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Abstract.

Let t, n be integers with n ≥ 3t. For t ≥ 3, we prove that in any family of at least t4
(
n
2

)

triples from an n-element set X, there exist 2t triples A1, B1, A2, B2, . . . , At, Bt and distinct
elements a, b ∈ X such that Ai ∩Aj = {a} and Bi ∩Bj = {b}, for all i 6= j, and

Ai ∩Bj =

{
Ai − {a} = Bj − {b} for i = j

∅ for i 6= j.

When t = 2, we improve the upper bound t4
(
n
2

)
to 3

(
n
2

)
+ 6n. This improves upon the

previous best known bound of 3.5
(
n
2

)
due to Füredi. Some results concerning more general

configurations of triples are also presented.

1 Introduction

Let F be a family of r-graphs, some member of which is r-partite. A fundamental theorem

due to Erdős states that there exists δ = δ(F) > 0 such that the maximum number of

edges in an r-graph on n vertices containing no member of F is O(nr−δ) as n → ∞.

The asymptotic order of this maximum, denoted ex(n,F), is generally very difficult to

determine. For surveys, we refer the reader to Füredi [6] and to Frankl [8]. In this paper,

we consider the above problem for the following specific classes of r-graphs.
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Definition. Let X1, X2, . . . , Xt be t pairwise disjoint sets of size r − 1, and let Y be a

set of s elements, disjoint from
⋃

i∈[t] Xi. Then K
(r)
s,t denotes the r-graph with vertex set

⋃
i∈[t] Xi ∪ Y and edge set {Xi ∪ {y} : i ∈ [t], y ∈ Y }.

Remark. Note that K
(r)
s,t and K

(r)
t,s are nonisomorphic when r ≥ 3 and s 6= t. Our results

apply to both cases, so for simplicity throughout this paper we let t ≥ s.

Definition. Let fr(n) be the maximum number of edges in an n vertex r-graph containing

no four edges A,B, C, D with A ∪B = C ∪D and A ∩B = C ∩D = ∅.

In the case r = 3, we note that f3(n) = ex(n,K
(3)
2,2). Erdős [3] asked whether fr(n) =

O(nr−1) when r ≥ 3. Erdős and Frankl (unpublished) proved that fr(n) = O(nr−1/2).

Füredi [4] later answered Erdős’ question by the following Theorem:

Theorem 1.1 (Füredi) For all integers n, r with r ≥ 3 and n ≥ 2r,

(
n− 1

r − 1

)
+

⌊
n− 1

r

⌋
≤ fr(n) < 3.5

(
n

r − 1

)
.

The lower bound arises from the family of all r-element subsets of [n] containing a fixed

element of [n] together with an arbitrary family of bn−1
r
c pairwise disjoint r-element

subsets not containing that element. Füredi also observed that if we replace every 5-set

in a Steiner S1(n, 5, 2) family by all its 3-element subsets, then the resulting triple system

has
(

n
2

)
triples and contains no copy of K

(3)
2,2 (for the existence of S1(n, 5, 2), see Ray-

Chaudhuri and Wilson [12]). This slightly improves the lower bound above when r = 3 to(
n
2

)
. Füredi conjectured that this construction gives a sharp lower bound when n ≡ 1, 5

modulo 20, and that the lower bound in Theorem 1.1 is sharp for r ≥ 4 and n sufficiently

large.

In this paper, we will concentrate on triple systems excluding a copy of K
(3)
2,t and, more

generally, excluding a copy of K
(3)
s,t . This is a common generalization of the problem of

estimating both f3(n) = ex(n, K
(3)
2,2) and ex(n,K

(2)
s,t ). The latter is a fundamental open

problem in extremal graph theory. Our main result also improves Füredi’s upper bound

for fr(n) in Theorem 1.1.
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Theorem 1.2 Let t ≥ 2 and n ≥ 3t be integers. Then

ex(n,K
(3)
2,t ) <





3
(

n
2

)
+ 6n for t = 2

t4
(

n
2

)
for t > 2.

Moreover, for infinitely many n,

ex(n,K
(3)
2,t ) ≥ 2t− 1

3

(
n

2

)
.

Remark: The expression ex(n,K
(3)
2,t )/

(
n
2

)
has a limit g(t) as n → ∞. This follows by

similar arguments to Proposition 6.1 in [4]. By Theorem 1.2, 2t−1
3
≤ g(t) ≤ t4. It would

be interesting to determine the growth rate of g(t).

Using Theorem 1.2 and Lemma 5.2 in [4] one can easily obtain the following improvement

to Theorem 1.1 (see the remark at the end of Section 4).

Corollary 1.3 Fix r ≥ 3. Then fr(n) < 3
(

n
r−1

)
+ O(nr−2).

We will prove the lower bound of Theorem 1.2 in Section 2. In Section 3, we prove a

fundamental lemma which enables us to establish the upper bound of Theorem 1.2 in

Section 4.

Generalizing Theorem 1.2 to the larger class K
(3)
s,t for s > 2 seems more difficult, and we

are not able to determine the order of magnitude of ex(n,K
(3)
s,t ). We prove the following

extension of the result of Erdős and Frankl that f3(n) = ex(n,K
(3)
2,2) = O(n5/2).

