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Abstract

A collection of sets is intersecting if every two members have nonempty intersection. We
describe the structure of intersecting families of r-sets of an n-set whose size is quite a bit
smaller than the maximum

(
n−1
r−1

)
given by the Erdős-Ko-Rado Theorem. In particular, this

extends the Hilton-Milner theorem on nontrivial intersecting families and answers a recent
question of Han and Kohayakawa for large n. In the case r = 3 we describe the structure
of all intersecting families with more than 10 edges. We also prove a stability result for
the Erdős matching problem. Our short proofs are simple applications of the Delta-system
method introduced and extensively used by Frankl since 1977.

1 Introduction

An r-uniform hypergraph H, or simply r-graph, is a family of r-element subsets of a finite

set. We associate an r-graph H with its edge set and call its vertex set V (H). Say that H is

intersecting if A ∩ B 6= ∅ for all A,B ∈ F . A matching in H is a collection of pairwise disjoint

sets from H. A vertex cover (henceforth cover) of H is a set of vertices intersecting every edge

of H. Write ν(H) for the size of a maximum matching and τ(H) for the size of a minimum

cover of H. Say that H is trivial or a star if τ(H) = 1, otherwise call H nontrivial.

A fundamental problem in the extremal theory of finite sets is to determine the maximum size

of an n-vertex r-graph H with ν(H) ≤ s. The case s = 1 is when H is intersecting, and in

this case the Erdős-Ko-Rado Theorem [3] states that the maximum is
(
n−1
r−1
)

for n ≥ 2r and if

n > 2r, then equality holds only if τ(H) = 1. More generally, Erdős [2] proved the following.

Theorem 1 (Erdős [2]). For r ≥ 2, s ≥ 1 and n sufficiently large, every n-vertex r-graph H

with ν(H) ≤ s, satisfies

|H| ≤ em(n, r, s) :=

(
n

r

)
−
(
n− s
r

)
∼ s
(

n

r − 1

)
, (1)

and if equality in (1) holds, then H is the r-graph EM(n, r, s) described below.

Construction 1. Let EM(n, r, s) be the n-vertex r-graph that has s special vertices x1, . . . , xs
and the edge set consists of the all r-sets intersecting {x1, . . . , xs}. In particular, EM(n, r, 1) is

a full star.
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There has been a lot of recent activity on Theorem 1 for small n (see, e.g., [10, 11, 16, 17]).

Hilton and Milner [15] proved a strong stability result for the Erdős-Ko-Rado Theorem:

Theorem 2 (Hilton-Milner [15], Proposition T ). Suppose that 2 ≤ r ≤ n/2 and |H| is an

n-vertex intersecting r-graph with τ(H) ≥ 2. Then

|H| ≤ hm(n, r) :=

(
n− 1

r − 1

)
−
(
n− r − 1

r − 1

)
+ 1 ∼ r

(
n

r − 2

)
. (2)

Moreover, if 4 ≤ r < n/2 and (2) holds with equality, then H is the r-graph HM(n, r) described

below.

Construction 2. For n ≥ 2r, let HM(n, r) be the following r-graph on n vertices: Choose an

r-set X = {x1, . . . , xr} and a special vertex x 6∈ X, and let HM(n, r) consist of the set X and

all r-sets containing x and a vertex of X.

Observe that HM(n, r) is intersecting, τ(HM(n, r)) = 2, and |HM(n, r)| = hm(n, r). Bollobás,

Daykin and Erdős [1] extended Theorem 2 to r-graphs with matching number s in the way

Theorem 1 extends the Erdős-Ko-Rado Theorem.

Theorem 3 (Bollobás-Daykin-Erdős [1], Theorem 1). Suppose r ≥ 2, s ≥ 1 and n > 2r3s. If

H is an n-vertex r-graph with ν(H) ≤ s and |H| > em(n, r, s − 1) + hm(n − s + 1, r), then

H ⊆ EM(n, r, s).

The bound of Theorem 3 is also sharp: take a copy of HM(n− s+ 1, r), add an extra set S of

s − 1 vertices and all edges intersecting with S. Han and Kohayakawa [14] refined Theorem 2

using the following construction.

