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June 11, 2005

Abstract

For a family of r-graphs F , the Turán number ex(n,F) is the maximum number of edges in

an n vertex r-graph that does not contain any member of F . The Turán density

π(F) = lim
n→∞

ex(n,F)(
n
r

) .

When F is an r-graph, π(F) 6= 0, and r > 2, determining π(F) is a notoriously hard problem,

even for very simple r-graphs F . For example, when r = 3, the value of π(F) is known for very

few (< 10) irreducible r-graphs.

Building upon a method developed recently by de Caen and Füredi [3], we determine the

Turán densities of several 3-graphs that were not previously known. Using this method, we

also give a new proof of a result of Frankl and Füredi [5] that π(H) = 2/9, where H has edges

123, 124, 345.

Let F(3, 2) be the 3-graph 123, 145, 245, 345, let K−4 be the 3-graph 123, 124, 234, and let C5

be the 3-graph 123, 234, 345, 451, 512. We prove

• 4/9 ≤ π(F(3, 2)) ≤ 1/2,

• π({K−4 , C5}) ≤ 10/31 = 0.322581,

• 0.464 < π(C5) ≤ 2−
√

2 < 0.586.

The middle result is related to a conjecture of Frankl and Füredi [6] that π(K−4 ) = 2/7. The

best known bounds are 2/7 ≤ π(K−4 ) ≤ 1/3.
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1 Introduction

Given a family of r-uniform hypergraphs (or r-graphs) F , we say that an r-graph G is F-free

if G contains no subhypergraph isomorphic to any element in F . The Turán number ex(n,F) is

the maximum number of edges in an n vertex F-free r-graph. In the case of complete r-graphs,

it is easy to show that t(r, s) = limn→∞ex(n, K
(r)
s )/

(
n
r

)
exists, but determining it is perhaps the

most fundamental open problem in extremal hypergraph theory. In fact, the numbers t(r, s) are

not known for any s > r ≥ 3.

Research in this subject has therefore focused on determining Turán numbers for other hyper-

graphs. Throughout we focus on 3-graphs with nondegenerate Turán numbers, i.e., those whose

Turán number is not o(n3). Indeed, for such a 3-graph H, we let π(H) = lim ex(n,H)/
(
n
3

)
be its

Turán density.

A recent breakthrough in this area was the determination of the Turán density of the Fano

plane. Sós [11] conjectured over 20 years ago that this density is 3/4 and gave an example showing

that this is a lower bound. de Caen and Füredi [3] proved this conjecture by a remarkably simple

and short proof. The purpose of this paper is to expand on the ideas in their paper and use these

techniques to compute the Turán density of several other 3-graphs. We also prove new best known

bounds for several other Turán densities. For a positive integer k, we let [k] = {1, . . . , k}, and for

a set S, we write
(
S
k

)
for the family of subsets of S of size k.

Definition 1.1. Let p, q > 0. Then F(p, q) is the 3-graph with vertex set P ∪ Q, where P = [p]

and Q = [p + q] − [p], and edge set
(
P
3

)
∪ {xyz : x ∈ P, y, z ∈ Q}. Let F(5) be the 3-graph with

edges 123, 124, 345.

As a generalization of the simplest case of Turán’s theorem for graphs (this is referred to as

Mantel’s Theorem), Katona [9] proposed the problem of determining the maximum number of edges

in an r-graph that contains no three edges A,B, C such that A4B ⊆ C. The complete r-partite

r-graph with parts as equal as possible shows that the Turán density of this family is at least r!/rr.

Bollobás [1] proved equality for the case r = 3, and Sidorenko [10] proved equality for the case

r = 4.

When r = 3, there are two forbidden subgraphs in Katona’s problem, F(5) and F(1, 3). Given

Bollobás’ result, it seems natural to refine his theorem by asking for the Turán density of these

individual 3-graphs. Determining π(F(1, 3)) is a well-studied open problem. de Caen proved an

upper bound of 1/3 while Frankl and Füredi [6] gave a construction yielding a lower bound of 2/7.

Frankl and Füredi [5] also proved
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Theorem 1.2.

ex(n,F(5)) =
⌈n

3

⌉⌈n + 1
3

⌉⌈
n + 2

3

⌉
for n ≥ 3000. In particular, this implies that

π(F(5)) = 2/9. (1)

Our first application of the de Caen-Füredi method (Section 2) is to give another proof of (1).

Although this is weaker than what is already known, we believe that it nicely illustrates the method.

In section 3 we determine the Turán density of several other 3-graphs.

