A FAMILY OF SWITCH EQUIVALENT GRAPHS
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ABSTRACT. Let2G be the graph consisting of two disjoint copie<ahfWe prove
that every graph of the forH can be transformed to every other graph of the
form 2K using the following operations:

(i) adding edgew if d(u) = d(v) andwuv is not present,

(i) deleting edgeuww if d(u) = d(v) anduv is present.

1. INTRODUCTION

A sequence of intege® = d; < --- < d,, isgraphicif itis the degree sequence
of a simple graph. A-switchin a simple grapl@ is the replacement of a pair of
edgeszy andzw in G by the edgeg/z andwzx, given thatyz andwx were not
present inG originally. One motivation for this paper is the following theorem
sometimes attributed to Berge [1], but essentially proven by Havel [5] and Hakimi
[4] independently.

Theorem 1.1.If G and H are simple graphs with vertex s&t thend(v) = dg(v)
for everyv € V if and only if there is a sequence of 2-switches that transfarms
into H.

An application of such a result to analyze the design and dynamic operation of
lightwave networks, like traffic patterns can be found in [2].

Theodd setof a graphG is the set of integerk such thatz has an odd number
of vertices of degre&. Theswitch operatioris the addition or deletion of an edge
whose endpoints have the same degree. Graplamd H' are switch equivalent
if there is a sequence of switches transformiiiggo H’. Note that a necessary
condition forH and H’ to be switch equivalent is that they have the same order and
odd sets. Let + G = 2G denote the graph consisting of two vertex disjoint copies
of G.
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Chen et al. [3] proved that two graphs with the same order and odd sets can
be obtained from each other by switches and 2-switches. They also proved, by
construction, that this is not true if only the switch operation is allowed, thereby
answering a conjecture of McCanna [6] negatively. In fact, [3] suggests the ques-
tion of which pairs of graphgi, H’ with the same order and odd sets are switch
equivalent, and proves that the graptisH’ are switch equivalent if each has at
least three more isolated vertices than its maximum degree.

In this paper, we prove that andG’ are switch equivalent if they have the same
order and odd sets, artd = 2H andG’ = 2K for someH, K. Thus in our result
both G andG’ can be quite dense, but they must have a special structure, namely
that each consists of two copies of some other graph.

Theorem 1.2. Every graph of the forr@H can be reduced to the empty graph by a
sequence of switches.

Theorem 1.2 easily implies the following Corollary, which seems an indepen-
dently interesting fact in graph theory. We omit its easy proof.

Corollary 1.3. Any graph can be transformed into any other graph using the fol-
lowing operations:

(i) switches,

(ii) replacing a graph by two identical copies,

(iii) replacing two identical copies of a graph by a single copy, and

(iv) deleting vertices of degree zero.

2. OUTLINE OF THE PROOF

In this section we give the proof of Theorem 1.2 while deferring the proof of a
key lemma to Sections 3-5.

Let H and H' be two copies of the same graph anddet H + H'. Suppose
for a contradictior(G is a counterexample to the theorem. We may chaose be
minimal with respect to the number of edges, and among all such graphs we choose
the one that minimizes the number of vertices. ¢t . . , d,, be the different values
for the degrees of the vertices &f. Without loss of generality we can assume
d, < --- < d,. By minimality of the number of vertices we know th&t has no
isolated vertex s@; > 0. Partition the vertices off into setsVi,...,V,, so that
all vertices ofV; have degred;. Observe that deleting an edge with both endpoints
in the same sél; corresponds to a switch. It follows by minimality of the number
of edges that each s&t is a stable set. Similarly, we patrtition the verticesif
into stable setd//,..., V. Throughout this paper when we talk abeoinimum

r'n
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counterexampleve mean a graplér = H + H' with stable setd/, ..., V, and
Vi, ..., V! with the properties described above.

