Non-Uniform Turán-Type problems

Dhruv Mubayi * Yi Zhao ${ }^{\dagger}$
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
Chicago, IL 60607

November 24, 2004

Abstract

Given positive integers n, k, t, with $2 \leq k \leq n$, and $t<2^{k}$, let $m(n, k, t)$ be the minimum size of a family \mathcal{F} of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains at least t members of \mathcal{F}, and every $(k-1)$-subset of $[n]$ contains at most $t-1$ members of \mathcal{F}. For fixed k and t, we determine the order of magnitude of $m(n, k, t)$. We also consider related Turán numbers $T_{\geq r}(n, k, t)$ and $T_{r}(n, k, t)$, where $T_{\geq r}(n, k, t)\left(T_{r}(n, k, t)\right)$ denotes the minimum size of a family $\mathcal{F} \subset\binom{[n]}{\geq r}\left(\mathcal{F} \subset\binom{[n]}{r}\right)$ such that every k-subset of $[n]$ contains at least t members of \mathcal{F}. We prove that $T_{\geq r}(n, k, t)=(1+o(1)) T_{r}(n, k, t)$ for fixed r, k, t with $t \leq\binom{ k}{r}$ and $n \rightarrow \infty$.

1 Introduction

Given positive integers n, k, t, with $2 \leq k \leq n$ and $t<2^{k}$. We call a family $\mathcal{F} \subset 2^{[n]} \backslash \emptyset$ a (k, t) system if every k-subset of $[n]$ contains at least t sets from \mathcal{F}, and every ($k-1$)-subset of $[n]$ contains at most $t-1$ sets from \mathcal{F}. Analogously, given integers n, k, t, r, with $1 \leq r \leq k \leq n$ and $0 \leq t<2^{k}$, a Turán->r (n, k, t)-system (Turán- $r(n, k, t)$-system) is a family $\mathcal{F} \subset\binom{[n]}{\geq r}\left(\mathcal{F} \subset\binom{[n]}{r}\right)$ so that every k-subset of $[n]$ contains at least t members of \mathcal{F}. We denote by $m(n, k, t)$ the minimum size of a (k, t)-system, and by $T_{\geq r}(n, k, t)\left(T_{\geq r}(n, k, t)\right)$ the minimum size of a Turán- $\geq r(n, k, t)$-system (Turán-r (n, k, t)-system).

Computer scientists introduced and studied $m(n, k, t)$ (see [4, 5, 7] for its history and applications). [7] proves that $m(n, k, t)=\Theta\left(n^{k-1}\right)$ for $1<t<k$ and $m(n, 3,2)=\binom{n-1}{2}+1$, and [4] proves that for fixed $k, m(n, k, 2)=(1+o(1)) T_{k-1}(n, k, 2) . T_{r}(n, k, t)$ (especially $\left.T_{r}(n, k, 1)\right)$ is well-known and sometimes called the generalized Turán number, though its nonuniform version $T_{\geq r}(n, k, t)$ appears not to have been studied before. Note that when $T_{r}(n, k, t)=\Omega\left(n^{r}\right)$ (for fixed $\left.t, r<k\right)$,

[^0]the asymptotics of $T_{r}(n, k, t)$ are not known for any $r \geq 3$ and $t \geq 1$ (see [1] for an introduction to this problem, and $[3,6]$ for surveys in the case $t=1$).

In this note, we first study $m(n, k, t)$ for all $1 \leq t<2^{k}$, determining its order of magnitude for fixed k, t.

Theorem 1. Let $2 \leq k \leq n, 2 \leq t<2^{k}$, and $\binom{k}{\leq j-1}<t \leq\binom{ k}{\leq j}$. Then there exists a constant c, depending only on k and t, such that

$$
\begin{align*}
& c\binom{n}{k-j} \leq m(n, k, t) \leq\binom{ n}{k-j} \quad \text { for } \quad t \leq\binom{ k-1}{j} \tag{*}\\
& \frac{1}{\binom{k}{j}}\binom{n}{j} \leq m(n, k, t) \leq\binom{ n}{\leq j} \quad \text { for } \quad t>\binom{k-1}{j} .
\end{align*}
$$