Definition 1.3. Let F ′(3, 3) be the 3-graph made up of a copy of F(3, 3) with vertices labeled

as in Definition 1.1, two additional vertices, 7, 8, and four additional edges 178, 278, 478, 578.

Let F ′′(3, 3) be obtained from F ′(3, 3) by adding two additional vertices, 9,a, and three additional

edges, 19a, 49a, 79a. Let F−(4, 3) be the 3-graph obtained from F(4, 3) by deleting the edge 156. Let

F−′
(4, 3) be obtained from F−(4, 3) by adding two vertices 8, 9, and adding three edges 289, 389, 589.

By a relatively direct application of the de Caen-Füredi method we can prove

Theorem 1.4. (Section 3) Let S = {F(3, 3),F ′(3, 3),F ′′(3, 3),F−(4, 3),F−′
(4, 3)}. Let A,B ∈ S

(possibly A = B), and A ⊆ F ⊆ B. Then π(F) = 3/4.

The Turán density π(F(3, 3)) = 3/4 has been independently proven (using essentially the same

proof) by J. Goldwasser.

For vertices x and y in a hypergraph H, we write x ∼ y if

i) xyu 6∈ E(H) for all u

ii) xuv ∈ E(H) ⇐⇒ yuv ∈ E(H).

We say that H is irreducible if there is no pair x, y with x ∼ y.

Let x, y ∈ V (H) with x ∼ y, and let H′ = H− x. It is well-known that π(H) = π(H′), thus it

makes sense to ask only for the Turán density of irreducible hypergraphs. The Turán density of very

few (< 10, see the survey by Füredi [7]) irreducible 3-graphs is known. Theorem 1.4 determines

the Turán density of several irreducible 3-graphs not in S, thus giving many Turán densities not

previously known.

We try to use the same technique to determine π(F(3, 2)). Although we are not successful, we

obtain reasonably good bounds.

Theorem 1.5. (Section 4) 4/9 ≤ π(F(3, 2)) ≤ 1/2.

We believe that the upper bound in Theorem 1.5 can be improved.
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Conjecture 1.6. π(F(3, 2)) = 4/9.

Definition 1.7. The complete 3-graph on four vertices is K4. The 3-graph obtained from K4 by

deleting a single edge is K−4 . The Pentagon C5 is the 3-graph with vertex set [5] and edge set

{123, 234, 345, 451, 512}.

Perhaps the most famous conjecture in this area is that π(K4) = 5/9. It is known that 5/9 ≤
π(K4) ≤ (3+

√
17 )/12 = .59359.., where the lower bound is due to Turán [4] and the upper bound

is due to Chung and Lu [2]. However, as mentioned earlier, even the Turán density π(K−4 ) is not

known (note that K−4 = F(1, 3)). In some sense this is an even more fundamental problem, since

K−4 is the smallest (in every sense) 3-graph with positive Turán density.

The upper bound π(K−4 ) ≤ 1/3 was proved by de Caen, and Frankl and Füredi gave a fairly

complicated recursive construction yielding π(K−4 ) ≥ 2/7. Although we are unable to improve upon

these, we prove that density greater than 10/31 (< 0.323 < 1/3) forces a copy of either K−4 or a

Pentagon, which is much harder to force by itself.

Theorem 1.8. (Section 5) π({K−4 , C5}) ≤ 10/31 = 0.322581.

Given Theorem 1.8, it is natural to ask for the Turán density of the Pentagon. Also, the

Pentagon is the smallest self-complementary 3-graph with positive Turán density (indeed, the only

one on fewer than six vertices), and it therefore would be nice to determine π(C5). Again, we are

only able to give reasonable bounds. Our techniques are motivated by the de Caen-Füredi method,

but are slightly different.

Theorem 1.9. (Section 6) 0.464 < π(C5) ≤ 2−
√

2 < 0.586.

Comparing Theorem 1.8, the results on π(K−4 ), and Theorem 1.9, a natural question that arises

is whether the Turán density of a family of two 3-graphs is less than the minimum of the Turán

densities of the individual 3-graphs. For graphs, this is not true, indeed, the famous Erdős-Stone-

Simonovits theorem implies that the Turán density of a family of graphs is equal to the minimum

of the Turán densities of the individual graphs in the family. We think that this phenomenon does

not extend to hypergraphs.

Conjecture 1.10. 1 There is a positive integer k and 3-graphs F1, . . . ,Fk such that

π({F1, . . . ,Fk}) < min
i

π(Fi).

