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ABSTRACT. Let2G be the graph consisting of two disjoint copies ofG. We prove
that every graph of the form2H can be transformed to every other graph of the
form 2K using the following operations:

(i) adding edgeuv if d(u) = d(v) anduv is not present,
(ii) deleting edgeuv if d(u) = d(v) anduv is present.

1. INTRODUCTION

A sequence of integersD = d1 ≤ · · · ≤ dn is graphicif it is the degree sequence
of a simple graph. A2-switchin a simple graphG is the replacement of a pair of
edgesxy andzw in G by the edgesyz andwx, given thatyz andwx were not
present inG originally. One motivation for this paper is the following theorem
sometimes attributed to Berge [1], but essentially proven by Havel [5] and Hakimi
[4] independently.

Theorem 1.1. If G andH are simple graphs with vertex setV , thendG(v) = dH(v)

for everyv ∈ V if and only if there is a sequence of 2-switches that transformsG

into H.

An application of such a result to analyze the design and dynamic operation of
lightwave networks, like traffic patterns can be found in [2].

Theodd setof a graphG is the set of integersk such thatG has an odd number
of vertices of degreek. Theswitch operationis the addition or deletion of an edge
whose endpoints have the same degree. GraphsH andH ′ areswitch equivalent
if there is a sequence of switches transformingH to H ′. Note that a necessary
condition forH andH ′ to be switch equivalent is that they have the same order and
odd sets. LetG+G = 2G denote the graph consisting of two vertex disjoint copies
of G.
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Chen et al. [3] proved that two graphs with the same order and odd sets can
be obtained from each other by switches and 2-switches. They also proved, by
construction, that this is not true if only the switch operation is allowed, thereby
answering a conjecture of McCanna [6] negatively. In fact, [3] suggests the ques-
tion of which pairs of graphsH,H ′ with the same order and odd sets are switch
equivalent, and proves that the graphsH,H ′ are switch equivalent if each has at
least three more isolated vertices than its maximum degree.

In this paper, we prove thatG andG′ are switch equivalent if they have the same
order and odd sets, andG = 2H andG′ = 2K for someH, K. Thus in our result
bothG andG′ can be quite dense, but they must have a special structure, namely
that each consists of two copies of some other graph.

Theorem 1.2.Every graph of the form2H can be reduced to the empty graph by a
sequence of switches.

Theorem 1.2 easily implies the following Corollary, which seems an indepen-
dently interesting fact in graph theory. We omit its easy proof.

Corollary 1.3. Any graph can be transformed into any other graph using the fol-
lowing operations:

(i) switches,
(ii) replacing a graph by two identical copies,
(iii) replacing two identical copies of a graph by a single copy, and
(iv) deleting vertices of degree zero.

2. OUTLINE OF THE PROOF

In this section we give the proof of Theorem 1.2 while deferring the proof of a
key lemma to Sections 3–5.

Let H andH ′ be two copies of the same graph and letG = H + H ′. Suppose
for a contradictionG is a counterexample to the theorem. We may chooseG to be
minimal with respect to the number of edges, and among all such graphs we choose
the one that minimizes the number of vertices. Letd1, . . . , dn be the different values
for the degrees of the vertices ofH. Without loss of generality we can assume
d1 < · · · < dn. By minimality of the number of vertices we know thatH has no
isolated vertex sod1 > 0. Partition the vertices ofH into setsV1, . . . , Vn so that
all vertices ofVi have degreedi. Observe that deleting an edge with both endpoints
in the same setVi corresponds to a switch. It follows by minimality of the number
of edges that each setVi is a stable set. Similarly, we partition the vertices ofH ′

into stable setsV ′
1 , . . . , V

′
n. Throughout this paper when we talk aboutminimum
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counterexamplewe mean a graphG = H + H ′ with stable setsV1, . . . , Vn and
V ′

1 , . . . , V
′
n with the properties described above.

We say that a sequence of switches isrestrictedto a subset of edges if only edges
in that subset are added or removed. We say that a sequence of switches is restricted
to a subset of vertices if it is restricted to edges with both endpoints in that subset.
For a positive integern, we write [n] for {1, . . . , n}. The key to proving Theorem
1.2 is the following lemma.