Remark. When $j=1,(*)$ yields $m(n, k, t)=\Theta\left(n^{k-1}\right)$ for $2 \leq t \leq k-1$, a result from [7].
We can obtain the exact value of $m(n, k, t)$ for some choices of t. For $t=1, k$, and $2^{k}-1$, it is trivial to see that $m(n, k, t)$ is equal to $\binom{n}{k}, n$, and $\binom{n}{\leq k}$, respectively. We claim that $m\left(n, k, 2^{k}-2\right)=$ $\binom{n}{\leq k-1}$. To see this, we call a (k, t)-system \mathcal{H} minimal if $\sum_{S \in \mathcal{H}}|S| \leq \sum_{S \in \mathcal{H}^{\prime}}|S|$ for every (k, t) system \mathcal{H}^{\prime}. If \mathcal{F} is a minimal (k, t)-system for $t=2^{k}-2 \geq 2^{k-1}$, and $A \in \mathcal{F}$, then $2^{A} \backslash \emptyset \subset \mathcal{F}$, since replacing A by $B \subset A$ for some $B \notin \mathcal{F}$ creates another (k, t)-system that contradicts the minimality of \mathcal{F}. Consequently $\mathcal{F}_{k}=\emptyset$, because $S \in \mathcal{F}_{k}$ now implies that $\mathcal{F}_{k} \backslash S$ is a (k, t)-system. Since $t=2^{k}-2$, we must have $\mathcal{F}=\binom{[n]}{\leq k-1}$.

Before proceeding our upcoming Theorem 3 which relates $T_{\geq r}(n, k, t)$ and $T_{r}(n, k, t)$, we make the following observation.

Observation 2. Let $1 \leq r \leq k$ and $0 \leq t<\sum_{i=r}^{k}\binom{k}{i}$. Let j be the unique integer satisfying $\sum_{i=r}^{j-1}\binom{k}{i} \leq t<\sum_{i=r}^{j}\binom{k}{i}$ and let $t_{0}=t-\sum_{i=r}^{j-1}\binom{k}{i} \geq 0$. If \mathcal{F} is a Turán- $\left(n, k, t_{0}\right)$-system, then $\mathcal{F}^{\prime}=\bigcup_{i=r}^{j-1}\binom{[n]}{i} \cup \mathcal{F}$ is a Turán- $\geq r(n, k, t)$-system. This implies that $T_{\geq r}(n, k, t) \leq \sum_{i=r}^{j-1}\binom{n}{i}+$ $T_{j}\left(n, k, t_{0}\right)$.

Theorem 3. Let r, k, t, j, t_{0} be fixed as in Observation 2.

1. If $t_{0}=0$, then $T_{\geq r}(n, k, t)=\sum_{i=r}^{j-1}\binom{n}{i}$.
2. If $t_{0} \geq 1$, then $T_{\geq r}(n, k, t)=(1+o(1))\left(\sum_{i=r}^{j-1}\binom{n}{i}+T_{j}\left(n, k, t_{0}\right)\right)$.

Conjecture 4. Given r, k, t, j, t_{0} as in Observation 2, $T_{\geq r}(n, k, t)=\sum_{i=r}^{j-1}\binom{n}{i}+T_{j}\left(n, k, t_{0}\right)$.
Most of our notations are standard: Given a set X and an integer a, let $\binom{X}{a}=\{S \subset X:|S|=a\}$, $\binom{X}{\leq a}=\{S \subset X: 1 \leq|S| \leq a\},\binom{X}{\geq a}=\{S \subset X:|S| \geq a\}$, and $2^{X}=\{S: S \subset X\}$. For $\mathcal{F} \subset 2^{[n]}$, let $\mathcal{F}_{t}=\mathcal{F} \cap\binom{[n]}{t}$ and $\overline{\mathcal{F}_{t}}=\binom{[n]}{t} \backslash \overline{\mathcal{F}}_{t}$. Let $\mathcal{F}_{\leq t}=\cup_{i \leq t} \mathcal{F}_{i}$ and $\mathcal{F}_{\geq t}=\cup_{i \geq t} \mathcal{F}_{i}$. Write $\mathcal{F}(X)$ for $\mathcal{F} \cap 2^{X}$. An r-graph on X is a (hyper) graph $\mathcal{F} \subset\binom{X}{r}$.

2 Proofs

Proof of Theorem 1. The Theorem follows easily from the following four statements.
(1) If $\binom{k-1}{j-1}<t \leq\binom{ k}{j}$, then $m(n, k, t) \leq\binom{ n}{k-j}$.
(2) If $\binom{k-1}{j}<t \leq\binom{ k}{\leq j}$, then $m(n, k, t) \leq\binom{ n}{\leq j}$.
(3) If $t>\binom{k}{\leq j-1}$, then $m(n, k, t) \geq\binom{ n}{j} /\binom{k}{j}$.
(4) If $\binom{k}{\leq j-1}<t \leq\binom{ k-1}{j}$, then $m(n, k, t) \geq c\binom{n}{k-j}$, where c depends only on k and j.

