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Abstract

Ajtai, Komlós, and Szemerédi proved that for sufficiently large t every triangle-

free graph with n vertices and average degree t has an independent set of size at

least n
100t log t. We extend this by proving that the number of independent sets in

such a graph is at least

2
1

2400
n
t
log2 t.

This result is sharp for infinitely many t, n apart from the constant. An easy

consequence of our result is that there exists c′ > 0 such that every n-vertex

triangle-free graph has at least

2c
′√n logn

independent sets. We conjecture that the exponent above can be improved to
√
n(log n)3/2. This would be sharp by the celebrated result of Kim which shows

that the Ramsey number R(3, k) has order of magnitude k2/ log k.

1 Introduction

An independent set in a graph G = (V,E) is a set I ⊂ V of vertices such that no two

vertices in I are adjacent. The independence number of G, denoted α(G), is the size of

the largest independent set inG. Determining the independence number of a graph is one

of the most pervasive and fundamental problems in graph theory. The independence

number naturally arises when studying other fundamental graph parameters like the

chromatic number (minimum size of a partition of V into independent sets), clique

number (independence number of the complementary graph), minimum vertex cover
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(complement of a maximum independent set), matching number (independence number

in the line graph) and many others.

Throughout this paper, we suppose that G is a graph with n vertices and average

degree t. Turan’s [11] basic theorem of extremal graph theory, in complementary form,

states that α(G) ≥ dn/(t+1)e for any graph G. This bound is tight, as demonstrated by

the complement of Turan’s graph G = T (n, r) which, in the case n = kr is the disjoint

union of r cliques, each with k vertices (then α(G) = r and t = k−1). Since G contains

large cliques it is natural to ask whether Turán’s bound on α(G) can be improved if we

prohibit cliques of a prescribed (small) size in G.

In [1], Ajtai, Komlós, and Szemerédi showed that if G contains no K3, then this is

indeed the case, by improving Turán’s bound by a factor that is logarithmic in t. More

precisely, they proved that if G is triangle-free, then

α(G) ≥ n

100t
log t.

Shortly after, Shearer [10] improved this to α(G) ≥ (1 − o(1))n
t

log t (assume for con-

venience throughout this paper that log = log2). Random graphs [10] show that for

infinitely many t and n with t = t(n) → ∞ as n → ∞, there are n-vertex triangle-free

graphs with average degree t and independence number (2 − o(1))((n/t) log t). Conse-

quently, the results of [1, 10] cannot be improved apart from the multiplicative constant.

There is a tight connection between the problem of determining α(G) and questions in

Ramsey theory. More precisely, determining the minimum possible α(G) for a triangle-

free G is equivalent to determining the Ramsey number R(3, k), which is the minimum

n so that every graph on n vertices contains a triangle or an independent set of size

k. Moreover, the above lower bounds for α(G) are equivalent to the upper bound

R(3, t) = O(t2/ log t). It was a major open problem, dating back to the 1940’s, to

determine the order of magnitude of R(3, t), and this was achieved by Kim [7] who

showed that for every n sufficiently large, there exists an n-vertex triangle-free graph G

with α(G) < 9
√
n log n. As a consequence, the upper bound R(3, t) = O(t2/ log t) from

[1] is of the correct order of magnitude.

In this paper, our goal is to take the result of Ajtai, Komlós, and Szemerédi [1] further

by not only finding an independent set of the size guaranteed by their result, but by

showing that many of the vertex subsets of approximately that size are independent

sets.

Definition 1. Given a graph G, let i(G) denote the number of independent sets in G.

Upper bounds for i(G) have been motivated by combinatorial group theory. In [2],

Alon showed that if G is a d-regular graph, then i(G) ≤ 2(1/2+o(d))n; he also conjectured
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that

i(G) ≤ (2d+1 − 1)n/2d.

Kahn [6] proved this conjecture for d-regular bipartite graphs. Galvin [5] obtained a

similar bound for any d-regular graph G, namely

i(G) ≤ 2n/2(1+1/d+c/d
√

log d/d)

for some constant c . Finally, Zhao [12] recently resolved Alon’s conjecture.

In this paper, we consider lower bounds for i(G). This problem is fundamental in

extremal graph theory, indeed, the Erdős-Stone theorem [4] gives a lower bound for

i(G) that is the correct order of magnitude provided n/t is a constant. More recently,

the problem in the range t = Θ(n) has been investigated by Razborov [9], Nikiforov [8],

and Reiher. For example, the results of Razborov and Nikiforov determine g(ρ, 3), the

minimum triangle density of an n-vertex graph with edge density 1
2
< ρ < 1. Looking at

the complementary graph, this gives tight lower bounds on the number of independent

sets of size three in a graph with density 1− ρ ∼ t
n
.

