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Abstract

Fix l ≥ r ≥ 2. Let H
(r)
l+1 be the r-uniform hypergraph obtained from the complete graph

Kl+1 by enlarging each edge with a new set of r− 2 vertices. Thus H
(r)
l+1 has (r− 2)

(
l+1
2

)
+ l +1

vertices and
(
l+1
2

)
edges. We prove that the maximum number of edges in an n-vertex r-uniform

hypergraph containing no copy of H
(r)
l+1 is

(l)r

lr

(
n

r

)
+ o(nr)

as n → ∞. This is the first infinite family of irreducible r-uniform hypergraphs for each odd

r > 2 whose Turán density is determined.

Along the way we give three proofs of a hypergraph generalization of Turán’s theorem. We

also prove a stability theorem for hypergraphs, analogous to the Simonovits stability theorem

for complete graphs.

1 Introduction

Given a family F of r-uniform hypergraphs (r-graphs for short), and an r-graph G, we say that G

is F-free if G contains no member of F as a subhypergraph. The extremal number ex(n,F) is the

maximum number of edges in an F-free n-vertex r-graph (in case F is a single r-graph F , we write

ex(n, F ) instead of ex(n, {F})). The Turán density of F is defined as

π(F ) := lim
n→∞

ex(n, F )(
n
r

) .
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When F is an r-graph, π(F ) 6= 0, and r > 2, determining π(F ) is a hard problem, even for very

simple r-graphs F . A result of Erdős and Simonovits implies that if H is an r-graph containing

two vertices x, y such that x ∪ S ∈ H iff y ∪ S ∈ H, and no edge contains both x and y, then

π(H) = π(H−y). Consequently, when studying π(H), we may restrict to the case when H contains

no two vertices x and y as above. In this case we say that H is irreducible. When r = 3, the value

of π(F ) is known for very few irreducible r-graphs F . This lack of knowledge of the behavior of π

prevents us from understanding general phenomenon of the extremal theory of hypergraphs. It is

therefore of interest to increase the list of irreducible hypergraphs with known Turán density.

Until the late 1990’s the number of irreducible r-graphs with known Turán density was less

than ten (see the survey of Füredi [8]). In the past few years, there has been some progress,

beginning with de Caen and Füredi’s proof [2] of Sós’ conjecture that π(F ) = 3/4, where F is the

Fano plane (see also Füredi-Simonovits [12] and Keevash-Sudakov [14] for exact results and further

extensions). Extending this method, the author and Rödl [18] determined π for about ten more

irreducible 3-graphs, but in each case the value was 3/4. They also conjectured that π(F ) = 4/9,

where F = {123, 124, 125, 345}, and gave the lower bound. This conjecture was recently proved

by Füredi-Pikhurko-Simonovits [9] and exact results and further extensions were obtained by the

same authors in [10]. Another recent result, due to Keevash and Sudakov [15], determines π(C(2r)
3 ),

where C
(2r)
3 is the (2r)-graph obtained by letting P1, P2, P3 be pairwise disjoint sets of size r, and

taking as edges the three sets Pi ∪ Pj with i 6= j. This result settled a conjecture of Frankl [7].

In spite of this recent activity, until the current work, there were only finitely many irreducible

3-graphs whose Turán density was known.

Our purpose here is to present an infinite family of irreducible r-graphs whose Turán density is

exactly determined. For each odd r ≥ 3, this is the first such family. Moreover, the values of the

Turán densities range all the way from r!/rr (the smallest possible that is not zero) tending to 1.

In the definition below, we use
⋃̇

for disjoint union.

Definition. Fix l, r ≥ 2. Let K(r)
l be the family of r-graphs with at most

(
l
2

)
edges, that contain

a set S, called the core, of l vertices, with an edge containing every pair of vertices in S. Let

H
(r)
l ∈ K(r)

l be the r-graph with vertex set A
⋃̇

(∪̇S∈(A
2)

BS), where |A| = l, |BS | = r − 2 for every S,

and edge set {S ∪BS : S ∈ (
A
2

)}.

Remark. When r = 2, the family K(r)
l reduces to Kl, the usual complete graph, however when

r > 2, it contains more than one r-graph. Nevertheless, for each fixed r and l, the family K(r)
l is

finite, since every member of it has at most
(

l
2

)
edges.

