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Abstract

Given positive integers n,k, ¢, with 2 < k < n, and t < 2¥  let m(n, k,t) be the minimum
size of a family F of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains
at least t members of F, and every (k — 1)-subset of [n] contains at most ¢ — 1 members of F.
For fixed k and ¢, we determine the order of magnitude of m(n,k,t). We also consider related
Turdn numbers T, (n, k,t) and T, (n, k,t), where T>,(n, k, t) (T, (n, k,t)) denotes the minimum
size of a family F C (L"i) (F C ([:L])) such that every k-subset of [n] contains at least ¢ members
of F. We prove that fZT(n, k,t) = (140(1))T-(n, k,t) for fixed r, k,t with t < (l:) and n — oo.

1 Introduction

Given positive integers n, k, ¢, with 2 < k < n and ¢ < 2¥. We call a family F c 2" \ 0 a (k,t)-
system if every k-subset of [n] contains at least ¢ sets from F, and every (k—1)-subset of [n] contains
at most ¢ — 1 sets from F. Analogously, given integers n, k,t,r, with 1 <r <k <mnand 0 <t < 2F,
a Turdn->,(n, k,t)-system (Turan-,(n, k, t)-system) is a family F C ([>"T) (F cC ([Z])) so that every
k-subset of [n] contains at least ¢ members of F. We denote by m(_n,k,t) the minimum size of
a (k,t)-system, and by T>,(n,k,t) (I>,(n,k,t)) the minimum size of a Turdn->,(n, k,t)-system
(Turén-,(n, k, t)-system).

Computer scientists introduced and studied m(n, k,t) (see [4, 5, 7] for its history and applica-
tions). [7] proves that m(n, k,t) = O(n*~1) for 1 <t < k and m(n, 3,2) = (”51) +1, and [4] proves
that for fixed k, m(n, k,2) = (1+0(1))Tk-1(n, k,2). T;(n, k,t) (especially T;(n, k, 1)) is well-known
and sometimes called the generalized Turan number, though its nonuniform version 7%.(n,k,t)
appears not to have been studied before. Note that when T,.(n,k,t) = Q(n") (for fixed t,r < k),
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the asymptotics of T.(n, k,t) are not known for any » > 3 and ¢t > 1 (see [1] for an introduction to

this problem, and [3, 6] for surveys in the case t = 1).

In this note, we first study m(n, k,t) for all 1 <t < 2¥, determining its order of magnitude for
fixed k, .

Theorem 1. Let 2 <k <n, 2 <t < 2% and (<f_1) <t< (fj) Then there exists a constant c,
depending only on k and t, such that

c(,";) < mnkit) < (")) for tg(kjfl) (+)

(1) < mnkt) < (2)  for t> (5-Y).

B ;
Remark. When j = 1, (%) yields m(n, k,t) = ©(nF~!) for 2 <t <k — 1, a result from [7].

We can obtain the exact value of m(n, k,t) for some choices of ¢. For t = 1, k, and 2% — 1, it is
trivial to see that m(n, k, t) is equal to (Z),n, and (<nk), respectively. We claim that m(n, k,2F —2) =
(gkn—l)' To see this, we call a (k,t)-system H minimal if Yoser IS < D gep |S| for every (k,t)-
system H'. If F is a minimal (k,t)-system for ¢t = 2¥ — 2 > 2= and A € F, then 24\ 0 C F,
since replacing A by B C A for some B ¢ F creates another (k,t)-system that contradicts the
minimality of F. Consequently F; = (), because S € Fj now implies that Fj \ S is a (k, t)-system.

Since t = 2¥ — 2, we must have F = (<[k"ll)

Before proceeding our upcoming Theorem 3 which relates T, (n, k,t) and T,(n, k,t), we make

the following observation.

Observation 2. Let 1 < r <k and 0 < t < Zf:r (k) Let j be the unique integer satisfying

1

Zf;} (’f) <t< E?:r (k) and let to =t — Zz;} (lf) > 0. If F is a Turdn-j(n, k,to)-system, then

F = Ui;: ([?]) U F is a Turdn->r(n,k,t)-system. This implies that T>,(n,k,t) < Zi;rl (") +
Tj(n, k. to).

Theorem 3. Let 1, k,t,j,tg be fized as in Observation 2.
1. Ifto = 0, then Ts,(n, k,t) = 201 (7).
2 Ifto > 1, then Top(n, b, t) = (1+0(1) (2} (2) + Ty(n, k. t0)).

Conjecture 4. Given r,k,t,j,to as in Observation 2, T>,(n,k,t) = Zi;: (") + Tj(n, k, to).

Most of our notations are standard: Given a set X and an integer a, let (f) ={ScX:|f=a},
(fa):{SCX:l§|S|§a}, (fa):{SCX:\S]za},andZX:{S:SCX}. For F C 2l let
~7':t =FnN ([Tt‘]) and F; = ([Ttl]) \ft Let F<y = Uit F; and Foy = U ;. Write F(X) for F N 27X,
An r-graph on X is a (hyper)graph F C ()T()

2 Proofs

Proof of Theorem 1. The Theorem follows easily from the following four statements.



(1) 1f (52) <t < (5), then m(n, k,t) < (")

2) 1t (*71) <t < (), then m(n, k,t) < (2).

(8) It > ()7 ,), then m(n, k,t) > (7)/(5).

(4) 1t (Sﬁl) <t < (’71), then m(n, k,t) > ¢ (kﬁj), where ¢ depends only on k and j.
The proofs of (1) and (3) are straightforward, so we only prove (2) and (4).

