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Abstract

Let f(n) be the minimum number of colors required to color the edges of K, , such that
every copy of K3 3 receives at least three colors on its edges. We prove that

(0.62 + o(1))v/n < f(n) < (1 +o(1))Vn,

where the upper bound is obtained by an explicit edge-coloring. This complements earlier results
of Axenovich, Fiiredi, and the author [1].

1 Introduction

We continue the study of the generalized Ramsey parameter r(G, H,q), defined as the minimum
number of colors needed to edge-color G giving every copy of H in G at least ¢ colors. Initiated
by Erdés [4], and subsequently developed in [1, 5], this general parameter has given rise to many
interesting open problems (the classical Ramsey numbers for multicolorings are the special case
G=K, H=K,q=2).

The case G = K, ,, and H = K, was investigated in [1]. Below is a summary of the results
from [1] for p = 2 and 3. In the chart, “<< f(n)” means “O(f(n))”, and “>> g(n)” means

“Q(g(n))”
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In this note we improve the upper bound for r(K,, ,, K3 3,3) given in the table above. We also
observe that results from [3, 7, 11] imply a lower bound with the same order of magnitude.

Theorem 1. Let « be the positive root of z2 —xz —4 =0, let B = 1/\/a = 0.62481... Then

(B+o0(1))vVn < r(Knpn, Kz3,3) < (14 0(1))v/n.

2 Proof of Theorem 1

For the lower bound we need the following result of [11], which is a slight modification of ideas from
[7]. For I < r, we write H(r,[) for the graph obtained from K, , by deleting the edges of a copy of
K. We write ex(G, H) to denote the maximum number of edges in a subgraph of G containing
no copy of H.

Theorem 2. If « is the positive root of 2 —z —4 =0, and o/ = \/a = 1.60048.., then
ex(Knn, H(3,1)) <o n®? 4 n.

The lower bound in Theorem 1 now follows by observing that in an edge-coloring of K, , with
every copy of K33 receiving at least three colors, each color class is H (3, 1)-free.

The construction we use for the upper bound in Theorem 1 was first used in [10] to give lower
bounds on the Ramsey number 7 (Cy). It is also a special case of the "Projective Norm graphs” of
[2, 9]: For ¢ an odd prime power not congruent to three, and n = g2, we construct an edge-coloring
of K, , with g colors that gives every copy of K33 at least three colors. Then the upper bound for
r(Knn, K3,3,3) follows from the fact that there is a prime not congruent to three between n and
n+ o(n) (see [8]).

Let Fy be the finite field on ¢ elements, and let V (K, ) have parts P and @, where both are
identified with F; x F,. Color the edge (a,b)(z,y) with the field element az — b — y.

For the following two Claims, we suppose that (a,b), (a’,b), (z,y), (z',y") are four distinct ver-
tices (see Figure 1).

Claim 1: If the two edges (a,b)(z,y),(a’,b')(z,y) receive the same color, and the two edges
(a,b)(z',y), (a',b')(z',y") receive the same color, then z = z’ (and a # a').
Proof: We have ax —b—y =a'z — b —y and az’ — b —y' = a'z’ — b’ — 4. These yield

z(a—d)=b—-b =2(a —d).

Consequently, a = a' or z = z'. Since a = o' implies that (a,b) = (a’,b’), which is excluded, the
result follows. O
Claim 2: If the two edges (a,b)(z,y),(a',t')(z',y’) receive the same color, and the two edges
(a,b)(z", ), (a',b')(z,y) receive the same color, then (a —a')(z + z') = 2(b — V).

Proof: We have axr —b—y = a's' — ' — ¢y and az’ —b— 9y = o'z — b —y. Adding these two
equations and simplifying yields the result. O
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Figure 1: Claims 1 and 2

Note that Claim 1 implies that there is no monochromatic four-cycle. To see this, suppose
that (a,b)(z,y), (a',b')(z,y), (a,b)(z',y'), (a’',b')(2',9') is such a cycle. Then Claim 1 applied twice
yields z = 2’ and a = d/, a contradiction.

Now suppose that there is a copy H of K33 with at most two colors and parts A = {4; =
(@i, b;) i =1,2,3} and X = {X; = (z4,9;) : 4 = 1,2,3}. Since there are no monochromatic
four-cycles this leaves, up to symmetries, three possibilities for the distribution of colors on E(H).
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1 2 3

Figure 2: The 2-colored K33’s

Configuration 1: A;X; is red if s = j and blue otherwise.
The equations defining colors yield, for 4, j, k distinct, a;xy — b; — yx = a;jxy —bj — yx. Consequently,

zk(a; — aj) = b; — bj. (1)
This implies that a; # a;, and by symmetry that x; # z;. Claim 2 applied to the four-cycle

Ai; Xi; Aj,Xj yields

(ai — aj)(zi + z5) = 2(b; — bj). (2)



Now (1) and (2) imply that either a; = a; or 2z, = z; + z;. We have already observed that
the former cannot occur, so we may assume that 2z, = z; + z;. By symmetry, we also have
2z; = z; + 7). Together these two equations yield

4z — 2xj = 2z, =z + T

This simplifies to 3z = 3z; which by the choice of ¢ implies that z; = z;, a contradiction. O

Configuration 2: A; Xy, A5 X1, A3 X3, A3 X3 are all red and all other edges are blue.

The edges A2 X1 and A3 X3 yield agzs — by — y3 = agzy — by — y1. This simplifies to as(z3 — 1) =
ys — y1- Claim 1 applied to the four-cycle A;, X1, Ag, Xo yields z1 = z2, and Claim 1 applied to
the four-cycle Ag, X5, A3, X3 yields zo = x3. Consequently we have z; = x3, which by our earlier
observation gives X1 = X3, a contradiction. O

Configuration 3: A; Xy, A1 X3, A2 X3, A3 X are all red and all other edges are blue.

Claim 1 applied to the four cycle A;, X9, A3, X3 yields a1 = a3. Claim 2 applied to the four-
cycle A1,X1,A3,X3 yields (a1 - ag)(l‘l + .123) = 2(b1 - b3). Since ap = az, we obtain A1 = A3, a
contradiction. O

3 Concluding Remarks

e The construction in [1] (which comes from Firedi [6]) that yields r(Kp 5, C4,2) < (1 + o(1))y/n
does not give every copy of K33 more than two colors. In that construction, we again let V (K, ,)
have parts P and @, where each is identified with (F, — {0}) x (F; — {0}). The edge (a,b)(z,vy) is
colored with the field element az+by. Then the edges that received color 0 are recolored inductively.

If we consider the vertices (1,1),(—1,-1),(2y — 1,—2z — 1) in one part, and the vertices
(z,y), (—z,—y), (—z — 1, —y + 1) in the other part, for any z,y € F, then it is easy to see that all
edges between these two sets receive color z 4+ y or —z — y. Clearly we can choose z and y so that
x+y#0aswellas (z,y) #(—x—1,—y + 1) and (2y — 1, -2z — 1) # +(1,1), so this is a copy of
K3 3 with precisely two nonzero colors on its edges. It therefore seems that the Projective Norm
graphs are really needed for this construction.

e FEasy modifications of the results in this paper yield
(1/v3 — o(1))Vn < 1(Kn, K33,3) < (14 0(1))v/n.

The lower bound follows from [7], where it is shown that ex(K,, H(3,1)) < (v/3/2+0(1))n%2. The
upper bound follows by associating V (K,) with F, x F, and coloring the edge (a, b)(z,y) with the
field element ax —b—y. The proof of Theorem 1 then applies to show that this coloring gives every
copy of K33 at least three colors.
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