We say that a sequence of switchesestrictedto a subset of edges if only edges
in that subset are added or removed. We say that a sequence of switches is restricted
to a subset of vertices if it is restricted to edges with both endpoints in that subset.
For a positive integen, we write[n] for {1,...,n}. The key to proving Theorem
1.2 is the following lemma.

Key Lemma. LetG be a minimal counterexample. Then there exists intggetsn
withl <k <r <m <nandvertices, € V,,u' € Vv € V,,;1,0" € V] ., where
uv, u'v’ are edges ofi. Moreover, there exists a sequence of switches restricted to
the setS = U, (V; U V}/) and to edges distinct fromw’ such that in the resulting
graph K:

dK(U) = dK(u') and 0 < dK(U) — dK(U) <1.

Observe that since all switches are restricted tdy (v) = dg(v') = dyi1. This
lemma implies the main theorem.

Proof of Theorem 1.2Let G be a minimum counterexample and Iétbe the graph
obtained from the Key Lemma. ty(u) — dx(v) = 1 then add edgev’. Now
verticesu, v’, v, v’ all have the same degree. Remameand/v’, and adduu’.
Note that these are all switches. Every vertex in theSset U™, (V; U V/) has
the same degree now as . Since all the switches used to constriéctrom G
were restricted to the sét and to edges distinct fromm’ we can repeat each of
these switches in the reverse order. At the end remove thereddat is present.
The resulting graph is the graph obtained fréhby removing edgesv andu/v’, a
contradiction to the minimality of the counterexample. 0J

In the remainder of this section we give the basic idea behind the proof of the
Key Lemma. The first observation is the following.

Lemma 2.1. Let G be a minimum counterexample. Then there exists[n — 1]
such that

Vil = djq —dj + 1.

For the proof of this result only the cardinality of the stable $étshe number
of edges betweel; (i € [n — 1]) andV,,, and the degrees,, ..., d, are needed.
This information is captured by the object we define next. Ldie a star with
verticeszy, ..., z, (n > 2) and edges;z, for all i € [n — 1]. We associate two
positive integerss;, d; with every vertexz;. We also associate a positive integer
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w; with every edger;x,,. We say that the 4-tuple/, s, d, w) is an SDW-star if the
following relations hold:

(2.1a8) O<di<dy -+ <dy,
1 n—1
(2.1b) o ;w
(2.1c) w; < s;8, forall ieln—1].

Remark 2.2. Let G be a minimum counterexample and lEbe the star with ver-
ticeszy, ..., x, edgesr;x, forall i € [n — 1]. Associate with every vertex; of .J
the integersl; ands; = |V;|. Associate with every edgex,, the integeny; which
is equal to the number of edges Bfwith one endpoint if/; and one endpoint in
Vn. Then(J, s, d, w) is an SDW-star.

In the previous remark Relation (2.1a) is trivially satisfied, (2.1b) follows from
the fact that/, is a stable set, and (2.1c) follows from the fact tHais simple. The
following result implies Lemma 2.1.

Lemma 2.3. Let(J, s,d, w) be an SDW-star. Then there exigts [n— 1] such that
(2.2) sj = djp —dj + 1.
Moreover, ifj is the smallest such integer, th@;:j1 w; > 0.

Proof. Let j be the largest integer im| such thats; < d;.; — d; forall i € [j — 1].
Summing all these inequalities we obtdi/_| s; < d; — d,. Thusd, > d; >
771 si + di. To complete the proof it suffices to show thaf'"' w; > 0, as this
implies thatj < n, and hence the relation (2.2).

Suppose for a contradiction th@?;jl w; = 0. It follows from (2.1b) thatl,, =
iz{j w;. Relation (2.1c) states thgt < s;, thusd, < S/~ !s;. But then the
lower and upper bound afy, imply d; = 0, a contradiction to (2.1a). O

3. SWITCHES

In this section we describe various constructions using switches for the proof of the
Key Lemma.