Lower bounds for i(G) appear not to have been studied with the same intensity when

t is much smaller than n, in particular, when t → ∞ and t/n → 0. Let us make some

easy observations that are relevant for our work here. We assume that α := α(G) ≤ n/4.

Since every subset of an independent set is also independent, Turan’s theorem implies

i(G) ≥ 2α ≥ 2n/(t+1).

In Section 2, we will improve this to

i(G) ≥ 2
1

250
n
t
log t. (1)

Our proof uses the standard probabilistic argument which establishes the order of mag-

nitude given by Turán’s bound on α(G). This result is certainly not new, and we present

it only to serve as a warm-up for our main result in Section 3. Let us observe below

that the result is essentially tight.

As no subset of size more than α(G) is independent, an easy upper bound on i(G)

(using α ≤ n/4) is

i(G) ≤
α∑
i=0

(
n

i

)
≤ 2

(
n

α

)
. (2)

Since α(T (kr, r)) = r = n/(t+ 1) (recall that n = kr and t = k− 1), this bound implies

that as n→∞

i(T (kr, r)) ≤ 2

(
kr

r

)
≤ 2(ek)r = 21+r log ek = 2(1+o(1))n

t
log t.
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Thus, apart from the constant, the exponent in (1) cannot be improved.

Our main result addresses the case where G contains no triangles. As in the case of

the independence number, prohibiting triangles improves the bound in (1).

Theorem 2. (Main Result) Suppose that G is a triangle-free graph on n vertices with

average degree t, where t is sufficiently large. Then

i(G) ≥ 2
n

2400t
log2 t. (3)

Suitable modifications of Random graphs provide constructions of n-vertex triangle-free

graphs G with average degree t = t(n) → ∞ as n → ∞, and α(G) = O((n/t) log t).

Plugging this into (2), we see that Theorem 2 is tight (apart from the constant) for

infinitely many t. However, it remains open if the theorem is sharp for all t where

t = n1/2+o(1). Indeed, the open problem that remains is to obtain a sharp lower bound

on i(G) for triangle-free graphs with no restriction on degree. Since all subsets of the

neighborhood of a vertex of maximum degree are independent, i(G) > 2t. Combining

this with (3) we get

i(G) > max{2t, 2
n

2400t
log2 t} > 2cn

1/2 logn

for some constant c > 0. We conjecture that this can be improved as follows.

Conjecture 3. There is an absolute positive constant c such that every n-vertex triangle-

free graph G satisfies

i(G) > 2cn
1/2(logn)3/2 .

The conjecture, if true, is sharp (apart from the constant in the exponent) by the

graphs (due to Kim [7] and more recently Bohman [3]) which show that R(3, t) =

Ω(t2/ log t). Indeed, their graphs are triangle-free and have independence number

α(G) = Θ(t) = Θ(
n

t
log t) = Θ(

√
n log n),

so i(G) ≤ 2O(
√
n log3/2 n) by (2).

As mentioned before, throughout the paper, all logarithms are base 2. For a graph

G, let n(G), e(G) and t(G) denote the number of vertices, edges, and average degree of

G.

2 General case

In this section, we give the simple proof of (1). Our purpose in doing this is to familiarize

the reader with the general approach to the proof of Theorem 2 in the next section.
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Proposition 4. If G is a graph on n vertices with average degree t, where 2 ≤ t ≤ n
800

,

then i(G) ≥ 2
1

250
n
t
log t.

Proof. Set k = b 1
100

n
t
c. Pick a k-set uniformly at random from all k-sets in V (G). Let

H be the subgraph induced by the k vertices. Then

E[e(H)] =
1

2
nt

(
n−2
k−2

)(
n
k

) =
1

2
nt
k(k − 1)

n(n− 1)
<

1

2

tk2

n
.

Recall that Markov’s inequality states that if X is a positive random variable and a > 0,

then Pr[X ≥ a] ≤ E[X]/a; hence Pr[e(H) ≥ 21
2
tk2

n
] ≤ 1/2. So for at least half of the

choices for H, e(H) ≤ tk2

n
. Therefore, the number of choices of H for which e(H) ≤ tk2

n

is at least
1

2

(
n

k

)
≥ 1

2
(
n

k
)k > 2

k
2
logn/k = 2

k
2
(logn−log k). (4)

Now, if e(H) < tk2

n
= 1

100
k, then at most 1

50
k of the vertices in H have degree at least

one. This in turn implies that H contains an independent set I of size at least 49
50
k. The

set I can be obtained from any H which contains it; the number of ways to pick the 1
50
k

vertices of H − I is at most(
n

k/50

)
≤ (

50ne

k
)k/50 = 2

k
50

log 50ne− k
50

log k ≤ 2
k
50

(logn−log k)+ k
50

log 100t. (5)

Combining this with (4) and using 20
23

1
100

n
t
< k ≤ 1

100
n
t

for t ≤ n
800

,

i(G) ≥ 2k(
1
2
− 1

50
)(logn−log k)− k

50
log 100t ≥ 2k

24
50

log 100t− k
50

log 100t = 2k
23
50

log 100t > 2
1

250
n
t
log t.

