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Abstract

A collection of sets is intersecting if every two members have nonempty intersection. We
describe the structure of intersecting families of r-sets of an m-set whose size is quite a bit
smaller than the maximum ("~}) given by the Erdés-Ko-Rado Theorem. In particular, this
extends the Hilton-Milner theorem on nontrivial intersecting families and answers a recent
question of Han and Kohayakawa for large n. In the case r = 3 we describe the structure
of all intersecting families with more than 10 edges. We also prove a stability result for
the Erdés matching problem. Our short proofs are simple applications of the Delta-system
method introduced and extensively used by Frankl since 1977.

1 Introduction

An r-uniform hypergraph H, or simply r-graph, is a family of r-element subsets of a finite
set. We associate an r-graph H with its edge set and call its vertex set V(H). Say that H is
intersecting if AN B # () for all A,B € F. A matching in H is a collection of pairwise disjoint
sets from H. A wvertex cover (henceforth cover) of H is a set of vertices intersecting every edge
of H. Write v(H) for the size of a maximum matching and 7(H) for the size of a minimum
cover of H. Say that H is trivial or a star if 7(H) = 1, otherwise call H nontrivial.

A fundamental problem in the extremal theory of finite sets is to determine the maximum size
of an n-vertex r-graph H with v(H) < s. The case s = 1 is when H is intersecting, and in
this case the Erdés-Ko-Rado Theorem [3] states that the maximum is (’1}:11) for n > 2r and if
n > 2r, then equality holds only if 7(H) = 1. More generally, Erdds [2] proved the following.

Theorem 1 (Erdés [2]). Forr > 2, s > 1 and n sufficiently large, every n-vertex r-graph H
with v(H) < s, satisfies

< emtnr) = (1) = (") ~s(,): 1)

and if equality in (1) holds, then H is the r-graph EM (n,r,s) described below.

Construction 1. Let EM(n,r,s) be the n-vertex r-graph that has s special vertices x1,...,xs
and the edge set consists of the all r-sets intersecting {x1,...,xs}. In particular, EM(n,r,1) is
a full star.
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There has been a lot of recent activity on Theorem 1 for small n (see, e.g., [10, 11, 16, 17]).
Hilton and Milner [15] proved a strong stability result for the Erdés-Ko-Rado Theorem:

Theorem 2 (Hilton-Milner [15], Proposition 7). Suppose that 2 < r < n/2 and |H| is an
n-vertex intersecting r-graph with T(H) > 2. Then

H| < him(n,r) = <?:i>—<n;:1>“”<rﬁz>' )

Moreover, if 4 <r < n/2 and (2) holds with equality, then H is the r-graph HM (n,r) described
below.

Construction 2. Forn > 2r, let HM (n,r) be the following r-graph on n vertices: Choose an
r-set X = {x1,...,2,} and a special vertex x ¢ X, and let HM (n,r) consist of the set X and
all r-sets containing x and a verter of X.

Observe that HM (n,r) is intersecting, 7(HM (n,r)) = 2, and |HM (n,r)| = hm(n,r). Bollobés,
Daykin and Erdés [1] extended Theorem 2 to r-graphs with matching number s in the way
Theorem 1 extends the Erdés-Ko-Rado Theorem.

Theorem 3 (Bollobds-Daykin-Erdés [1], Theorem 1). Suppose r > 2, s > 1 and n > 2r3s. If
H is an n-vertex r-graph with v(H) < s and |H| > em(n,r,s — 1) + hm(n — s + 1,r), then
H C EM(n,r,s).

The bound of Theorem 3 is also sharp: take a copy of HM (n — s+ 1,7), add an extra set S of
s — 1 vertices and all edges intersecting with S. Han and Kohayakawa [14] refined Theorem 2
using the following construction.

Construction 3. For r > 3, the n-vertex r-graph HM'(n,r) has r + 2 distinct special vertices
T,T1,...,Tr—1,Y1,Y2 and all edges e such that

1) {z,z;} Ce for any i€ [r—1], or

2) {z,y1,y2} Ce, or

3)e={x1,...,xr—1,y1}, ore={x1,...,Tr_1,Y2}.

