A new generalization of Mantel's theorem to k-graphs

Dhruv Mubayi*
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
Chicago, IL 60607
Oleg Pikhurko ${ }^{\dagger}$
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Web: http://www.math.cmu.edu/~pikhurko

October 31, 2006

Abstract

Let the k-graph Fan ${ }^{k}$ consist of k edges that pairwise intersect exactly in one vertex x, plus one more edge intersecting each of these edges in a vertex different from x. We prove that, for n sufficiently large, the maximum number of edges in an n-vertex k-graph containing no copy of Fan^{k} is $\prod_{i=1}^{k}\left\lfloor\frac{n+i-1}{k}\right\rfloor$, which equals the number of edges in a complete k-partite k-graph with almost equal parts. This is the only extremal example. This result is a special case of our more general theorem that applies to a larger class of excluded configurations.

1 Introduction

The first theorem in extremal graph theory is Mantel's 1907 result, which determines the maximum number of edges in a triangle-free graph on n vertices (cf. Turán [22]). There are several possible generalizations of this problem to k-uniform hypergraphs (k-graphs for short). One was suggested by Katona [9] and Bollobás [1] (see Frankl-Füredi [4, 5], de Caen [2], Sidorenko [20], Shearer [19], Keevash-Mubayi [10], Pikhurko [16]). Another extension, the so-called expanded

[^0]triangle, was studied by Frankl [3] and Keevash-Sudakov [11]. In this paper we provide yet another generalization.

Let Fan k be the k-graph comprising $k+1$ edges E_{1}, \ldots, E_{k}, E, with $E_{i} \cap E_{j}=\{x\}$ for all $i \neq j$, where $x \notin E$, and $\left|E_{i} \cap E\right|=1$ for all i. In other words, k edges share a single common vertex x and the last edge intersects each of the other edges in a single vertex different from x. Please note that Fan^{2} is simply a triangle, and in this sense Fan^{k} generalizes the definition of K_{3}. There is another, perhaps more subtle way that Fan^{k} is an extension of K_{3}.

Call a hypergraph simple if every two edges share at most one vertex. One of the formulations of the celebrated Erdős-Faber-Lovász conjecture states that the minimum number of edges in a simple k-graph that is not k-partite is $k+1$. Kahn [8] proved this with $k+1$ replaced by $(1+o(1)) k$, but the question of the exact value remains open. If the conjecture is true, then Fan ${ }^{k}$ is a simple k-graph that is not k-partite with the minimum number of edges, and in this sense it generalizes a 2 -graph triangle.

For $l \geq k$, let $T_{l}^{k}(n)$ be the complete l-partite k-graph with part sizes $\lfloor n / l\rfloor$ or $\lceil n / l\rceil$: every edge of $T_{l}^{k}(n)$ has at most one vertex in each of the l parts, and all edges subject to this restriction are present. Let

$$
t_{l}^{k}(n)=\left|T_{l}^{k}(n)\right|
$$

(We identify a k-graph with its edge set.) It is convenient to agree that $T_{l}^{k}(n)=\emptyset$ and $t_{l}^{k}(n)=0$ if $l<k$. Given a k-graph F, we write $\operatorname{ex}(n, F)$ for the maximum number of edges in an n-vertex k-graph containing no copy of F. Mantel proved that $\operatorname{ex}\left(n, \operatorname{Fan}^{2}\right)=t_{2}^{2}(n)$ for all positive n. Here we generalize this to $k>2$, for large n.

Theorem 1 Let $k \geq 3$. Then, for all sufficiently large n, the maximum number of edges in an n-vertex k-graph containing no copy of Fan^{k} is $t_{k}^{k}(n)=\prod_{i=1}^{k}\left\lfloor\frac{n+i-1}{k}\right\rfloor$. The only k-graph for which equality holds is $T_{k}^{k}(n)$.

Our approach to proving Theorem 1 comes from two recent papers by the current authors [13, 15]. Although the paper [15] has been accepted by the Journal of Combinatorial Theory, Series B, its publication is suspended for an indefinite period of time because of a disagreement over the copyright between the author and the publisher. We feel that the approach is quite versatile and may be applicable to other hypergraph Turán problems. Therefore, we give a complete description of the method and provide self-contained proofs for any claims from [15].

