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Abstract. The independence number α(H) of a hypergraph H is the

size of a largest set of vertices containing no edge of H. In this paper,

we prove that if Hn is an n-vertex (r+ 1)-uniform hypergraph in which

every r-element set is contained in at most d edges, where 0 < d <

n/(logn)3r
2

, then

α(Hn) ≥ cr
(n
d

log
n

d

)1/r

where cr > 0 satisfies cr ∼ r/e as r → ∞. The value of cr improves

and generalizes several earlier results that all use a theorem of Ajtai,

Komlós, Pintz, Spencer and Szemerédi [2]. Our relatively short proof

extends a method due to Shearer [22] and Alon [1].

The above statement is close to best possible, in the sense that for

each r ≥ 2 and all values of d ∈ N, there are infinitely many Hn such

that

α(Hn) ≤ br
(n
d

log
n

d

)1/r

where br > 0 depends only on r. In addition, for many values of d

we show br ∼ cr as r → ∞, so the result is almost sharp for large

r. We give an application to hypergraph Ramsey numbers involving

independent neighborhoods.

1. Introduction

In this paper, an r-graph is a set of r-element subsets of a finite set, where

the sets are called edges and the elements of the finite set are called vertices.

An independent set in an r-graph is a set of vertices containing no edge.

The independence number α(H) of an r-graph H is the maximum size of

an independent set in H.

A partial Steiner (n, r + 1, r)-system is an n-vertex (r + 1)-graph such

that each r-element set of vertices is contained in at most one edge. The
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maximum r-degree of an (r + 1)-graph H is the maximum number of edges

that any r-set of vertices is contained in.

The independence number α(H) has been studied at length in Steiner

systems, sometimes in the language of projective geometry, in terms of

maximum complete arcs, and has applications to geometric problems, for

instance the “orchard planting problem” (see [12, 13]) or Heilbronn’s cele-

brated triangle problem [17]. Given a partial Steiner (n, r+ 1, r)-system H,

Phelps and Rödl [19] were the first to show α(H) > c(n log n)1/r for some

constant c > 0 depending only on r, answering a question of Erdős [9]. Rödl

and Šinajová [21] proved that this result is tight, apart from the constant c.

One of the methods for finding large independent sets is the randomized

greedy approach: one iteratively picks a small set of independent vertices,

deletes the neighbors of this set and controls the statistics of the remaining

hypergraph. The paper of Ajtai, Komlós, Pintz, Spencer and Szemerédi [2]

gives a detailed analysis of such an algorithm for finding independent sets

in r-graphs. This approach has been used successfully to attack the corre-

sponding coloring problems for hypergraphs (see [5, 10, 11]).

1.1. Main Theorem. In this paper, we give a short proof of a general

result for (r+ 1)-graphs with maximum r-degree d. This extends the afore-

mentioned result of Phelps and Rödl, which is the case d = 1, without a

randomized greedy approach. Shearer [22] gave an ingenious short proof

that improved the lower bound of Ajtai, Komlós and Szemerédi [3] on the

independence number of a Kr-free graph in terms of the number of ver-

tices and average degree (this was later refined by Alon [1]). Shearer asked

whether his method could be applied to the hypergraph setting, and we par-

tially answer this question by proving our main result using his approach:

Theorem 1. Fix r ≥ 2. There exists cr > 0 such that if H is an (r + 1)-

graph on n vertices with maximum r-degree d < n/(log n)3r
2
, then

α(H) ≥ cr
(n
d

log
n

d

) 1
r

where cr > 0 and cr ∼ r/e as r →∞.

Remarks.

(1) In the paper of Duke, Lefmann and Rödl (see [7], Theorem 3) a lower

bound of the same order of magnitude as in Theorem 1 is given. However,

our contribution in Theorem 1 is that the proof is much shorter, as it does not

rely on the seminal result of Ajtai, Komlos, Pintz, Spencer and Szemeredi [2]

which has a very lengthy and technical proof, or the more recent version in
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[10] which has an even longer proof. Instead, we adapt the method of Shearer

and combine it with the very elegant idea in [7] of randomly sampling vertices

to give a short proof of Theorem 1.

(2) In the well-studied case of Steiner systems – namely d = 1, our proof

gives substantially better constants than those in [7]. Due to the constants

in [2] (see [2] page 334), the results of [7] give, for Steiner triple systems,

α(H) ≥ a
√
n log n where a = 0.98

105/2e
≈ 0.001, as compared to our bound of

approximately 0.417
√
n log n, which is itself not too far from our construc-

tions provided in Section 3.