We believe that Conjecture 1.10 should be true even with k = 2.
1Recently J. Balogh has announced a positive answer to this Conjecture
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2 A new proof of an old result

Definition 2.1. Let H be a 3-graph and S ⊆ V (H). The link multigraph of S in H is the multigraph

G with V (G) = V (H)−S, and E(G) = {uv : xuv ∈ E(H) for some x ∈ S}. The multiplicity of uv

is the number of x ∈ S with xuv ∈ E(H).

Proof of (1): For the lower bound, observe that the complete 3-partite 3-graph with parts of as

equal size as possible is F(5)-free. This 3-graph has density 2/9.

For the upper bound, suppose that G is a 3-graph with n vertices and (2/9)
(
n
3

)
+ cn2 edges for

some sufficiently large constant c (c = 10 suffices for our purposes, but we make no attempt to

optimize its value). We must show that G contains a copy of F(5). Proceeding by induction, we

may assume that the result holds for graphs with fewer than n vertices. We note that to apply the

induction hypothesis, we need only find a vertex in G of degree at most (2/9)
(
n−1

2

)
+ c(2n− 1).

By Bollobás’ Theorem [1], G contains a copy of either F(5) or F(1, 3). We may therefore assume

that G contains a copy K−4 of F(1, 3). Consider the link multigraph G of S = V (K−4 ) in G.

If G is not simple, then some pair xy appears twice, which means that we have triples axy, bxy

in G, where a, b ∈ S. Because every two vertices of K−4 lie in an edge in K−4 , there is another triple

abc with a ∈ S. Now the vertices a, b, c, x, y induce a subhypergraph containing a copy of F(5).

We may therefore assume that G is simple.

As mentioned before, we may also assume that every vertex in S has degree in G greater than

(2/9)
(
n−1

2

)
+ c(2n − 1), otherwise we can apply induction. This yields at least e = (8/9)

(
n−1

2

)
+

4c(2n − 1) − 6(n − 4) − 3 edges in G, where the last two terms count edges with at least two

vertices in S. Now we apply Turán’s graph theorem to G: e > (4/9)(n−4)2 edges force a subgraph

K10 ⊆ G.

Suppose that there are x, y, z ∈ V (G), and a, b ∈ S with edges xya, yza, xzb. Then x, y, z, a, b

induce a hypergraph containing F(5). We may therefore assume that for every x, y, z ∈ V (G),

there do not exist a, b with this property.

Pick a vertex v1 in K10. Edges incident to v1 in K10 come from triples including one vertex in

S. Hence we must have at least three edges from the same vertex of S, say av1v2, av1v3, av1v4. The

observation in the previous paragraph implies that we also have triples av2v3, av2v4, av3v4. Now

the vertices a, v1, . . . , v4 form a copy of F(1, 4).

Consider the link multigraph G′ formed by the vertex set of the copy of F(1, 4) in G. Since

F(1, 4) has the property that every two vertices lie in an edge, we may again assume that G′ is

simple. But this forces some vertex of the copy of F(1, 4) to have degree (in G) at most (2/9)
(
n−1

2

)
+
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c(2n−1) since G′ cannot contain (10/9)
(
n−1

2

)
+5c(2n−1)−10(n−5)−6 >

(
n−5

2

)
edges. Removing

this vertex, we may apply induction.

3 More Turán densities

To prove Theorem 1.4, we need a special case of a recent result of Füredi and Kündgen [8]. Its

proof appears in [3].

Lemma 3.1. Let G be an n vertex multigraph with every three vertices spanning at most ten edges.

Then G has at most 3
(
n
2

)
+ n− 2 edges.

Proof of Theorem 1.4: Recall that A,B ∈ S and A ⊆ F ⊆ B. We first argue that if χ(A) > 2,

and π(B) ≤ 3/4, then π(F) = 3/4.

Consider the n vertex 3-graph H obtained by splitting the vertices into two sets of size dn/2e
and bn/2c; the edges are all triples that meet both these sets. H is clearly 2-colorable, and has

(3/4 + o(1))
(
n
3

)
edges, hence it does not contain A, therefore it does not contain F . This shows

that π(F) ≥ 3/4. For the other inequality we only need to observe that F ⊆ B.

It is easy to see that χ(F(3, 3)) > 2. Since F(3, 3) is a subgraph of every 3-graph considered in

the Theorem, it suffices to prove that the Turán density of each 3-graph F in S is at most 3/4.

Suppose that G is a 3-graph with more than 3/4
(
n
3

)
+ cn2 edges for some appropriate constant

c (c = 10 suffices). We will prove by induction on n that G contains a copy of F . In order to do

this, we need to only find a vertex of degree at most (3/4)
(
n−1

2

)
+ c(2n− 1).