Note that HM'(n,r) is intersecting, 7(HM'(n,r)) = 2, and HM'(n,r) ¢ HM(n,r). Let
hm/(n,r) = |HM'(n,r)| so that

n—1 n—r n—r—2 n
hm' = - 2~ (r—1 .
m(n,r) <r—1> <7’—1>+< r—3 >+ (r )<r—2)
The result of [14] for r > 5 is:
Theorem 4 (Han-Kohayakawa [14]). Ler r > 5 and n > 2r. If H is an n-vertex intersecting
r-graph, 7(H) > 2 and |H| > hm/(n,r), then H C HM (n,r) or H = HM'(n,r).
They also resolved the cases » = 4 and r = 3, where the statements are similar but somewhat

more involved.

For large n Frankl [8] gave an exact upper bound on the size of intersecting n-vertex r-graphs
H with 7(H) > 3. He introduced the following family. We write A + a to mean A U {a}.



Construction 4 ([8]). The vertezr set [n] of the n-vertex r-graph FP(n,r) contains a special
subset X = {z}UY UZ with | X| = 2r such that |Y|=r, |Z| = r—1, where a subset Yy = {y1,y2}
of Y is specified. The edge set of FP(n,r) consists of all r-subsets of [n] containing a member
of the family

G={ACX |A|=3,2c AL ANY #0,ANZ # 0} U{Y, Yo+ 2, Z 4+ y1,Z + y2}.

By construction, F'P(n,r) is an intersecting r-graph with 7(FP(n,r)) = 3. Frankl proved the
following.

Theorem 5 (Frankl [8]). Let r > 3 and n be sufficiently large. Then every intersecting n-vertex
r-graph H with 7(H) > 3 satisfies |H| < |FP(n,r)|. Moreover, if r > 4, then equality is attained
only if H= FP(n,r).

He used the following folklore result.

Proposition 6. Every intersecting 3-graph H with 7(H) > 3 satisfies |H| < 10.

Note that Erdds and Lovdsz [4] proved the more general result that for every r > 2 each
intersecting r-graph H with 7(H) = r has at most r" edges. But their proof gives the bound 25
for r = 3, while Proposition 6 gives 10.

In this short paper, we determine for large n, the structure of H in the situations described
above when |H| is somewhat smaller than the bounds in Theorems 4 and 2. In particular, our
Theorem 7 below answers for large n the question of Han and Kohayakawa [14] at the end of
their paper. We also use Theorem 5 to describe large dense hypergraphs H with v(H) < s and
T(H) = 2. Related results can be found in [8, 9].

2 Results

First we characterize the nontrivial intersecting r-graphs that have a bit fewer edges than
hm/(n,r). We need to describe three constructions before we can state our result.

Construction 5. Forr > 3 and 1 < t < r — 1, the n-vertex r-graph HM (n,r,t) has r + t
distinct special vertices x,T1,...,Tr—1,Y1,Y2, ..., Yt and all edges e such that

1) {z,x;} Ce foranyi€ [r—1], or

2)e=A{x1,...,xp1,y;} for all1 < j <t, or

3) {l’,yl,... ayt} Ce.

Similarly, if r > 3, n > 2r andt = n—r, HM (n,r,t) has r distinct special vertices r,x1,...,Tr_1
and all edges e such that 1) {x,xz;} Ce foranyic|r—1], or 2){x1,...,x,—1} Ce.

Let hm(n,r,t) = |HM(n,r,t)|. Note that HM(n,r,1) = HM(n,r), and HM(n,r,2) =
HM'(n,r). For n large, we have the inequalities

hm(n,r) = hm(n,r,1) > --- > hm(n,r,r — 1) = hm(n,r,r) < hm(n,r,n —r).



Note that HM (n,r,t) is intersecting, 7(HM (n,r,t)) = 2, and HM (n,r,t) £ HM (n,r,t — 1).
Also, for fixed r >4 and 2 <t<n-—r,

n
hm(n,r,t) ~ (r —1) <r B 2>.
Construction 6. The n-vertex r-graph HM (n,r,0) has 3 special vertices x,x1,xo and all edges
that contain at least two of these 3 vertices.