(3) In fact in Section 3 we shall see that in addition if log d = o(log n) and

d/ log n→∞, then there is an (r+1)-graph H on n vertices with maximum

r-degree d and

α(H) ≤ br
(n
d

log
n

d

) 1
r

where br ∼ cr ∼ r/e. In this sense, as r → ∞, Theorem 1 is best possible

including the value of the constant cr. An earlier upper bound of 4
√
n log n

on the independence number of n-vertex Steiner triple systems was given

by Phelps and Rödl [19] and generalized to Steiner (n, r, k)-systems by Rödl

and Šinajová [21].

(4) Finally, we also expect the method might extend to F -free hypergraphs

as in the case of Shearer’s proof for graphs. This is a wide open problem

raised in [10] in the context of the chromatic number of F -free hypergraphs.

1.2. Independent neighborhoods. An r-graph H is said to have inde-

pendent neighborhoods if for every set R of r−1 vertices, {e\R : R ⊂ e ∈ H}
is an independent set. These hypergraphs have been studied from the point

of view of extremal hypergraph theory [14, 15] and hypergraph coloring [5].

Denote by Tr the r-graph with vertex set R∪S with |R| = r and |S| = r−1

and consisting of all edges containing S together with the edge R. Then an

r-graph has independent neighborhoods if and only if it does not contain

Tr as a subgraph. The Ramsey number R(Tr,K
(r)
t ) is the minimum N such

that in every red-blue coloring of the edges of the complete r-graph K
(r)
N

on N vertices, there is either a red Tr or a blue K
(r)
t . As a straightforward

consequence of Theorem 1, we obtain the following result:
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Theorem 2. Let H be an r-graph on n vertices with independent neighbor-

hoods. Then for some constant c, α(H) ≥ c(n log n)
1
r . In particular,

R(Tr,K
(r)
t ) = O

( tr

log t

)
.

We believe that the Ramsey result is best possible up to the value of the

implicit constant. In the case r = 2, for graphs, a graph has indepen-

dent neighborhoods if and only if it is triangle-free. Theorem 2 therefore

generalizes the well-known result of Ajtai, Komlós and Szemerédi [3] for

triangle-free graphs to hypergraphs. It remains an open problem to show

that Theorem 2 is best possible for all r. It is known to be best possible for

graphs by a result of Kim [16] which establishes that R(K3,K
(2)
t ) has order

of magnitude t2/(log t).

1.3. Organization. This paper is organized as follows: we start with stat-

ing the Chernoff Bound in Section 2, which will be used repeatedly in the

probabilistic methods to follow. In Section 3, we give the constructions

which prove that Theorem 1 is tight up to the constant cr. In Section 4

we will sketch the proof for the case r = 2 – the interested reader might

want to read this section first to see the main ideas. In Sections 5 and 6, we

establish some preliminaries for the proof of Theorem 1, which is in Section

7. In Section 8 we give an application to Ramsey numbers and hypergraphs

with independent neighborhoods. We end with some concluding remarks.

1.4. Notation. A hypergraph H is a pair (V (H), E(H)) where E(H) ⊂
2V (H); it is an r-graph if E(H) ⊂

(
V (H)
r

)
. Sometimes we will abuse notation

by associating H with its edge set E(H). A subgraph or subhypergraph of a

hypergraph H = (V,E) is a hypergraph H ′ = (V ′, E′) where V ′ ⊆ V and

E′ ⊆ E. For X ⊂ V , the subgraph of H induced by X is the subgraph H[X]

consisting of all edges of H that are contained in X. A triangle in an r-graph

H is a subgraph of three edges {e, f, g} such that |e∩f | = |f∩g| = |g∩e| = 1

and all the intersections are distinct. A hypergraph is linear if it has no pair

of distinct edges sharing two or more vertices. A set Z ⊆ V is an independent

set of H if Z contains no edges of H. Two vertices of H are adjacent if they

are contained in a common edge of H. Let N(x) denote the set of vertices

adjacent to x ∈ V (H).

All logarithms in this paper are to the natural base, e. We write f(n) ∼ g(n)

or f(n) = (1+o(1))g(n) for functions f, g : N→ R+ to denote f(n)/g(n)→ 1
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as n→∞, and f(n) = O(g(n)) to denote that there is a constant c such that

f(n) ≤ cg(n) for all n. We also write f(n) . g(n) if lim sup f(n)/g(n) ≤ 1

as n→∞. Similarly, f(n) = o(g(n)) means that lim f(n)/g(n) = 0. Unless

otherwise indicated, any asymptotic notation implicitly assumes n→∞.