• F = F−(4, 3): It is easy to see (by averaging) that G contains a copy K of K4. Let G be the link

multigraph of S = V (K) in G. If some three vertices of G span at least eleven edges, then these

three vertices together with K form a copy of F . Hence we may assume that every three vertices

in G span at most ten edges. Lemma 3.1 now implies that G has at most 3
(
n−4

2

)
+ n − 6 edges.

Hence some v ∈ S has dG(v) ≤ (3/4)
(
n−4

2

)
+ (n− 6)/4 + 3(n− 4) + 4 < (3/4)

(
n−1

2

)
+ c(2n− 1).

• F = F−′
(4, 3): We have proved that G contains a copy K of F−(4, 3). Let G be the link

multigraph of S = V (K) in G. If some pair of vertices of G span at least six edges, then this

pair together with K forms a copy of F . Hence we may assume that every pair of vertices in G

spans at most five edges. Thus G has at most 5
(
n−7

2

)
edges. Hence some v ∈ S has dG(v) <

(5/7)
(
n−7

2

)
+ 6(n− 7) + 11 < (3/4)

(
n−1

2

)
+ c(2n− 1).

• F = F(3, 3): It is enough to observe that F ⊆ F−(4, 3).
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• F = F ′(3, 3): We have proved that G contains a copy K of F(3, 3). Let G be the link multigraph

of S = V (K) in G. If some pair of vertices of G span at least five edges, then these two vertices

together with K form a copy of F . Hence we may assume that every pair of vertices in G span

at most four edges. Therefore G has at most 4
(
n−6

2

)
edges. Hence some v ∈ S has dG(v) <

(4/6)
(
n−6

2

)
+ 5(n− 6) + 9 < (3/4)

(
n−1

2

)
+ c(2n− 1).

• F = F ′′(3, 3): We have proved that G contains a copy K of F ′(3, 3). Let G be the link multigraph

of S = V (K) in G. If some pair of vertices of G span at least seven edges, then these two

vertices together with K form a copy of F . Hence we may assume that every pair of vertices

in G span at most six edges. Therefore G has at most 6
(
n−8

2

)
edges. Hence some v ∈ S has

dG(v) < (6/8)
(
n−8

2

)
+ 7(n− 8) + 13 < (3/4)

(
n−1

2

)
+ c(2n− 1).

4 Proof of Theorem 1.5

We need some preliminaries to prove Theorem 1.5.

Definition 4.1. Let F2 be the 3-graph obtained from F(1, 3) by duplicating the vertex in P . For

t > 2, let Ft be the family of all 3-graphs obtained as follows: let F ∈ Ft−1, add two new vertices,

x, y and add any set of t edges of the form axy, where a lies in F .

The family Ft will play a crucial role in the proof of the upper bound of Theorem 1.5. We

develop some properties of these families.

Proposition 4.2. Let F ∈ Ft. Then

1) F has 2t + 1 vertices

2) Every set of t + 2 vertices in F spans at least one edge

3) π(F2) ≤ 1/3, and π(Ft) ≤ 1/2 for t ≥ 3.

Proof. 1) F2 has five vertices, and to form a 3-graph in Ft, we add two vertices to a 3-graph in

Ft−1.

2) We proceed by induction on t. It is easy to verify it directly for t = 2. Suppose that the result

holds for t− 1. Let F ′ ∈ Ft be obtained from F ∈ Ft−1 by adding vertices x, y and a set of t edges

involving x, y. Let S be a set of t + 2 vertices in F ′. If |S ∩ V (F)| ≥ t + 1, then by induction, the

t + 1 vertices in S ∩ V (F) span an edge. Otherwise, |S ∩ V (F)| = t. But now both x, y ∈ S, and

since there are fewer than 2t vertices in V (F), we have an edge of the form xya, where a ∈ S.

3) de Caen proved that π(F(1, 3)) ≤ 1/3, and it is well known that the same upper bound holds

if we duplicate a vertex. Since F2 is formed by duplicating a vertex, the same upper bound holds
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for π(F2). Since 1/3 < 1/2, we conclude that there is a constant c > 2t such that ex(n,F2) ≤
(1/2)

(
n
3

)
+ cn2 for all n.

We will prove by induction on t that ex(n,Ft) ≤ (1/2)
(
n
3

)
+ cn2 for all n. The base case is t = 2

above. Assume that the result holds for t− 1, and let G be a 3-graph with n vertices and at least

(1/2)
(
n
3

)
+ cn2 edges. We will prove that G contains a copy of some 3-graph in Ft by induction on

n. The result is true for n = 2t + 1 by the choice of c. Assume that the result holds for n− 1.