Theorem 1.4 Let n/3 ≥ t ≥ s ≥ 3. Then

ex(n,K
(3)
s,t ) < cs,tn

3−1/s, (1)

where cs,t depends only on s and t.

The proof of Theorem 1.4 (see Section 5) follows easily from the well-known bound

ex(n,Ks,t) < c′s,tn
2−1/s (see [10]) for graphs. However, we believe that the exponent

3−1/s in (1) is not the truth for any s ≥ 2. Theorem 1.2 shows this for s = 2. As further

evidence, we can also improve (1) when s = 3 (see Section 6). This proof does not yield

improvements for larger values of s.
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Theorem 1.5 Let t ≥ 3. Then

ex(n,K
(3)
3,t ) < ctn

13/5,

where ct depends only on t.

In the other direction, we prove the following Theorem in Section 2.

Theorem 1.6

ex(n, K
(3)
s,t ) > ds,t

[ex(n,Ks,t)]
2

n
.

It is believed (see Füredi [6]) that ex(n,K
(2)
s,t ) = Ωt(n

2−1/s) whenever 2 ≤ s ≤ t, but this

has only been proved for s ≥ 2 and t > (s− 1)! (see Kollár, Rónyai, Szabó [9] and Alon,

Rónyai, Szabó [1]). This immediately implies the following Corollary to Theorem 1.6.

Corollary 1.7 If t > (s− 1)! > 0, then

ex(n,K
(3)
s,t ) > dtn

3−2/s.

We feel that n3−2/s is the correct order of magnitude of ex(n,K
(3)
s,t ).

Conjecture 1.8 Let s, t be integers with 2 ≤ s ≤ t. Then

ex(n,K
(3)
s,t ) = Θt(n

3−2/s).

Notations. The symbol [n] denotes the set {1, 2, . . . , n}, and X(r) denotes the family

of all r-sets in set X. We write G for a simple finite undirected graph, unless indicated

otherwise, and G(A,B) to indicate that G is bipartite with parts A and B. The notation

ΓG(v) is used for the set of vertices adjacent to a vertex v in a graph (or hypergraph) G,

e(G) is the number of edges in G, degG(v) is the number of edges incident with vertex v

in G, and n(G) is the number of vertices in G. For any vertex u of G, we write G− u for

the subgraph of G spanned by all edges of G disjoint from u. Similarly, if E is a set of

edges of G, then G − E denotes the subgraph of G spanned by all edges of G which are

not in E. A hypergraph containing no subgraph isomorphic to a fixed hypergraph F is

called F -free.
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2 Lower Bounds for ex(n,K
(3)
s,t )

In this section, we give lower bounds for the numbers ex(n,K
(3)
s,t ), by showing that they

are related to the bipartite Turán numbers ex(n,Ks,t) = ex(n,K
(2)
s,t ). We will establish

this relationship using the following construction:

Construction. Let G be any K
(2)
s,t -free bipartite graph, with parts A = {a1, a2, . . . , an}

and B of size n. Let A′ = {a′1, a′2, . . . , a′n}. Define a 3-partite triple system H on A∪B∪A′

whose triples consist of those sets (ai, b, a
′
j) for which aibaj is a path in G.

We write z(n,K
(r)
s,t ) for the maximum number of edges in an r-partite K

(r)
s,t -free r-graph

in which all parts have size n.

Proposition 2.1 The triple system H contains no K
(3)
s,t and

z(n,K
(3)
s,t ) ≥ e(H) ≥ 1

n
z(n,Ks,t)

2 − z(n,Ks,t).

Proof. Choose G in the above construction to contain z(n,K
(2)
s,t ) edges. The number of

triples in H is precisely twice the number of paths aibaj in G. Therefore, by the convexity

of binomial coefficients,

e(H) = 2
∑

v∈B

(
degG(v)

2

)
≥ 2n

(
e(G)/n

2

)

= 2n(e(G)2/2n2 − e(G)/2n)

= e(G)2/n− e(G).

Thus H has the required number of edges. We now check that H is K
(3)
s,t -free.

Suppose, for a contradiction, that F ⊂ H is isomorphic to K
(3)
s,t . We suppose the edges of

F are {Xi∪{y} : i ∈ [t], y ∈ Y }, where Y is an s-element set, X1, X2, . . . , Xt are t pairwise

disjoint 2-element sets, and Y is disjoint from
⋃

i∈[t] Xi. It is not hard to see that there

exists a 3-partition of F into parts Z1, Z2 and Z3, each of which is contained entirely in

a distinct part of H. We suppose |Z1| = s and |Z2| = |Z3| = t. If Z1 ⊂ A (Z1 ⊂ B), then

we may assume Z2 ⊂ B (Z2 ⊂ A) by symmetry. By the construction, Z1 ∪ Z2 induces a

copy of K
(2)
s,t in G, a contradiction. Therefore Z1 = {a′1, a′2, . . . , a′s} ⊂ A′. By symmetry,

we assume Z2 ⊂ B. Let Z = {a1, a2, . . . , as}. Then Z ∪ Z2 induces a copy of K
(2)
s,t in G,

a contradiction. This completes the proof of Proposition 2.1.
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The above proposition immediately gives the following result, by noting the K
(2)
s,t -free

norm graph constructions of Kollár, Rónyai and Szabó [9] for t > (s− 1)! (see also Alon,

Rónyai and Szabó [1]), and the constructions due to Füredi [7] of K2,t-free graphs on n

vertices with at least (t− 1)1/2n3/2 − cn4/3 edges, where c is a positive constant:

Corollary 2.2 Let s, t be integers with s ≥ 2 and t > (s − 1)!. Then z(n,K
(3)
s,t ) =

Ωt(n
3−2/s). Moreover, for all t ≥ 2, z(n, K

(3)
2,t ) ≥ (t − 1)n2 − dn11/6 for some constant

d > 0.