Lemma 3.1. Let K be a graph, letl’ C S C V(K), and let the subgrapli’[S]
induced byS be a perfect matching/. Let K’ be obtained fromk by adding all
T,S — T-edges. Suppose that

() all vertices ofS have the same degree i,

(i) leNT| = 0(mod2) for every edge = {v,v'} in M.
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Then there exists a sequence of switches, restricted todatid £(S) — M, that
transformsK to K’.

Proof. See Appendix. O

Applying Lemma 3.1 yields the following two similar results. Before stating
them, we need the following setup.

Setup: Consider a grapli with two (possibly empty) disjoint subsets of vertices
A andB where|A|, | B| are both even and U B is a stable set ok’. Suppose that
vertices ofA have degred — 6, vertices ofB degreel — § + 1, ande > d + 7.

Lemma3.2.Letd = 1, = 0. Then there exists a sequence of switches restricted to
AU B such that the resulting grapR’ has two (possibly empty) subsets of vertices
X,Y C AU B, where| X|, |Y'| are both even with the following properties:

() X UY is a stable set of(’,

(i) vertices ofX have degree — 1, vertices oft” have degree,

(i) | X|+|Y|>|Al+|Bl—e+d—1.

Proof. See Appendix. O

Lemma 3.3. Lety = 1 and letu,u’ be two vertices of3. Then there exists a
sequence of switches restricted4aJ B and to edges other tham:’ such that the
resulting graphK’ has two (possibly empty) subsets of vertices™ € AU B
where| X |, |Y'| are both even with the following properties:

() X UY is astable set of’,

(if) vertices ofX have degree — ¢’, vertices oft” degreee + 1 — ¢’

whered’ is either( or 1,

(i) | X|+|Y|>|Al+|Bl—e+d—1,

(iv) if X UY is non-empty, then, v’ € Y.

Proof. See Appendix. O

In the proof of the Key Lemma, constructions (similar to that of Lemma 3.1)
are iterated several times. This requires a generalization of Lemma 2.3 which is
presented in Section 4. Finally the Key Lemma is proved in Section 5.

4. SDW-STARS

Our objective in this section is to prove the following result which we use later on.
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Lemma 4.1. Let G be a minimum counterexample. Then there ekist with
1 <k <m < nsuchthatforall withk <[ <m,
l
D Vil = digy = di + 1.
i=k
Moreover,U!" . V; is a stable set and there exists an edgewith v € U" .V, and
v E Vm+1.

By restricting the result to the case whére 1 we see that this generalizes Lemma
2.1.

Proposition 4.2. Let(J, s, d, w) be an SDW-star. Then there exists [n — 1] such
that for all [ with £ <[ < n,
l
(4.3) D s > dpy —dy+ 1
i=k

Moreover,> """ w; > 0.

We first show that the above proposition implies Lemma 4.1, and then we prove the
proposition.

Proof of Lemma 4.1Let (J, s,d,w) be the SDW-star defined as in Remark 2.2.
Let k be the integer from Proposition 4.2. Sing&'_'w; > 0 there is an edge
betweem?;;v; andV,,. Thus the following statement is true (choose=n — 1

for instance): for some integet with £ < m < n there is an edge betweeff, V;
andV,,.;. If m is the smallest such integer, theft , V; is a stable set. O

Proof of Proposition 4.2L et us proceed by induction on the number of vertices
of J. Consider first the base case= 2, i.e. the star has only two vertices. By
Lemma 2.3 we haves; > dy — d; + 1 andw; > 0, as required.

Thus we may assume > 3. Consider(.J, s,d,w) and letj be smallest integer
for which (2.2) holds. Ifj = n—1then (2.2) is the same as (4.3) (with= j = n—1
and thud = k). Moreover, also by Lemma 2.3 we hawg_; > 0, which completes
the proofin this case. Thus we will assughg n—2. Let.J’ be the star with vertices
T1,...,Tj_1,Tj41,...,T, and edges;x,, for eachi € [n — 1] — {j}. Defines, to
be equal tos; if @ € {j,j + 1} and equal t&; + s,41 if i = j + 1. Definew; to be
equal tow; if ¢ ¢ {j,7 + 1} and equal tav; + w;4, if i = j + 1. Defined, to be
equal tod; if i ¢ {j,j + 1} and equal tal; if i = j + 1 (note thats’;, w’, d’; are not
defined).