We generalize the definition of the Turán graph to hypergraphs. An r-graph is l-partite if its
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vertex set can be partitioned into l classes, such that every edge has at most one vertex from each

class. Thus in particular, there are no edges if l < r. A complete l-partite r-graph is one where

all of the allowable edges (given a vertex l-partition) are present. For n, l, r ≥ 1, let Tr(n, l) be the

complete l-partite r-graph on n vertices with no two part sizes differing by more than one. Thus

the part sizes are ni = b(n+ i−1)/lc for i ∈ [l]. Among all l-partite r-graphs on n vertices, Tr(n, l)

has the most edges. The number of edges in Tr(n, l) is

tr(n, l) =
∑

S∈([l]
r )

∏

i∈S

ni.

Our main theorem is a generalization of Turán’s graph theorem, which is the case r = 2 below.

Theorem 1. (Section 2) Let n, l, r ≥ 2. Then

ex(n,K(r)
l+1) = tr(n, l),

and the unique r-graph on n vertices containing no copy of a member of K(r)
l+1 for which equality

holds is Tr(n, l).

As a consequence of Theorem 1, we obtain the Turán density of the infinite family of irreducible

r-graphs H
(r)
l .

Theorem 2. (Section 3) Let l ≥ r ≥ 2. Then

π(H(r)
l+1) =

(l)r

lr
,

where (l)r = l(l − 1) · · · (l − r + 1).

Along with obtaining exact extremal results, one can ask about the structure of nearly extremal

structures. The seminal result in this direction is the Simonovits stability theorem for graphs,

proved independently by Erdős and Simonovits (see [19]). It states that if an n-vertex Kl+1-free

graph (n large) has almost as many edges as T2(n, l), then its structure is very similar to that

of T2(n, l). Similar theorems for hypergraphs have been proven only recently. Papers [12, 10,

13, 14, 15] each prove stability theorems for hypergraphs, [12, 14] for the Fano plane, [10] for

{123, 124, 125, 345}, [15] for C
(2r)
3 , and [13] for cancellative 3-graphs, and also for {123, 124, 345}.

Stability theorems have also proved useful to obtain exact results. This approach, developed and

applied in [14, 15], first proves approximate results, then a stability statement, and finally uses

the stability result to guarantee an exact extremal result. Our final contribution is a hypergraph

analogue of the Simonovits stability theorem for complete graphs.
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Theorem 3. (Section 4) Fix l ≥ r ≥ 2, and δ > 0. Then there exists an ε > 0 and an n0 such that

the following holds for all n > n0: If G is an n-vertex K(r)
l+1-free r-graph with at least tr(n, l)− εnr

edges, then G can be transformed to Tr(n, l) by adding and deleting at most δnr edges.

We associate every r-graph G with its edge set, and write V (G) for its vertex set. Given a vertex

x ∈ V (G), the link of x is LG(x) = {S − {x} : x ∈ S ∈ G}, and the degree is degG(x) = |LG(x)|.
The codegree of x and y, written codegG(x, y), is the number of edges in G containing both x and

y, and the neighborhood of x is NG(x) = {y : codeg(x, y) > 0}. In all cases above, we omit the

subscript G if it is obvious from context. For S ⊂ V (G), we write G[S] for the hypergraph induced

by G on S.

2 Three proofs

In this section, we give three proofs of the bound in Theorem 1. Our first proof gives the charac-

terization of the extremal family as well. We begin by noting that for each k ∈ [n],

tr(n− k, l − 1) + k · tr−1(n− k, l − 1) ≤ tr(n, l), (1)

and if equality holds in (1) then k = bn/lc or dn/le. Indeed, for each k, we can consider the LHS

as counting the edges in a copy of Tr(n− k, l− 1) together with k additional vertices each of whose

links is a copy of Tr−1(n−k, l−1). Since the vertex partitions of Tr(n−k, l−1) and Tr−1(n−k, l−1)

are the same (each has l − 1 parts, no two differing in size by more than one), we may interpret

the LHS as the number of edges in a complete l-partite r-graph, where every two of the first l − 1

part sizes differ by at most one, and the last part has size k. Since Tr(n, l) maximizes the number

of edges among all l-partite r-graphs, we conclude that (1) holds, with equality only if k = bn/lc
or dn/le.