By induction on t, G contains a copy H of a member F ∈ Ft−1. Let G be the link multigraph

of V (H) in G. If G has a pair of vertices with multiplicity at least t, then this pair together with H
yields a copy of some F ′ ∈ Ft. Hence we may assume that G has multiplicity at most t − 1. But

then there is a vertex v in H with

dG(v) ≤ t− 1
2t− 1

(
n− 2t + 1

2

)
+ (2t− 2)(n− 2t + 1) +

(
2t− 1

2

)
<

t− 1
2t− 1

(
n− 1

2

)
+ 2tn. (2)

Removing v leaves a 3-graph G′ on n− 1 vertices with |E(G′)| at least

|E(G)| − t− 1
2t− 1

(
n− 1

2

)
− 2tn ≥ 1

2

(
n

3

)
+ cn2 − 1

2

(
n− 1

2

)
− 2tn >

1
2

(
n− 1

3

)
+ c(n− 1)2.

By induction on n, G′ contains a copy of some 3-graph in Ft.

Proof of Theorem 1.5: For the lower bound, let G be the 3-graph with vertex set X ∪Y , where

X and Y are disjoint, |X| = b2n/3c, and |Y | = dn/3e. Let the edge-set of G be {xx′y : x, x′ ∈
X, y ∈ Y }. It is easy to see that G has (4/9 + o(1))

(
n
3

)
edges and contains no copy of F(3, 2).

For the upper bound, pick ε > 0, and let t ≥ 2 be sufficiently large that 1/2+ε > (t+1)/(2t+1).

As in the proof of Proposition 4.2 part 3), let c > 2t be such that ex(n,Ft) ≤ (1/2)
(
n
3

)
+ cn2 for

all n > 4. Let G be a 3-graph with n vertices and (1/2 + ε)
(
n
3

)
+ cn2 edges. We will show that G

contains a copy of F(3, 2). Since this will be shown for each ε > 0, the result follows.

We proceed by induction on n (the base case, n = 5, holds since c > 2t ≥ 4). By the choice of

c, G contains a copy K of some F ∈ Ft. Form the link multigraph G for K. If there is a pair x, y

in G with multiplicity at least t + 2, then, by Proposition 4.2 part 2), these two vertices together

with some three of the t + 2 vertices in K form a copy of F(3, 2). Hence we may assume that

G has multiplicity at most t + 1. Similarly as in (2), this implies that some vertex v in K has

dG(v) < (t + 1)/(2t + 1)
(
n−1

2

)
+ 2tn. Removing v leaves a 3-graph G′ on n− 1 vertices with |E(G′)|

at least

|E(G)| − t + 1
2t + 1

(
n− 1

2

)
− 2tn ≥

(
1
2

+ ε

)(
n

3

)
+ cn2 − t + 1

2t + 1

(
n− 1

2

)
− 2tn.
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By the choice of t, this is at least(
1
2

+ ε

)(
n

3

)
+ cn2 −

(
1
2

+ ε

)(
n− 1

2

)
− 2tn ≥

(
1
2

+ ε

)(
n− 1

3

)
+ c(n− 1)2.

By the induction hypothesis, G′ contains a copy of F(3, 2).

5 Either K−
4 , or C5

We need two preliminary results for the proof of Theorem 1.8.

Lemma 5.1. Suppose that n, p1, . . . , pk are all nonnegative with
∑

i pi = n. Then∑
i p

2
i

4
+
∑
i<j

pipj ≤
n2

4k
+
(

k

2

)
n2

k2
.

Proof. ∑
i p

2
i

4
+
∑
i<j

pipj =

(∑
i

pi

2

)2

+
∑
i<j

pipj

2
=

n2

4
+
∑
i<j

pipj

2
.

It is easy to see by calculus that the final sum is maximized when the pi’s are all equal to n/k.

This gives∑
i p

2
i

4
+
∑
i<j

pipj ≤
n2

4
+
∑
i<j

n2

2k2
=

n2

4
+
(

k

2

)
n2

2k2
=

n2

4k
+
(

k

2

)
n2

k2
.

Lemma 5.2. Let G be a graph with vertex partition A ∪ B, and |A| ≥ |B| − 1. Suppose that A is

an independent set in G. If G is triangle free, then |E(G)| ≤ |A||B|.