2. Chernoff-type bounds

In this section we state the concentration inequalities that will be used in

the paper. Throughout, U ∼ binomial(n, p) means U is a binomial random

variable with success probability p in n trials, and if (An)n∈N is a sequence of

events in some probability space, then we say An occurs with high probability

if limn→∞ P (An) = 1.

The following lemma is a generalization of the Chernoff Bound (see McDi-

armid [18] Theorem 2.7 for Part 1, and Theorem 2.3 for Part 2).

Lemma 3. Let U be a sum of independent random variables U1, U2, . . . , Un
such that E(U) = µ and Ui ≤ E(Ui) + b for all i. Let V be the variance of

U . Then for any λ > 0

1. P (U ≥ µ+ λ) ≤ e−
λ2

2V+bλ .

2. If U ∼ binomial(n, p), then P (|U − µ| ≥ εµ) ≤ 2e−
ε2µ
3 .

The inequality in Lemma 3 Part 2 will be referred to as the Chernoff

Bound [6].

2.1. A technical lemma. In the proof of Theorem 1, we require the fol-

lowing consequence of the Chernoff Bound:

Lemma 4. Let q ∈ (0, 1]. For b, k ∈ N, define

S :=

k∑
j=0

(
k

j

)
qj(1− q)k−j min{j, b}. (1)

Then as k →∞,

S ∼ min{qk, b}. (2)
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Proof. Let Y ∼ binomial(k, q). Note that S ≤ b since min{j, b} ≤ b, and

S ≤ E(Y ) = qk since min{j, b} ≤ j. By the definition of Y ,

S =
k∑
j=0

P (Y = j) min{j, b} = E(min{Y, b})

=
∑
y<b

yP (Y = y) + bP (Y ≥ b)

=
∑
y<b

P (y < Y < b) + bP (Y ≥ b).

Since we have already observed that |S| ≤ min{qk, b}, it suffices to show that

|S| & min{qk, b}. Pick ε > 0 and let us show that |S| ≥ (1− 3ε) min{qk, b}
for k large. First suppose that b ≥ (1− ε)qk. For y ≤ (1− 2ε)qk, Lemma 3

Part 2 gives P (Y ≤ y) < ε for k large so

P (y < Y < b) = P (Y < b)− P (Y ≤ y) > P (Y < b)− ε.

Therefore

S =
∑
y<b

P (y < Y < b) + bP (Y ≥ b)

≥
∑

y≤(1−2ε)qk

P (y < Y < b) + bP (Y ≥ b)

≥ (1− 2ε)qk((P (Y < b)− ε) + bP (Y ≥ b)
> (1− 2ε)qk(P (Y < b) + P (Y ≥ b))− εqk
= (1− 2ε)qk − εqk
= (1− 3ε)qk

≥ (1− 3ε) min{qk, b}.

Next suppose that b < (1−ε)qk. Then by Lemma 3 Part 2, P (Y ≥ b) > 1−ε
for k sufficiently large, and again

S ≥ bP (Y ≥ b) > (1− ε)b > (1− 3ε) min{qk, b}.

Since ε > 0 is arbitrary, it follows that S ∼ min{qk, b}. �

3. Hypergraphs with low independence numbers

We show that Theorem 1 is tight for all d ∈ N up to the value of the constant

cr, using a “blowup” of a Steiner system. Furthermore, for many values of
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d and large r, we shall see via a random hypergraph construction that the

constant cr is itself almost best possible.

3.1. Blowup of a Steiner system. Let Sn be any Steiner (n, r + 1, r)-

system with V (Sn) = {1, 2, . . . , n}, where r ≥ 2. Define an (r + 1)-graph

H = (V,E) with N = dn vertices and with maximum r-degree d as follows:

let V be a disjoint union of sets V1, V2, . . . , Vn each of size d. For each edge

e = {x1, . . . , xr, xr+1} ∈ Sn let Be be the collection of all edges of the form

{v1, . . . , vr, vr+1} where vi ∈ Vxi . Let E comprise all (r + 1)-sets in each

Vi together with all edges in each Be. Note that every edge e ∈ H has

the property that either e ⊂ Vi for some i or |e ∩ Vi| = 1 for exactly r + 1

values of i. We may refer to H loosely as a blowup of a Steiner system. We

observe that α(H) = rα(Sn) since every independent set X of H contains

at most r vertices in each Vi, and {i : |X ∩ Vi| 6= ∅} is an independent set

of Sn. It is known that there are Steiner (n, r + 1, r)-systems Sn in which

α(Sn) ≤ ar(n log n)1/r for some ar > 0 depending only on r – see [19, 21].