Proposition 2.1 also establishes the lower bound in Theorem 1.6, since ex(3n,K
(3)
s,t ) ≥

z(n,K
(3)
s,t ) and z(n,Ks,t) ≥ 2ex(n,Ks,t), where the last inequality can be found in [2].

Füredi’s construction for ex(n,K
(3)
2,2) can easily be generalized for ex(n,K

(3)
2,t ), thereby

improving Proposition 2.1 in the case s = 2. Indeed, consider an S1(n, 2t + 1, 2) Steiner

system (i.e. every pair of elements is contained in precisely one (2t + 1)-set) in which

we replace each (2t + 1)-set by all its 3-element subsets. The existence of such Steiner

systems is established in Ray-Chaudhuri and Wilson [12] whenever n = t modulo t(t−1).

The resulting triple system is K
(3)
2,t -free and the number of triples is

(
2t + 1

3

)(
2t + 1

2

)−1(
n

2

)
=

2t− 1

3

(
n

2

)
.

This verifies the lower bound in Theorem 1.2.

3 Main Lemma

In this section, we establish a generalization of a lemma due to Füredi (see Lemma 3.2

in [4]). This enables us to give an upper bound on the number of edges which may be

deleted from a graph to obtain a Ks,t-free subgraph. This lemma will be of fundamental

importance in the proofs of both Theorem 1.2 and Theorem 1.5. We begin with the

following definition:

Definition. Let t ≥ s ≥ 2, and let G = G(A,B) be a bipartite graph. Then Ds,t(G)

denotes the s-graph on A ∪ B whose edge set consists of those S ∈ A(s) ∪ B(s) for which

S lies in a Ks,t in G.
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Main Lemma. Let G = G(A,B) be a bipartite graph and let t ≥ s ≥ 2. Then we may

delete at most (s + t− 3)e(Ds,t(G)) edges from G to obtain a Ks,t-free graph.

Proof. We proceed by induction on e(G). For convenience, we write D instead of Ds,t(G)

and DE instead of Ds,t(G − E). If e(G) = 0, then e(D) = 0. We also suppose G has

no isolated vertices. Suppose e(G) > 0. If some edge f ∈ G is in no Ks,t in G then, by

induction, we may remove at most (s + t− 3)e(Df ) = (s + t− 3)e(D) edges from G− f

to delete all Ks,t in G− f , and hence all Ks,t in G. We therefore assume every edge of G

is contained in a Ks,t in G.

We now aim to define a non-empty set E of edges of G such that |E| ≤ (s+ t− 3)[e(D)−
e(DE)]. Let us see that this will suffice to complete the proof. The induction hypothesis

will apply to G − E: we delete a set E ′ of at most (s + t − 3)e(DE) edges from G − E

to obtain a Ks,t-free graph. The total number of edges deleted is |E| + |E ′| ≤ (s + t −
3)[e(D)− e(DE)] + (s + t− 3)e(DE) = (s + t− 3)e(D). For a contradiction, we suppose

that no such set E exists. That is, for any non-empty set E of edges of G,

|E| > (s + t− 3)[e(D)− e(DE)]. (∗)

Claim 1. degD(u) < degG(u) for every vertex u ∈ G.

Proof. Suppose degG(u) ≤ degD(u) for some u ∈ G. Let E be the set of edges of G incident

with u. Then we certainly have 0 < |E| = degG(u) ≤ degD(u) ≤ (s + t − 3)degD(u), as

s, t ≥ 2. Since no Ks,t in G − E contains u, u is an isolated vertex of DE. This implies

degD(u) ≤ e(D)−e(DE). Consequently, |E| ≤ (s+t−3)degD(u) ≤ (s+t−3)[e(D)−e(DE)],

contradicting (∗). So degD(u) < degG(u) for every vertex u ∈ G.

Fix a vertex u ∈ A, and let B′ = ΓG(u). Let A1, . . . , Ak denote the edges of D incident

with u. Let Bi =
⋂

x∈Ai
ΓG(x) for i ∈ [k], and define A = {Ai : |Bi| ≤ t− 1} and B to be

the hypergraph spanned by the edge set {Bi : |Bi| ≥ t}. Note that Bi ⊂ B′ for all i as

u ∈ Ai, and B may have multiple edges.

Claim 2. A = ∅.
Proof. Suppose A 6= ∅. Let Ei be the set of edges from u to Bi, for each i ∈ [k], and set

E =
⋃

Ai∈A Ei. Since Bi 6= ∅ for each i, we have E 6= ∅. On the other hand

|E| ≤ ∑

Ai∈A
|Ei| =

∑

Ai∈A
|Bi| ≤ (t− 1)|A|,
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where the last inequality follows from the definition of A. Suppose Ai ∈ A lies in a Ks,t

in G−E. Then Bi contains the part of this Ks,t in B′. However, all edges between u and

Bi lie in E, so these edges are absent in G−E. This implies no Ai ∈ A is an edge in DE,

and hence |E| ≤ (t− 1)[e(D)− e(DE)]. This contradicts (∗).