3 Triangle-free graphs

In this section we prove our main result, Theorem 2. We begin with some modifications

of a lemma from [1] (see the proof of Lemma 4 in [1]).

Lemma 5. (Ajtai-Komlós-Szemerédi [1]) Suppose that G is a triangle-free graph on

n vertices with average degree t, and let k ≤ n/100t. Let H be the subgraph consisting

of k vertices chosen uniformly at random from all the k-sets contained in {v ∈ V (G) :

deg(v) ≤ 10t}. Let M be the subgraph of G consisting of vertices adjacent to no vertex

in H. Let n′ and t′ denote the number of vertices and average degree of M . Then the
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random variables H and M satisfy:

E[n(M)] > n(1− k

n− t
)t+1 >

9n

10
(6)

E[e(M)] >
nt

2
(1− k

n− 20t
)20t+1 >

nt

10
(7)

E[e(H)] =
1

2
nt
k(k − 1)

n(n− 1)
≤ tk2

n
(8)

Var[n(M)] <
2nk(t+ 1)(10t+ 1)

n− k − 20t− 2
< nt (9)

Var[e(M)] < 2400kt4 < 40nt3 (10)

Var[e(H)] ≤ tk2(10k + n)

n2
(11)

Further, if e(M) < (1 + δ) E[e(M)] and n(M) > (1 − δ) E[n(M)], then n′/t′ > νn/t,

where δ = 800
√
t/n and ν = 1− 1/t− c10

√
t/n for some positive constant c10.

Remark. Ajtai-Komlós-Szemerédi state their lemma for k = n/100t and prove each of

the first inequalities in (6), (7), (9), and (10) for all k. They prove each of the second

inequalities for k = n/100t, but it is easily observed that they continue to hold for

k < n/100t.

The next lemma is implied by the computation in the proof of Lemma 4 from [1].

However, the last statement of Lemma 6 is crucial to our proof of Theorem 2, so we

make the computations in [1] explicit.

Lemma 6. Suppose G is a triangle-free graph on n > 250 vertices with average degree

t ≤ 2
√
n log n and k ≤ n/100t. Then G contains a subgraph H with n(H) = k e(H) ≤

k/50. Moreover, if M is the subgraph of G consisting of vertices adjacent to no vertex

in H, then

1. n(M) > n(G)/2 and

2. n(M)/t(M) > νn/t, where ν = 1− 1/t− c10
√
t/n.

Further, if the vertices in H are chosen uniformly at random from all the k-sets contained

in {v ∈ V (G) : deg(v) ≤ 10t}, then at least half of the choices for H satisfy e(H) ≤ k/50,

along with conditions 1 and 2.
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Proof. Recall that for a random variable X and a > 0, Chebyshev’s inequality states

that Pr[|X − E[X]| ≥ a] ≤ Var[X]/a2. Thus, with a = k/50 − E[e(H)], Lemma 5

implies

Pr[e(H) ≥ k/50] ≤ tk2(10k + n)

n2(k/50− k2t
2n

)2

=
t(10k + n)

n2(1/50− kt
2n

)2

≤ t(n/10t+ n)

n2(1/50− 1/200)2

=
1/10 + t

n(3/200)2

< 5000
t

n

≤ 5000
2 log n√

n

≤ 1/1000.

So with probability at most 1/1000, the condition e(H) ≤ k/50 fails.

Set δ = 800
√
t/n. Again by Lemma 5 and Chebyshev, with a = δE[n(M)],

Pr[n(M) ≤ n/2] ≤ Pr[n(M) ≤ (1− δ) E[n(M)]] ≤ nt

(9n
10

)28002 t
n

≤ 1/1000.

Thus the probability that condition (1) fails is at most 1/1000.

With a = δE[e(M)],

Pr[e(M) ≥ (1 + δ) E[e(M)]] ≤ 40nt3

nt
10

8002 t
n

= 1/160.