Proofs of Theorem 1

Proof 1 (loosely based on Erdős’ 1970 proof [4] of Turán’s theorem): We proceed by induction on

l, with l < r being trivial. When r = 2, the result is Turan’s theorem. We therefore assume that

l ≥ r > 2. Let G be an n-vertex K(r)
l+1-free r-graph. If n ≤ l, the result is again trivial, so from now

on we assume that n ≥ l + 1 ≥ r + 1 > 3.

Pick a vertex x ∈ V (G) of maximum degree ∆. Let N = N(x) be the set of vertices y for

which codegG(x, y) > 0. Consider the r-graph G[N ] induced by N , and suppose that it contains

a copy H of a member of K(r)
l . Let S ⊂ V (H) be the core of H. Form H ′ from H by adding the
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vertex x and one edge containing each pair x, v with v ∈ S. These edges exist by the definition of

N . Altogether we have added at most l edges, giving |H ′| ≤ |H| + l ≤ (
l
2

)
+ l =

(
l+1
2

)
. Therefore

H ′ ∈ K(r)
l+1 which is a contradiction. Consequently, G[N ] is K(r)

l -free.

Next consider the (r− 1)-graph L(x). If L(x) contains a copy H of a member of K(r−1)
l then by

enlarging every edge of H to contain x, we obtain a copy of an H ′ ∈ K(r)
l+1, since |H ′| = |H| < (

l+1
2

)
.

Therefore L(x) is K(r−1)
l -free.

Set k = n − |N |. By the induction hypothesis, |G[N ]| ≤ tr(n − k, l − 1) and ∆ = |L(x)| ≤
tr−1(n− k, l − 1). Since all vertices outside N have degree at most ∆, we conclude that

|G| ≤ |G[N ]|+ k ·∆ ≤ tr(n− k, l − 1) + k · tr−1(n− k, l − 1) ≤ tr(n, l),

where the last inequality follows by (1). If equality holds above, then no edge of G contains two

vertices in V (G) − N , since this would result in over-counting edges in the first inequality. Also,

by the discussion after (1), we may assume that k = bn/lc or dn/le. Further, by induction we

conclude that G[N ] is a copy of Tr(n − k, l − 1) and the link of each vertex outside N is a copy

of Tr−1(n − k, l − 1). Let us first assume that l > r, and fix z 6∈ N . We have already argued that

L(z) (which is isomorphic to Tr−1(n − k, l − 1)) has vertex set N . Next we argue that its vertex

partition V1 ∪ . . . ∪ Vl−1 respects that of G[N ].

Suppose to the contrary that G[N ] has (l−1)-partition W1∪. . .∪Wl−1, and {v1, v2} ∈ W1, where

vi ∈ Vi. Note that since v1 and v2 lie in different parts of L(z), there is an edge of G containing

them both. Now pick a vertex wj ∈ Wj for each j > 1, and consider S = {w2, . . . , wl−1, v1, v2}.
In order for G[N ] to contain at least one edge, we need n − k ≥ l − 1 ≥ r. This follows since

n − k ≥ n − dn/le ≥ (l + 1) − 2 = l − 1 ≥ r. Therefore every two vertices in different parts

of G[N ] lie in an edge of G[N ]. Consequently, for j 6= j′, we have codegG[N ](wj , wj′) > 0, and

codegG[N ](wj , vi) > 0 for i = 1, 2. Since v1 and v2 also lie in an edge of G (that also contains z),

this produces a copy of a member of K(r)
l with core S. Together with z, we obtain a copy of a

member of K(r)
l+1, with core S∪z, a contradiction. Therefore each L(z) respects the (l−1)-partition

of G[N ], and G is Tr(n, l) as required.

If l = r, then G[N ] has no edges, so we cannot use the argument above. In this case we must

show that for any two z, z′ 6∈ N , the (r− 1)-partitions of L(z) and L(z′) are the same. This follows

from an almost identical argument as in the previous paragraph, and we omit the details.