Construction 3. For r ≥ 3, the n-vertex r-graph HM ′(n, r) has r + 2 distinct special vertices

x, x1, . . . , xr−1, y1, y2 and all edges e such that

1) {x, xi} ⊂ e for any i ∈ [r − 1], or

2) {x, y1, y2} ⊂ e, or

3) e = {x1, . . . , xr−1, y1}, or e = {x1, . . . , xr−1, y2}.

Note that HM ′(n, r) is intersecting, τ(HM ′(n, r)) = 2, and HM ′(n, r) 6⊂ HM(n, r). Let

hm′(n, r) = |HM ′(n, r)| so that

hm′(n, r) =

(
n− 1

r − 1

)
−
(
n− r
r − 1

)
+

(
n− r − 2

r − 3

)
+ 2 ∼ (r − 1)

(
n

r − 2

)
.

The result of [14] for r ≥ 5 is:

Theorem 4 (Han-Kohayakawa [14]). Ler r ≥ 5 and n > 2r. If H is an n-vertex intersecting

r-graph, τ(H) ≥ 2 and |H| ≥ hm′(n, r), then H ⊆ HM(n, r) or H = HM ′(n, r).

They also resolved the cases r = 4 and r = 3, where the statements are similar but somewhat

more involved.

For large n Frankl [8] gave an exact upper bound on the size of intersecting n-vertex r-graphs

H with τ(H) ≥ 3. He introduced the following family. We write A+ a to mean A ∪ {a}.
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Construction 4 ([8]). The vertex set [n] of the n-vertex r-graph FP (n, r) contains a special

subset X = {x}∪Y ∪Z with |X| = 2r such that |Y | = r, |Z| = r−1, where a subset Y0 = {y1, y2}
of Y is specified. The edge set of FP (n, r) consists of all r-subsets of [n] containing a member

of the family

G = {A ⊂ X : |A| = 3, x ∈ A,A ∩ Y 6= ∅, A ∩ Z 6= ∅} ∪ {Y, Y0 + x, Z + y1, Z + y2}.

By construction, FP (n, r) is an intersecting r-graph with τ(FP (n, r)) = 3. Frankl proved the

following.

Theorem 5 (Frankl [8]). Let r ≥ 3 and n be sufficiently large. Then every intersecting n-vertex

r-graph H with τ(H) ≥ 3 satisfies |H| ≤ |FP (n, r)|. Moreover, if r ≥ 4, then equality is attained

only if H = FP (n, r).

He used the following folklore result.

Proposition 6. Every intersecting 3-graph H with τ(H) ≥ 3 satisfies |H| ≤ 10.

Note that Erdős and Lovász [4] proved the more general result that for every r ≥ 2 each

intersecting r-graph H with τ(H) = r has at most rr edges. But their proof gives the bound 25

for r = 3, while Proposition 6 gives 10.

In this short paper, we determine for large n, the structure of H in the situations described

above when |H| is somewhat smaller than the bounds in Theorems 4 and 2. In particular, our

Theorem 7 below answers for large n the question of Han and Kohayakawa [14] at the end of

their paper. We also use Theorem 5 to describe large dense hypergraphs H with ν(H) ≤ s and

τ(H) = 2. Related results can be found in [8, 9].

2 Results

First we characterize the nontrivial intersecting r-graphs that have a bit fewer edges than

hm′(n, r). We need to describe three constructions before we can state our result.

Construction 5. For r ≥ 3 and 1 ≤ t ≤ r − 1, the n-vertex r-graph HM(n, r, t) has r + t

distinct special vertices x, x1, . . . , xr−1, y1, y2, . . . , yt and all edges e such that

1) {x, xi} ⊂ e for any i ∈ [r − 1], or

2) e = {x1, . . . , xr−1, yj} for all 1 ≤ j ≤ t, or

3) {x, y1, . . . , yt} ⊆ e.

Similarly, if r ≥ 3, n ≥ 2r and t = n−r, HM(n, r, t) has r distinct special vertices x, x1, . . . , xr−1
and all edges e such that 1) {x, xi} ⊂ e for any i ∈ [r − 1], or 2) {x1, . . . , xr−1} ⊂ e.