Since Pr[e(M) ≥ (1+δ) E[e(M)] or n(M) ≤ n/2] < 1/160+1/1000, the last assertion of

Lemma 5 implies that the probability of condition (2) failing is at most 1/160 + 1/1000.

Therefore, the probability that condition e(H) ≤ k/50 fails or condition (1) fails or

condition (2) fails is at most 1/1000 + 1/1000 + 1/160 + 1/1000 < 1/2.

Our proof of Theorem 2 is achieved by analyzing Algorithm 1 below. The algorithm

is a slight modification of the algorithm from [1] that yields an independent set of size
1

100
n
t

log t. Recall that c10 is the constant that appear in Lemma 5.

Theorem 7. Suppose Algorithm 1 is run on a triangle-free graph G with n vertices and

average degree t, where 2100 < t <
√
n log n and n > (3c10)

12. If Algorithm 1 terminates

at line 12, then |I| > 1
2
n
t

log2 t. Otherwise, for each iteration i = 0, ..., R− 1, Algorithm
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Algorithm 1: Independent set algorithm

Input: Triangle-free graph G with n vertices, average degree t

Output: Independent set I

1 Mo = G;

2 R = b(log t)/2c;
3 for i← 0 to R do

4 ni = number of vertices in Mi;

5 ti = average degree in Mi;

6 νi = 1− 1/ti−1 − c10
√
ti−1/ni−1;

7 if i = 0 or νi > 1− 1/ log t then

8 Apply Lemma 6 with G = Mi and k = b 1
200

n
t
c;

9 Mi+1, Hi+1 = M,H from Lemma 6;

10 else

11 I = Independent set in Mi−1 of size dni−1/(ti−1 + 1)e;
12 return I;

13 end

14 end

15 H = H1 ∪ · · · ∪HR;

16 I = Independent set in H of size d48
50
kRe;

17 return I;

1 successfully applies Lemma 6 to the graph Mi to obtain a graph Hi+1 with k = b 1
200

n
t
c

vertices. Moreover, the graph H in line 15 is the disjoint union of the Hi, and the

independent set I in line 16 consists of 48
50
kR vertices from H.

Proof. We break our proof into two cases, depending on whether Algorithm 1 terminates

at line 17 or 12.

Line 17: We need to show that Lemma 6 can be applied at every iteration and that

the graph H in line 15 contains an independent set of size at least 48
50
kR ≥ 1

500
n
t

log t.

If i = 0, then k ≤ n/100t, t ≤
√
n log n, and n > t > 250, so we may apply Lemma 6

to obtain graphs M1 and H1, where |V (H1)| = k. Suppose that i > 0 and that Lemma

6 was successfully applied at all previous iterations. Using 1 of Lemma 6, i < R, and

R = b(log t)/2c < (log n)/2,

ni ≥ n/2i > n/2R >
√
n >
√
t > 250. (12)

By the condition in line 7, νi > 1 − 1/ log t for each iteration i. So by 2 of Lemma 6,
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ni

ti
≥ n

t
ν1ν2 . . . νi >

n
t
(1− 1/ log t)R. Thus

ni
ti
>
n

t
(1− 1/ log t)R >

n

t
(1− R

log t
) ≥ 1

2

n

t
.

In particular,

k ≤ 1

200

n

t
≤ 1

100

ni
ti
, (13)

and also, t <
√
n log n and ni < n yield

ti < 2ni
t

n
≤ 2ni

log n√
n
≤ 2ni

log ni√
ni

= 2
√
ni log ni. (14)

The inequalities (12), (13), and (14) ensure that we may again apply Lemma 6 with

Mi,Mi+1, Hi+1, and k playing the roles of G,M,H, and k, respectively. Applying Lemma

6 R times yields a collection of sparse graphs H1, H2, . . . , HR, each with k vertices.

Each Hi contains at most 2
50
k vertices of degree at least one, so each Hi contains an

independent set of size at least 48
50
k. By definition of Mi, these independent sets may be

combined into one independent set of size at least 48
50
kR.

Line 12: Suppose that the algorithm terminates at line 12 during iteration i+ 1. Then

ni, ti (and ni+1, ti+1) have been defined and νi+1 = 1− 1/ti − c10
√
ti/ni. If ti ≤ (3

2
)2/3,

then 1/ti > 1/ log3 t. Assume ti > (3
2
)2/3. Then

2

3
t
−1/3
i > 1/ti. (15)

By (12), ni >
√
n, so for n > (3c10)

12,

n3
i > n3/2 > (3c10)

6n > (3c10)
6ti.