Therefore blowing up these Steiner systems, we obtain (r+1)-graphs H with

N vertices and maximum r-degree d such that

α(H) = rα(Sn)

≤ rar

(N
d

log
N

d

)1/r
= br

(N
d

log
N

d

)1/r
where br > 0 depends only on r. This shows Theorem 1 is tight up to the

constant cr.

3.2. Random hypergraphs. A natural candidate for an (r+1)-graph with

low independence number is the random (r + 1)-graph H = Hn,r+1,p. This

probability space is defined by selecting randomly and independently with

probability p edges of the complete (r + 1)-uniform hypergraph on n ver-

tices, and letting H be the (r + 1)-graph of selected edges. We sketch a

standard argument showing that a random hypergraph gives good examples

of a hypergraph with low independence number. We take p = d/(n − r),
so that the expected r-degree of any r-element set in V (H) is exactly d.

By the Chernoff Bound, Lemma 3, part 2, if log n = o(d), then with high

probability, every r-set in H has r-degree asymptotic to d. Next, using the

bounds (1−p)y ≤ e−py for p ∈ [0, 1] and y ≥ 0 and (a−b+1)b/b! ≤
(
a
b

)
≤ ab

for a ≥ b ≥ 1, the expected number of independent sets of size x in H is



8 ON INDEPENDENT SETS IN HYPERGRAPHS

exactly

E :=

(
n

x

)
(1− p)(

x
r+1) < exp

(
x log n− d

n
· (x− r)r+1

(r + 1)!

)
.

Fix ε > 0 and let

x = (1 + ε)(r + 1)!1/r
(n
d

log n
)1/r

.

Then, as n→∞, we see that (x− r)r+1 ≥ (1− ε/2)0.5xr+1 and so

d

n

(x− r)r+1

(r + 1)!
> x log n

and therefore E < 1. We conclude that with positive probability, α(H) < x

and consequently,

α(H) . (r + 1)!1/r
(n
d

log n
)1/r

as required. If, in addition, log d = o(log n), then log n
d ∼ log n and so

α(H) . (r + 1)!1/r
(n
d

log
n

d

)1/r
.

Note that (r + 1)!1/r ∼ r/e ∼ cr showing that Theorem 1 provides close to

the right constant for large r.

4. Sketch Proof of Theorem 1

We outline the proof of Theorem 1 for linear triple systems – that is when

r = 2 and d = 1 – since the general proof requires only slight modifications

of the ideas in this case. For a contradiction, suppose there are n-vertex

linear triple systems H such that α(H) = o(
√
n log n).

4.1. Step 1 : Random sets. A random set is a set X ⊂ V (H) whose

vertices are chosen independently from H with probability

p =
n−2/5

(log log log n)3/5
.

Then E(|X|) = pn and E(|T |) ≤ p6
(
n
3

)
where T = T (X) is the set of

triangles in H[X]. The second bound holds since a triangle is uniquely

determined by the three vertices which are the pairwise intersections of its

edges, since H is linear. The choice of p ensures E(|T |) = o(pn). Let

b = log n, and for an independent set Z ⊂ V (H) and x ∈ X, let

ωZ(x, b) = min( b, |{xyz ∈ E(H) : {y, z} ⊂ Z}| ).
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Define

hZ(X) =
∑

x∈X\Z

ωZ(x, b).

Since H is linear, each {y, z} ⊂ Z accounts for at most one such triple

{x, y, z} and x ∈ X with probability p, so

E(hZ(X)) ≤ p
(
|Z|
2

)
≤ pα(H)2 = o(pn log n).

We use Lemma 3 – details are given in Section 6 – to show that X can be

chosen so that

(1) hZ(X) = o(pn log n) for all independent sets Z in H,

(2) |X| ∼ pn and

(3) T (X) = 0.

Henceforth, fix such a subset X and work in H[X].