Let hm(n, r, t) = |HM(n, r, t)|. Note that HM(n, r, 1) = HM(n, r), and HM(n, r, 2) =

HM ′(n, r). For n large, we have the inequalities

hm(n, r) = hm(n, r, 1) > · · · > hm(n, r, r − 1) = hm(n, r, r) < hm(n, r, n− r).
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Note that HM(n, r, t) is intersecting, τ(HM(n, r, t)) = 2, and HM(n, r, t) 6⊆ HM(n, r, t − 1).

Also, for fixed r ≥ 4 and 2 ≤ t ≤ n− r,

hm(n, r, t) ∼ (r − 1)

(
n

r − 2

)
.

Construction 6. The n-vertex r-graph HM(n, r, 0) has 3 special vertices x, x1, x2 and all edges

that contain at least two of these 3 vertices.

By definition,

|HM(n, r, 0)| = 3

(
n− 3

r − 2

)
+

(
n− 3

r − 3

)
. (3)

Construction 7. The n-vertex r-graph HM ′′(n, r) has r+4 special vertices x, x1, . . . , xr−2 and

y1, y
′
1, y2, y

′
2 and all edges e such that

1) {x, xi} ⊂ e for some i ∈ [r − 2], or

2) {x, y1, y2} ⊆ e, or {x, y1, y′2} ⊆ e or {x, y′1, y2} ⊆ e or {x, y′1, y′2} ⊆ e, or

3) e = {x1, . . . , xr−2, y1, y′1}, or e = {x1, . . . , xr−2, y2, y′2}.

Note that HM ′′(n, r) is intersecting, τ(HM ′′(n, r)) = 2, and HM ′′(n, r) 6⊆ HM(n, r, t) for any

t. Let hm′′(n, r) = |HM ′′(n, r)| so that for r ≥ 5,

hm′′(n, r) =

(
n− 1

r − 1

)
−
(
n− r + 1

r − 1

)
+ 4

(
n− r − 3

r − 3

)
+ 4

(
n− r − 3

r − 4

)
+

(
n− r − 3

r − 5

)
+ 2

∼ (r − 2)

(
n

r − 2

)
. (4)

Theorem 7. Fix r ≥ 4. Let n be sufficiently large. If H is an n-vertex intersecting r-graph

with τ(H) ≥ 2 and |H| > hm′′(n, r), then H ⊆ HM(n, r, t) for some t ∈ {1, . . . , r− 1, n− r} or

r = 4 and H ⊆ HM(n, 4, 0). The bound on H is sharp due to HM ′′(n, r).

When r = 3 we are able to obtain stronger results than Theorem 7, and describe the structure

of almost all intersecting 3-graphs. We will use the following construction.

Construction 8. Let n ≥ 6.

• For i = 0, 1, 2, let

Hi(n) = HM(n, 3, i) and H(n) = EM(n, 3, 1).

• The n-vertex 3-graph H3(n) has special vertices v1, v2, y1, y2, y3 and its edges are the n−2 edges

containing {v1, v2} and the 6 edges each of which contains one of v1, v2 and two of y1, y2, y3.

• Each of the n-vertex 3-graphs H4(n) and H5(n) has 6 special vertices v1, v2, z1,1z
′
1,1, z2,1z

′
2,1

and contains all edges containing {v1, v2}. Apart from these, H4(n) contains edges

v1z1,1z
′
1,1, v1z2,1z

′
2,1, v2z1,1z2,1, v2z1,1z

′
2,1, v2z

′
1,1z2,1, v2z

′
1,1z
′
2,1

and H5(n) contains edges

v1z1,1z
′
1,1, v1z2,1z

′
2,1, v1z1,1z

′
2,1, v2z1,1z

′
2,1, v2z1,1z2,1, v2z

′
1,1z
′
2,1.
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Theorem 8. Let H be an intersecting 3-graph and n = |V (H)| ≥ 6. If τ(H) ≤ 2, then H is

contained in one of H(n), H0(n), . . . ,H5(n). This yields that

(a) if |H| ≥ 11, then H is contained in one of H(n), H0(n), . . . ,H5(n);

(b) if |H| > n+ 4, then H is contained in H(n), H0(n), H1(n) or H2(n).

The restriction |H| ≥ 11 cannot be weakened because of K3
5 and |H| > n+4 cannot be weakened

because |H3(n)| = |H4(n)| = |H5(n)| = n+ 4.