Claim 3. There exists v ∈ B′ such that |{Bi : v ∈ Bi}| ≤ |ΓB(v)|.
Proof. As each edge of G is in some Ks,t in G and A = ∅, B′ =

⋃
i∈[k] Bi. By Claim 1,

n(B) = |B′| = degG(u) > degD(u) = e(B). Applying Proposition A.1 to B, there exists a

vertex v ∈ B′ such that

|{Bi : v ∈ Bi}| = degB(v) < |ΓB(v)|+ 1.

This completes the proof of Claim 3.

We now define

E = {vx : x 6= u and vx lies in a Ks,t in G with at least s vertices in B′}.

Let D′ be the subgraph of D induced by B′, and let D′
E be the subgraph of DE induced by

B′. If some edge S of D′
E is incident with v, then there exists a Ks,t in G−E containing S.

As this Ks,t contains s vertices in B′, all its edges (apart from uv) incident with v are in

E. This contradiction shows v is an isolated vertex in D′
E, and degD′(v) ≤ e(D)− e(DE).

It remains to verify that |E| ≤ (s + t − 3)degD′(v) for E to contradict (∗). This fact is

established in the next two claims. For each G(Ai, Bi) with v ∈ Bi, select a single edge

between v and Ai, distinct from uv. Let the collection of selected edges be E ′, and set

E ′′ = E − E ′.

Claim 4. |E ′| ≤ (s− 1)degD′(v).

Proof. Since A = ∅, every set Ai has at least t common neighbors in B′. This implies

that Bi induces a complete s-graph in D′, for i ∈ [k]. Therefore

degD′(v) ≥
∣∣∣

⋃

i:v∈Bi

(Bi − {v})(s−1)
∣∣∣.

By Lemma A.2, applied to the hypergraph B′ with edge set
⋃

i:v∈Bi
(Bi−{v})(s−1), we find

|ΓB(v)| =
∣∣∣

⋃

i:v∈Bi

(Bi − {v})
∣∣∣ ≤ (s− 1)

∣∣∣
⋃

i:v∈Bi

(Bi − {v})(s−1)
∣∣∣ ≤ (s− 1)degD′(v).
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Consequently, by Claim 3 and the definition of E ′,

|E ′| ≤ |{Bi : v ∈ Bi}| ≤ |ΓB(v)| ≤ (s− 1)degD′(v).

This completes the proof of Claim 4.

Claim 5. |E ′′| ≤ (t− 2)degD′(v).

Proof. Suppose |E ′′| > (t− 2)degD′(v). Then there exists an edge S of D′ incident with v

and a set T of t− 1 vertices of A−{u} incident with all of S. However, u is also adjacent

to all vertices of S so G(S, T ∪ {u}) is a Ks,t containing u. Consequently, vx ∈ E ′ for

some vertex x ∈ T . This contradicts E ′ ∩ E ′′ = ∅, since we also have vx ∈ E ′′ for every

x ∈ T . This completes the proof of Claim 5.

We have shown that |E| = |E ′|+ |E ′′| ≤ (s + t− 3)degD′(v) ≤ (s + t− 3)[e(D)− e(DE)],

contradicting (∗). This completes the proof of the Main Lemma.

4 Upper Bounds for ex(n,K
(3)
2,t )

In this section, we establish the upper bounds in Theorem 1.2. For integers q, s, t, we

write K
(3)
q,s,t for the complete 3-partite 3-graph with parts of sizes q, s, t. Our proof of

Theorem 1.2 will use the counting technique from Mubayi [11] together with the Main

Lemma in Section 3. This Main Lemma allows us to remove a small number of triples

that destroy all copies of K
(3)
1,2,t in a K

(3)
2,t -free triple system. An additional refinement of

these ideas allows us to prove that ex(n,K
(3)
2,2) < 3

(
n
2

)
+ 6n.

It is sufficient to restrict our attention to 3-partite triple systems, in view of the following

useful lemma of Erdős and Kleitman [5]:

Lemma 4.1 Let G be a triple system on 3n vertices. Then G contains a 3-partite triple

system, with all parts of size n, and with at least 2
9
e(G) triples.

Indeed, we prove the following theorem:

Theorem 4.2 Let t ≥ 2, n ≥ t, and g(t) = t− 1/2 + 2(t− 1)2
[(

t−1
2

)
+ 1

]
. Then

z(n,K
(3)
2,t ) <





3n2 − 3
2
n for t = 2

g(t)n2 for t > 2.
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Let us verify Theorem 1.2 from Theorem 4.2. By adding at most two isolated vertices to

a K
(3)
s,t -free triple system H on n vertices, we obtain a triple system G such that n(G) is

divisible by three. Applying Lemma 4.1, we find a 3-partite triple system G ′ with at least
2
9
e(G) edges. By Theorem 4.2 and Lemma 4.1,

2

9
e(H) =

2

9
e(G) ≤ e(G ′) < g(t)

(
n(G)

3

)2

=
1

9
g(t)n(G)2.