4.2. Step 2 : Random weights. Let Z be a randomly and uniformly

chosen independent set in H[X] and define for x ∈ X the random variable

Wx =

{
p
√
n if x ∈ Z

ωZ(x, b) if x ∈ X\Z

We bound the expected value of W :=
∑

x∈XWx in two ways.

4.3. Step 3 : Upper bound for random weights. By definition we have

W = p
√
n|Z|+ hZ(X). The choice of X in Step 1 ensures that

W ≤ p
√
nα(H) + o(pn log n) = o(pn log n)

so E(W ) = o(pn log n).

4.4. Step 4 : Lower bound for random weights. Fixing an x ∈ X, we

condition on the value of Zx = Z\(N(x) ∪ {x}). Fixing Zx, let J be the

set of vertices v ∈ N(x) such that Zx ∪ {v} is an independent set in H[X].

Since H[X] is triangle-free and linear, no edge of H[X] has two vertices

in N(x) except the edges on x. Therefore, for any independent set I in

H[J ∪ {x}], I ∪ Zx is an independent set. Furthermore, conditioning on x

and Zx, Z is a uniformly chosen independent set of the form I ∪ Zx. Let

M be the set of pairs of vertices of J forming an edge with x and L be the

set of vertices in J not in any pair in M , and let ` = |L|. If |M | = k, then
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there are 4k + 3k independent sets in H[
⋃
M ∪ {x}] – those not containing

x plus those containing x. There are 2` choices for Z ∩L since any choice of

vertices of L together with Zx forms an independent set. If j pairs from M

are contained in the independent set, then ωZ(x, b) = min{j, log n}. There

are
(
k
j

)
ways to pick those pairs from M , and then 3k−j ways to pick vertices

in the independent set from the remaining k− j pairs in M without picking

both vertices from any of those pairs. Therefore, by the definition of Wx,

E(Wx|Zx) =
2`3kp

√
n+ 2`

∑k
j=0

(
k
j

)
3k−j min{j, log n}

2`(3k + 4k)
.

Using Lemma 4, with q = 1/4, the sum is asymptotic to min{k4k−1, 4k log n}
if k → ∞. By the choice of p, a calculation shows the minimum value of

the right hand side is of order log n – see Section 5 for details. So for every

x ∈ X, E(Wx|Zx) = Ω(log n). Therefore by the tower property,

E(W ) =
∑
x∈X

E(Wx) =
∑
x∈X

E(E(Wx|Zx)) = Ω(pn log n).

This contradicts the upper bound in Step 3, and completes the proof.

5. An inequality on independent sets

It will be shown that if H is an (r+ 1)-graph of maximum r-degree d, then

H has a large induced linear triangle-free (r + 1)-graph, and this (r + 1)-

graph will contain an independent set of the size stated in Theorem 1. In

this section, we prove a general inequality for independent sets in linear

triangle-free (r + 1)-graphs. Let H be a linear triangle-free (r + 1)-graph

with m vertices and let X be a subset of V = V (H). Let Z be the set of

all independent sets of H. The key quantity we wish to control is defined

as follows. For Z ∈ Z, b ∈ R, and v ∈ V (H)\Z, define ωZ(v, b) to be the

minimum of b and the number of r-sets e ⊂ Z such that e∪ {v} ∈ H. Then

define for any set X ⊂ V (H) and any independent set Z in H[X],

hZ(X) =
∑

v∈X\Z

ωZ(v, b).

Lemma 5. Let H be a linear triangle-free (r+1)-graph with m vertices, and

let Z be a uniformly randomly chosen independent set in H, and b ∈ R+.

Then as b→∞,

E(hZ(V )) + ebE(|Z|) & bm

−2r log(1− 2−r)
. (3)
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Proof. Let V = V (H) and q = 1 − 2−r. For v ∈ V , define the random

variable:

Wv =

{
eb if v ∈ Z
ωZ(v, b) if v ∈ V \Z

By the definition of Wv,

W :=
∑

v∈V (H)

Wv =
∑
v∈Z

Wv +
∑

v∈V \Z

Wv = eb|Z|+ hZ(V ).

To complete the proof, we show E(Wv) & b/(−2r log q) for every v ∈ V .

Fixing v ∈ V and Zv = Z\(N(v) ∪ {v}), define

J = {u ∈ N(v) : Zv ∪ {u} ∈ Z}.