To prove an analog of Theorem 8 for r-graphs, we need an extension of Construction 8:

Construction 9. Let n ≥ r + 1. For i = 0, . . . , 5, let the r-graph Hr
i (n) have the vertex set of

the 3-graph Hi(n) and the edge set of Hr
i (n) consist of all r-tuples containing an edge of Hi(n).

By definition, Hr
0(n) = HM(n, r, 0). Each Hr

i (n) is intersecting, since each Hi(n) is intersecting.

Using Theorem 5, we extend Theorem 8 as follows:

Theorem 9. Let r ≥ 4 be fixed and n be sufficiently large. Then there is C > 0 such

that for every intersecting n-vertex r-graph H with |H| > |FP (n, r)| = O(nr−3), one can

delete from H at most Cnr−4 edges so that the resulting r-graph H ′ is contained in one of

Hr
0(n), . . . ,Hr

5(n), EM(n, r, 1).

The results above naturally extend to r-graphs H with ν(H) ≤ s. For example, Theorem 7

extends to the following result which implies Theorem 3 for large n.

Theorem 10. Fix r ≥ 4 and s ≥ 1. Let n be sufficiently large. If H is an n-vertex r-graph

with ν(H) ≤ s and |H| > em(n, r, s − 1) + hm′′(n − s + 1, r), then V (H) contains a subset

Z = {z1, . . . , zs−1} such that either τ(H − Z) = 1 or H − Z ⊆ HM(n − s + 1, r, t) for some

t ∈ {1, . . . , r − 1, n− s+ 1− r} or r = 4 and H − Z ⊆ HM(n− s+ 1, 4, 0). The bound on |H|
is sharp.

Theorems 4 and 9 can be extended in a similar way. We leave this to the reader.

3 Proof of Theorem 7

The main tool used in the proof is the Delta-system method developed by Frankl (see, e.g. [6, 8]).

Recall that a k-sunflower S is a collection of distinct sets S1, . . . , Sk such that for every 1 ≤ i <
j ≤ k, we have Si ∩ Sj =

⋂k
`=1 S`. The common intersection of the Si is the core of S. We will

use the following fundamental result of Erdős and Rado [5].

Lemma 11 (Erdős-Rado Sunflower Lemma [5]). For every k, r ≥ 2 there exists f(k, r) < krr!

such that the following holds: every r-graph H with no k-sunflower satisfies |H| < f(k, r).

Proof of Theorem 7. Let r ≥ 4 and H be an n-vertex intersecting r-graph with τ(H) ≥ 2

and |H| > hm′′(n, r). Define B∗(H) to be the set of T ⊂ V (H) such that

(i) 0 < |T | < r, and

(ii) T is the core of an (r + 1)|T |-sunflower in H.
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Define

B′(H) = {T ∈ B∗(H) : @U ∈ B∗(H), U ( T}

to be the set of all inclusion minimal elements in B∗(H). Next, let

B′′(H) = {e ∈ H : @T ( e, T ∈ B∗(H)}

be the set of edges in H that contain no member of B∗(H). Finally, set

B(H) = B′(H) ∪B′′(H).

Let Bi be the family of the sets in B(H) of size i. Note that B1 = ∅ for otherwise we have an

(r + 1)-sunflower with core of size one and since H is intersecting, this forces H to be trivial.

Similarly, if 2 ≤ i ≤ r−1 and T, T ′ ∈ Bi, then T ∩T ′ 6= ∅, since otherwise H would have disjoint

edges A ⊃ T and A′ ⊃ T ′. Thus for each 2 ≤ i ≤ r − 1, Bi is an intersecting family. The

following crucial claim proved by Frankl can be found in Lemma 1 in [6, 8].

Claim. Bi contains no (r + 1)i−1-sunflower.

Proof of Claim. Suppose for contradiction that S1, . . . , S(r+1)i−1 is an (r + 1)i−1-sunflower

in Bi with core K. By definition of Bi, there is an (r + 1)i-sunflower S1 = S1,1, . . . , S1,(r+1)i

in H with core S1. Since |S2 ∪ · · · ∪ S(r+1)i−1 | < (r + 1)(r + 1)i−1 = (r + 1)i, and S1 is an

(r + 1)i-sunflower, there is a k = k(1) such that

(S1,k(1) − S1) ∩ (S2 ∪ S3 ∪ · · · ∪ S(r+1)i−1) = ∅.