So suppose that we wish to prove that $\operatorname{ex}(n, F)=t_{l}^{k}(n)$ for a given F. The method has four steps:

Step 1. Define an appropriately chosen family \mathcal{F} of k-graphs such that $F \in \mathcal{F}$. There is no general recipe for \mathcal{F}. A particular property that \mathcal{F} should possess is that any F-free k-graph of
order n can be made \mathcal{F}-free by removing $o\left(n^{k}\right)$ edges. Then $\operatorname{ex}(n, F)=\operatorname{ex}(n, \mathcal{F})+o\left(n^{k}\right)$ but, hopefully, ex (n, \mathcal{F}) is easier to analyze.

Step 2. Prove that \mathcal{F} is stable with respect to $T_{l}^{k}(n)$. Loosely speaking, this means that every \mathcal{F}-free k-graph G on n vertices with close to ex (n, \mathcal{F}) edges can be transformed to $T_{l}^{k}(n)$ without changing too many edges.

Step 3. From the stability of \mathcal{F}, deduce the stability of F. (We use the property of \mathcal{F} from Step 1, whose proof is combined with Step 3 in this article.)

Step 4. Using the stability of F, deduce the exact result $\operatorname{ex}(n, F)=t_{l}^{k}(n)$. This technique was first employed by Simonovits [21] to determine ex (n, F) exactly for color-critical 2-graphs F. Recently, stability has been used to determine exact results for several hypergraph Turán problems $[6,10,11,12,15,16]$.

The next three sections give the details of Steps 2-4, culminating in a proof of Theorem 1. Actually, our main result, Theorem 3 proved in Section 4, determines the exact extremal function for a more general configuration which includes Fan^{k} as a special case. We next define the family used in Step 1.

Fix $l \geq k \geq 2$. Let \mathcal{F}_{l}^{k} be the set of all minimal k-graphs F such that there is an l-set C, called the core, such that at least one edge $D \in F$ lies entirely in C and every pair of vertices of C is covered by an edge of F. (Of course, it suffices to consider only pairs not inside D.) Let F_{l}^{k} be the k-graph with edges: $[k]$ and $E_{i j} \cup\{i, j\}$ over all pairs $\{i, j\} \in\binom{[l]}{2} \backslash\binom{[k]}{2}$, where $E_{i j}$ are pairwise disjoint $(k-2)$-sets disjoint from [l]. Clearly, $F_{l}^{k} \in \mathcal{F}_{l}^{k}$. Note that

- $\mathcal{F}_{k}^{k}=\left\{F_{k}^{k}\right\}$ and F_{k}^{k} is the k-graph of one edge,
- $\mathcal{F}_{l}^{2}=\left\{K_{l}^{2}\right\}$,
- $F_{k+1}^{k}=\operatorname{Fan}^{k}$.

For $l \geq k \geq 2$ a particular \mathcal{F}_{l+1}^{k}-free k-graph is $T_{l}^{k}(n)$. It is easy to see this, since if $T_{l}^{k}(n)$ contains a copy of $F \in \mathcal{F}_{l+1}^{k}$, then the vertex set in $T_{l}^{k}(n)$ playing the role of C must have at most one point in each part of $T_{l}^{k}(n)$ but there are not enough parts to accommodate these $l+1$ vertices. Consequently, the maximum size of an n-vertex \mathcal{F}_{l+1}^{k}-free k-graph is at least $t_{l}^{k}(n)$. In fact, we have an equality:

Theorem 2 Let $n \geq l \geq k \geq 2$, and let G be an n-vertex \mathcal{F}_{l+1}^{k}-free k-graph. Then $|G| \leq t_{l}^{k}(n)$, and if equality holds then $G=T_{l}^{k}(n)$.

This result can be proved by a straightforward modification of the proof of Theorem 1 in
[13]. Also, one can obtain it as a by-product of our proof of Theorem 4 below (see the remark following the inequality (4)).

The main theorem of the current paper is the following extension of Theorem 1.

Theorem 3 Let $l \geq k \geq 2$. Then, for all sufficiently large n, we have $\operatorname{ex}\left(n, F_{l+1}^{k}\right)=t_{l}^{k}(n)$ and $T_{l}^{k}(n)$ is the unique maximum F_{l+1}^{k}-free k-graph of order n.