Key Lemma. LetG be a minimal counterexample. Then there exists integersk, r,m

with 1 ≤ k ≤ r ≤ m < n and verticesu ∈ Vr, u
′ ∈ V ′

r , v ∈ Vm+1, v
′ ∈ V ′

m+1 where
uv, u′v′ are edges ofG. Moreover, there exists a sequence of switches restricted to
the setS = ∪m

l=k(Vl ∪ V ′
l ) and to edges distinct fromuu′ such that in the resulting

graphK:

dK(u) = dK(u′) and 0 ≤ dK(u)− dK(v) ≤ 1.

Observe that since all switches are restricted toS, dK(v) = dK(v′) = dm+1. This
lemma implies the main theorem.

Proof of Theorem 1.2.Let G be a minimum counterexample and letK be the graph
obtained from the Key Lemma. IfdK(u) − dK(v) = 1 then add edgevv′. Now
verticesu, u′, v, v′ all have the same degree. Removeuv andu′v′, and adduu′.
Note that these are all switches. Every vertex in the setS = ∪m

l=k(Vl ∪ V ′
l ) has

the same degree now as inK. Since all the switches used to constructK from G

were restricted to the setS and to edges distinct fromuu′ we can repeat each of
these switches in the reverse order. At the end remove the edgevv′ if it is present.
The resulting graph is the graph obtained fromG by removing edgesuv andu′v′, a
contradiction to the minimality of the counterexample. ¤

In the remainder of this section we give the basic idea behind the proof of the
Key Lemma. The first observation is the following.

Lemma 2.1. Let G be a minimum counterexample. Then there existsj ∈ [n − 1]

such that

|Vj| ≥ dj+1 − dj + 1.

For the proof of this result only the cardinality of the stable setsVi, the number
of edges betweenVi (i ∈ [n − 1]) andVn, and the degreesd1, . . . , dn are needed.
This information is captured by the object we define next. LetJ be a star with
verticesx1, . . . , xn (n ≥ 2) and edgesxixn for all i ∈ [n − 1]. We associate two
positive integerssi, di with every vertexxi. We also associate a positive integer
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wi with every edgexixn. We say that the 4-tuple(J, s, d, w) is an SDW-star if the
following relations hold:

0 < d1 < d2 · · · < dn(2.1a)

dn =
1

sn

n−1∑
i=1

wi(2.1b)

wi ≤ sisn for all i ∈ [n− 1].(2.1c)

Remark 2.2. Let G be a minimum counterexample and letJ be the star with ver-
ticesx1, . . . , xn edgesxixn for all i ∈ [n− 1]. Associate with every vertexxi of J

the integersdi andsi = |Vi|. Associate with every edgexixn the integerwi which
is equal to the number of edges ofH with one endpoint inVi and one endpoint in
Vn. Then(J, s, d, w) is an SDW-star.

In the previous remark Relation (2.1a) is trivially satisfied, (2.1b) follows from
the fact thatVn is a stable set, and (2.1c) follows from the fact thatH is simple. The
following result implies Lemma 2.1.

Lemma 2.3. Let(J, s, d, w) be an SDW-star. Then there existsj ∈ [n−1] such that

(2.2) sj ≥ dj+1 − dj + 1.

Moreover, ifj is the smallest such integer, then
∑n−1

i=j wi > 0.

Proof. Let j be the largest integer in[n] such thatsi ≤ di+1 − di for all i ∈ [j − 1].
Summing all these inequalities we obtain

∑j−1
i=1 si ≤ dj − d1. Thusdn ≥ dj ≥∑j−1

i=1 si + d1. To complete the proof it suffices to show that
∑n−1

i=j wi > 0, as this
implies thatj < n, and hence the relation (2.2).

Suppose for a contradiction that
∑n−1

i=j wi = 0. It follows from (2.1b) thatdn =
1
sn

∑j−1
i=1 wi. Relation (2.1c) states thatwi

sn
≤ si, thusdn ≤

∑j−1
i=1 si. But then the

lower and upper bound ondn imply d1 = 0, a contradiction to (2.1a). ¤

3. SWITCHES

In this section we describe various constructions using switches for the proof of the
Key Lemma.

Lemma 3.1. Let K be a graph, letT ⊆ S ⊆ V (K), and let the subgraphK[S]

induced byS be a perfect matchingM . LetK ′ be obtained fromK by adding all
T, S − T -edges. Suppose that

(i) all vertices ofS have the same degree inK,
(ii) |e ∩ T | ≡ 0(mod2) for every edgee = {v, v′} in M .
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Then there exists a sequence of switches, restricted to bothS andE(S) −M , that
transformsK to K ′.