\HM(n, r,0)| :3(Z:§’> + (Z:;’) (3)

Construction 7. The n-vertex r-graph HM" (n,r) has r +4 special vertices x,x1,...,T—o and
Y1, Y1, Y2, Y4 and all edges e such that

1) {x,z;} Ce for somei € [r—2], or

2) {$>y17y2} Ce, or {x7y17yé} Ceor {xvyllvy2} Ceor {x,y{,yé} Ce, or
3)e={x1,...,xr—2,y1,Y1}, or e ={x1, ..., Tr_2, Y2, Y5}

By definition,

Note that HM"(n,r) is intersecting, 7(HM"(n,r)) = 2, and HM" (n,r) € HM (n,r,t) for any
t. Let hm" (n,r) = |HM"(n,r)| so that for r > 5,

= ()= (1) ()
~(r—2)<rﬁ2>. (4)

Theorem 7. Fix r > 4. Let n be sufficiently large. If H is an n-vertex intersecting r-graph
with 7(H) > 2 and |H| > hm" (n,r), then H C HM (n,r,t) for somet € {l,...,r—1,n—r} or
r=4 and H C HM(n,4,0). The bound on H is sharp due to HM"(n,r).

When r = 3 we are able to obtain stronger results than Theorem 7, and describe the structure
of almost all intersecting 3-graphs. We will use the following construction.

Construction 8. Let n > 6.
e Fori=0,1,2, let

Hi(n) =HM(n,3,1) and H(n)=EM(n,3,1).

e The n-vertex 3-graph Hs(n) has special vertices vy, va, y1, Y2, ys and its edges are the n—2 edges
containing {v1,ve} and the 6 edges each of which contains one of v1,vy and two of y1,y2,ys-

e Each of the n-vertex 3-graphs Ha(n) and Hs(n) has 6 special vertices 111,?12721,12171, 22,12571
and contains all edges containing {vi,ve}. Apart from these, Hy(n) contains edges

/ / / / / /
U121,1%1,1, V122,122 1, V221,1%22,1, V221,129 1, V221 122,1, V221 1721
and Hs(n) contains edges

/ / ’ / 1o
V121,1%21,1, V122,122 1, V121,122 1, V221,122 1, V2%1,122,1, V2%1 122 1"



Theorem 8. Let H be an intersecting 3-graph and n = |V(H)| > 6. If 7(H) < 2, then H is
contained in one of H(n), Hy(n), ..., Hs(n). This yields that

(a) if |H| > 11, then H is contained in one of H(n), Hyo(n),...,Hs(n);

(b) if |H| > n+4, then H is contained in H(n), Hy(n), Hi(n) or Ha(n).

The restriction |H| > 11 cannot be weakened because of K3 and |H| > n+4 cannot be weakened
because |Hsz(n)| = |Hy(n)| = |Hs(n)| = n + 4.

To prove an analog of Theorem 8 for r-graphs, we need an extension of Construction 8:

Construction 9. Let n >r+1. For i =0,...,5, let the r-graph H] (n) have the vertex set of
the 3-graph H;(n) and the edge set of H] (n) consist of all r-tuples containing an edge of H;(n).

By definition, Hj(n) = HM (n,r,0). Each H] (n) is intersecting, since each H;(n) is intersecting.
Using Theorem 5, we extend Theorem 8 as follows:

Theorem 9. Let r > 4 be fized and n be sufficiently large. Then there is C > 0 such
that for every intersecting n-vertex r-graph H with |H| > |FP(n,r)] = O(n"~3), one can
delete from H at most Cn"~* edges so that the resulting r-graph H' is contained in one of
Hi(n),...,H:(n), EM(n,r,1).

The results above naturally extend to r-graphs H with v(H) < s. For example, Theorem 7
extends to the following result which implies Theorem 3 for large n.

Theorem 10. Fix r > 4 and s > 1. Let n be sufficiently large. If H is an n-vertex r-graph
with v(H) < s and |H| > em(n,r,s — 1) + hm” (n — s + 1,7), then V(H) contains a subset
Z ={z1,...,2s—1} such that either T(H —Z) =1 or H— 72 C HM(n — s + 1,r,t) for some
te{l,....t—1,n—s+1—rtorr=4and H—7Z C HM(n— s+ 1,4,0). The bound on |H|
s sharp.