Proof. Let a = |A| and b = |B|. Suppose that G[B] has s edges and G has ab− r edges between A

and B. We count triples u, v, w, where u ∈ A, v, w ∈ B, vw is an edge, and uv is not an edge.

Fix an edge xy in G[B]. For each z ∈ A, at least one of zx, zy is missing, since G is triangle-free.

On the other hand, for each non-edge zx, z ∈ A, x ∈ B, there are at most b−1 vertices y in B with

xy being an edge. Consequently, if t is the number of triples we are counting, then

sa ≤ t ≤ r(b− 1).

Because a ≥ b− 1, we have r ≥ s, and |E(G)| = (ab− r) + s ≤ ab.

Proof of Theorem 1.8: Let α = 10/31, and suppose that H is a 3-graph with at least α
(
n
3

)
+cn2

edges for some sufficiently large constant c (for our purposes, c = 10 will do but we make no attempt
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to optimize c). We will prove by induction on n that H contains a copy of either K−4 , or C5. It

therefore suffices to find a vertex in H of degree at most α
(
n−1

2

)
+ c(2n− 1).

Given vertices x, y, we let Nxy = {z : xyz is an edge}, and let dxy = |Nxy|. For an edge e = xyz,

let

µ(e) = dxy + dyz + dxz.

If µ(e) > n, then there is a vertex w in at least two of the sets Nxy, Nxz, Nyz, and S = {x, y, z, w},
contains a copy of K−4 . We may therefore assume that µ(e) ≤ n for every edge e. Define ε > 0 by

max
e∈E(H)

µ(e) = (1− ε)n. (3)

Using
∑

u,v∈V (H) duv = 3|E(H)|, the upper bound from (3) on µ(e), and convexity of binomial

coefficients, we obtain

|E(H)|(1− ε)n ≥
∑

e∈E(H)

µ(e) ≥
∑

u,v∈V (H)

2
(

duv

2

)
≥ 2
(

n

2

)(3|E(H)|
(n
2)
2

)
.

Together with the choice of c this implies that

α

(
n

3

)
+ cn2 ≤ |E(H)| ≤ 1

3

[
1− ε

3
n

(
n

2

)
+
(

n

2

)]
≤ 1− ε

3

(
n

3

)
+

c

2
n2,

and therefore

α < (1− ε)/3. (4)

Note that α = 10/31 and (4) imply that ε < 1− 3α = 1/31 < 1/2.

Let e = uvw be an edge with µ(e) = (1 − ε)n. Let Gu (resp. Gv, Gw) be the link graph of u

(resp. v, w) in H−{u, v, w}. Let A = Nuv∪Nuw∪Nvw−{u, v, w} and let B = V (H)−A−{u, v, w}.
From now we also suppose that H contains neither K−4 nor C5, and proceed toward a contradiction.

We prove a series of three Claims.

Claim 1: If {x, y} ⊆ A, then the pair xy belongs to at most one of the link graphs Gu, Gv, Gw.

Proof: Suppose on the contrary that this pair belongs to two of the link graphs. By symmetry, we

may assume that either x, y ∈ Nuv, or x ∈ Nuv and y ∈ Nvw.

Clearly xy must belong to one of the link graphs Gu, Gv, assume by symmetry that it belongs

to Gu. In the first case, the edges uvx, uvy, uxy form a copy of K−4 , a contradiction.

In the second case, if xy belongs to both the link graphs Gu and Gw, then vertices u, v, w, y, x

from a copy of C5 taken in cyclic order. Otherwise by symmetry we may assume that xy belongs to

both Gu and Gv (Gv and Gw is the other similar case). Now the edges uxy, vxy, uvx form a copy

of K−4 . These contradictions prove the Claim.

10



Let G = Gu ∪Gv ∪Gw.

Claim 2: Each set from {Nuv, Nuw, Nvw} contains edges from at most one of the three link graphs

forming G. Moreover, each of these link graphs is triangle-free.

Proof: Suppose that x, y ∈ Nuv. If the pair xy belongs to at least two of these three link graphs,

then it belongs to at least one of Gu or Gv. Consequently, vertices u, v, x, y contain a copy of K−4 ,

a contradiction. If the link graph of any vertex p contains a triangle xyz, then edges pxy, pxz, pyz

form a copy of K−4 , a contradiction.

Claim 3: Each of Gu, Gv, Gw has the following property: the number of edges with at most one

endpoint in A is at most ε(1− ε)n2.

Proof: Without loss of generality we consider only Gu. Let G be the graph with V (G) = A ∪ B

and E(G) = {e ∈ Gu : e ⊆ B or |e ∩A| = |e ∩B| = 1}.
By definition, A is an independent set in G. Since ε < 1/31 < 1/2 by (4), we have |A| ≥ |B|−1.