Claim: (J',v',d',w’) is an SDW-star.
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Proof of Claim: Clearly, (2.1a) holds, a$]7s,d7w) is an SDW-star. Sincg <
n—=2,d, = dys, = s, andd, = L3 w = 5 Y, L wj, relation (2.1b)
is satisfied. Note that’, , = w; + wﬁl < 58, + sﬁlsn = 5,15, thus relation
(2.1c) is also satisfied.

End of Claim

Let o be the function defined as follows{l) = [+ 1if i # j—1ando(j —1) =
j+ 1. It follows from the claim and by induction that there exists [n — 1] — {j}
such that for all # j with £ <[ < n,

l
*) > s> dhyy —di + 1L

i=k
i#]

In particular, wheri = k we obtains;, > d ) — dj, + 1. It k < j — 2, then this last
relation can be rewritten ag > d,,; — d;. + 1, a contradiction to the choice ¢f If
k = j—1,thentherelation can be rewrittengs, > d; | —d;_,+1 = d;—d; 1+1,
again a contradiction to the choice pfThusk > o(j — 1) = j + 1.

If £ > j+ 2, then (*) can be rewritten agl g Si > dip — d; + 1 for all [ with
k <1 < n. Thus (4.3) is satisfied, and by induction< 7' w/ = Z;‘_kl w.
Thus we may assume = j + 1, and (*) can be rewritten ag, + Z >

% 2 =
diy1— dj+1+1 Becausej+1 = 5;+5j41 ande+1 = d;, this can again be]:J;ewrltten
asZi:j s; > diy1 — dj + 1 wherel > j + 1. Thus (4.3) is satisfied with = j for
alll > j+ 1. If [ = j, then (4 3) becomes (2.2) Which holds by the choicg.of
Finally, by induction) < >~ D Wi = Wi+ Sl L w; =Y. w;, where the
last equality follows from the fact thadz = Wj + Wjt1. O

5. PROOF OF THEKEY LEMMA

Proof of the Key Lemma.et G = H + H' be a minimum counterexample. Let
us write V; for V; U V/. Let us apply Lemma 4.1 to botH and H’ and add both
corresponding inequalities. We obtain that there exist integerswith 1 < k <

m < n such that for all integerswith &£ < [ < m,

*) Zf/> (digy —dig+1) > (1+1—k) + dpyy — dj + 2.

Define S; = Ul_,V;. By Lemma 4.1 we also know th& is a stable set, and that
there are edgesv € E(H) andu'v' € E(H') whereu,u’ € V, for somer with

E <r < mandv,v € V4. We need the following claim, which we prove
subsequently, to complete the proof of the key lemma.
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Claim: For everyl with k—1 < [ < m there exists a sequence of switches, restricted
to S; and restricted to edges distinct fram’, such that the resulting gragkf has
two subsets of verticeX, Y C S; where| X |, |Y| are both even with the following
properties:

(a) X UY is a stable set,

(B) [ X[+ Y] > Xy Vil = digr + i — (1 = k) — 1,

(c) if r > [, then vertices ofX have degred;,; — 1 and vertices ol” degree
dl+1a

(d) if r <1, thenu,u’ € Y, vertices ofX have degred,,; — §; and vertices of
Y degreed; ;1 — §; + 1, whered, is either0 or 1.