Theorems 4 and 9 can be extended in a similar way. We leave this to the reader.

3 Proof of Theorem 7

The main tool used in the proof is the Delta-system method developed by Frankl (see, e.g. [6, 8]).
Recall that a k-sunflower S is a collection of distinct sets S1,...,Sk such that for every 1 < i <
Jj <k, we have 5; N S; = ﬂéle Sy. The common intersection of the .S; is the core of S. We will
use the following fundamental result of Erdés and Rado [5].

Lemma 11 (Erdds-Rado Sunflower Lemma [5]). For every k,r > 2 there exists f(k,r) < k"r!
such that the following holds: every r-graph H with no k-sunflower satisfies |H| < f(k,r).
Proof of Theorem 7. Let r > 4 and H be an n-vertex intersecting r-graph with 7(H) > 2
and |H| > hm/” (n,r). Define B*(H) to be the set of T C V(H) such that

(i) 0 < |T| < r, and

(ii) T is the core of an (r + 1)"l-sunflower in H.



Define
B'(H)={T € B*(H) : }U € B*(H),U C T}

to be the set of all inclusion minimal elements in B*(H). Next, let
B"(H)={ec H:}T Ce,Tec B*(H)}
be the set of edges in H that contain no member of B*(H). Finally, set
B(H)= B'(H)U B"(H).

Let B; be the family of the sets in B(H) of size i. Note that B; = ) for otherwise we have an
(r + 1)-sunflower with core of size one and since H is intersecting, this forces H to be trivial.
Similarly, if 2 <i <r—1and T,T7" € B;, then TNT" # (), since otherwise H would have disjoint
edges A D T and A’ D T'. Thus for each 2 < i < r — 1, B; is an intersecting family. The
following crucial claim proved by Frankl can be found in Lemma 1 in [6, 8].

Claim. B; contains no (r + 1)*~!-sunflower.

Proof of Claim. Suppose for contradiction that Si,...,Sq1)i-1 is an (r + 1)*~L-sunflower
in B; with core K. By definition of B;, there is an (r 4+ 1)"-sunflower &; = Sy 1, ... s S1,(r41)i
in H with core S1. Since [So U --- U S( 4y < (r+1)(r+ 1)1 = (r+ 1), and & is an
(r 4+ 1)*-sunflower, there is a k = k(1) such that

(Sl,k(l) - S)N(SyuSsU---U S(H_l)i—l) = (.

Next, we use the same argument to define Sy j,(2) such that Sy o) — S2 is disjoint from Sy j1) U
Sz U+ -US(4qyi-1 and then Sz 3y such that S3 53y — S3 is disjoint from Sy 1) U So x(2) U S3 U
~++ U S(41)i-1 and so on. Continuing in this way we finally obtain edges Sz of H for all
1 <j < (r+1)"! that form an (r+ 1)~ !-sunflower with core K. This implies that K # () as H
is intersecting. Since |K| < i — 1, there exists a nonempty K’ C K such that K’ € B(H). But
K’ C Sj for all j, so this contradicts the fact that S; € B(H). O

Applying the Claim and Lemma 11 yields |B;| < f((r +1)*~1,4) for all i > 1. Every edge of H
contains an element of B(H) so we can count edges of H by the sets in B(H). So for ¢ = | B|
we have

o) < 1< 3 (j:j>+§ > (”:) < q<jfj§>+<r_2>f<<r+1>r—1,r) ( i 3).

Since hm' (n,r) ~ (r —2)(,",), this gives ¢ > r — 2. On the other hand, B is intersecting and
thus the pairs in By form either the star K, or a K3.

Case 1: Bj is a K3. Then to keep H intersecting, H C HM (n,r,0). If r > 5, then by (3)
and (4), |[HM (n,r,0)| < hm”(n,r) < |H|, a contradiction. Thus » =4 and H C HM (n, 4,0),
as claimed.

Since Case 1 is proved, we may assume that By is a star with center  and the set of leaves
X ={z1,...,24}.

