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Abstract

Given positive integers n, k, t, with 2 ≤ k ≤ n, and t < 2k, let m(n, k, t) be the minimum
size of a family F of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains
at least t members of F , and every (k − 1)-subset of [n] contains at most t− 1 members of F .
For fixed k and t, we determine the order of magnitude of m(n, k, t). We also consider related
Turán numbers T≥r(n, k, t) and Tr(n, k, t), where T≥r(n, k, t) (Tr(n, k, t)) denotes the minimum
size of a family F ⊂

(
[n]
≥r

)
(F ⊂

(
[n]
r

)
) such that every k-subset of [n] contains at least t members

of F . We prove that T≥r(n, k, t) = (1 + o(1))Tr(n, k, t) for fixed r, k, t with t ≤
(
k
r

)
and n →∞.

1 Introduction

Given positive integers n, k, t, with 2 ≤ k ≤ n and t < 2k. We call a family F ⊂ 2[n] \ ∅ a (k, t)-
system if every k-subset of [n] contains at least t sets from F , and every (k−1)-subset of [n] contains
at most t−1 sets from F . Analogously, given integers n, k, t, r, with 1 ≤ r ≤ k ≤ n and 0 ≤ t < 2k,
a Turán-≥r(n, k, t)-system (Turán-r(n, k, t)-system) is a family F ⊂

([n]
≥r

)
(F ⊂

(
[n]
r

)
) so that every

k-subset of [n] contains at least t members of F . We denote by m(n, k, t) the minimum size of
a (k, t)-system, and by T≥r(n, k, t) (T≥r(n, k, t)) the minimum size of a Turán-≥r(n, k, t)-system
(Turán-r(n, k, t)-system).

Computer scientists introduced and studied m(n, k, t) (see [4, 5, 7] for its history and applica-
tions). [7] proves that m(n, k, t) = Θ(nk−1) for 1 < t < k and m(n, 3, 2) =

(
n−1

2

)
+1, and [4] proves

that for fixed k, m(n, k, 2) = (1+o(1))Tk−1(n, k, 2). Tr(n, k, t) (especially Tr(n, k, 1)) is well-known
and sometimes called the generalized Turán number, though its nonuniform version T≥r(n, k, t)
appears not to have been studied before. Note that when Tr(n, k, t) = Ω(nr) (for fixed t, r < k),
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the asymptotics of Tr(n, k, t) are not known for any r ≥ 3 and t ≥ 1 (see [1] for an introduction to
this problem, and [3, 6] for surveys in the case t = 1).

In this note, we first study m(n, k, t) for all 1 ≤ t < 2k, determining its order of magnitude for
fixed k, t.

Theorem 1. Let 2 ≤ k ≤ n, 2 ≤ t < 2k, and
(

k
≤j−1

)
< t ≤

(
k
≤j

)
. Then there exists a constant c,

depending only on k and t, such that

c
(

n
k−j

)
≤ m(n, k, t) ≤

(
n

k−j

)
for t ≤

(
k−1

j

)
(∗)

1

(k
j)

(
n
j

)
≤ m(n, k, t) ≤

(
n
≤j

)
for t >

(
k−1

j

)
.

Remark. When j = 1, (∗) yields m(n, k, t) = Θ(nk−1) for 2 ≤ t ≤ k − 1, a result from [7].

We can obtain the exact value of m(n, k, t) for some choices of t. For t = 1, k, and 2k − 1, it is
trivial to see that m(n, k, t) is equal to

(
n
k

)
, n, and

(
n
≤k

)
, respectively. We claim that m(n, k, 2k−2) =(

n
≤k−1

)
. To see this, we call a (k, t)-system H minimal if

∑
S∈H |S| ≤

∑
S∈H′ |S| for every (k, t)-

system H′. If F is a minimal (k, t)-system for t = 2k − 2 ≥ 2k−1, and A ∈ F , then 2A \ ∅ ⊂ F ,
since replacing A by B ⊂ A for some B 6∈ F creates another (k, t)-system that contradicts the
minimality of F . Consequently Fk = ∅, because S ∈ Fk now implies that Fk \ S is a (k, t)-system.
Since t = 2k − 2, we must have F =

( [n]
≤k−1

)
.

Before proceeding our upcoming Theorem 3 which relates T≥r(n, k, t) and Tr(n, k, t), we make
the following observation.

Observation 2. Let 1 ≤ r ≤ k and 0 ≤ t <
∑k

i=r

(
k
i

)
. Let j be the unique integer satisfying∑j−1

i=r

(
k
i

)
≤ t <

∑j
i=r

(
k
i

)
and let t0 = t −

∑j−1
i=r

(
k
i

)
≥ 0. If F is a Turán-j(n, k, t0)-system, then

F ′ =
⋃j−1

i=r

(
[n]
i

)
∪ F is a Turán-≥r(n, k, t)-system. This implies that T≥r(n, k, t) ≤

∑j−1
i=r

(
n
i

)
+

Tj(n, k, t0).