Proof 2 (based on Turán’s original proof of Turán’s theorem): For this proof, we need the recurrence

tr(n− 1, l) + tr−1(n− dn/le, l − 1) = tr(n, l).
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This follows by removing one vertex from Tr(n, l) and counting edges among the remaining n− 1

vertices, together with edges containing the removed vertex.

Again we proceed by induction on l. Let G be an n-vertex K(r)
l+1-free r-graph with |G| ≥ tr(n, l).

As in the first proof, we may assume that n ≥ l+1 ≥ r+1 > 3. We know that tr(n, l) > tr(n, l−1),

so by induction we may assume that H ⊂ G for some H ∈ K(r)
l . Let S = {w1, . . . , wl} be the core

of H. For each v ∈ V (G), let s(v) be the number of i for which codeg(v, wi) > 0. If s(v) = l for

some v, then S ∪ v is the core of a copy of some member of K(r)
l+1. We may therefore assume that

s(v) < l for each v. Recall that for a vertex x, |N(x)| is the number of y for which codeg(x, y) > 0.

By double counting,
l∑

i=1

|N(wi)| =
∑

v∈V (G)

s(v) ≤ n(l − 1).

Consequently, there is an i, for which |N(wi)| ≤ bn(l − 1)/lc = n− dn/le. As in Proof 1, we know

that L(wi) is K(r−1)
l -free. Therefore by induction

|G| ≤ |L(wi)|+ |G[V (G)− wi]| ≤ tr−1(n− dn/le, l − 1) + tr(n− 1, l) = tr(n, l).

Although this proof can be extended to give the case of equality, the arguments are not as clean as

in Proof 1, and we omit the details.

Proof 3 (extension of Motzkin and Straus’ proof [17] of Turán’s theorem): This proof only gives

the bound on the number of edges when l|n, however for this purpose it is ideally suited. Given an

n-vertex r-graph G, define the polynomial

f(G, x1, . . . , xn) =
∑

E∈G

∏

i∈E

xi.

The Lagrange function of G is

λ(G) = max

{
f(G, x1, . . . , xn) : xi ≥ 0 and

n∑

i=1

xi = 1

}
.

Now let G be an n-vertexK(r)
l+1-free r-graph, and let xi, i ∈ [n] be chosen for which f(G, x1, . . . , xn) =

λ(G). Define the support of G by supp(G) = {i : xi > 0}. It follows from a lemma of Frankl and

Rödl [11] (proved earlier for r = 2 by Motzkin and Straus [17]) that if {i, j} ⊂ supp(G), then

codegG(i, j) > 0. Since G is K(r)
l+1-free, we conclude that |supp(G)| ≤ l. An easy optimization now

implies that λ(G) ≤ (
l
r

)
(1/l)r. On the other hand, setting each xi = 1/n gives the lower bound

λ(G) ≥ |G|/nr. Putting this together yields |G| ≤ (
l
r

)
(n/l)r as needed.
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3 Infinitely many densities

In this section we prove Theorem 2. Denote by H(k) the r-graph obtained from H by replacing

each vertex of H by k copies of itself. Call the k copies of vertex v clones of v. The supersaturation

result of Erdős and Simonovits implies that if k > 0 is any fixed integer, then π(H(k)) = π(H). We

need a slightly stronger statement that follows immediately from their argument. For completeness,

we sketch the proof.

Lemma 4. Fix k, t ≥ 1, r ≥ 2, and let F = {H1, . . . , Ht} be a (finite) family of r-graphs. Suppose

that H is an r-graph satisfying H ⊂ Hi(k) for every i ∈ [t]. Then π(H) ≤ π(F).

Proof. (Sketch) In what follows, we write a ¿ b to denote that b is much larger than a; for the

sake of clarity, we prefer this notation to giving the explicit relationship. Choose ε > 0. Then there

exists an m À 1/ε such that every r-graph on m vertices with more than (π(F) + ε/2)
(
m
r

)
edges

contains a copy of some Hi ∈ F . Choose n À m.