Proof of the Key Lemma continueBiincer < m we obtain from (d) that there is a
sequence of switches restrictedgo= S; and edges distinct fromw/, such that in
the resulting graph vertices v’ € Y have degreé,,, ., + 1 —0,, where),, is either

0 or 1. This completes the proof. O

Finally, we conclude with the proof of the claim used in proving the Key Lemma.
Proof of Claim:Let us proceed by induction dnThe base case is whéa= k& — 1.
ChooseX =Y = ),G = G' and do no switches. Note that (a),(c) trivially hold.
Since| X[+ [Y[=02>0=" Vil —dpyp +di — (k—1—k)— 1, (b) is
satisfied. As- > k£ > [ — 1 we do not need to check (d). This completes the base
case. Assume now the claim holds for sohwéith £ — 1 < < m, and letX’, Y’

be the corresponding sets 6f. We will find setsX,Y in a graphG!*! which
satisfy properties (a)-(d) far+ 1. We will denote these properties by (a’)-(d’) to
distinguish them from the corresponding statement.for

Sub claim:lf | X[+ Y| > | X'|+|Y’|+ |Viz1| — dis2 + dis — 1 then (b') is satisfied
andX UY # 0.
Proof of Sub claimSince by induction (b) holds fak”’, Y,

(X' 4+ |Y']) + [Viga| — dyyo + dpyy — 1

I
> (Z|Vz| + Vi1 = dpy +di — (1= k) — 1) —dipo+diy — 1
i=k

l+17 ~
=> Vil —dia+dy— (1 +1—k)— 1.
i=k
Moreover, because of (*) with+ 1 this last expression is at least
l+2—/{+dl+2—dk+2—dl+2+dk—l—1—|—k—1:2.

End of Sub claim; proof of Claim continued:
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Case 1r > [,i.e.u,u’ & S.
DefineA = X’ andB = Y’ U V,,;. Note that vertices ofl have degree
d;1 — 1 and vertices ofB have degreel;,, (both inG'). Defined =
diy1,e = djo. Suppose first that > [ + 1. Consider the new grapf’*!
and the sets{, Y obtained in Lemma 3.2. Now (i) restates (a’) and (ii)
restates (c’). Since > [ + 1 we do not need to check (d’). We know
|A| + |B|] = |X'| + |Y'| + |Vi41]. It follows from (iii) that the hypothesis
of the sub claim is satisfied, so (b’) holds. Suppose nowthat [ + 1.
Thenu,u' € B. Consider the new grapfi’t! and the sets(, Y obtained
in Lemma 3.3 with = 1. Again (i) proves (a’) and (iii) with the sub-claim
implies that (b’) is satisfied and UY" # (). This implies using (iv) and (ii)
that (d’) also holds. Finally as= [ + 1 we do not need to check (c’).

Case 2r <.
By inductionu,«’ € Y. If §; = 1, then defined = X', B = Y' U Vj,,. If
8 = 0, then defined = X’ UV,,,, B =Y. In either case,, v’ € Y’ C B.
Note that vertices ofi have degred,,; — ¢, and vertices of3 have degree
dj41 — & + 1. Defined = d;,.1, e = d;,». Consider the new grapfi’*! and
the setsX, Y obtained in Lemma 3.3. Again (i) proves (") and (iii) with
the sub-claim implies that (b’) is satisfied addU Y # (). This implies
using (iv) and (ii) that (d’) also holds. Finally as< [ we do not need to
check (c).

End of Claim
Acknowledgmenthe authors are grateful to Tao Jiang for informing them about

[3], and thank Penny Haxell for describing this problem to them, and for useful
discussions on the problem.

6. APPENDIX

Proof of Lemma 3.1Since|S| is even we can partition the complete graph with
vertex setS into | S| — 1 perfect matchingd/,, ..., M|g_1, whereM; = M. Se-

quentially for each = 2,...,|S| — 1, add all edges olM/; (one after the other) to
K. Observe that these are all valid switches since all verticeslodve the same
degree inkK.

By hypothesis,\M; restricted tol is a perfect matching which we denote by
N;. We can partition the complete graph with vertex’Bethto perfect matchings,
Ny,...,Npi—1. Sequentially for each = 2,...,|T| — 1, remove edges aiV;.
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Proceeding similarly, we can also remove all edges with both endpoists-in’.
This yields the desired graph. O

The following two proofs use the Setup in Section 3.