Next, we use the same argument to define S2,k(2) such that S2,k(2)− S2 is disjoint from S1,k(1) ∪
S3 ∪ · · · ∪ S(r+1)i−1 and then S3,k(3) such that S3,k(3) − S3 is disjoint from S1,k(1) ∪ S2,k(2) ∪ S3 ∪
· · · ∪ S(r+1)i−1 and so on. Continuing in this way we finally obtain edges Sj,k(j) of H for all

1 ≤ j ≤ (r+ 1)i−1 that form an (r+ 1)i−1-sunflower with core K. This implies that K 6= ∅ as H

is intersecting. Since |K| ≤ i− 1, there exists a nonempty K ′ ⊆ K such that K ′ ∈ B(H). But

K ′ ( Sj for all j, so this contradicts the fact that Sj ∈ B(H). 2

Applying the Claim and Lemma 11 yields |Bi| < f((r + 1)i−1, i) for all i > 1. Every edge of H

contains an element of B(H) so we can count edges of H by the sets in B(H). So for q = |B2|
we have

hm′′(n, r) < |H| ≤
∑
B∈B2

(
n− 2

r − 2

)
+

r∑
i=3

∑
B∈Bi

(
n− i
r − i

)
< q

(
n− 2

r − 2

)
+(r−2)f((r+1)r−1, r)

(
n

r − 3

)
.

Since hm′′(n, r) ∼ (r − 2)
(

n
r−2
)
, this gives q ≥ r − 2. On the other hand, B2 is intersecting and

thus the pairs in B2 form either the star K1,q or a K3.

Case 1: B2 is a K3. Then to keep H intersecting, H ⊆ HM(n, r, 0). If r ≥ 5, then by (3)

and (4), |HM(n, r, 0)| < hm′′(n, r) < |H|, a contradiction. Thus r = 4 and H ⊆ HM(n, 4, 0),

as claimed.

Since Case 1 is proved, we may assume that B2 is a star with center x and the set of leaves

X = {x1, . . . , xq}.

Case 2: q ≥ r−1. If q ≥ r, then q = r and since H is nontrivial, H ⊆ HM(n, r) and we are done.

We may therefore assume that q = r − 1. Since τ(H) ≥ 2, there exists e such that x 6∈ e ∈ H,
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and since H is intersecting we may assume that e = e1 = X ∪ {y1}. We may also assume

that all edges of H that omit x are of the form ei = X ∪ {yi}, where 1 ≤ i ≤ t. If t = 1 then

H ⊆ HM(n, r) and we are done, so assume that t ≥ 2. Any edge of H containing x that omits X

must contain all {y1, . . . , yt}. Consequently, H ⊆ HM(n, r, t) for some t ∈ {1, . . . , r − 1, n− r}.

Case 3: q = r−2. Let F0 be the set of edges in H that contain x and intersect X, F1 be the set

of edges of H disjoint from X and F2 be the set of edges disjoint from x. Then H = F0∪F1∪F2,

all edges in F1 contain x and all edges in F2 contain X. Since |F0| ≤
(
n−1
r−1
)
−
(
n−r+1
r−1

)
, by (4),

|F1 ∪ F2| > 4

(
n− r − 3

r − 3

)
+ 4

(
n− r − 3

r − 4

)
+

(
n− r − 3

r − 5

)
+ 2 > 4

(
n− r − 2

r − 3

)
. (5)

Let G be the graph of pairs ab such that x /∈ {a, b} and X ∪ {a, b} ∈ F2. Then |G| = |F2| and

V (G) ⊆ V (H)−X − {x}.

Case 3.1: τ(G) = 1. Then G = K1,s for some 1 ≤ s ≤ n− r. Let the partite sets of G be xr−1
and Y . Then every edge in F1 must contain either xr−1 or Y . Thus H ⊆ HM(n, r, t) for some

t ∈ {1, . . . , r − 1, n− r}, as claimed.

Case 3.2: τ(G) ≥ 2 and ν(G) = 1. Then G = K3 and every edge in F1 must contain at least

two vertices of G. Then |F1| < 3
(
n−r−1
r−3

)
∼ 3

(
n

r−3
)

and thus |F1 ∪ F2| = |F1| + 3 ∼ 3
(

n
r−3
)
,

contradicting (5).