The proofs of (1) and (3) are straightforward, so we only prove (2) and (4).
Proof of (2). Consider the smallest $i^{\prime} \in[1, j]$ and the largest $i \in[1, j]$ such that $1+\sum_{\ell=i^{\prime}}^{j}\binom{k-1}{\ell} \leq$ $t \leq \sum_{\ell=i}^{j}\binom{k}{\ell}$. Such i, i^{\prime} exist since $\binom{k-1}{j}<t \leq\binom{ k}{\leq j}$. We first show that $i^{\prime} \leq i$. This is trivial for $i=j$, so assume that $i<j$. The choice of i implies that

$$
t>\sum_{\ell=i+1}^{j}\binom{k}{\ell}=\binom{k}{i+1}+\sum_{\ell=i+2}^{j}\binom{k}{\ell} \geq\left[\binom{k-1}{i}+\binom{k-1}{i+1}\right]+\sum_{\ell=i+2}^{j}\binom{k-1}{\ell}+1
$$

Since this is equal to $\sum_{\ell=i}^{j}\binom{k-1}{\ell}+1$, the choice of i^{\prime} implies that $i^{\prime} \leq i$. Now let $\mathcal{F}=\cup_{\ell=i}^{j}\binom{[n]}{\ell}$. Every k-set of $[n]$ has $\sum_{\ell=i}^{j}\binom{k}{\ell} \geq t$ members of \mathcal{F}; every $(k-1)$-set of $[n]$ has $\sum_{\ell=i}^{j}\binom{k-1}{\ell} \leq$ $\sum_{\ell=i^{\prime}}^{j}\binom{k-1}{\ell} \leq t-1$ members of \mathcal{F}. Consequently, $m(n, k, t) \leq|\mathcal{F}| \leq\binom{ n}{\leq j}$.
Proof of (4). First, the assumption $\binom{k}{\leq j-1}<\binom{k-1}{j}$ implies that $j<k-j$. Let \mathcal{F} be a (k, t)-system. Let $K_{k-1}^{(i)}$ denote the complete i-graph of order $k-1$. Then $K_{k-1}^{(i)} \not \subset \mathcal{F}$ for all $i \in[j, k-1-j]$, otherwise we obtain a $(k-1)$-set which contains $\binom{k-1}{i} \geq\binom{ k-1}{j} \geq t$ members of \mathcal{F}, a contradiction. Recall that the Ramsey number $R^{(i)}(s, t)$ is the smallest N such that every i-graph on N vertices contains a copy of either $K_{s}^{(i)}$ or $\overline{K_{t}^{(i)}}$. By Ramsey's theorem, $R^{(i)}(s, t)$ is finite. Define $m_{k-2 j+1}=k$, and $m_{\ell}=R^{(k-j-\ell)}\left(k-1, m_{\ell+1}\right)$ recursively for $\ell=k-2 j, k-2 j-1, \ldots, 2,1$.

We claim that every m_{1}-set of $[n]$ contains at least one member of $\mathcal{F}_{\geq k-j}$. Indeed, consider an m_{1}-set S_{1}. Because $K_{k-1}^{(k-j-1)} \not \subset \mathcal{F}$, the definition of m_{1} implies that there exists a m_{2}-subset $S_{2} \subseteq S_{1}$ with all of its $(k-j-1)$-subsets absent from \mathcal{F}. Repeating this analysis, we find a sequence of subsets $S_{3} \supseteq \cdots \supseteq S_{k-2 j+1}=S$ of sizes $m_{3}>\cdots>m_{k-2 j+1}=k$, respectively. The k-set S thus contains no members of \mathcal{F} of size $k-j-1, \ldots, j$. On the other hand, the k-set S must contain at least $t>\binom{k}{\leq j-1}$ members of \mathcal{F}, thus at least one member of $\mathcal{F}_{\geq j}$. Hence S contains a member of $\mathcal{F}_{\geq k-j}$. By an easy averaging argument, we obtain $|\mathcal{F}| \geq\binom{ n}{k-j} /\binom{m_{1}}{k-j}=c\binom{n}{k-j}$.