Consequently,

e(H) = e(G) ≤ 9

2

[
1

9
g(t)n(G)2

]
≤ 1

2
g(t)(n + 2)2 < t4

(
n

2

)
.

The last inequality follows by some elementary calculations, using t ≥ 3 and n ≥ 3t. A

similar argument applies to show that ex(n,K
(3)
2,2) < 3

(
n
2

)
+ 6n.

Before proving Theorem 4.2, we require the following definition:

Definition. Let G1, G2, . . . , Gn be graphs on the same vertex set. Then
∑

i∈[n] Gi denotes

the multigraph in which a pair f of vertices is an edge whenever f is an edge of some Gi.

Proof of Theorem 4.2. Let H be a 3-partite K
(3)
2,t -free triple system, in which all three

parts have size n. Suppose the parts of H are each copies of [n], labeled A,B, C. For each

i ∈ [n], let Gi = Gi(A,B) denote the bipartite graph with edge set

{
(a, b) : a ∈ A, b ∈ B, (a, b, i) ∈ H

}
.

Let G =
∑

i∈[n] Gi, D(A) =
∑

i∈[n] D(Gi) ∩ A and D(B) =
∑

i∈[n] D(Gi) ∩ B, where

D(Gi) ∩A denotes the subgraph of D(Gi) = D2,t(Gi) induced by A, and similarly for B.

Claim 1. A pair of vertices {a, a′} in A(2) ∪B(2) forms a part of a copy of K2,t in Gi for

at most t− 1 integers i ∈ [n].

Proof. Suppose some pair {a, a′} ∈ A(2) forms a part of a copy of K2,t in Gi for at least

t integers i ∈ [n], say for i ∈ [t]. Then there exist t vertices b1, b2, . . . , bt ∈ B such that

abia
′ is a path of length two in Gi. However, the set of all edges of the form (a, bi, i) and

(a′, bi, i) forms a copy of K
(3)
2,t in H. This is a contradiction, so {a, a′} forms a part of a

copy of K2,t in Gi for at most t− 1 integers i ∈ [n].

Claim 2. For t ≥ 3, D(A) and D(B) have edge-multiplicity at most (t−1)
(

t−1
2

)
+(t−1).
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Proof. Suppose, for a contradiction, that some edge {a, a′} has edge multiplicity at least

r = (t− 1)
(

t−1
2

)
+ t in D(A). Without loss of generality, we may assume {a, a′} is an edge

of D(Gi) ∩ A for each i ∈ [r]. By Claim 1, {a, a′} is contained in a t-set forming a part

of a K2,t in Gi for at least r − t + 1 integers i ∈ [r], say for i ∈ [r − t + 1]. This gives a

set of r − t + 1 edges in D(B), corresponding to the part of a K2,t in Gi of size two, for

i ∈ [r − t + 1]. These r − t + 1 edges together span a multigraph M ⊂ D(B). The pairs

of adjacent vertices in M form a part of a K2,t in different graphs Gi, for i ∈ [r − t + 1].

Now e(M) ≥ r − t + 1 = (t − 1)
(

t−1
2

)
+ 1 and M has edge-multiplicity at most t − 1 by

Claim 1. So we may apply Lemma A.4 (with s = 2 and µ = t − 1) to M : there exist t

vertices b1, b2, . . . , bt ∈ B, each incident with a different edge of M . Suppose this set of

edges is f1, f2, . . . , ft with fi ∈ D(Gi) for i ∈ [t]. Then abia
′ is a path of length two in

Gi for i ∈ [t]. But then, for each i ∈ [t], all the edges (a, bi, i) and (a′, bi, i) form a copy

of K
(3)
2,t in H. This contradiction verifies Claim 2 for D(A). Similar arguments apply to

show that D(B) has edge-multiplicity at most (t− 1)
(

t−1
2

)
+ (t− 1).

For each i ∈ [n], let G′
i = G′

i(A,C) denote the bipartite graph spanned by the edges (a, c),

a ∈ A, c ∈ C, for which (a, i, c) is an edge ofH. Let G′ =
∑

i∈[n] G
′
i, D′(A) =

∑
i∈[n] D(G′

i)∩
A and D′(C) =

∑
i∈[n] D(G′

i) ∩ C. We note, by symmetry and applying the arguments of

Claim 2, that D′(A) and D′(C) have edge-multiplicity at most (t − 1)
(

t−1
2

)
+ (t − 1) for

t ≥ 3.

Claim 3. We may remove at most 4(t− 1)2[
(

t−1
2

)
+ 1]

(
n
2

)
edges from G ∪G′ so that, for

all i ∈ [n], the resulting subgraph of G ∪ G′ contains no K2,t in any Gi or G′
i. If t = 2,

we may remove at most 3
(

n
2

)
edges from G ∪G′ for the same conclusions.

Proof. Suppose t ≥ 3. By Claim 2, no pair of vertices of A or B is an edge in more than

(t− 1)
(

t−1
2

)
+ (t− 1) of the graphs D(Gi). By the Main Lemma, we may delete at most

(t − 1)e(D(Gi)) edges from each Gi to obtain a K2,t-free graph. The number of edges

removed from G is therefore at most

(t− 1)e(D(A)) + (t− 1)e(D(B)) ≤ 2

[
(t− 1)2

(
t− 1

2

)
+ (t− 1)2

] (
n

2

)
.