Theorem 3. Let r, k, t, j, t0 be fixed as in Observation 2.

1. If t0 = 0, then T≥r(n, k, t) =
∑j−1

i=r

(
n
i

)
.

2. If t0 ≥ 1, then T≥r(n, k, t) = (1 + o(1))
(∑j−1

i=r

(
n
i

)
+ Tj(n, k, t0)

)
.

Conjecture 4. Given r, k, t, j, t0 as in Observation 2, T≥r(n, k, t) =
∑j−1

i=r

(
n
i

)
+ Tj(n, k, t0).

Most of our notations are standard: Given a set X and an integer a, let
(
X
a

)
= {S ⊂ X : |S| = a},(

X
≤a

)
= {S ⊂ X : 1 ≤ |S| ≤ a},

(
X
≥a

)
= {S ⊂ X : |S| ≥ a}, and 2X = {S : S ⊂ X}. For F ⊂ 2[n], let

Ft = F ∩
(
[n]
t

)
and Ft =

(
[n]
t

)
\ Ft. Let F≤t = ∪i≤tFi and F≥t = ∪i≥tFi. Write F(X) for F ∩ 2X .

An r-graph on X is a (hyper)graph F ⊂
(
X
r

)
.

2 Proofs

Proof of Theorem 1. The Theorem follows easily from the following four statements.
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(1) If
(
k−1
j−1

)
< t ≤

(
k
j

)
, then m(n, k, t) ≤

(
n

k−j

)
.

(2) If
(
k−1

j

)
< t ≤

(
k
≤j

)
, then m(n, k, t) ≤

(
n
≤j

)
.

(3) If t >
(

k
≤j−1

)
, then m(n, k, t) ≥

(
n
j

)
/
(
k
j

)
.

(4) If
(

k
≤j−1

)
< t ≤

(
k−1

j

)
, then m(n, k, t) ≥ c

(
n

k−j

)
, where c depends only on k and j.

The proofs of (1) and (3) are straightforward, so we only prove (2) and (4).

Proof of (2). Consider the smallest i′ ∈ [1, j] and the largest i ∈ [1, j] such that 1+
∑j

`=i′
(
k−1

`

)
≤

t ≤
∑j

`=i

(
k
`

)
. Such i, i′ exist since

(
k−1

j

)
< t ≤

(
k
≤j

)
. We first show that i′ ≤ i. This is trivial for

i = j, so assume that i < j. The choice of i implies that

t >

j∑
`=i+1

(
k

`

)
=

(
k

i + 1

)
+

j∑
`=i+2

(
k

`

)
≥

[(
k − 1

i

)
+

(
k − 1
i + 1

)]
+

j∑
`=i+2

(
k − 1

`

)
+ 1.

Since this is equal to
∑j

`=i

(
k−1

`

)
+ 1, the choice of i′ implies that i′ ≤ i. Now let F = ∪j

`=i

([n]
`

)
.

Every k-set of [n] has
∑j

`=i

(
k
`

)
≥ t members of F ; every (k − 1)-set of [n] has

∑j
`=i

(
k−1

`

)
≤∑j

`=i′
(
k−1

`

)
≤ t− 1 members of F . Consequently, m(n, k, t) ≤ |F| ≤

(
n
≤j

)
.

Proof of (4). First, the assumption
(

k
≤j−1

)
<

(
k−1

j

)
implies that j < k−j. Let F be a (k, t)-system.

Let K
(i)
k−1 denote the complete i-graph of order k − 1. Then K

(i)
k−1 6⊂ F for all i ∈ [j, k − 1 − j],

otherwise we obtain a (k− 1)-set which contains
(
k−1

i

)
≥

(
k−1

j

)
≥ t members of F , a contradiction.

Recall that the Ramsey number R(i)(s, t) is the smallest N such that every i-graph on N vertices

contains a copy of either K
(i)
s or K

(i)
t . By Ramsey’s theorem, R(i)(s, t) is finite. Define mk−2j+1 = k,

and m` = R(k−j−`)(k − 1,m`+1) recursively for ` = k − 2j, k − 2j − 1, . . . , 2, 1.

We claim that every m1-set of [n] contains at least one member of F≥k−j . Indeed, consider
an m1-set S1. Because K

(k−j−1)
k−1 6⊂ F , the definition of m1 implies that there exists a m2-subset

S2 ⊆ S1 with all of its (k−j−1)-subsets absent from F . Repeating this analysis, we find a sequence
of subsets S3 ⊇ · · · ⊇ Sk−2j+1 = S of sizes m3 > · · · > mk−2j+1 = k, respectively. The k-set S thus
contains no members of F of size k − j − 1, . . . , j. On the other hand, the k-set S must contain at
least t >

(
k

≤j−1

)
members of F , thus at least one member of F≥j . Hence S contains a member of

F≥k−j . By an easy averaging argument, we obtain |F| ≥
(

n
k−j

)
/
(

m1

k−j

)
= c

(
n

k−j

)
.