Case 3.3: ν(G) ≥ 3. Let f1, f2, f3 be disjoint edges in G. Then each edge in F1 has at least 4

vertices in f1 ∪ f2 ∪ f3 ∪ {x} and thus |F1| = O(nr−4). If F1 = ∅, then H ⊆ HM(n, r, n− r), as

claimed. Suppose there is e0 ∈ F1. Then each f ∈ G meets e0 − x and thus |G| = |F2| ≤ (r −
1)(n−2r+2)+

(
r−1
2

)
. Thus if r ≥ 5, then |F1∪F2| ≤ O(nr−4)+O(n) = o(nr−3), contradicting (5).

Moreover, if r = 4, then |F2| ≤ 3(n − 6) + 3 and |F1 ∪ F2| ≤ O(nr−4) + 3n < 4
(
n−6
1

)
, again

contradicting (5).

Case 3.4: ν(G) = 2. Say that a vertex v is big if dG(v) ≥ 2r. Let v1, . . . , vs be all the big

vertices in G. Since ν(G) = 2, s ≤ 2. Since H is intersecting,

Every edge in F1 contains all big vertices. (6)

Suppose first, s = 2. Then to have ν(G) = 2, all edges in F2 are incident with v1 or v2; thus

|F2| < 2n. On the other hand, in this case by (6), |F1| ≤
(
n−r−1
r−3

)
. Together, this contradicts (5).

Suppose now, s = 1. Then to have ν(G) = 2, we need |F2| ≤ dG(v1)+2r ≤ n+2r. On the other

hand, since ν(G) = 2, G has an edge v′v′′ disjoint from v1. It follows that each edge in F1 meets

v′v′′. By this and (5), |F1| ≤ 2
(
n−r
r−3
)

and thus |F1 ∪ F2| ≤ n+ 2r + 2
(
n−r
r−3
)
, contradicting (5).

Finally, suppose s = 0. Let edges y1y
′
1 and y2y

′
2 form a matching in G. If G has no other edges,

then H is contained in HM ′′(n, r). So there is a third edge in G. Still, since ν(G) = 2, each

edge of G is incident with {y1, y′1, y2, y′2} which by s = 0 yields |F2| = |G| < 8r. If an edge in

G is y1y3, then each each edge in F1 contains {y1, y2} or {y1, y′2} or {y′1, y2, y3} or {y′1, y′2, y3};
thus |F1| ≤ 2

(
n−r
r−3
)

+ 2
(
n−r
r−4
)
∼ 2
(
n−r
r−3
)
. This together with |F2| ≤ 8r contradicts (5). If this third

edge is y1y2, then we get a similar contradiction. 2
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4 On 3-graphs

Lemma 12. Let n ≥ 6 and H be an intersecting 3-graph. If H has a vertex x such that H − x
has at most two edges, then H is contained in one of H(n), H0(n), H1(n), H2(n), H4(n).

Proof. If H − x has no edges, then H ⊆ H(n), and if H − x has one edge, then H ⊆ H1(n).

Suppose H − x has two edges, e1 and e2. If |e1 ∩ e2| = 2, then we may assume e1 = {x1, x2, y1}
and e2 = {x1, x2, y2}. In this case, each edge in H − e1 − e2 contains x and either intersects

{x1, x2} or coincides with {x, y1, y2}. This means H ⊆ H2(n).

If |e1 ∩ e2| = 1, then we may assume e1 = {y, v1, w1} and e2 = {y, v2, w2}. In this case, each

edge in H − e1 − e2 contains x and either contains y or intersects each of {v1, w1} and {v2, w2}.
This means H ⊆ H4(n). 2

Proof of of Theorem 8. Let n ≥ 6 and H be an n-vertex intersecting 3-graph with τ(H) ≤ 2

not contained in any of H(n), H0(n), . . . ,H5(n). Write Hi for Hi(n). If τ(H) = 1, then H ⊆
H(n). So, suppose a set {v1, v2} covers all edges of H, but H is not a star. Let E0 = {e ∈ H :

{v1, v2} ⊂ e}, and for i = 1, 2, let Ei = {e ∈ H : v3−i /∈ e}. By Lemma 12, |E1|, |E2| ≥ 3. For

i = 1, 2, let Fi be the subgraph of the link graph of vi formed by the edges in Ei. If τ(Fi) ≥ 3,

then any edge e ∈ E3−i does not cover some edge f ∈ Fi and thus is disjoint from f + v1 ∈ H,

a contradiction. Thus τ(F1) ≤ 2 and τ(F2) ≤ 2.