A similar argument applies for G′, therefore the total number of edges removed is at most

4

[
(t− 1)2

(
t− 1

2

)
+ (t− 1)2

] (
n

2

)
.
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Now suppose t = 2. We assert that D(A)∩D′(A) = ∅ (this is the major new idea needed

to improve the factor in Füredi’s bound from 3.5 to 3). This suffices to prove Claim 3:

as D(A) has no multiple edges by Claim 1, the Main Lemma shows that the number of

edges required to delete all K2,2 in Gi and G′
i is at most

e(D(A)) + e(D′(A)) + e(D(B)) + e(D′(C)) ≤
(|A|

2

)
+

(|B|
2

)
+

(|C|
2

)
= 3

(
n

2

)
.

Let us prove D(A) ∩ D′(A) = ∅. Suppose, for a contradiction, that {a, a′} is an edge

of D(Gi) and D(G′
j), where a, a′ ∈ A. Then there are edges {b, b′} ∈ D(Gi) and

{c, c′} ∈ D(G′
j) such that {a, b, a′, b′} and {a, c, a′, c′} induce quadrilaterals in Gi and

G′
j respectively. Now (a, b, i), (a, b′, i), (a′, b′, i), (a′, b, i) and (a, j, c), (a, j, c′), (a′, j, c′),

(a′, j, c) are all edges of H. These edges form a triple system containing a copy of K
(3)
2,2 , a

contradiction. This completes the proof of Claim 3.

We let HG and HG′ denote the subgraphs of G and G′ obtained by removing all these

edges from G and G′. For vertices x, y in a hypergraph, the codegree of x and y, written

codeg(x, y) is the number of edges containing both x and y.

Claim 4. e(HG) < (t− 1/2)n2.

Proof. Suppose e(HG) ≥ (t − 1/2)n2. Then the number of paths with two vertices in A

and one vertex in B, contained in both HG and some Gi, is exactly
∑

(b,c)∈B×C

(
codeg(b,c)

2

)
.

As the average codegree is at least t − 1/2, the above expression is minimized when the

codegree of half the pairs is t − 1, and the codegree of the other half of the pairs is t.

Therefore

∑

(b,c)∈B×C

(
codeg(b, c)

2

)
≥ 1

2

(
t− 1

2

)
n2 +

1

2

(
t

2

)
n2 > (t− 1)2

(
n

2

)
.

This implies the existence of a set P ⊂ B×C of (t− 1)2 +1 pairs and a, a′ ∈ A such that

the triples (a, b, c) and (a′, b, c) are edges of H whenever (b, c) ∈ P . Let G′′ denote the

bipartite graph on B∪C whose edges are the elements of P . By Lemma A.3, G′′ contains

a matching M with t edges or a star with t edges. In the former case, the set all of triples

of the form (a, b, c) and of the form (a′, b, c), with {b, c} ∈ M , form a copy of K
(3)
2,t in H,

a contradiction. In the latter case, we obtain a K2,t in Gi or G′
j, according as the center

14



of the star is j ∈ B, or i ∈ C. As HG′ contains no K2,t in any Gi, by Claim 3, this is a

contradiction. So e(HG) < (t− 1/2)n2, and the proof of Claim 4 is complete.

We now complete the proof of Theorem 4.2. First suppose t ≥ 3. Recall that G =
∑

Gi

and HG is the subgraph of G remaining on deleting edges from G using Claim 3. Let D

denote the number of edges deleted in Claim 3. Thus, using Claims 3 and 4,

e(H) ≤ e(HG) + D

< (t− 1/2)n2 + 4(t− 1)2

[(
t− 1

2

)
+ 1

] (
n

2

)

<

(
t− 1/2 + 2(t− 1)2

[(
t− 1

2

)
+ 1

])
n2.

For t = 2, by Claims 3 and 4, we find e(H) < 3
(

n
2

)
+ 3

2
n2.

Remark: Corollary 1.3 can be proved in the same way as Theorem 4.2, using the gen-

eralization of Lemma 4.1 to r-partite subgraphs of r-uniform hypergraphs, due to Erdős

and Kleitman [5], and using Lemma 5.2 in [4].

5 Upper Bound for ex(n,K
(3)
s,t )

In this section we prove Theorem 1.4.

Proof of Theorem 1.4: It suffices to prove that z(n,K
(3)
s,t ) < c′s,tn

3−1/s . Let A,B,C

be the three parts of size n of a 3-partite K
(3)
s,t -free triple-system H. Suppose that H has

more than c′s,tn
3−1/s triples, where c′s,t is defined as the smallest integer for which every

bipartite graph with parts X and Y of size n with more than c′s,tn
2−1/s edges contains a

Ks,t with t vertices in X and s vertices in Y . Note that c′s,t is independent of n, since the

number of edges between X and Y must satisfy

∑

v∈Y

(
d(v)

s

)
≤ (t− 1)

(|X|
s

)
.