By Claim 2, G is triangle-free. Therefore G satisfies the hypothesis of Lemma 5.2, and the Lemma

implies that |E(G)| ≤ |A||B| < (1 − ε)nεn = ε(1 − ε)n2. Since |E(G)| is precisely the number of

edges in Gu with one endpoint in A, the Claim follows.

Lemma 5.1 with k = 3, and (3) and the definition of uvw imply that

(duv)2

4
+

(duw)2

4
+

(dvw)2

4
+duvduw +duvdvw +duwdvw ≤

5
12

(1−ε)2n2 <
5
6
(1−ε)2

(
n− 1

2

)
+2n. (5)

For a vertex z, let δ(z) be the number of edges in the link graph formed by z with at most one

endpoint in A. Let e(A) be the number of edges in E(Gu) ∪ E(Gv) ∪ E(Gw) with both endpoints

in A. Equation (5) and Claims 1–3 imply that

d(u) + d(v) + d(w) ≤ |E(Gu)|+ |E(Gv)|+ |E(Gw)|+ µ(uvw)

≤ e(A) + δ(u) + δ(v) + δ(w) + n

≤ (duv)2

4
+

(duw)2

4
+

(dvw)2

4
+ duvduw + duvdvw + duwdvw + 3ε(1− ε)n2 + n

≤
(

5
6
(1− ε)2 + 6ε(1− ε)

)(
n− 1

2

)
+ 3c(2n− 1)

Thus one of u, v, w has degree at most(
5
18

(1− ε)2 + 2ε(1− ε)
)(

n− 1
2

)
+ c(2n− 1).

If this is at most α
(
n−1

2

)
+ c(2n− 1), then we may apply induction, so we may assume that

α <
5
18

(1− ε)2 + 2ε(1− ε). (6)

11



Equations (4) and (6) yield

10
31

= α < min
{

1− ε

3
,

5
18

(1− ε)2 + 2ε(1− ε)
}

.

This is impossible since

max
0≤ε<1/2

min
{

1− ε

3
,

5
18

(1− ε)2 + 2ε(1− ε)
}

= α,

with the maximum of the minimum of these two functions of ε occurring at ε = 1/31. This

contradiction completes the proof of the Theorem.

6 Just the Pentagon

The following Lemma is a special case of a result of Füredi and Kündgen [8].

Lemma 6.1. Let G be an n vertex multigraph with maximum multiplicity two and every three

vertices spanning at most four edges. Then G has at most
(
n
2

)
+ n edges.

Proof. We use induction on n. The cases n ≤ 3 are easily checked. If G has no parallel edges, then

|E(G)| ≤
(
n
2

)
, so we may assume that there are two edges between vertices x and y. Every other

vertex has at most two edges connecting it to {x, y}. Let G′ = G− {x, y}. Then

|E(G)| ≤ |E(G′)|+ 2(n− 2) + 2 ≤
((

n− 2
2

)
+ (n− 2)

)
+ 2n− 2 ≤

(
n

2

)
+ n,

where the second inequality follows from the induction hypothesis.

We need an asymmetric variation of the above result.

Lemma 6.2. Let G be a multigraph with vertex partition A ∪ B and maximum multiplicity two.

For S ⊆ V (G), let e(S) be the number of edges (counting multiplicities) induced by S. Suppose

that, for all S of size three,

(i) if |S ∩A| ≥ 2, then e(S) ≤ 4, and

(ii) if |S ∩A| = 1, then e(S) ≤ 5.

Then

|E(G)| ≤
(

a

2

)
+ 2
(

b

2

)
+ ab + a.

Proof. We proceed by induction on a+ b. The cases a+ b ≤ 4 are easily checked. If every A,B-pair

has multiplicity at most one, then by Lemma 6.1

|E(G)| ≤ e(A) + ab + e(B) ≤
(

a

2

)
+ a + ab + 2

(
b

2

)
.
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We may therefore assume that the pair xy has multiplicity two, where x ∈ A and y ∈ B.

Conditions (i) and (ii) imply that every vertex in A has at most two edges to {x, y}, and every

vertex in B has at most three edges to {x, y}. Let G′ = G − {x, y}. This observation, together

with the induction hypothesis applied to G′, implies that

|E(G)| ≤ |E(G′)|+ 2(a− 1) + 3(b− 1) + 2

≤
(

a− 1
2

)
+ 2
(

b− 1
2

)
+ (a− 1)(b− 1) + a− 1 + 2(a− 1) + 3(b− 1) + 2

=
(

a

2

)
+ 2
(

b

2

)
+ ab + a.