Proof. See Appendix. ¤

Applying Lemma 3.1 yields the following two similar results. Before stating
them, we need the following setup.

Setup: Consider a graphK with two (possibly empty) disjoint subsets of vertices
A andB where|A|, |B| are both even andA ∪B is a stable set ofK. Suppose that
vertices ofA have degreed− δ, vertices ofB degreed− δ + 1, ande ≥ d + γ.

Lemma 3.2.Letδ = 1, γ = 0. Then there exists a sequence of switches restricted to
A∪B such that the resulting graphK ′ has two (possibly empty) subsets of vertices
X, Y ⊆ A ∪B, where|X|, |Y | are both even with the following properties:

(i) X ∪ Y is a stable set ofK ′,
(ii) vertices ofX have degreee− 1, vertices ofY have degreee,
(iii) |X|+ |Y | ≥ |A|+ |B| − e + d− 1.

Proof. See Appendix. ¤

Lemma 3.3. Let γ = 1 and letu, u′ be two vertices ofB. Then there exists a
sequence of switches restricted toA ∪ B and to edges other thanuu′ such that the
resulting graphK ′ has two (possibly empty) subsets of verticesX,Y ⊆ A ∪ B

where|X|, |Y | are both even with the following properties:
(i) X ∪ Y is a stable set ofK ′,
(ii) vertices ofX have degreee− δ′, vertices ofY degreee + 1− δ′

whereδ′ is either0 or 1,
(iii) |X|+ |Y | ≥ |A|+ |B| − e + d− 1,
(iv) if X ∪ Y is non-empty, thenu, u′ ∈ Y .

Proof. See Appendix. ¤

In the proof of the Key Lemma, constructions (similar to that of Lemma 3.1)
are iterated several times. This requires a generalization of Lemma 2.3 which is
presented in Section 4. Finally the Key Lemma is proved in Section 5.

4. SDW-STARS

Our objective in this section is to prove the following result which we use later on.
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Lemma 4.1. Let G be a minimum counterexample. Then there existk, m with
1 ≤ k ≤ m < n such that for alll with k ≤ l ≤ m,

l∑

i=k

|Vi| ≥ dl+1 − dk + 1.

Moreover,∪m
i=kVi is a stable set and there exists an edgeuv with u ∈ ∪m

i=kVi and
v ∈ Vm+1.

By restricting the result to the case wherel = 1 we see that this generalizes Lemma
2.1.

Proposition 4.2. Let(J, s, d, w) be an SDW-star. Then there existsk ∈ [n−1] such
that for all l with k ≤ l < n,

(4.3)
l∑

i=k

si ≥ dl+1 − dk + 1.

Moreover,
∑n−1

i=k wi > 0.

We first show that the above proposition implies Lemma 4.1, and then we prove the
proposition.

Proof of Lemma 4.1.Let (J, s, d, w) be the SDW-star defined as in Remark 2.2.
Let k be the integer from Proposition 4.2. Since

∑n−1
i=k wi > 0 there is an edge

between∪n−1
i=k Vi andVn. Thus the following statement is true (choosem = n − 1

for instance): for some integerm with k ≤ m < n there is an edge between∪m
i=kVi

andVm+1. If m is the smallest such integer, then∪m
i=kVi is a stable set. ¤

Proof of Proposition 4.2.Let us proceed by induction on the number of verticesn

of J . Consider first the base casen = 2, i.e. the star has only two vertices. By
Lemma 2.3 we have,s1 ≥ d2 − d1 + 1 andw1 > 0, as required.

Thus we may assumen ≥ 3. Consider(J, s, d, w) and letj be smallest integer
for which (2.2) holds. Ifj = n−1 then (2.2) is the same as (4.3) (withk = j = n−1

and thusl = k). Moreover, also by Lemma 2.3 we havewn−1 > 0, which completes
the proof in this case. Thus we will assumej ≤ n−2. LetJ ′ be the star with vertices
x1, . . . , xj−1, xj+1, . . . , xn and edgesxixn for eachi ∈ [n− 1]− {j}. Defines′i to
be equal tosi if i 6∈ {j, j + 1} and equal tosj + sj+1 if i = j + 1. Definew′

i to be
equal towi if i 6∈ {j, j + 1} and equal towj + wj+1 if i = j + 1. Defined′i to be
equal todi if i 6∈ {j, j + 1} and equal todj if i = j + 1 (note thats′j, w

′
j, d

′
j are not

defined).