Case 1: τ(F1) = 1. Suppose x1 is a dominating vertex in F1. Since |F1| = |E1| ≥ 3, x1 is the

dominating vertex in Fi and we may assume that x1x2, x1x3, x1x4 ∈ F1. But to cover these 3

edges, each edge in F2 must contain x1. Thus H ⊆ H0(n), as claimed.

Case 2: τ(F1) = τ(F2) = 2. If say F1 contains a triangle T = y1y2y3, then F2 cannot contain

an edge not in T and thus F2 = T and by symmetry F1 = T . Thus H is contained in H4.

So the remaining case is that each of Fi contains a matching Mi = {z1,iz′1,i, z2,iz′2,i}. Since each

edge of F1 intersects each edge of F2, we may assume z1,2 = z1,1, z
′
1,2 = z2,1, z2,2 = z′1,1, z

′
2,2 = z′2,1.

The only other edges that may have F2 are f1 = z1,1z
′
2,1 and f2 = z′1,1z2,1. Since |F2| ≥ 3, we

may assume f1 ∈ F2. Then the only third edge that F1 may contain is also f1. It follows that

H is contained in H5. This proves the main part of the theorem.

To prove part (a), assume H is an intersecting n-vertex 3-graph with |H| ≥ 11. Since |K3
5 | =

10 < |H|, n ≥ 6. By Proposition 6, τ(H) ≤ 2. So part (a) is implied by the main claim of the

theorem. Part (b) follows from the fact that each of H3, H4, H5 has n+ 4 edges. 2

5 Proof of Theorem 9

Let H be as in the statement. By Theorem 5, τ(H) ≤ 2. So, suppose a set {v1, v2} covers all

edges of H. Let E0 = {e ∈ H : {v1, v2} ⊂ e}, and for i = 1, 2, let Ei = {e ∈ H : v3−i /∈ e}.

For E1 ∪ E2, construct the family B(H) = B1 ∪ B2 ∪ . . . Br as in the previous proofs. Recall
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that by the minimality of the sets in Bi,

X 6⊆ Y for all distinct X,Y ∈ B(H), (7)

and since H is intersecting,

B(H) is intersecting. (8)

If B1 6= ∅, say {v0} ∈ B1, then by (7) and (8), and B(H) = {{v0}}. This means either

H ⊆ H(n, r) (when v0 ∈ {v1, v2}), or H ⊆ Hr
0(n) (when v0 /∈ {v1, v2}), and the theorem holds.

So, let B1 = ∅.

Let H ′ be obtained from H by deleting all edges not containing a member of B′ = B2 ∪ B3.

Then |H −H ′| ≤ Cnr−4. Since {v1, v2} dominates H,

each D ∈ B′ must contain either v1 or v2. (9)

For i = 1, 2, let B′i be the set of the members of B′ containing vi.

Define the auxiliary 3-graph H ′′ with vertex set V (H) as follows. The edges of H ′′ are all

members of B3 and each triple f that contains a member of B2 and is contained in an e ∈ H ′.

By (8), H ′′ is intersecting. By (9), τ(H ′′) ≤ 2. If τ(H ′′) = 1, then H ′ is a star. Suppose

τ(H ′′) = 2. By Theorem 8, H ′′ is contained in one of H(n), H0(n), . . . ,H5(n). But then H ′ is

contained in one of Hr
0(n), . . . ,Hr

5(n), EM(n, r, 1), as claimed. 2

6 Proof of Theorem 10

Recall that r ≥ 4, s ≥ 1, n is sufficiently large and H is an n-vertex r-graph with ν(H) ≤ s

and |H| > em(n, r, s − 1) + hm′′(n − s + 1, r). We are to show that V (H) contains a subset

Z = {z1, . . . , zs−1} such that either τ(H − Z) = 1 or H − Z ⊆ HM(n − s + 1, r, t) for some

t ∈ {1, . . . , r − 1, n− s+ 1− r} or r = 4 and H − Z ⊆ HM(n− s+ 1, 4, 0).