Construction 1: Let 0 < b < 1. Let H(m, b) be the 3-graph on m vertices partitioned into two

sets B,B′ of size bm and (1 − b)m, respectively. Let E(H(m, b)) consist of all triples uvw, where

u, v ∈ B and w ∈ B′. It is easy to check that H(m, b) is C5-free for all m, b.

It is still possible to add edges to H(m, b) maintaining the property that it is C5-free. Indeed,

we can add any 3-graph H that is itself C5-free within B′. Consider a set S of five vertices in the

resulting 3-graph.

If |S ∩B′| < 3, then edges among S are all edges in H(m, b), and S therefore contains no copy

of C5. If |S ∩ B′| = 3, then every two vertices of S ∩ B′ lie in at most one edge in S, and C5 has

the property that for every three vertices, at least one pair of them lies in two edges. Thus S does

not contain a copy of C5. If |S ∩ B′| = 4, then the vertex in S ∩ B has no edge in S, and clearly

S therefore contains no copy of C5. If |S ∩ B′| = 5, then by the construction within B′, S again

contains no copy of C5.

We repeat this construction recursively. This results in a 3-graph with (a + o(1))
(
n
3

)
edges,

where a is given by (
bn

2

)
(1− b)n + a

(
(1− b)n

3

)
= (a + o(1))

(
n

3

)
.

Solving gives a = 3b2(1− b)/(1− (1− b)3) + o(1). The choice of b that maximizes a is b = 0.633975

and for this choice of b, we get a = 0.464102.

Proof of Theorem 1.9: The lower bound follows from Construction 1. We now prove the upper

bound. Let α = 2−
√

2, and suppose that H is a 3-graph with at least α
(
n
3

)
+ cn2 edges for some

sufficiently large constant c (for our purposes, c = 10 will do). We will prove by induction on n

that H contains a copy of the Pentagon C5. It therefore suffices to find a vertex in H of degree at

most α
(
n−1

2

)
+ c(2n− 1).
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Given vertices x, y ∈ V (H), recall that Nxy = {z : xyz is an edge}, and that dxy = |Nxy|. Since∑
x,y∈V (H) dxy = 3|E(H)|, there is a pair x, y with dxy ≥ αn. Let A be a subset of Nxy of size αn,

and let B = V (H) − A. Let Gx and Gy be the link graphs in H − {x, y} of x and y, respectively.

Consider the multigraph G = Gx ∪Gy.

Claim: If H is C5-free, then G, A, and B satisfy the hypotheses (i) and (ii) in Lemma 6.2.

Proof of Claim: Let S = {u, v, w}. We first verify (i). Suppose that |S ∩ A| ≥ 2 and e(S) ≥ 5.

This means that at most one pair from S in not in E(Gx) ∩ E(Gy), and all pairs from S are in

E(Gx)∪E(Gy). By symmetry, we may assume that the pair uv is (possibly) not in E(Gx), and all

other pairs from S are in both E(Gx) and E(Gy). Either u, v ∈ A, or u, w ∈ A and v ∈ B. In either

case, vertices x, u, y, v, w form a copy of C5 with edges xuy, uyv, yvw, vwx, wxu, a contradiction.

To verify (ii), suppose that |S∩A| = 1 and e(S) = 6, i.e., all pairs in S appear with multiplicity

two in G. Assume that u ∈ A and v, w ∈ B. Again, vertices x, u, y, v, w form a copy of C5 as shown

above.

By the Claim, we may assume that G satisfies the conclusion of Lemma 6.2. Consequently,

|E(G)| <
(
|A|
2

)
+ 2
(
|B|
2

)
+ |A||B|+ n

≤
(

αn

2

)
+ 2
(

(1− α)n
2

)
+ α(1− α)n2 + n (7)

≤ (α2 + 2(1− α)2 + 2α(1− α))
(

n− 1
2

)
+ 2c(2n− 1)− 2n

≤ 2α

(
n− 1

2

)
+ 2c(2n− 1)− 2n.

The last inequality holds since the quadratic z2 + 2(1 − z) = 2z has roots z = 2 ±
√

2 and opens

upward. Thus one of the graphs Gx, or Gy has at most α
(
n−1

2

)
+c(2n−1)−n edges, and the vertex

corresponding to this link graph has degree in H at most α
(
n−1

2

)
+ c(2n− 1). This completes the

proof of the Theorem.
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