Partition the elements of A× B into n matchings M1, . . . , Mn, and let Hi be the subhy-

pergraph of H induced by those edges that contain some pair of Mi. By the pigeonhole

principle, Hi has more than c′s,tn
2−1/s edges for some i. Let Gi be the graph on vertex
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set B ∪ C, with edge set {(b, c) : ∃a, (a, b, c) ∈ E(Hi)}. Then by the choice of c′s,t, we

conclude that Gi contains a copy of Ks,t with t vertices in B and s vertices in C, which

extends via Mi to a K
(3)
s,t in H. This contradiction proves z(n,K

(3)
s,t ) < c′s,tn

3−1/s.

6 Upper Bound for ex(n,K
(3)
3,t )

We will use the techniques of Section 4 to prove Theorem 1.5. Because our bounds should

be thought of as asymptotic results, we omit ceiling and floor symbols in this section. As

in Section 4, we use Lemma 4.1 to obtain Theorem 1.5 from the following theorem:

Theorem 6.1 For n ≥ t,

z(n,K
(3)
3,t ) < t5n13/5.

Proof. Let H be a 3-partite triple system, each part of which is a copy of [n], labeled

A,B,C. As in the proof of Theorem 4.2, define the graphs Gi = Gi(A,B), G = G(A,B),

G′
i = G′

i(A,C) and G′ = G′(A,C). Partition A,B, and C into m = n2/5 disjoint sets

A1, A2, . . . , Am, B1, B2, . . . , Bm, and C1, . . . , Cm respectively, so that all sets have size

n/m = n3/5. We define D(Ai) to be the 3-graph (with multiple edges) on Ai such that

S ⊂ Ai is an edge of D(Ai) whenever S is an edge of D3,t(Gj) = D(Gj), for each j ∈ [n].

We define D(Bi) on vertex set Bi similarly. The first claim is similar to Claim 1 in the

proof of Theorem 4.2:

Claim 1. Any member of A(3) ∪ B(3) forms a part of a copy of a K3,t in Gi for at most

t− 1 integers i ∈ [n].

By using Lemma A.4 in the appendix, we prove the following Claim in a similar way to

Claim 2 in Theorem 4.2. The case t = 3 also follows in this way.

Claim 2. For t ≥ 3 and i ∈ [m], D(Ai) and D(Bi) have edge-multiplicity at most 1
2
(t−1)4.

Claim 3. We may remove at most 2t5m2
(

n/m
3

)
edges from G ∪G′ so that, for all i ∈ [n]

and j, k, l ∈ [m], the resulting graph contains no copy of Ks,t in Gi(Aj, Bk) or G′
i(Aj, Cl).
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Proof. Fix j, k ∈ [m] and let Hi = Gi(Aj, Bk). By the Main Lemma, we may remove at

most te(D3,t(Hi)) edges from Hi to obtain a K3,t-free graph. As D(Aj) and D(Bk) have

edge-multiplicity at most 1
2
(t− 1)4, the number of edges which may be removed to delete

all copies of K3,t in the graphs Hi is at most

∑

i∈[n]

te(D3,t(Hi)) ≤ t · 1

2
(t− 1)42

(
n/m

3

)
< t5

(
n/m

3

)
.

Repeating this argument for all pairs j, k ∈ [m], the number of edges removed from G is

at most t5m2
(

n/m
3

)
. Applying a similar argument to G′ gives the same result for G′. The

total number of edges removed from G ∪G′ is therefore at most 2t5m2
(

n/m
3

)
, completing

the proof of Claim 3.

We let HG and HG′ denote the subgraphs of G and G′ remaining after deleting the edges

from G and G′ in the application of Claim 3.

Claim 4. e(HG) < 3t2/3n7/3m2/3.

Proof. It is sufficient to prove that ejk = e(HG(Aj, Bk)) ≤ 3t2/3n7/3m−4/3 for all j, k ∈ [m].

Suppose, for a contradiction, that ejk > 3t2/3n7/3m−4/3. The average codegree of pairs

(b, c) in Bk × C is then at least

1

|Bk||C| ·
3t2/3n7/3

m4/3
≥ 3t2/3n1/3

m1/3
.

Consequently, the inequalities ab/bb ≤
(

a
b

)
< (3a)b/bb, and convexity of binomial coeffi-

cients yield,

∑

(b,c)∈Bk×C

(
codeg(b, c)

3

)
≥ n2

m
·
(

3t2/3n1/3m−1/3

3

)
> t2

n3

m2
= t2m

n3

m3
> t2m

(
n/m

3

)
.

This implies the existence of a set P ⊂ Bk × C of t2m pairs and vertices a1, a2, a3 ∈ Aj

such that the triples (ai, b, c) are edges of H whenever (b, c) ∈ P and i ∈ [3]. Let G′′

denote the bipartite graph on Bk ∪C whose edges are the elements of P . By Lemma A.3,

G′′ contains a matching M with t edges or a star with tm edges. In the former case, the

set of all triples (ai, b, c) with (b, c) ∈ M and i ∈ [3] form a copy of K
(3)
3,t in G. In the

latter case, depending on where the center of the star lies, we obtain either

(i) a copy of K3,mt in Gi(Aj, Bk) entirely contained HG, or
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(ii) a copy of K3,mt in G′
i(Aj, C) entirely contained in HG′ .