Let us specify here the notation we are going to use. We write $V(G)$ for the vertex set of a k-graph G. Given a vertex $x \in V(G)$, the link of x is the ($k-1$)-graph

$$
L_{G}(x)=\{S \backslash\{x\}: S \in G, S \ni x\}
$$

and the degree is $\operatorname{deg}_{G}(x)=\left|L_{G}(x)\right|$. The codegree of x and y, written $\operatorname{codeg}_{G}(x, y)$, is the number of edges in G containing both x and y, and the neighborhood of x is

$$
N_{G}(x)=\{y: \operatorname{codeg}(x, y)>0, y \neq x\} .
$$

Given $X \subset V(G)$, let $e_{G}(X)$ be the number of edges in G that contain at least two vertices from X. In all cases above, we omit the subscript G if the k-graph G is obvious from context. For $S \subset V(G)$, we write $G[S]$ for the hypergraph induced by G on S. Two k-graphs F and G of the same order are m-close if we can add or remove at most m edges from the first graph and make it isomorphic to the second; in other words, for some bijection $\sigma: V(F) \rightarrow V(G)$ the symmetric difference between $\sigma(F)=\{\sigma(D): D \in F\}$ and G has at most m edges.

The notation $a \pm b$ means a number between $a-b$ and $a+b$.

2 Step 2: \mathcal{F}_{l+1}^{k} is stable

Our goal in this section is to prove the following stability result.

Theorem 4 For any $l \geq k \geq 2$ and $\delta>0$ there exist $\varepsilon>0$ and M such that the following holds for all $n>M$: If G is an n-vertex \mathcal{F}_{l+1}^{k}-free k-graph with at least $t_{l}^{k}(n)-\varepsilon n^{k}$ edges, then G is δn^{k}-close to $T_{l}^{k}(n)$.

The proof of Theorem 4 has many similarities to that in [13, Theorem 3]. Thus we will refer to [13] for proofs of some claims, when the arguments are identical. In particular, we use the following facts shown in [13].

Equation (1) in [13]: For any $l \geq k \geq 2$ and $0 \leq s \leq n$ we have

$$
\begin{equation*}
t_{l-1}^{k}(n-s)+s \cdot t_{l-1}^{k-1}(n-s) \leq t_{l}^{k}(n) \tag{1}
\end{equation*}
$$

Hint. The left-hand side of (1) is the number of edges in the complete l-partite k-graph with one part of size s and other part sizes being $\left\lfloor\frac{n-s}{l-1}\right\rfloor$ and $\left\lceil\frac{n-s}{l-1}\right\rceil$.

Claim 1 in [13]: For any $l \geq k \geq 2$ and $\delta>0$ there are $\varepsilon>0$ and M such that, for any l-partite k-graph of order $n \geq M$ and size at least $t_{l}^{k}(n)-\varepsilon n^{k}$, the number of vertices in each part is

$$
\begin{equation*}
\left(\frac{1}{l} \pm \delta\right) n \tag{2}
\end{equation*}
$$

Proof of Theorem 4. Our proof uses induction on $k+l$. It is convenient to start with the trivial base case $l=k-1$ which formally satisfies the conclusion of the theorem: F_{k}^{k} is the k-graph of one edge, and $T_{k-1}^{k}(n)$ has no edges. The other base case $k=2$ is the content of the Simonovits stability theorem [21], so we further assume that $l \geq k>2$.

Let $\delta=\delta_{l}>0$ be given. Our goal is to obtain $\varepsilon=\varepsilon_{l}$ and $M=M_{l}$ satisfying the theorem. We choose the constants in this order:

$$
\delta_{l} \gg \delta_{l-1} \gg \varepsilon_{l-1} \gg \varepsilon_{l} \gg \frac{1}{M_{l-1}} \gg \frac{1}{M_{l}},
$$

where $a \gg b$ means that $b>0$ is sufficiently small depending on a (and k, l). In particular, we assume that $\varepsilon_{l-1}, M_{l-1}$ demonstrate the validity of the theorem for $l-1, k-1$, and δ_{l-1}. Suppose that $n>M_{l}$. Let G be an \mathcal{F}_{l+1}^{k}-free k-graph on n vertices with

$$
\begin{equation*}
|G| \geq t_{l}^{k}(n)-\varepsilon_{l} n^{k} \tag{3}
\end{equation*}
$$