Proof of Theorem 3 Part 1. Let $\mathcal{F} \subset\binom{[n]}{\geq_{r}}$ be a minimal Turán- $\geq_{r}(n, k, t)$-system. We are to show that $|\mathcal{F}| \geq \sum_{i=r}^{j-1}\binom{n}{i}$. Consider $\overline{\mathcal{F}<j}=\bigcup_{i=r}^{j-1}\binom{[n]}{i} \backslash \mathcal{F}$. For every k-set S of $[n]$,

$$
\sum_{i=r}^{j-1}\binom{k}{i}=t \leq|\mathcal{F}(S)|=\left|\mathcal{F}_{<j}(S)\right|+\left|\mathcal{F}_{\geq j}(S)\right|=\sum_{i=r}^{j-1}\binom{k}{i}-\left|\overline{\mathcal{F}_{<j}}(S)\right|+\left|\mathcal{F}_{\geq j}(S)\right|
$$

Therefore $\left|\overline{\mathcal{F}_{<j}}(S)\right| \leq\left|\mathcal{F}_{\geq j}(S)\right|$. Consequently (using $\binom{n-x}{k-x}$ is decreasing in x for $0 \leq x \leq k$), $\left|\overline{\mathcal{F}_{<j}}\right|\binom{n-j}{k-j}<\sum_{S \in\binom{[n]}{k}}\left|\overline{\mathcal{F}_{<j}}(S)\right| \leq \sum_{S \in\binom{[n]}{k}}\left|\mathcal{F}_{\geq j}(S)\right| \leq\left|\mathcal{F}_{\geq j}\right|\binom{n-j}{k-j}$. Thus $\left|\overline{\mathcal{F}_{<j}}\right| \leq\left|\mathcal{F}_{\geq j}\right|$, and therefore $|\mathcal{F}|=\left|\mathcal{F}_{<j}\right|+\left|\mathcal{F}_{\geq j}\right| \geq\left|\mathcal{F}_{<j}\right|+\left|\overline{\mathcal{F}_{<j}}\right|=\sum_{i=r}^{j-1}\binom{n}{i}$.

The main tool to prove the second part of Theorem 3 is the following well-known fact. For a family \mathcal{G} of r-graphs, the extremal function $\operatorname{ex}(n, \mathcal{G})$ is the maximum number of edges in an r-graph on n vertices that contains no copy of any member of \mathcal{G}.

Theorem 5 (Erdős-Simonovits [2]). For every $\varepsilon>0$ and every family of r-graphs \mathcal{G}, each of whose members has k vertices, there exists $\delta>0$, such that every r-graph on n vertices with at least $\operatorname{ex}(n, \mathcal{G})+\varepsilon\binom{n}{r}$ edges contains at least $\delta\binom{n}{k}$ copies of members of \mathcal{G}.

Proof of Theorem 3 Part 2. It suffices to show that for every $\varepsilon>0$, there exists $n_{0}=n_{0}(\varepsilon, k, t)>$ 0 , such that for all $n \geq n_{0}, T_{\geq r}(n, k, t) \geq(1-\varepsilon)\left(\sum_{i=r}^{j-1}\binom{n}{i}+T_{j}\left(n, k, t_{0}\right)\right)$. In fact, this follows from the following claims (taking $n_{0}=\max \left\{n_{1}, n_{2}\right\}$):
(a) $T_{\geq r}(n, k, t) \geq T_{\geq j}\left(n, k, t_{0}\right)$,
(b) $T_{\geq j}\left(n, k, t_{0}\right)>(1-\varepsilon / 2) T_{j}\left(n, k, t_{0}\right)$ for $n>n_{1}$,
(c) $T_{j}\left(n, k, t_{0}\right) \geq T_{j}(n, k, 1) \geq\binom{ n}{j} /\binom{k}{j}>\frac{2(1-\varepsilon)}{\varepsilon} \sum_{i=r}^{j-1}\binom{n}{i}$, for $n>n_{2}$.