Since H is linear and triangle-free, Z is obtained from Zv by selecting an

independent subset of H[J ∪ {v}]. Let M be the set of r-sets in J forming

an edge with v and let L = J\
⋃
M . Since H is linear, M consists of disjoint

r-sets. A set of vertices of J ∪ {v} containing v is independent in H if and

only if it contains at most r− 1 vertices from each of the sets in M together

with any subset of L. Any independent set of H in J ∪ {v} not containing

v consists of any subset of
⋃
M ∪ L. So if |M | = k and |L| = `, there

are 2`(2rk + (2r − 1)k) independent sets in H[J ∪ {v}]. It follows from the

definition of Wv that

E(Wv|Zv) =
eb2`(2r − 1)k + 2`

∑k
j=0

(
k
j

)
(2r − 1)k−j min{j, b}

2`(2rk + (2r − 1)k)

=
ebqk

1 + qk
+

∑k
j=0

(
k
j

)
(2r − 1)k−j min{j, b}

2rk + (2r − 1)k
. (4)

We shall show E(Wv|Zv) & b/(−2r log q). First suppose that ebqk > 2b.

Then using the inequality − log(1− x) > x for 0 < x < 1, we obtain

E(Wv|Zv) ≥
ebqk

1 + qk
>
ebqk

2
> b >

b

−2r log q
.

Next suppose that ebqk ≤ 2b. Then Lemma 4 gives

k∑
j=0

(
k

j

)
(2r − 1)k−j min{j, b} ∼ 2rk min{(1− q)k, b}.

Consequently,

E(Wv|Zv) &
2rk min{(1− q)k, b}

2rk + (2r − 1)k
.



12 ON INDEPENDENT SETS IN HYPERGRAPHS

Since ebqk ≤ 2b, if b→∞, then also k →∞ and so

2rk min{(1− q)k, b}
2rk + (2r − 1)k

∼ min{(1− q)k, b}.

Since ebqk ≤ 2b, we have k ≥ (log 2b− b)/ log q ∼ −b/ log q, and so

min{(1− q)k, b} & min

{
(1− q)b
− log q

, b

}
= min

{
b

−2r log q
, b

}
≥ b

−2r log q
.

Now (4) and the tower property of expectation implies,

E(W ) =
∑
v∈V

E(E(Wv|Zv)) &
bm

−2r log q
.

This completes the proof of Lemma 5. �

6. Random subsets of hypergraphs

To prove Theorem 1, we shall find an appropriate set Y ⊂ V (H) such that

H[Y ] is linear and triangle-free and then we apply Lemma 5. To do so, we

need to find a set Y in which the quantity h(Z, b) in Lemma 5 is not too

large. The set Y will be found by random sampling. A random set refers

to a set X ⊂ V (H) whose vertices are chosen from V independently with

probability p, where p is to be chosen later.

Lemma 6. Let H be an n-vertex (r + 1)-graph with maximum r-degree d

and α(H) ≤ α. Suppose that for some p ∈ [0, 1] with pn→∞ and b ∈ R+,

α log n = o
( pd2α2r

nb2 + dbαr

)
and d3n3r−3p3r = o(pn). (5)

Then there exists a set Y ⊆ V (H) with the following properties

• |Y | ∼ pn

• H[Y ] is linear and triangle-free and

• for every independent set Z in H[Y ],

hZ(Y ) . pd

(
α

r

)
. (6)

Remark. The condition d3n3r−3p3r = o(pn) is natural, as it implies that

the expected number of triangles in a random subset of V (H) with vertex
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probability p is o(pn) – in particular, a random subset can be made triangle-

free by deleting very few vertices.

Proof. Let X be a random subset of V (H). For an independent set Z in

H[X], hZ(X) is a random variable determined by H[X]. The main part of

the proof is to show that with high probability, hZ(X) . pd
(
α
r

)
for every

independent set Z in H[X]. Fixing an independent set Z ⊂ H[X], it is

convenient to let h = hZ(X). First we bound E(h) from above. Since H

has maximum r-degree d,

E(h) ≤ pd
(
|Z|
r

)
≤ pd

(
α

r

)
.

Next we estimate V ar(h). Let Iv be the indicator of the event v ∈ X and

ωv = ωZ(v, b). Then

h =
∑

v∈V \Z

ωvIv

is a sum of independent random variables ωvIv for v ∈ V \Z. It follows that

V ar(h) =
∑

v∈V \Z

V ar(ωvIv)

=
∑

v∈V \Z

ω2
vp(1− p)

≤
∑
v∈V

b2p(1− p) ≤ pnb2.