Suppose that G is an r-graph on n vertices with |G| > (π(F) + ε)
(
n
r

)
. Then an averaging

argument (see Erdős-Simonovits [5]) implies that at least γ
(

n
m

)
of the m-sets of vertices in G induce

an r-graph with more than (π(F) + ε/2)
(
m
r

)
edges, where 0 < γ = γ(ε). Each of these m-sets

contains a copy of some member of F . Therefore there is an i for which at least (γ/t)
(

n
m

)
of the

m-sets contain Hi. Consequently the number of copies of Hi in G is at least

(γ/t)
(

n
m

)
(

n−hi
m−hi

) =
γ

t

(n)hi

(m)hi

,

where hi = |V (Hi)|. Now, since n À m, a result of Erdős [3] implies that G contains a copy of

Hi(k). Consequently, H ⊂ Hi(k) ⊂ G, and therefore π(H) ≤ π(F).

Proof of Theorem 2: We first show that H
(r)
l+1 ⊂ H(

(
l+1
2

)
+ 1) for every H ∈ K(r)

l+1. Pick

H ∈ K(r)
l+1, and let H ′ = H(

(
l+1
2

)
+ 1). For each vertex v ∈ V (H), suppose that the clones of v are

v = v1, v2, . . . , v(l+1
2 )+1. In particular, identify the first clone of v with v.

Let S = {w1, . . . , wl+1} ⊂ V (H) be the core of H. For every 1 ≤ i < j ≤ l + 1, let Eij ∈ H

with Eij ⊃ {wi, wj}. Replace each vertex z of Eij − {wi, wj} by zq where q > 1, to obtain an

edge E′
ij ∈ H ′. Continue this procedure for every i, j, making sure that whenever we encounter a

new edge it intersects the previously encountered edges only in H. Since the number of clones is
(
l+1
2

)
+ 1, this procedure can be carried out successfully and results in a copy of H

(r)
l+1 with core S.

Therefore H
(r)
l+1 ⊂ H ′ = H(

(
l+1
2

)
+ 1). Consequently, Lemma 4 implies that π(H(r)

l+1) ≤ π(K(r)
l+1).
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As H
(r)
l+1 contains a core of size l + 1, we conclude that H

(r)
l+1 6⊂ Tr(n, l). Therefore

lim
n→∞

tr(n, l)(
n
r

) ≤ π(H(r)
l+1) ≤ π(K(r)

l+1) ≤ lim
n→∞

tr(n, l)(
n
r

) ,

where the last inequality follows from Theorem 1. Since tr(n, l) = [(l)r/(lr)]
(
n
r

)
+ o(nr), the result

follows.

4 Stability

In this section we prove Theorem 3. It is more convenient to prove the following result, which is

easily seen to be equivalent to Theorem 3. For a set X of vertices in a hypergraph G, let eG(X)

be the number of edges that contain at least two vertices from X. If it is obvious from context, we

will omit the subscript G. We write a = b± c to mean that b− c ≤ a ≤ b + c.

Theorem 5. Fix l + 1 ≥ r ≥ 2. For every δ, there exist ε and M such that if n > M and G is

an n-vertex K(r)
l+1-free r-graph with |G| > tr(n, l)− εnr, then G has a vertex partition W1 ∪ . . .∪Wl

satisfying
∑

i e(Wi) < δnr.

Proof. Our proof uses induction on l, with the case l = r − 1 trivial. The case r = 2 is the

content of the Simonovits stability theorem, so we further assume that r > 2. So assume that

l ≥ r > 2. Choose δ = δl > 0. Our goal is to obtain ε = εl and M = Ml satisfying the theorem.

In what follows, the notation a ¿ b means that b is much larger than a, and unless specifically

mentioned, we can let b10 > (10lr)10a (note that both a, b < 1). Choose δl−1 ¿ δl. If the theorem

holds for ε and M , then it also holds for ε′ < ε and M ′ > M . Hence by induction there exist

1/Ml−1 ¿ εl−1 ¿ δl−1 for which the theorem holds for l − 1. Next we describe our choices of εl

and ε′. For 0 ≤ x ≤ 1, define

fl,r(x) = x

(
l − 1
r − 1

)(
1− x

l − 1

)r−1

+
(

l − 1
r

)(
1− x

l − 1

)r

.