In case (ii), the pigeonhole principle implies that for some l ∈ [m], there is

(ii’) a copy of K3,t in G′
i(Aj, Cl) entirely contained in HG′ .

Both (i) and (ii’) give contradictions, as all such subgraphs were removed from G ∪G′ in

the application of Claim 3. Therefore ejk < 3t2/3n7/3m−4/3, as required. This completes

the proof of Claim 4.

We now count the number of edges in H. Recalling that m = n2/5, this number is at most

e(HG) + 2t5m2

(
n/m

3

)
< 3t2/3n7/3m2/3 + 2t5m2 n3

6m3
< 3t2/3n39/15 +

1

3
t5n3−2/5 < t5n13/5.

This completes the proof of Theorem 1.5.

Remarks:

• Since we believe that the exponent 13/5 in Theorem 1.5 can be improved to 7/3, we

have made no attempt to optimize the constants in the proof above.

• This approach gives the upper bound ex(n,K
(3)
s,t ) < cs,tn

3−2/[(s−1)2+1] for all s ≥ 3, but

the bound ex(n,K
(3)
s,t ) < c′s,tn

3−1/s in Theorem 1.4 is better for s > 3.

Appendix

The following two results are due to Füredi (Lemma 3.1 in [4]):

Proposition A.1 Let B be a hypergraph, possibly with multiple edges, in which degB(v) >

|ΓB(v)| for every vertex v. Then e(B) ≥ n(B).

Proof. We prove this by induction on n(B). Let v be any vertex of B, and let V be the

vertex set of B. Let B′ be the hypergraph with vertex set V ′ = V −ΓB(v)−{v} and edge

set {B ∩ V ′ : B ∈ E(B), B ∩ V ′ 6= ∅}. Then, by hypothesis and induction applied to B′,

e(B) ≥ degB(v) + e(B′) > degB(v) + n(B′) = n(B)− 1.

This completes the proof.

Lemma A.2 Let s ≥ 2, and let B1, B2, . . . , Bk be sets of size at least s. Then

|⋃i∈[k] B
(s)
i | ≥ 1

s
|⋃i∈[k] Bi|.
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Proof. Form a hypergraph B with vertex set
⋃

i∈[k] Bi and edge set
⋃

i∈[k] B
(s)
i . Then,

as |Bi| ≥ s for i ∈ [k], every vertex in B has degree at least one, so we have n(B) =

|⋃i∈[k] Bi| ≤ ∑
v∈B degB(v) = s · e(B).

Lemma A.3 Let G be a simple bipartite graph with at least (m − 1)(s − 1) + 1 edges.

Then G contains a matching with m edges or a star with s edges.

Proof. If every vertex of G has degree less than s, then we require at least m vertices to

cover all the edges of G. Hence, by the König-Egerváry Theorem (see [13], page 112), G

has a matching with at least m edges.

Lemma A.4 Let t > s ≥ 2, µ ≥ s, and let G be an s-graph with e(G) ≥ µ
(

t−1
s

)
+ 1 and

edge-multiplicity at most µ. Then G contains t vertices, each incident with a different

edge of G. If s = t, then the same conclusion holds as long as e(G) ≥ s.

Proof. The case s = t is trivial, so we focus on t > s. Fixing µ ≥ s ≥ 2, we will prove

the lemma by induction on t > s. We may assume e(G) = µ
(

t−1
s

)
+ 1 and G contains no

isolated vertices. Let G be the bipartite graph whose parts are the vertex set A of G and

the edge set B of G and a vertex of G is joined to all the edges of G containing it. Thus

every vertex in B has degree s. Therefore |ΓG(X)| ≥ |X| for all X ⊂ B with |X| ≤ s.

Suppose that t = s + 1. If |ΓG(X)| ≥ s + 1 for some X ⊂ B with |X| = s + 1, then

we can apply Hall’s Theorem to the bipartite graph induced by X ∪ ΓG(X). This gives

s + 1 = t elements in B matched to t elements in A. However, such an X exists since

e(G) ≥ µ + 1, implies that |Γ(B)| ≥ s + 1, and this yields a set X ′ ⊂ B with |X ′| = 2

and |Γ(X ′)| ≥ s + 1. Now X ′ can be extended to a set X as required. We may therefore

assume that t ≥ s + 2.

If some vertex v of G has degree at most µ
(

t−2
s−1

)
, then we remove v from G to obtain a

graph G ′ with at least µ
(

t−2
s

)
+ 1 edges. By induction, there exists a set E of t− 1 edges

in G ′ and a set S of t− 1 vertices, each incident with a different edge in E . As v is not an

isolated vertex in G, we may select any edge incident with v, distinct from any edge in E .

Then S ∪ {v} is the required set of t vertices of G. We therefore suppose G contains no

vertex of degree at most µ
(

t−2
s−1

)
.

This implies that for any X ⊂ A, s|Γ(X)| ≥ µ
(

t−2
s−1

)
|X| ≥ s|X|. By Hall’s Theorem, we

may find a matching of A into B. As e(G) > µ
(

t−1
s

)
and G has edge-multiplicity at most
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µ, G has at least t vertices. Therefore the vertex set of G satisfies the requirements of the

lemma when t ≥ s + 2.

This lemma is best possible as shown by the complete s-graph on t−1 vertices with every

edge repeated µ times.
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