By Lemma 3 Part 1, with ε ∈ (0, 1) and λ = εpd
(
α
r

)
,

− logP (h > E(h) + λ) ≥ λ2

2pnb2 + λb

=
(εpd)2

(
α
r

)2
2pnb2 + εpd

(
α
r

)
b

≥ (εpdαr)2

3r!2(pnb2 + pdbαr)
> 2α log n by (5)

for large enough n. Note that α → ∞ since d/n → 0. Since |Z| < nα(H),

this shows by Markov’s Inequality that with probability at least 1 − n−α,

hZ(X) ≤ (1 + ε)pd
(
α
r

)
for every independent set Z in H[X]. Since ε ∈ (0, 1)

is arbitrary, hZ(X) . pd
(
α
r

)
for every independent set Z in H[X].

Consider pairs of edges in X that intersect in at least two vertices. The

number of pairs of edges inH that intersect in i vertices can be bounded from
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above as follows: First choose an i-set S of vertices that is the intersection

of two edges – there are at most ni ways of choosing S. Now consider the

(r+ 1− i)-graph HS consisting of edges of the form E \S where E ∈ E(H).

Since H has r-degree at most d, we conclude that HS has (r − i)-degree

at most d, so HS has at most dnr−i edges. Now we pick two edges in HS

that are disjoint. The number of ways of doing this is at most d2n2r−2i.

Altogether, the number of pairs of edges in H sharing exactly i vertices is

at most d2n2r−i, and the probability that one such pair lies in X is p2r+2−i.

We conclude, using pn → ∞ and (5), that the expected number of pairs of

edges in X intersecting in two or more vertices is at most

d2(p2rn2r−2 + p2r−1n2r−3 + · · ·+ pr+2nr) = O(d2p2rn2r−2) = o(pn)

due to the assumption d3n3r−3p3 = o(pn) of (5).

Next we consider triangles in H[X] which here are triples {e, f, g} of edges of

H[X] such that |e∩f | = |f∩g| = |g∩e| = 1 and e∩f∩g = ∅. There are fewer

than n3 choices for e∩ f, f ∩ g, g ∩ e. Fixing e∩ f and e∩ g, there are fewer

than nr−2d choices for e since H has r-degree at most d. It follows that the

expected number of triangles in H[X] is less than n3(dnr−2)3p3r = o(pn),

using (5). We conclude that the number T of triangles in H[X] satisfies

E(T ) = o(pn). Now if Y is obtained from X by deleting a vertex of X from

each triangle in H[X] and from each pair of edges of H[X] intersecting in at

least two vertices in H[X], then |Y | ∼ pn with high probability and H[Y ] is

triangle-free. Finally, we observe that the value of hZ(X) does not increase

by deleting vertices from X, so (6) holds in H[Y ] with high probability. �

7. Proof of Theorem 1

We are now ready to prove Theorem 1, using Lemmas 5 and 6. In the

proof, all asymptotic notation refers to n→∞. Let H be an (r + 1)-graph

of maximum r-degree d ≤ n/(log n)3r
2

on n vertices. We will show that

α(H) & α where

α := cr

(n
d

log
n

d

)1/r
and

crr =
r!

−r(3r − 1)2r log(1− 2−r)
. (7)
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Suppose for a contradiction that there exists ε > 0 such that α(H) . (1−ε)α.

Define p ∈ [0, 1] and b ∈ R+ by

pn =
( n

d log log log n

) 3
3r−1

and b =
1

r(3r − 1)
log

n

d
.

There are two steps to the proof: first we have to verify that the above choice

of parameters allows us to apply Lemma 5 and Lemma 6, in particular (5).

We claim that the following hold, the first two of which allow us to apply

the lemmas:

α log n = o
( pd2α2r

nb2 + dbαr

)
(8)

d3n3r−3p3r = o(pn) (9)

ebα = o(pdαr). (10)

The inequality (9) follows immediately from the definition of pn, due to the

log log log n term there. To prove (8), we note nb2 ≤ dbαr, since nb2 = dbxr

implies

xr =
1

r(3r − 1)

n

d
log

n

d
≤ crr

n

d
log

n

d
= αr.

Therefore

pd2α2r

nb2 + dbαr
>
pd2α2r

2dbαr
=
pdαr

2b
=
r(3r − 1)crr

2
pn.