It is easy to see that fl,r(x) has a unique maximum at x = 1/l, where its value is
(

l
r

)
/lr. Since

f ′′(1/l) < 0, there exist εl and ε′ such that if fl,r(x) >
(

l
r

)
/lr − 2εl, then x = 1/l ± ε′. Since

for fixed ε′, we can always make εl smaller with the condition still satisfied, we may assume that

εl ¿ ε′ ¿ εl−1. Finally, choose Ml À Ml−1. Putting this all together, the hierarchy of constants is

1
Ml

¿ 1
Ml−1

¿ εl ¿ ε′ ¿ εl−1 ¿ δl−1 ¿ δl.

Now suppose that n > Ml, and G satisfies the conditions of the theorem. We will argue as in

our first proof of Theorem 1, refining the steps as needed. Let x,∆, N(x), k, L(x) be as in that
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proof, and let X = V (G) − N(x). As before, we can argue that G[N(x)] is K(r)
l -free and L(x) is

K(r−1)
l -free. Therefore |G[N(x)]| ≤ tr(n− k, l − 1) and ∆ = |L(x)| ≤ tr−1(n− k, l − 1). This gives

|G| ≤ |G[N(x)]|+ k ·∆− eG(X) (2)

≤ tr(n− k, l − 1) + k · tr−1(n− k, l − 1)− eG(X) (3)

= tr(n, l)− eG(X). (4)

Claim 1:

k =
(

1
l
± ε′

)
n.

Proof: First observe that 1/Ml ¿ εl implies that

|G| > tr(n, l)− εln
r >

((
l

r

)
1
lr
− εl

)
nr − εln

r =
((

l

r

)
1
lr
− 2εl

)
nr. (5)

On the other hand, setting κ = k/n,

fl,r(κ) · nr ≥ tr(n− k, l − 1) + k · tr−1(n− k, l − 1). (6)

Now (2), (3), (5), and (6) yield

fl,r(κ) >

(
l

r

)
1
lr
− 2εl.

By the choice of εl and ε′, we conclude that κ = (1/l ± ε′).

Claim 2:

∆ = |L(x)| > tr−1(n− k, l − 1)− εl−1(n− k)r−1.

Proof: Otherwise, (3) implies that

tr(n, l)− εln
r < |G| < tr(n, l)− kεl−1(n− k)r−1.

This yields εln
r > εl−1k(n− k)r−1. By Claim 1, this implies that εl > εl−1(1/l − ε′)(1− 1/l − ε′).

Since ε′ < 1/(2l), and l ≥ 3, this yields εl > εl−1/(4l), which contradicts εl ¿ εl−1.

Now consider L(x). This (r − 1)-graph has vertex set N(x) of size n − k and by Claim 2,

|L(x)| > tr−1(n− k, l− 1)− εl−1(n− k)r−1. Since Ml À Ml−1, Claim 1 implies that n− k À Ml−1.

Moreover, we have already argued that L(x) is K(r−1)
l -free. Since r ≥ 3, and the Simonovits stability

theorem is the case r = 2, we may apply the induction hypothesis to L(x). We conclude that N(x)

has a vertex partition W1 ∪ . . . ∪Wl−1, with
∑

i eL(x)(Wi) ≤ δl−1(n − k)r−1. Consider the vertex

l-partition W1 ∪ . . . ∪Wl−1 ∪X of G. Our goal now is to prove that

eG(X) +
l−1∑

i=1

eG(Wi) < δl n
r. (7)
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Since |G| > tr(n, l)− εln
r, we conclude from (4) that

eG(X) < εln
r. (8)

Now
l−1∑

i=1

eG(Wi) ≤
∑

z∈X

l−1∑

i=1

eL(z)(Wi) +
l−1∑

i=1

eG[N(x)](Wi). (9)

We will bound each of the two sums on the RHS separately, in the next two claims.

Claim 3:
∑

z∈X

l−1∑

i=1

eL(z)(Wi) < 2rδl−1n
r.

Proof: For z ∈ X, let L̄(z) = {S ∪ z : S ∈ L(z)} and

B = {z ∈ X : eL̄(z)(X) ≥ √
εln

r−1}.

Then from (8) we obtain
1
r
|B|√εln

r−1 ≤ eG(X) < εln
r.