Claim: (J ′, v′, d′, w′) is an SDW-star.
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Proof of Claim: Clearly, (2.1a) holds, as(J, s, d, w) is an SDW-star. Sincej ≤
n − 2, d′n = dn, s

′
n = sn anddn = 1

sn

∑n−1
i=1 wi = 1

s′n

∑n
i=1,i6=j w′

i, relation (2.1b)
is satisfied. Note thatw′

j+1 = wj + wj+1 ≤ sjsn + sj+1sn = s′j+1s
′
n, thus relation

(2.1c) is also satisfied.

End of Claim
Let σ be the function defined as follows:σ(l) = l+1 if l 6= j−1 andσ(j−1) =

j +1. It follows from the claim and by induction that there existsk ∈ [n− 1]−{j}
such that for alll 6= j with k ≤ l < n,

(*)
l∑

i=k
i6=j

s′i ≥ d′σ(l) − d′k + 1.

In particular, whenl = k we obtains′k ≥ d′σ(k)− d′k + 1. If k ≤ j − 2, then this last
relation can be rewritten assk ≥ dk+1−dk +1, a contradiction to the choice ofj. If
k = j−1, then the relation can be rewritten assj−1 ≥ d′j+1−d′j−1+1 = dj−dj−1+1,
again a contradiction to the choice ofj. Thusk ≥ σ(j − 1) = j + 1.

If k ≥ j + 2, then (*) can be rewritten as
∑l

i=k si ≥ dl+1 − dl + 1 for all l with
k ≤ l < n. Thus (4.3) is satisfied, and by induction0 <

∑n−1
i=k w′

i =
∑n−1

i=k wi.
Thus we may assumek = j + 1, and (*) can be rewritten ass′j+1 +

∑l
i=j+2 si ≥

dl+1−d′j+1+1. Becauses′j+1 = sj +sj+1 andd′j+1 = dj, this can again be rewritten

as
∑l

i=j si ≥ dl+1 − dj + 1 wherel ≥ j + 1. Thus (4.3) is satisfied withk = j for
all l ≥ j + 1. If l = j, then (4.3) becomes (2.2) which holds by the choice ofj.
Finally, by induction0 <

∑n−1
i=j+1 w′

i = w′
j+1 +

∑n−1
i=j+2 wi =

∑n−1
i=j wi, where the

last equality follows from the fact thatw′
j+1 = wj + wj+1. ¤

5. PROOF OF THEKEY LEMMA

Proof of the Key Lemma.Let G = H + H ′ be a minimum counterexample. Let
us writeV̄i for Vi ∪ V ′

i . Let us apply Lemma 4.1 to bothH andH ′ and add both
corresponding inequalities. We obtain that there exist integersk, m with 1 ≤ k ≤
m < n such that for all integersl with k ≤ l ≤ m,

(*)
l∑

i=k

|V̄i| ≥ 2(dl+1 − dk + 1) ≥ (l + 1− k) + dl+1 − dk + 2.

DefineSl = ∪l
i=kV̄i. By Lemma 4.1 we also know thatSl is a stable set, and that

there are edgesuv ∈ E(H) andu′v′ ∈ E(H ′) whereu, u′ ∈ V̄r for somer with
k ≤ r ≤ m andv, v′ ∈ V̄m+1. We need the following claim, which we prove
subsequently, to complete the proof of the key lemma.
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Claim: For everyl with k−1 ≤ l ≤ m there exists a sequence of switches, restricted
to Sl and restricted to edges distinct fromuu′, such that the resulting graphGl has
two subsets of verticesX, Y ⊆ Sl where|X|, |Y | are both even with the following
properties:

(a) X ∪ Y is a stable set,
(b) |X|+ |Y | ≥ ∑l

i=k |V̄i| − dl+1 + dk − (l − k)− 1,
(c) if r > l, then vertices ofX have degreedl+1 − 1 and vertices ofY degree

dl+1,
(d) if r ≤ l, thenu, u′ ∈ Y , vertices ofX have degreedl+1 − δl and vertices of

Y degreedl+1 − δl + 1, whereδl is either0 or 1.