Case 2: ¢ > r—1. If ¢ > r, then ¢ = r and since H is nontrivial, H C HM (n,r) and we are done.
We may therefore assume that ¢ = r — 1. Since 7(H) > 2, there exists e such that z ¢ e € H,



and since H is intersecting we may assume that e = e; = X U {y1}. We may also assume
that all edges of H that omit z are of the form e; = X U {y;}, where 1 < i <¢. If t = 1 then
H C HM (n,r) and we are done, so assume that ¢ > 2. Any edge of H containing x that omits X
must contain all {y1,...,y:}. Consequently, H C HM (n,r,t) for some t € {1,...,7 —1,n—r}.

Case 3: ¢ = r—2. Let Iy be the set of edges in H that contain x and intersect X, F} be the set
of edges of H disjoint from X and F5 be the set of edges disjoint from x. Then H = FyU F; U Fy,
all edges in F contain = and all edges in Fy contain X. Since |Fp| < ("_1) - ("_TH), by (4),

r—1 r—1
n—r—3 n—r—3 n—r—3 n—r—2
\F1UF2\>4< r_3 )+4< .4 )+( S >+2>4< r_3 ) (5)

Let G be the graph of pairs ab such that x ¢ {a,b} and X U {a,b} € Fy. Then |G| = |F>| and
V(G)CV(H) - X —{x}.

Case 3.1: 7(G) = 1. Then G = K; ; for some 1 < s <n —r. Let the partite sets of G be x,_;
and Y. Then every edge in F; must contain either x,_; or Y. Thus H C HM (n,r,t) for some
te{l,...,r—1,n—r}, as claimed.

Case 3.2: 7(G) > 2 and v(G) = 1. Then G = K3 and every edge in F; must contain at least
two vertices of G. Then |Fi| < 3(";151) ~ 3(,";) and thus |F1 U Fy| = |Fi| +3 ~ 3(.",),
contradicting (5).

Case 3.3: v(G) > 3. Let fi, fa, f3 be disjoint edges in G. Then each edge in F} has at least 4
vertices in fi U fo U f3 U{x} and thus |Fy| = O(n"™%). If F; =0, then H C HM (n,r,n — 1), as
claimed. Suppose there is ey € Fy. Then each f € G meets eg — x and thus |G| = |Fa| < (r —
1)(n—2r+2)+(";"). Thusifr > 5, then |F{UF,| < O(n"~*)+0(n) = o(n"~3), contradicting (5).
Moreover, if 7 = 4, then |Fy| < 3(n —6) + 3 and |Fy U Fy| < O(n"™%) +3n < 4(";6), again
contradicting (5).

Case 3.4: v(G) = 2. Say that a vertex v is big if dg(v) > 2r. Let vy,...,vs be all the big
vertices in G. Since v(G) = 2, s < 2. Since H is intersecting,

Every edge in F} contains all big vertices. (6)

Suppose first, s = 2. Then to have v(G) = 2, all edges in F» are incident with vy or vg; thus
|F5| < 2n. On the other hand, in this case by (6), |Fi| < (nffgl) Together, this contradicts (5).

r

Suppose now, s = 1. Then to have v(G) = 2, we need |Fz| < dg(v1) 4+ 2r < n+2r. On the other
hand, since v(G) = 2, G has an edge v'v” disjoint from vy. It follows that each edge in F; meets

v'v”. By this and (5), |F1| < 2(?::’,;) and thus |F} U Fp| <n+2r + 2(’;:;), contradicting (5).

Finally, suppose s = 0. Let edges y1y] and y2y5 form a matching in G. If G has no other edges,
then H is contained in HM"(n,r). So there is a third edge in G. Still, since v(G) = 2, each
edge of G is incident with {y1,9},y2,y4} which by s = 0 yields |F5| = |G| < 8r. If an edge in
G is y1ys, then each each edge in Fy contains {y1,y2} or {y1,v5} or {¥},v2,ys} or {y},vh,ys};
thus [F1| <2(075) +2(07)) ~ 2(1'7%). This together with |F3| < 8r contradicts (5). If this third
edge is Y12, then we get a similar contradiction. O



4 On 3-graphs

Lemma 12. Letn > 6 and H be an intersecting 3-graph. If H has a vertex x such that H — x
has at most two edges, then H is contained in one of H(n), Ho(n), Hi(n), Ha(n), Hy(n).