This implies that |B| < (r
√

εl)n. Now suppose that
∑

z∈X

∑l−1
i=1 eL(z)(Wi) ≥ 2rδl−1n

r. Then

∑

z∈X−B

l−1∑

i=1

eL(z)(Wi) =
∑

z∈X

l−1∑

i=1

eL(z)(Wi)−
∑

z∈B

l−1∑

i=1

eL(z)(Wi).

Since δl−1 À εl, this is greater than

2rδl−1n
r − (|B|lnr−1) > (2rδl−1 − rl

√
εl)nr > (2r − 1)δl−1n

r.

Consequently, there exists z0 ∈ X −B for which

l−1∑

i=1

eL(z0)(Wi) > (2r − 1)δl−1n
r−1.

Since z0 6∈ B, we have eL̄(z0)(X) ≤ √
εln

r−1. The same (r− 1)-set in L(z0) can be counted as many

as (r− 1)/2 times in
∑

i eL(z0)(Wi). Hence the family of (r− 1)-sets counted by
∑

i eL(z0)(Wi) has

size at least 2(2r − 1)δl−1n
r−1/(r − 1). Let G′ be the family of (r − 1)-sets S′ ⊂ N(x) counted by

∑
i eL(z0)(Wi). Then

|G′| ≥
(

2(2r − 1)
r − 1

δl−1 −
√

εl

)
nr−1 > (3δl−1 −

√
εl)nr−1.

Since δl−1 À εl, this is at least 2δl−1n
r−1. Let

L′(x) = {S ∈ L(x) : |S ∩Wi| ≤ 1 for every i ∈ [l − 1]}.

10



Then G′ ∩ L′(x) = ∅, since every set in G′ contains at least two elements from some Wi. By the

choice of W1, . . . , Wl−1, |L′(x)| ≥ |L(x)| − δl−1(n− k)r−1. Now Claim 2 implies that

|L′(x) ∪G′| ≥ (|L(x)| − δl−1(n− k)r−1) + 2δl−1n
r−1

> tr−1(n− k, l − 1) + (2δl−1 − εl−1 − δl−1)(n− k)r−1.

Since δl−1 À εl−1, this is greater than tr−1(n − k, l − 1). Consequently, there is a copy of some

member of K(r−1)
l contained in L′(x)∪G′. Let S be its core. Adding vertices x and z0 to this copy

yields a copy of some member of K(r)
l+1, with core S∪x. This contradiction completes the proof.

Claim 4:
l−1∑

i=1

eG[N(x)](Wi) < rδl−1n
r.

Proof: Suppose to the contrary that
∑l−1

i=1 eG[N(x)](Wi) ≥ rδl−1n
r. For each edge S ∈ G[N(x)]

counted by this sum, choose an (r − 1)-set S′ ⊂ S such that S′ contains at least two vertices in

Wi for some i ∈ [l − 1]. The same r-set can be counted as many as r/2 times in
∑

i eG[N(x)](Wi).

Therefore, the total number of (r − 1)-sets S′ chosen is greater than
∑

i eG[N(x)](Wi)
n(r/2)

> 2δl−1n
r−1.

As argued in Claim 3, none of these (r−1)-sets S′ appear in L′(x). Consequently, the (r−1)-graph

H of edges in L′(x) together with the sets S′ satisfies

|H| > |L′(x)|+ 2δl−1n
r−1 > |L(x)| − δl−1(n− k)r−1 + 2δl−1n

r−1.

By Claim 2 and δl−1 > εl−1, this implies that |H| > tr−1(n−k, l−1), which leads to a contradiction

as in the proof of Claim 3.

Now apply Claims 3 and 4 to (9) and use (8). This gives

eG(X) +
l−1∑

i=1

eG(Wi) < εln
r + (2rδl−1) nr + (rδl−1)nr

= (εl + 3rδl−1) nr

< δl n
r,

where the last inequality holds since εl ¿ δl−1 ¿ δl. Consequently (7) holds, and the proof is

complete.
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5 Open Problems and Concluding Remarks

The family of r-graphs K(r)
l+1 is somewhat similar to the graph Kl+1, and this similarity was exploited

in the proofs of Theorem 1. However, several well-known proofs of Turán’s graph theorem do not

seem to easily extend.