Proof of Theorem 3 Part 1. Let F ⊂
([n]
≥r

)
be a minimal Turán-≥r(n, k, t)-system. We are to

show that |F| ≥
∑j−1

i=r

(
n
i

)
. Consider F<j =

⋃j−1
i=r

(
[n]
i

)
\ F . For every k-set S of [n],

j−1∑
i=r

(
k

i

)
= t ≤ |F(S)| = |F<j(S)|+ |F≥j(S)| =

j−1∑
i=r

(
k

i

)
− |F<j(S)|+ |F≥j(S)|.

Therefore |F<j(S)| ≤ |F≥j(S)|. Consequently (using
(
n−x
k−x

)
is decreasing in x for 0 ≤ x ≤ k),

|F<j |
(
n−j
k−j

)
<

∑
S∈([n]

k ) |F<j(S)| ≤
∑

S∈([n]
k ) |F≥j(S)| ≤ |F≥j |

(
n−j
k−j

)
. Thus |F<j | ≤ |F≥j |, and

therefore |F| = |F<j |+ |F≥j | ≥ |F<j |+ |F<j | =
∑j−1

i=r

(
n
i

)
.

The main tool to prove the second part of Theorem 3 is the following well-known fact. For a
family G of r-graphs, the extremal function ex(n,G) is the maximum number of edges in an r-graph
on n vertices that contains no copy of any member of G.
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Theorem 5 (Erdős-Simonovits [2]). For every ε > 0 and every family of r-graphs G, each of
whose members has k vertices, there exists δ > 0, such that every r-graph on n vertices with at
least ex(n,G) + ε

(
n
r

)
edges contains at least δ

(
n
k

)
copies of members of G.

Proof of Theorem 3 Part 2. It suffices to show that for every ε > 0, there exists n0 = n0(ε, k, t) >

0, such that for all n ≥ n0, T≥r(n, k, t) ≥ (1 − ε)
(∑j−1

i=r

(
n
i

)
+ Tj(n, k, t0)

)
. In fact, this follows

from the following claims (taking n0 = max{n1, n2}):

(a) T≥r(n, k, t) ≥ T≥j(n, k, t0),

(b) T≥j(n, k, t0) > (1− ε/2)Tj(n, k, t0) for n > n1,

(c) Tj(n, k, t0) ≥ Tj(n, k, 1) ≥
(
n
j

)
/
(
k
j

)
> 2(1−ε)

ε

∑j−1
i=r

(
n
i

)
, for n > n2.

Since (a) and (c) are easy to see, we only prove (b). Suppose that F is a Turán-≥j(n, k, t0)-
system. Let G be the family of all j-graphs on k vertices with more than

(
k
j

)
− t0 edges. Let δ

be the output of Theorem 5 for inputs ε/[2
(
k
j

)
] and G, and choose n1 so that δ

(
n
k

)
> nk−1 for all

n > n1 (note that n1 = n1(ε, k, t)). We will show that |Fj | > (1 − ε/2)Tj(n, k, t0) for n > n1.
Suppose, for contradiction, that |Fj | ≤ (1− ε/2)Tj(n, k, t0). Since ex(n,G) =

(
n
j

)
− Tj(n, k, t0) and

Tj(n, k, t0) ≥
(
n
j

)
/
(
k
j

)
,

|Fj | ≥
(

n

j

)
−

(
1− ε

2

)
Tj(n, k, t0) = ex(n,G) +

ε

2
Tj(n, k, t0) ≥ ex(n,G) +

ε

2
(
k
j

)(
n

j

)
.

By Theorem 5 applied with input ε/[2
(
k
j

)
], the j-graph with vertex set [n] and edge set Fj contains

at least δ
(
n
k

)
copies of (not necessarily the same) members of G . In other words, there are at least

δ
(
n
k

)
k-sets of [n] that contain fewer than t0 members of Fj .

Now consider the family of k-sets of [n] which contains at least one member of Fi for some
i > j. Denote this by Ki and let K = ∪j<i≤kKj . Since |Ki| ≤ |Fi|

(
n−i
k−i

)
and |F| ≤

(
n
j

)
,

|K| =
∑

j<i≤k

|Ki| ≤
∑

j<i≤k

|Fi|
(

n− i

k − i

)
≤

(
n− j − 1
k − j − 1

)
|F| ≤

(
n− j − 1
k − j − 1

)(
n

j

)
< nk−1.

Since δ
(
n
k

)
> nk−1 > |K| for n > n1, at least one k-set S of [n] contains fewer than t0 members of

Fj and no member of Fi for i > j. Consequently S contains fewer than t0 members of F . This
contradicts the assumption that F is a Turán-≥j(n, k, t0)-system.
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