Proof of the Key Lemma continued:Sincer ≤ m we obtain from (d) that there is a
sequence of switches restricted toS = Sl and edges distinct fromuu′, such that in
the resulting graph verticesu, u′ ∈ Y have degreedm+1 +1− δm whereδm is either
0 or 1. This completes the proof. ¤

Finally, we conclude with the proof of the claim used in proving the Key Lemma.
Proof of Claim:Let us proceed by induction onl. The base case is whenl = k− 1.
ChooseX = Y = ∅, G = Gl and do no switches. Note that (a),(c) trivially hold.
Since|X| + |Y | = 0 ≥ 0 =

∑k−1
i=k |V̄i| − d(k−1)+1 + dk − (k − 1 − k) − 1, (b) is

satisfied. Asr ≥ k > l − 1 we do not need to check (d). This completes the base
case. Assume now the claim holds for somel with k − 1 ≤ l < m, and letX ′, Y ′

be the corresponding sets ofGl. We will find setsX,Y in a graphGl+1 which
satisfy properties (a)-(d) forl + 1. We will denote these properties by (a’)-(d’) to
distinguish them from the corresponding statement forl.

Sub claim:If |X|+ |Y | ≥ |X ′|+ |Y ′|+ |V̄l+1|−dl+2 +dl+1−1 then (b’) is satisfied
andX ∪ Y 6= ∅.
Proof of Sub claim:Since by induction (b) holds forX ′, Y ′,

(|X ′|+ |Y ′|) + |V̄l+1| − dl+2 + dl+1 − 1

≥
(

l∑

i=k

|V̄i|+ |V̄l+1| − dl+1 + dk − (l − k)− 1

)
− dl+2 + dl+1 − 1

=
l+1∑

i=k

|V̄i| − dl+2 + dk − (l + 1− k)− 1.

Moreover, because of (*) withl + 1 this last expression is at least

l + 2− k + dl+2 − dk + 2− dl+2 + dk − l − 1 + k − 1 = 2.

End of Sub claim; proof of Claim continued:
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Case 1r > l, i.e. u, u′ 6∈ Sl.
DefineA = X ′ andB = Y ′ ∪ V̄l+1. Note that vertices ofA have degree
dl+1 − 1 and vertices ofB have degreedl+1 (both in Gl). Defined =

dl+1, e = dl+2. Suppose first thatr > l + 1. Consider the new graphGl+1

and the setsX, Y obtained in Lemma 3.2. Now (i) restates (a’) and (ii)
restates (c’). Sincer > l + 1 we do not need to check (d’). We know
|A| + |B| = |X ′| + |Y ′| + |V̄l+1|. It follows from (iii) that the hypothesis
of the sub claim is satisfied, so (b’) holds. Suppose now thatr = l + 1.
Thenu, u′ ∈ B. Consider the new graphGl+1 and the setsX,Y obtained
in Lemma 3.3 withδ = 1. Again (i) proves (a’) and (iii) with the sub-claim
implies that (b’) is satisfied andX ∪ Y 6= ∅. This implies using (iv) and (ii)
that (d’) also holds. Finally asr = l + 1 we do not need to check (c’).

Case 2r ≤ l.
By inductionu, u′ ∈ Y . If δl = 1, then defineA = X ′, B = Y ′ ∪ V̄l+1. If
δl = 0, then defineA = X ′ ∪ V̄l+1, B = Y ′. In either caseu, u′ ∈ Y ′ ⊆ B.
Note that vertices ofA have degreedl+1 − δl and vertices ofB have degree
dl+1 − δl + 1. Defined = dl+1, e = dl+2. Consider the new graphGl+1 and
the setsX, Y obtained in Lemma 3.3. Again (i) proves (a’) and (iii) with
the sub-claim implies that (b’) is satisfied andX ∪ Y 6= ∅. This implies
using (iv) and (ii) that (d’) also holds. Finally asr ≤ l we do not need to
check (c’).

End of Claim

Acknowledgment. The authors are grateful to Tao Jiang for informing them about
[3], and thank Penny Haxell for describing this problem to them, and for useful
discussions on the problem.

6. APPENDIX

Proof of Lemma 3.1:Since|S| is even we can partition the complete graph with
vertex setS into |S| − 1 perfect matchingsM1, . . . , M|S|−1, whereM1 = M . Se-
quentially for eachi = 2, . . . , |S| − 1, add all edges ofMi (one after the other) to
K. Observe that these are all valid switches since all vertices ofS have the same
degree inK.

By hypothesis,M1 restricted toT is a perfect matching which we denote by
N1. We can partition the complete graph with vertex setT into perfect matchings,
N1, . . . , N|T |−1. Sequentially for eachi = 2, . . . , |T | − 1, remove edges ofNi.
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Proceeding similarly, we can also remove all edges with both endpoints inS − T .
This yields the desired graph. ¤

The following two proofs use the Setup in Section 3.