This implies
1

3
t
1/3
i > c10

√
ti/ni. (16)

Combining (15) and (16) yields

1− t−1/3i < 1− 1/ti − c10
√
ti
ni

= νi+1 ≤ 1− 1/ log t.

Thus 1/ti > 1/ log3 t. Since t ≥ 2100 (which implies that t > (log5 t + log2 t)2) and

i < R ≤ log t
2

,

ni
ti + 1

>
n

2i
1

(log3 t+ 1)
≥ n√

t

1

(log3 t+ 1)
=
n

t

√
t

(log3 t+ 1)
>
n

t
log2 t.

Turan’s theorem now implies that Mi contains an independent set of size at least ni

ti+1
>

1
2
n
t

log2 t.
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We now complete the proof of Theorem 2 by obtaining a lower bound on the number

of outcomes given by line 17 of Algorithm 1.

Proof of Theorem 2. Recall that we are to show that if G is a triangle-free graph

on n vertices with average degree t sufficiently large, then i(G) ≥ 2
n

2400t
log2 t. Assume

t > max{(3c10)12, 2100}. Then n > t > (3c10)
12. Also, if t >

√
n log n, then G has

a vertex whose neighborhood contains at least t > n√
n

log n > n
t

log2 n vertices. Since

G is triangle-free, this neighborhood forms an independent set, which contains at least

2
n
t
log2 n > 2

n
2400t

log2 t subsets, which are also independent. Thus we may assume that

t ≤
√
n log n; in particular, G satisfies the hypotheses of Theorem 7.

If the algorithm terminates at line 12, then G contains an independent set of size at

least n
2t

log2 t; so G contains at least 2
n
2t

log2 t > 2
n

2400t
log2 t independent sets, and we are

done. Thus we may assume that Algorithm 1 terminates at line 17. Consequently, at

each iteration i, the algorithm applies Lemma 6 to pick a sparse graph with k = b1
2

n
100t
c

vertices. The vertices in this graph are chosen from

Li = {v ∈ V (Mi) : deg(v) ≤ 10ti}.

Note that

niti =
∑
v∈Li

deg(v) +
∑

v∈V (Mi)−Li

deg(v) ≥
∑

v∈V (Mi)−Li

deg(v) ≥ (ni − |Li|)10ti.

This, together with 1 in Lemma 6, implies |Li| ≥ 9
10
ni >

9
10
ni−1/2 ≥ 9

10
n/2i. At least

half of the k-sets in Li satify the conditions of Lemma 6, so the number of choices for

Hi is at least
1

2

(
|Li|
k

)
≥ 1

2

(
.9n/2i

k

)
.

Therefore, the number of choices for the sequence H1, . . . , HR is at least

R−1∏
i=0

1

2

(
|Li|
k

)
≥ 1

2R

R−1∏
i=0

(
.9n/2i

k

)
≥ 1

2R
(
.9n

k
)kR2−kR

2/2

= 2kR log .9n−kR log k−kR2/2−R

= 2kR(logn−log k)−kR2/2+kR log .9−R

> 2kR(logn−log k)− kR
2

log t
2
−kR−R

> 2kR(logn−log k)− kR
4

log t−2kR. (17)

Recall that Algorithm 1 obtains an independent set I of size d48
50
kRe from the graph

H = H1 ∪ · · · ∪HR. For a fixed I, the number of graphs H that yield I is at most the
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number of possibilities for H − I. This is at most
(

n
|V (H−I)|

)
, which is at most(

n
2
50
kR

)
≤ (

50ne

2kR
)

2
50
kR = 2

2
50
kR logn+ 2

50
kR log 50e− 2

50
kR log 2kR

< 2
2
50
kR(logn−log k)+ 2

50
kR log 50e

< 2
2
50
kR(logn−log k)+kR. (18)

For a fixed H, the number of partitions H1 ∪ · · · ∪HR = H is at most the number of

partitions of kR elements into R sets of size k, which is less than(
kR

k

)R
≤ (Re)kR = 2kR logRe < 2kR logR+2kR < 2kR

1
4
R+2kR ≤ 2kR

1
8
log t+2kR. (19)

Since each H yields an independent set, the total number of independent sets that can

be returned at line 17 of the algorithm is at least

# of ways to obtain H

(# of H that yield a fixed I)(# of partitions that yield H)
.

Since n
268t
≤ k ≤ n

200t
and R > (log t)/3, (17), (18), and (19) imply that this is at least

2
48
50
kR(logn−log k)− 5

8
kR log t−5kR ≥ 2

48
50
kR log 200t− 5

8
kR log t−5kR

> 2
134
400

kR log t

> 2
134
1200

k log2 t

> 2
1

2400
n
t
log2 t.
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