By the definition of pn and d ≤ n/(log n)3r
2
, a short calculation yields

α log n = o(pn), which proves (8). For (10), we have

ebα = cr

(n
d

)1/r(3r−1)
·
(n
d

log
n

d

)1/r
= cr

(n
d

)3/(3r−1)(
log

n

d

)1/r
= cr(log log log n)3/(3r−1)pn

(
log

n

d

)1/r
= o(pdαr)

since d ≤ n/(log n)3r
2

and r ≥ 2. This verifies (10) and we now apply

Lemma 6.

By Lemma 6, there is a linear triangle-free subgraph H[Y ] with |Y | ∼ pn

and

hZ(Y ) . pd

(
α

r

)
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for every independent set Z in H[Y ]. In particular, using (10), selecting a

random uniform independent set Z in H[Y ],

E(hZ(Y )) + ebE(|Z|) . pd
(
α

r

)
+ ebα .

(1− ε)rcrr
r!

pn
(

log
n

d

)
. (11)

We note that b = 1
r(3r−1) log n

d → ∞ since d ≤ n/(log n)3r
2
. Therefore by

Lemma 5,

E(hZ(Y )) + ebE(|Z|) & pnb

−2r log(1− 2−r)
=
crr
r!
pn
(

log
n

d

)
. (12)

Now (12) contradicts (11), and this completes the proof.

8. Ramsey numbers and independent neighborhoods

Ajtai, Komlós and Szemerédi [3] proved that R(K3,K
(2)
t ) = O(t2/(log t)).

Using Theorem 1, we can generalize part of this result to hypergraphs in

the following manner.

Proof of Theorem 2. It is enough to show that if n is large enough, then

there exists a constant a > 0 such that α(H) ≥ a(n log n)1/r when H is an

r-graph on n vertices with independent neighborhoods. We will show that

a = (cr/2)(r−1)/r works where cr > 0 is the constant in Theorem 1. Let

t = a(n log n)1/r. If H has maximum (r − 1)-degree at least t, then the

set of vertices adjacent to an (r − 1)-set of degree t is an independent set,

since H has independent neighborhoods, and we are done. Otherwise, by

Theorem 1 and the definition of t, if n is large enough then

α(H) ≥ cr

(n
t

log
n

t

) 1
r−1

>
cr
2

(n log n

a

) 1
r−1

= a(n log n)1/(r−1)

by definition of a. A short computation with the value of t shows this gives

the required upper bound on Ramsey numbers. �

The above theorem is best possible for r = 2, as shown via a random con-

struction of triangle-free graphs by Kim [16]. We believe Theorem 2 is best

possible for r > 2 as well. It is straightforward to give an example with

α(H) ≤ c′n1/r(log n)1/(r−1) with c′ > 0 using the random hypergraph Hn,p

with edge probability p ≈ n−(r−1)/r. One can then use the Local Lemma or
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the deletion method (see the proof of Theorem 4 in [5] for details using the

latter approach).

9. Concluding remarks

• Duke, Lefmann and Rödl [7], based on a paper of Ajtai, Komlós, Pintz,

Spencer and Szemerédi [2] showed that a linear (r + 1)-graph on n vertices

with average degree d has an independent set of size at least c′n( log dd )1/r.

It would be interesting to find a way to extend the method of this paper to

prove such a result.

• This paper was partly inspired by the following question of De Caen [8].

A 3-graph H is c-sparse if every set S of vertices spans at most c|S|2 edges.

Conjecture 7. For every c there is f(n)→∞ as n→∞ such that α(H) ≥
f(n)

√
n for each c-sparse n-vertex 3-graph H.

We pose the stronger conjecture that for some function ω(n)→∞, α(H) >
nω(n)√

d
for a c-sparse n-vertex 3-graph H with average degree d. Both con-

jectures remain open.

• A related but more difficult problem than that considered in this paper

is to obtain analogous results for chromatic number. Frieze and the second

author [10] have conjectured that if H is an (r+ 1)-graph on n vertices with

maximum degree d, and H does not contain a specific (r+ 1)-graph F , then

H has chromatic number O(d1/r/(log d)1/r) (it appears that this conjecture

is more difficult when d is much less than n). In [10] and [11] the case when

H is linear is dealt with using a randomized greedy approach. For r = 1 –

i.e. for graphs – this is known to be true when F is a bipartite graph, or one

vertex away from a bipartite graph [4]. It is open for graphs even in the case

F = K4, and in each case where the chromatic number conjecture of Frieze

and the second author stated above is open, the corresponding question for

independence number is also open.
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