Proof. If H — z has no edges, then H C H(n), and if H — x has one edge, then H C H;(n).
Suppose H — x has two edges, e; and eg. If |e1 Neg| = 2, then we may assume e; = {1, 22, Y1}
and ey = {x1,x2,y2}. In this case, each edge in H — e; — e contains x and either intersects
{1, 22} or coincides with {x,y1,y2}. This means H C Ha(n).

If |e; Nea] = 1, then we may assume e; = {y,v1,w1} and es = {y, v, wa}. In this case, each
edge in H — e; — ey contains x and either contains y or intersects each of {v1,w;} and {ve, wa}.
This means H C Hy(n). O

Proof of of Theorem 8. Let n > 6 and H be an n-vertex intersecting 3-graph with 7(H) < 2
not contained in any of H(n), Ho(n),..., Hs(n). Write H; for H;(n). If 7(H) = 1, then H C
H(n). So, suppose a set {v1,v2} covers all edges of H, but H is not a star. Let Ey = {e € H :
{vi,v2} C e}, and for i = 1,2, let E; ={e € H : vs_; ¢ e}. By Lemma 12, |E}|, |E2| > 3. For
i = 1,2, let F; be the subgraph of the link graph of v; formed by the edges in F;. If 7(F;) > 3,
then any edge e € E3_; does not cover some edge f € F; and thus is disjoint from f 4+ v; € H,
a contradiction. Thus 7(F;) < 2 and 7(F,) < 2.

Case 1: 7(F}) = 1. Suppose z; is a dominating vertex in Fy. Since |Fy| = |E1| > 3, 1 is the
dominating vertex in F; and we may assume that xix9, 123,124 € F1. But to cover these 3
edges, each edge in F» must contain 1. Thus H C Hy(n), as claimed.

Case 2: 7(Fy) = 7(Fy) = 2. If say F contains a triangle 7' = y;y2ys3, then Fy cannot contain
an edge not in 7" and thus F» = T and by symmetry Fy; =T. Thus H is contained in Hy.

So the remaining case is that each of F; contains a matching M; = {zlviziﬂ-, zzzzéz} Since each
edge of F} intersects each edge of Fy, we may assume 212 = 211,21 o = 221,222 = 211,299 = 251
The only other edges that may have Fh are f; = lezé’l and fy = 2171,2271. Since |Fy| > 3, we
may assume f; € Fb. Then the only third edge that F; may contain is also fi. It follows that
H is contained in Hs. This proves the main part of the theorem.

To prove part (a), assume H is an intersecting n-vertex 3-graph with |[H| > 11. Since |K3| =
10 < |H|, n > 6. By Proposition 6, 7(H) < 2. So part (a) is implied by the main claim of the
theorem. Part (b) follows from the fact that each of Hs, Hy, Hs has n + 4 edges. O

5 Proof of Theorem 9

Let H be as in the statement. By Theorem 5, 7(H) < 2. So, suppose a set {v1,v2} covers all
edges of H. Let By ={e € H : {vi,v2} Ce},and fori=1,2,let E; ={e€ H : v3_; ¢ e}.

For E; U Ey, construct the family B(H) = B; U Ba U ... B, as in the previous proofs. Recall



that by the minimality of the sets in B;,
X Y for all distinct X,Y € B(H), (7)
and since H is intersecting,
B(H) is intersecting. (8)

If By # 0, say {vo} € Bi, then by (7) and (8), and B(H) = {{vo}}. This means either
H C H(n,r) (when vy € {v1,v2}), or H C Hjj(n) (when vy ¢ {v1,v2}), and the theorem holds.
So, let B; = 0.

Let H' be obtained from H by deleting all edges not containing a member of B’ = By U Bs.
Then |H — H'| < Cn"~*. Since {v1,v2} dominates H,

each D € B’ must contain either v or vs. (9)

For i = 1,2, let B be the set of the members of B’ containing v;.

Define the auxiliary 3-graph H” with vertex set V(H) as follows. The edges of H” are all
members of B3 and each triple f that contains a member of By and is contained in an e € H'.