Proof of Lemma 3.2Since A (resp. B) has even cardinality, we can pair every
vertexv of A (resp. B) with a unique vertex’ of A (resp. B). If both A, B are
non-empty, add all edges between paired verticed efthese are switches as all
vertices ofA have the same degree. In the resulting graph all verticds_oB have
the same degree, saywhich is eitherd — 1 or d. Definea to be equal t@ — § if
e —d iseven, and — § — 1 otherwise. LetS = A U B. Observe that ity > |S]|,
then|A|+ |B| < a<e—§<e—d+1,thus|A|+|B|—e+d—-1<0and
choosingX =Y = () trivially satisfies (i)-(iii). Hence we can assume< |S]|.
Choose a subsét of S of cardinalitya which keeps paired vertices together —
this is possible since is even. From Lemma 3.1 we know that there is a sequence
of switches (restricted td U B) which adds all edges with one endpointdn- T’
and one endpoint ifi’. Denote the resulting graph by*. LetU = (S —-T)N A
andV = (S —T) N B. Vertices ofU UV have degreé + |T'| = 6 + « in K*, and

€)) e=d+(e—-d6)>d+a>d+(e—d—1)=e—1.
Also,
(b) [Ul+|V]=I[A]+|B|—a=|A|+|B|—-(e—=0) = [A|+[B]| —e+d — 1.

Consider first the case where eitheor B is empty. Definek’ = G*. Vertices
of U UV have degree either— 1 or e in K’. In the former case sef = (),Y =
UUV;inthe latter one seX = UUV,Y = (). Thus (ii) is satisfied. By construction
U UV is a stable set so (i) is satisfied. Finally, (iii) follows from (b).

Consider now the case where both B are non-empty, in this case = d.
Remove edges iik* between paired vertices 6f and letK’ denote the resulting
graph. If vertices ot/ have degree — 1 in K’, then we can choos& = U,Y =V
and we are done as before. Otherwise verticd$ 0fi” must have had degree- 1
in K*. This implies that — 1 = § + a = d + a. Consequently,

(c) U+ |V|=|A|+|B|—a=|A|+|B|—e+d+1.

If |U] < 2, then chooseX = V)Y = (). Clearly (i),(ii) are satisfied, and (iii)
holds because of (c). V| > 2, then pick any paired verticas v" of U. From
Lemma 3.1 we know that there is a sequence of switches restrictéd/toch adds

all edges with one endpoint il — {v,v'} and one endpoint im or v'. Define,

X =V, Y =U —{v,v'}. Again (i),(ii) are clearly satisfied, and (iii) holds because
of (c). O
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Proof of Lemma 3.3We can pair every vertex of A with a unique vertex’ of
A. Do the same foB and pairu with «/. If A is non-empty, then add all edges
between paired vertices df. In the resulting graph all vertices gf U B have the
same degree which is— 6 + 1. Definea to be equalte —d— 1+ if it is even and
e—d+d otherwise. LetS = AUB. Asinthe proof of Lemma 3.2 i > |S|, then we
may chooseX =Y = (). Otherwise choose a subgebf S of cardinalitya which
keeps paired vertices together and’ € S —T'if S —T non-empty. From Lemma
3.1 we know that there is a sequence of switches (restricted ta3 and to edges
other than.u”) which adds all edges with one endpointir-7" and one endpointin
T. Denote the resulting graph dy*. LetX = (S—T)NAandY = (S—-T)NB.
Verticesof X UY havedegred — 6+ 1+a>d+1—-d+e—d—1+d=ein
K*andd+ 1 — 60 + a > e. Remove edges between paired verticeXadnd call
the resulting graplk”. Clearly (ii) is satisfied. By constructioN U Y is a stable
setin’K proving (i). Now|X |+ |Y| = |A|+ |B] —a > |A|+ |B] —e+d =9
which proves (iii). Moreover, if X| + |Y| > 2 then we could have chosd@nhsuch
thatu,u’ € S — T which proves (iv). O
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