Y ), the number of edges that intersect each part in an odd number of points.

We know that e(X, Y ) ≥ b4(n) − oδ(n
4), and an easy calculation also shows that each of

X, Y has size n/2± oδ(n).

Let B be the set of edges of H that intersect one (and therefore both) of X, Y in an even

number of points. Let G = H − B be the set of edges of H that intersect both X, Y in an

odd number of points. Let M be the set of 4-tuples which intersect both parts in an odd

number of points and are not edges of H. Then H − B ∪M = G ∪M is an odd 4-graph
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with partition X, Y , so it has at most b4(n) edges. We conclude that

|M | < |B| < oδ(n
4), (12)

in particular B 6= ∅.

Given vertices a, b and hypergraph F , write dF (ab) for the number of edges of F containing

both a and b. The rest of the proof has many similarities (modulo technical changes) to the

proof of the exact Turán result for C3 in [15]. Let ε1 = ε/105.

Claim 1. For every two vertices a, b ∈ V := X ∪ Y , either dG(ab) < ε1n
2 or dB(ab) < ε1n

2.

Proof. Suppose, for contradiction, that both dG(ab) and dB(ab) are at least ε1n
2. Pick e ∈ B

and f ∈ G with e ∩ f = {a, b}. Note that in all cases ge,f = e ∪ f − {a, b} ∈ M ∪ G, i.e.,

ge,f intersects both parts in an odd number of points. The number of such pairs e, f is at

least (ε1n
2)2/2 > 2δn4 (the factor of 2 is to ensure that e ∩ f = {a, b}). If at least δn4 of

these pairs form a copy of C3, then we are done, so we may assume that at least (ε1n
2)2/4

of these pairs satisfy ge,f ∈M . This contradicts (12) and completes the proof of the Claim.

Claim 2. dB(v) < (ε/103)n3 for every v ∈ V .

Proof. Let us fix a vertex v ∈ V , ε′ = ε/103 > 24ε1, and assume for contradiction that

dB(v) ≥ ε′n3. Call vertex w ∈ V − {v} good if dB(vw) < ε1n
2, otherwise say that w is bad.

Claim 1 implies that if w is bad, then dG(vw) < ε1n
2. Moreover, the number of bad vertices

is at least ε′n for otherwise we obtain the contradiction

dB(v) ≤
∑
w bad

dB(vw) +
∑
w good

dB(vw) < ε′n

(
n

2

)
+ nε1n

2 < ε′n3.

Next we observe that dG(v) ≥ dB(v) for otherwise we could move v to the other part and

contradict the choice of X, Y . This implies that dG(v) ≥ (1/4− oδ(1))
(
n
3

)
. If the number of

good vertices is less than n/18, then

dG(v) ≤
∑
w good

dG(vw) +
∑
w bad

dG(vw) <
n

18

(
n

2

)
+ n(ε1n

2) <

(
1

6
+ 7ε1

)(
n

3

)
.

This contradicts the lower bound on dG(v). We may therefore assume that the number of

good vertices is αn, where

1/18 ≤ α ≤ 1− ε′. (13)
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Write dH(v) = dG(v) + dB(v) and let us estimate these two terms separately. The number of

edges of G containing v and a bad vertex is at most ((1−α)n+ 1)ε1n
2 < ε1n

3. The number

of edges of G containing v and no bad vertex is at most

αn(αn− 1)

6

(
1

2
+ oδ(1)

)
n ≤

(
α2

2
+ oδ(1)

)(
n

3

)
.

The bound above is obtained by picking two good vertices which then restricts the edge

being counted to one of the parts. This procedure counts each edge six times. We conclude

that dG(v) < (α2/2 + 6ε1)
(
n
3

)
.

The number of edges of B containing v and a good vertex is at most ε1n
3. Using a similar

argument to that used above, the number of edges of B containing v and no good vertex is

at most ((1− α)2/2 + 6ε1)
(
n
3

)
. We conclude that

dH(v) ≤
(
α2 + (1− α)2

2
+ 12ε1

)(
n

3

)
.

Using (13) and ε1 < ε′/24, we observe that

α2 + (1− α)2

2
+ 12ε1 =

1

2
+ α2 − α + 12ε1 <

1

2
+ (1− ε′)2 − (1− ε′) + 12ε1 <

1

2
− ε′

2
.

Consequently, dH(v) < (1/2 − ε′/2)
(
n
3

)
. This contradicts the fact that dH(v) ≥ (1/2 −

oδ(1))
(
n
3

)
and completes the proof of the Claim.

The rest of the proof is devoted to showing that dB(v) ≥ (ε/103)n3 for some vertex v and

this contradicts Claim 2. Note that for every edge e ∈ B, there are at least (3− oδ(1))(n/2)2

copies of C3 containing e where the other two edges in the copy are in G. Indeed, this

is why c(n,C3) = (3 + o(1))(n/2)2. This requires some case analysis, for example, if e =

{a, b, c, d} ⊂ X, then for every choice of (x, y) ∈ (X − e) × Y , and for every partition of

e into two disjoint pairs p, q, the three edges e, p ∪ {x, y}, q ∪ {x, y} form a copy of C3 and

p∪ {x, y}, q ∪ {x, y} ∈ G. The number of such copies is therefore the number of (x, y) times

the number of pairs p, q and this is (3− oδ(1))(n/2)2. The case a, b ∈ X, c, d ∈ Y is similar

except that the argument further breaks into two cases depending on the choice of p, q. We

omit these details.

Claim 3. There is a pair of vertices a, b with dB(ab) > (ε/48)n2

Proof. For every e ∈ B, at least (ε/2)(n/2)2 of the copies of C3 using e, f, g with f, g ∈ G∪M
must have at f ∈ M or g ∈ M . Otherwise, there are at least (3 − oδ(1) − ε/2)(n/2)2 >
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(3− ε)(n/2)2 copies of C3 containing e and we are done. The edge in M is counted precisely

once, since a copy of C3 is uniquely determined by two of its edges. We conclude that for

each e ∈ B, there are at least (ε/2)(n/2)2 edges of M that intersect e is exactly two points.

Now form a bipartite graph with parts B,M where e ∈ B is adjacent to f ∈M if |e∩f | = 2.

Since |M | < |B|, and each e ∈ B is adjacent to at least (ε/2)(n/2)2 different f ∈ M ,

we conclude that there exists f ∈ M that is adjacent to more than (ε/2)(n/2)2 different

e ∈ B. At least 1/6 of these e intersect f in the same pair of points a, b. Consequently,

dB(ab) > (ε/12)(n/2)2 = (ε/48)n2 and the Claim is proved.

Let us fix a, b from Claim 3. For each edge e = abcd ∈ B, there are at least n2/5 pairs

r, s ∈ V such that the three sets e, acrs, bdrs form a copy of C3. By Claim 3, the number

of such potential copies of C3 is at least (ε/240)n4 > 2δn4, so for at least half of them,

either acrs ∈ M or bdrs ∈ M . Each such 4-tuple of M is counted at most n times, since

a, b, r, s are fixed. This gives us at least (ε/480)n3 4-tuples of M containing either a or b.

At least (ε/960)n3 must contain the same point, say a. Consequently, dM(a) ≥ (ε/960)n3.

We know that dH(a) ≥ (1/2 − oδ(1))
(
n
3

)
, and the above argument shows that dG(a) ≤

(1/2 + oδ(1) − ε/960)
(
n
3

)
. We conclude that dB(a) > (ε/103)n3 which contradicts Claim 2

and completes the proof.
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