. . . . . i (k—1
Proof 'of (2). Consider the smallest 7’ € [1, 5] and the largest i € [1, j] such that 14+>7_., (*,") <
t< >, (lz) Such i, exist since (kzl) <t< (fj) We first show that ¢/ < 4. This is trivial for

i = j, so assume that ¢ < j. The choice of ¢ impligs that

B o () S R o8 (Y G B8 (e 9 oY Gl 21

Since this is equal to ZZ:? (kzl) + 1, the choice of ¢ implies that i/ < i. Now let F = UZ:i([Tl}]
Every k-set of [n] has }>°j_, (IZ) > ¢ members of F; every (k — 1)-set of [n] has Y ) . (kzl)

<
%’:i, (’71) <t — 1 members of F. Consequently, m(n,k,t) < |F| < (Sna) O

Proof of (4). First, the assumption (<ﬁl) < (k;I) implies that j < k—j. Let F be a (k, t)-system.
Let K,(;_)l denote the complete i-graph of order K — 1. Then K]?_)l ¢ F forallie [j,k—1-j],
otherwise we obtain a (k — 1)-set which contains (kzl) > (kgl) >t members of F, a contradiction.

Recall that the Ramsey number R(i)(s, t) is the smallest NV such that every i-graph on N vertices

contains a copy of either Ks(i) or Kt(i). By Ramsey’s theorem, R(?) (s,t) is finite. Define my_9j11 = k,
and my = R(k_j_e)(k: — 1,myg4q) recursively for ¢ =k — 25,k —2j —1,...,2,1.

We claim that every mj-set of [n] contains at least one member of F>i_;. Indeed, consider
an mi-set S1. Because K ,gk__lj -b ¢ F, the definition of m implies that there exists a mo-subset
Sy C 51 with all of its (k— 7 —1)-subsets absent from F. Repeating this analysis, we find a sequence
of subsets S3 2 -+ D Sp_9;41 = S of sizes m3 > - -+ > my_3j41 = k, respectively. The k-set S thus
contains no members of F of size k — j — 1,...,j. On the other hand, the k-set S must contain at

k
least t > (ijl
. . n m n
F>i—j. By an easy averaging argument, we obtain |F| > (k_J)/(k_lj) = c(k_j). O]

) members of F, thus at least one member of F>;. Hence S contains a member of

Proof of Theorem 3 Part 1. Let F C ([g}") be a minimal Turdn->,(n, k,t)-system. We are to
show that |F| > ZZ;L (). Consider F.;j = Uf;rl ([7;]) \ F. For every k-set S of [n],

j—1 -1
k k S

> (4) =t irei=1rs©) 4170 = X (F) - o)1+ 1m0

Therefore |F<;(S)| < |F>;(S)|. Consequently (using (;~%) is decreasing in z for 0 < z < k),

Fl (2 < Esequy F<i(S) < Ege(um \fzj(S)\ < |Foil(52)). Thus |Fo| < |F»l, and

therefore | F| = |Fj| + |Foj| 2 1Fjl + 1Pl = S5, (5). =

The main tool to prove the second part of Theorem 3 is the following well-known fact. For a
family G of r-graphs, the extremal function ex(n, G) is the maximum number of edges in an r-graph

on n vertices that contains no copy of any member of G.



Theorem 5 (Erd&s-Simonovits [2]). For every e > 0 and every family of r-graphs G, each of
whose members has k vertices, there exists § > 0, such that every r-graph on n wvertices with at

least ex(n,G) + E(Z) edges contains at least (5(2) copies of members of G.

Proof of Theorem 3 Part 2. It suffices to show that for every £ > 0, there exists ng = no(e, k, t) >
0, such that for all n > ng, T>,(n,k,t) > (1 —¢) (Zi;} ) +Tj(n,k,t0)>. In fact, this follows

from the following claims (taking ng = max{ni,na}):
(a) TZT(n) k, t) > TZj (n7 k, to),
(b) sz(n, k},to) > (1 - 6/2)1}(”, ki,to) for n > nq,

(c) Tj(n, k,to) > Ty(n,k, 1) > (1) /(%) > 2L 21 (%), for > na.

Since (a) and (c) are easy to see, we only prove (b). Suppose that F is a Turdn->;(n,k,to)-
system. Let G be the family of all j-graphs on k vertices with more than (];) — to edges. Let §
be the output of Theorem 5 for inputs /]2 (I;)] and G, and choose ny so that §(}) > n*~! for all
n > ny (note that ny = ni(e, k,t)). We will show that |F;| > (1 — ¢/2)T(n,k,to) for n > n;.
Suppose, for contradiction, that |F;| < (1 —&/2)Tj(n, k,to). Since ex(n,G) = (7;) —Tj(n, k,to) and
Ty(n, k. to) > (7)/(5),

By Theorem 5 applied with input €/[2 (I;)], the j-graph with vertex set [n] and edge set F; contains
at least (5(2) copies of (not necessarily the same) members of G . In other words, there are at least

§(}) k-sets of [n] that contain fewer than ¢y members of F;.
Now consider the family of k-sets of [n] which contains at least one member of F; for some

i > j. Denote this by K; and let K€ = Uj<;<xK;j. Since [K;| < |Fi[(32)) and |F| < (%),

n—1 n—j—1 n—j7—1\/(n b1
|/C|:Z\/C,~1§ZIEI< >§< : >|f|§( : )<><n :
i ot k—1 k—j—1 k—j7j—1)\J

Since () > n*~! > |K| for n > ny, at least one k-set S of [n] contains fewer than t; members of
F; and no member of F; for i > j. Consequently S contains fewer than ¢y members of F. This

contradicts the assumption that F is a Turdn->;(n, k, tp)-system. O
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