Define B(H) and Bi as in the previous proofs with the slight change that T ∈ B(H) lies in an

(rs)|T |+1-sunflower (instead of an (r+ 1)|T |-sunflower). Then the following claim holds (with an

identical proof).

Claim. Bi contains no (rs)i-sunflower.

Using the Claim and Lemma 11 we obtain |Bi| < f((rs)i, i) for all 1 ≤ i ≤ r. As before, setting

h = |B1| we have

|H| ≤
∑
B∈B1

(
n− 1

r − 1

)
+

r∑
i=2

∑
B∈Bi

(
n− i
r − i

)
< h

(
n− 1

r − 1

)
+ (r − 1)f((rs)r, r)

(
n

r − 2

)
.

Since |H| > em(n, r, s− 1) + hm′′(n− s+ 1, r) ∼ s
(

n
r−1
)

and n is large, this immediately gives

h ≥ s − 1. Consider distinct vertices z1, . . . , zs−1 ∈ B1 and the set of edges F ⊂ H omitting

z1, . . . , zs−1. If F is not intersecting, then let e, e′ be two disjoint edges in F . There exists a

matching e1, . . . , es−1 in H with zi ∈ ei and (e∪e′)∩ei = ∅ for all 1 ≤ i ≤ s−1. Note that we can
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produce the ei one by one since each zi forms the core of an (rs)2-sunflower in H due to the def-

inition of B1. We obtain the matching e, e′, e1, . . . , es−1 contradicting ν(H) ≤ s. Consequently,

we may assume that F is intersecting. Because |H| > em(n, r, s−1) +hm′′(n−s+ 1, r) we have

|F | > hm′′(n−s+1, r). Now we apply Theorem 7 to F to conclude that Theorem 10 holds. 2

7 Concluding remarks

Say that a hypergraph H is t-irreducible, if ν(H) = t and ν(H − x) = t for every x ∈ V (H).

Frankl [10] presented a family of n-vertex t-irreducible r-graphs PF (n, r, t) such that

pf(n, r, t) = |PF (n, r, t)| ∼ r
(
t− 1

2

)(
n

r − 2

)
.

He also proved

Theorem 13 ([10]). Let r ≥ 4, t ≥ 1, and let n be sufficiently large. Then every n-vertex

t-irreducible r-graph H has at most pf(n, r, t) edges with equality only if H = PF (n, r, t).

Using this result, one can prove the following.

Lemma 14. For every r ≥ 3, s ≥ t ≥ 2, if n is large, and H is an n-vertex r-graph with

ν(H) = s and

|H| > em(n, r, s− t) + pf(n− s+ t, r, t),

then there exists X ⊆ V (H) with |X| = s − t + 1 such that ν(H −X) = t − 1. The bound on

|H| is sharp.

This in turn implies the following claim.

Theorem 15. For every r ≥ 3 and s ≥ 2 there exists c > 0 such that the following holds. If n

is large, and H is an n-vertex r-graph with ν(H) = s and

|H| > em(n, r, s− 2) + pf(n− s+ 2, r, 2),

then either

1) there exists H ′ ⊂ H with |H ′| < cnr−3 and τ(H −H ′) ≤ s or

2) there exist an X ⊂ V (H) with |X| = s − 1 and u, v, w ∈ V (H −X) such that every edge of

H −X contains at least two elements of {u, v, w}.

We leave the details of the proofs to the reader.

Most of the proofs in this paper are rather simple applications of the early version of the Delta-

system method. There has been renewed interest in stability versions for problems in extremal

set theory, so the general message of this work is that the Delta-system method can quickly

give some structural information about problems in extremal set theory, a fact that was already
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shown in several papers by Frankl and Füredi in the 1980’s. For more advanced recent applica-

tions of the Delta-system method, see the papers of Füredi [12] and Füredi-Jiang [13].
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paper and Jozsef Balogh and Shagnik Das for attracting our attention to [14]. We also thank a
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[10] P. Frankl, Improved bounds for Erdős’ matching conjecture, J. Combin. Theory Ser. A 120

(2013), no. 5, 1068–1072.

[11] P. Frankl, On the Maximum Number of Edges in a Hypergraph with Given Matching

Number, arXiv:1205.6847.
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