• Turán’s original proof, which loosely formed the basis of our second proof, doesn’t seem to

work immediately. In his proof, the induction is performed by removing all the vertices of the

smaller clique, but this seems problematic for hypergraphs. Hence we removed only one vertex.

Nevertheless, it seems likely that his original proof can also be extended.

• Erdős’ 1970 proof of Turán’s theorem, on which our first proof is loosely based, seems not to

extend in its entirety. In particular, Erdős proved that if G is a Kl+1-free graph with degree

sequence d1 ≥ . . . ≥ dn, then there exists an l-partite Kl+1-free graph G′ whose degree sequence

d′1 ≥ . . . ≥ d′n satisfies d′i ≥ di. From this it is an easy step to derive Turán’s theorem. Although

we tried to prove this stronger statement, we did not succeed. It would be interesting to decide if

this remains true for hypergraphs.

• Caro and Wei gave a proof of Turán’s theorem using probabilistic methods (see also Alon-Spencer

[1]). It would be interesting to extend this proof to K(r)
l+1.

• Li and Li [16] proved Turán’s theorem by looking at ideals in polynomials. This is perhaps the

most striking and surprising proof of Turán’s theorem. In its current form, it does not extend

to hypergraphs. In order to conjecture an extension, we briefly describe the proof below. Let G

be a graph with vertex set [n]. The graph polynomial of G is the homogeneous polynomial on n

variables

pG(x1, . . . , xn) =
∏

i<j, ij 6∈G

(xi − xj).

Let I(n, l) ⊂ R(x1, . . . , xn) be the ideal of polynomials f such that the identification of any l

variables in f results in f ≡ 0. It is easy to see that if G is Kl-free, then pG ∈ I(n, l). Let Tl−1

be the set of all (l − 1)-partite graphs with vertex set contained in [n], and let P̂ (n, l) be the ideal

generated by {pG : G ∈ Tl−1}. Since each G ∈ Tl−1 is Kl-free, P̂ (n, l) ⊂ I(n, l). The main result

of [16] is that P̂ (n, l) = I(n, l). Since the degree of pG is related to |G|, this result allows us to

relate the number of edges in a Kl-free graph to the number of edges in a Kl-free graph that is also

(l − 1)-partite, and we obtain Turán’s theorem as a consequence.

Here is our proposed extension to 3-graphs. For a 3-graph G with vertex set [n], define the

12



hypergraph polynomial by

pG(x1, . . . , xn) =
∏

i<j<k, ijk 6∈G

(xi − xj)(xi − xk)(xj − xk).

In order to capture the information given by a pair of vertices with codegree zero, we need the

differentiation operator, where ∂(j)f/∂xi denotes the partial derivative of f with respect to xi,

taken j times. The reason for this is that we need to speak about roots of polynomials with high

multiplicities. Let

DI(n, l) =

{
p ∈ R(x1, . . . , xn) :

∂(j)p(x1, . . . , xn)
∂xi

∈ I(n, l) for every i, j with i ∈ [n], j ≤ n− 3

}
.

Once again it is easy to see that if G is K(3)
l -free, then pG ∈ DI(n, l). Let T (3)

l−1 be the set of all

(l − 1)-partite 3-graphs with vertex set contained in [n], and let P̂ (3)(n, l) be the ideal generated

by {pG : G ∈ T (3)
l−1}. Since every 3-graph in T (3)

l−1 is K(3)
l -free, we have P̂ (3)(n, l) ⊂ DI(n, l).

Conjecture 6. P̂ (3)(n, l) = DI(n, l).

An easy consequence of this conjecture is the upper bound in Theorem 1, since |G| is again

related to the degree of pG as in the graph case. A referee pointed out that Conjecture 6 could be

posed, with obvious modifications, for r-graphs with r > 3 as well.

Our approach to determining π(H(r)
l+1) was to first determine the Turán density for the larger

(but finite) family K(r)
l+1, and then use supersaturation. It would be nice to proceed directly.

Conjecture 7. 1 Let l ≥ r ≥ 2. Then for n > n0(l, r), we have ex(n,H
(r)
l+1) = tr(n, l), and the

unique extremal example is Tr(n, l).
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