Proof of Lemma 3.2:SinceA (resp. B) has even cardinality, we can pair every
vertexv of A (resp. B) with a unique vertexv′ of A (resp. B). If both A,B are
non-empty, add all edges between paired vertices ofA – these are switches as all
vertices ofA have the same degree. In the resulting graph all vertices ofA∪B have
the same degree, sayδ, which is eitherd − 1 or d. Defineα to be equal toe − δ if
e − δ is even, ande − δ − 1 otherwise. LetS = A ∪ B. Observe that ifα ≥ |S|,
then|A| + |B| ≤ α ≤ e − δ ≤ e − d + 1, thus|A| + |B| − e + d − 1 ≤ 0 and
choosingX = Y = ∅ trivially satisfies (i)-(iii). Hence we can assumeα < |S|.

Choose a subsetT of S of cardinalityα which keeps paired vertices together –
this is possible sinceα is even. From Lemma 3.1 we know that there is a sequence
of switches (restricted toA ∪ B) which adds all edges with one endpoint inS − T

and one endpoint inT . Denote the resulting graph byK∗. Let U = (S − T ) ∩ A

andV = (S − T ) ∩B. Vertices ofU ∪ V have degreeδ + |T | = δ + α in K∗, and

(a) e = δ + (e− δ) ≥ δ + α ≥ δ + (e− δ − 1) = e− 1.

Also,

(b) |U |+ |V | = |A|+ |B| − α ≥ |A|+ |B| − (e− δ) ≥ |A|+ |B| − e + d− 1.

Consider first the case where eitherA or B is empty. DefineK ′ = G∗. Vertices
of U ∪ V have degree eithere − 1 or e in K ′. In the former case setX = ∅, Y =

U∪V ; in the latter one setX = U∪V, Y = ∅. Thus (ii) is satisfied. By construction
U ∪ V is a stable set so (i) is satisfied. Finally, (iii) follows from (b).

Consider now the case where bothA,B are non-empty, in this caseδ = d.
Remove edges inK∗ between paired vertices ofU and letK ′ denote the resulting
graph. If vertices ofU have degreee− 1 in K ′, then we can chooseX = U, Y = V

and we are done as before. Otherwise vertices ofU ∪V must have had degreee−1

in K∗. This implies thate− 1 = δ + α = d + α. Consequently,

(c) |U |+ |V | = |A|+ |B| − α = |A|+ |B| − e + d + 1.

If |U | ≤ 2, then chooseX = V, Y = ∅. Clearly (i),(ii) are satisfied, and (iii)
holds because of (c). If|U | ≥ 2, then pick any paired verticesv, v′ of U . From
Lemma 3.1 we know that there is a sequence of switches restricted toU which adds
all edges with one endpoint inU − {v, v′} and one endpoint inv or v′. Define,
X = V, Y = U − {v, v′}. Again (i),(ii) are clearly satisfied, and (iii) holds because
of (c). ¤
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Proof of Lemma 3.3:We can pair every vertexv of A with a unique vertexv′ of
A. Do the same forB and pairu with u′. If A is non-empty, then add all edges
between paired vertices ofA. In the resulting graph all vertices ofA ∪ B have the
same degree which isd−δ+1. Defineα to be equal toe−d−1+δ if it is even and
e−d+δ otherwise. LetS = A∪B. As in the proof of Lemma 3.2 ifα ≥ |S|, then we
may chooseX = Y = ∅. Otherwise choose a subsetT of S of cardinalityα which
keeps paired vertices together andu, u′ ∈ S−T if S−T non-empty. From Lemma
3.1 we know that there is a sequence of switches (restricted toA ∪ B and to edges
other thanuu′) which adds all edges with one endpoint inS−T and one endpoint in
T . Denote the resulting graph byK∗. LetX = (S−T )∩A andY = (S−T )∩B.
Vertices ofX ∪ Y have degreed− δ + 1 + α ≥ d + 1− δ + e− d− 1 + δ = e in
K∗ andd + 1 − δ + α ≥ e. Remove edges between paired vertices ofX and call
the resulting graphK ′. Clearly (ii) is satisfied. By constructionX ∪ Y is a stable
set in ′K proving (i). Now |X| + |Y | = |A| + |B| − α ≥ |A| + |B| − e + d − δ

which proves (iii). Moreover, if|X| + |Y | ≥ 2 then we could have chosenT such
thatu, u′ ∈ S − T which proves (iv). ¤
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