By (8), H” is intersecting. By (9), 7(H") < 2. If 7(H"”) = 1, then H' is a star. Suppose
7(H") = 2. By Theorem 8, H” is contained in one of H(n), Hy(n),...,Hs(n). But then H' is
contained in one of Hj(n),..., Hf(n), EM(n,r,1), as claimed. O

6 Proof of Theorem 10

Recall that » > 4,s > 1,n is sufficiently large and H is an n-vertex r-graph with v(H) < s
and |H| > em(n,r,s — 1) + hm”(n — s + 1,r). We are to show that V(H) contains a subset
Z ={z1,...,2s—1} such that either 7(H — Z) =1 or H—Z C HM(n — s + 1,r,t) for some
te{l,....r—1n—s+1—r}orr=4and H—-Z C HM(n— s+ 1,4,0).

Define B(H) and B; as in the previous proofs with the slight change that 7' € B(H) lies in an
(rs) T+ _sunflower (instead of an (r + 1)!7l-sunflower). Then the following claim holds (with an
identical proof).

Claim. B; contains no (rs)’-sunflower.

Using the Claim and Lemma 11 we obtain | B;| < f((rs)?,i) for all 1 <4 < r. As before, setting
h = |B;| we have

< Y <Z:D+Z > (jf:;) <h<:fj>+(r—1)f((rs)’",r)<rf2>.

BeB; 1=2 BEB;

Since |H| > em(n,r,s —1) + hm"(n — s+ 1,7) ~ s(.",) and n is large, this immediately gives

h > s — 1. Consider distinct vertices z1,...,2,—1 € By and the set of edges F C H omitting
21,...,2s—1. If F'is not intersecting, then let e, e’ be two disjoint edges in F. There exists a
matching ey, ...,es_1 in H with z; € ¢; and (eUe’)Ne; = 0 for all 1 <4 < s—1. Note that we can



produce the e; one by one since each z; forms the core of an (rs)?-sunflower in H due to the def-
inition of B;. We obtain the matching e, €', e, ..., es_1 contradicting v(H) < s. Consequently,
we may assume that F is intersecting. Because |H| > em(n,r,s—1)+hm”(n—s+1,r) we have
|F| > hm"(n—s+1,r). Now we apply Theorem 7 to F to conclude that Theorem 10 holds. O

7 Concluding remarks

Say that a hypergraph H is t-irreducible, if v(H) =t and v(H — z) = t for every x € V(H).
Frankl [10] presented a family of n-vertex ¢-irreducible r-graphs PF(n,r,t) such that

pf(n,rt) = |PF(n,r, )] ~ r(t 5 1) <rf2),

He also proved

Theorem 13 ([10]). Let r > 4, t > 1, and let n be sufficiently large. Then every n-vertex
t-irreducible r-graph H has at most pf(n,r,t) edges with equality only if H = PF(n,r,t).
Using this result, one can prove the following.

Lemma 14. For every r > 3, s > t > 2, if n is large, and H is an n-vertex r-graph with
v(H) = s and
|H| > em(n,r,s —t) + pf(n—s+t,rt),

then there exists X C V(H) with |X| =s—t+ 1 such that v(H — X) =t — 1. The bound on
|H| is sharp.
This in turn implies the following claim.

Theorem 15. For every r > 3 and s > 2 there exists ¢ > 0 such that the following holds. If n
is large, and H is an n-vertex r-graph with v(H) = s and

|H| > em(n,r,s —2)+pf(n—s+2,r12),
then either
1) there exists H' C H with |H'| < cn”™3 and 7(H — H') < s or
2) there exist an X C V(H) with |X| =s—1 and u,v,w € V(H — X) such that every edge of
H — X contains at least two elements of {u,v,w}.

We leave the details of the proofs to the reader.

Most of the proofs in this paper are rather simple applications of the early version of the Delta-
system method. There has been renewed interest in stability versions for problems in extremal
set theory, so the general message of this work is that the Delta-system method can quickly
give some structural information about problems in extremal set theory, a fact that was already

10



shown in several papers by Frankl and Fiiredi in the 1980’s. For more advanced recent applica-
tions of the Delta-system method, see the papers of Fiiredi [12] and Fiiredi-Jiang [13].
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