Since (a) and (c) are easy to see, we only prove (b). Suppose that \mathcal{F} is a Turán- $\geq j\left(n, k, t_{0}\right)-$ system. Let \mathcal{G} be the family of all j-graphs on k vertices with more than $\binom{k}{j}-t_{0}$ edges. Let δ be the output of Theorem 5 for inputs $\varepsilon /\left[2\binom{k}{j}\right]$ and \mathcal{G}, and choose n_{1} so that $\delta\binom{n}{k}>n^{k-1}$ for all $n>n_{1}$ (note that $n_{1}=n_{1}(\varepsilon, k, t)$). We will show that $\left|\mathcal{F}_{j}\right|>(1-\varepsilon / 2) T_{j}\left(n, k, t_{0}\right)$ for $n>n_{1}$. Suppose, for contradiction, that $\left|\mathcal{F}_{j}\right| \leq(1-\varepsilon / 2) T_{j}\left(n, k, t_{0}\right)$. Since ex $(n, \mathcal{G})=\binom{n}{j}-T_{j}\left(n, k, t_{0}\right)$ and $T_{j}\left(n, k, t_{0}\right) \geq\binom{ n}{j} /\binom{k}{j}$,

$$
\left|\overline{\mathcal{F}_{j}}\right| \geq\binom{ n}{j}-\left(1-\frac{\varepsilon}{2}\right) T_{j}\left(n, k, t_{0}\right)=\operatorname{ex}(n, \mathcal{G})+\frac{\varepsilon}{2} T_{j}\left(n, k, t_{0}\right) \geq \operatorname{ex}(n, \mathcal{G})+\frac{\varepsilon}{2\binom{k}{j}}\binom{n}{j}
$$

By Theorem 5 applied with input $\varepsilon /\left[2\binom{k}{j}\right]$, the j-graph with vertex set $[n]$ and edge set $\overline{\mathcal{F}_{j}}$ contains at least $\delta\binom{n}{k}$ copies of (not necessarily the same) members of \mathcal{G}. In other words, there are at least $\delta\binom{n}{k} k$-sets of $[n]$ that contain fewer than t_{0} members of \mathcal{F}_{j}.

Now consider the family of k-sets of $[n]$ which contains at least one member of \mathcal{F}_{i} for some $i>j$. Denote this by \mathcal{K}_{i} and let $\mathcal{K}=\cup_{j<i \leq k} \mathcal{K}_{j}$. Since $\left|\mathcal{K}_{i}\right| \leq\left|\mathcal{F}_{i}\right|\binom{n-i}{k-i}$ and $|\mathcal{F}| \leq\binom{ n}{j}$,

$$
|\mathcal{K}|=\sum_{j<i \leq k}\left|\mathcal{K}_{i}\right| \leq \sum_{j<i \leq k}\left|\mathcal{F}_{i}\right|\binom{n-i}{k-i} \leq\binom{ n-j-1}{k-j-1}|\mathcal{F}| \leq\binom{ n-j-1}{k-j-1}\binom{n}{j}<n^{k-1}
$$

Since $\delta\binom{n}{k}>n^{k-1}>|\mathcal{K}|$ for $n>n_{1}$, at least one k-set S of $[n]$ contains fewer than t_{0} members of \mathcal{F}_{j} and no member of \mathcal{F}_{i} for $i>j$. Consequently S contains fewer than t_{0} members of \mathcal{F}. This contradicts the assumption that \mathcal{F} is a Turán- $\geq j\left(n, k, t_{0}\right)$-system.

3 Acknowledgments

The authors thank Gy. Turán for introducing them to the parameter $m(n, k, t)$, and the referees for suggestions that improved the presentation.

References

[1] W. G. Brown, P. Erdős, V. T. Sós, Some extremal problems on r-graphs. New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971), pp. 53-63. Academic Press, New York, 1973
[2] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs. Combinatorica 3 (1983), no. 2, 181-192.
[3] Z. Füredi, Turán type problems. Surveys in combinatorics, 1991 (Guildford, 1991), 253-300, London Math. Soc. Lecture Note Ser., 166, Cambridge Univ. Press, Cambridge, 1991.
[4] Z. Füredi, R. H. Sloan, K. Takata, Gy. Turán, On set systems with a threshold property, submitted.
[5] S. Jukna, Computing threshold functions by depth-3 threshold circuits with smaller thresholds of their gates, Inf. Proc. Lett., 56 (1995), 147-150.
[6] A. Sidorenko, What we know and what we do not know about Turán numbers. (English. English summary) Graphs Combin. 11 (1995), no. 2, 179-199.
[7] R. H. Sloan, K. Takata, Gy. Turán, On frequent sets of Boolean matrices, Annals of Mathematics and Artificial Intelligence, 24 (1998) 193-209.

[^0]: *Research supported in part by NSF grants DMS-9970325 and DMS-0400812.
 ${ }^{\dagger}$ Research supported in part by NSF grant DMS-9983703, a VIGRE Postdoctoral Fellowship at University of Illinois at Chicago.