Pick a vertex $x \in V(G)$ of maximum degree Δ. Let $N=N(x)$ be the neighborhood of x, that is, the set of vertices $y \neq x$ for which $\operatorname{codeg}_{G}(x, y)>0$. Consider the k-graph $G[N]$ induced by N, and suppose that it contains a copy H of a member of \mathcal{F}_{l}^{k}. Let $C \subset V(H)$ be the core of H, and $D \subset C$ for some $D \in G$. Form H^{\prime} from H by adding the vertex x and edges containing each pair $\{x, v\}$ with $v \in C$. These edges exist by the definition of N. Therefore H^{\prime} contains a member of \mathcal{F}_{l+1}^{k} with core $C \cup\{x\}$, which is a contradiction. Consequently, $G[N]$ is \mathcal{F}_{l}^{k}-free.

Next consider the $(k-1)$-graph L, where $L=L(x)$ is the link of x. Suppose that L contains a copy H of a member of \mathcal{F}_{l}^{k-1}. Enlarge every edge of H to contain x. The resulting k-graph contains a copy of some $H^{\prime} \in \mathcal{F}_{l+1}^{k}$ with core $C \cup\{x\}$, a contradiction. Therefore L is \mathcal{F}_{l}^{k-1}-free.

Set $s=n-|N|$ and let $X=V(G) \backslash N$. Note that $x \in X$. Since $G[N]$ is \mathcal{F}_{l}^{k}-free and L is \mathcal{F}_{l}^{k-1}-free, Theorem 2 implies that $|G[N]| \leq t_{l-1}^{k}(n-s)$ and $\Delta=|L| \leq t_{l-1}^{k-1}(n-s)$. This gives

$$
\begin{align*}
|G| & \leq|G[N]|+s \cdot \Delta-e_{G}(X) \\
& \leq t_{l-1}^{k}(n-s)+s \cdot t_{l-1}^{k-1}(n-s)-e_{G}(X) \\
& \leq t_{l}^{k}(n)-e_{G}(X) \tag{4}
\end{align*}
$$

where the last inequality follows from (1). (Recall that $e_{G}(X)$ is the number of edges of G that intersect X in at least two vertices.) At this stage, one can deduce the upper bound in Theorem 2 by induction on $k+l$ since, obviously, $e_{G}(X) \geq 0$. (A further routine analysis will also show that $T_{l}^{k}(n)$ is the unique extremal configuration for ex $\left(n, \mathcal{F}_{l+1}^{k}\right)$.)

The inequalites (3) and (4) imply that

$$
t_{l}^{k}(n)-\varepsilon_{l} n^{k} \leq t_{l-1}^{k}(n-s)+s \cdot t_{l-1}^{k-1}(n-s)
$$

Note that the right-hand side is the size of the l-partite k-graph with n vertices such that one part has size s and the other $l-1$ parts are almost equal. From (2), we conclude that

$$
\begin{equation*}
s=\left(\frac{1}{l} \pm \delta_{l-1}\right) n \tag{5}
\end{equation*}
$$

Moreover, routine calculations show (alternatively, see Claim 2 in [13, Theorem 3]) that (3) and (4) imply that

$$
\begin{equation*}
\Delta=|L|>t_{l-1}^{k-1}(n-s)-\varepsilon_{l-1}(n-s)^{k-1} \tag{6}
\end{equation*}
$$

Now consider L. This $(k-1)$-graph has $n-s$ vertices. Since $n \geq M_{l} \gg M_{l-1}$, we have $n-s \geq M_{l-1}$ by (5). Because of (6) we may apply the induction hypothesis to the \mathcal{F}_{l}^{k-1}-free $(k-1)$-graph L. We conclude that there exists a Turán hypergraph $T_{l-1} \cong T_{l-1}^{k-1}(n-s)$ with vertex partition $N=W_{1} \cup \ldots \cup W_{l-1}$ such that

$$
\begin{equation*}
\left|T_{l-1} \triangle L\right| \leq \delta_{l-1}(n-s)^{k-1} \tag{7}
\end{equation*}
$$

By (5) we conclude that for each $i \in[l-1]$ we have

$$
\begin{equation*}
\left|W_{i}\right|=\frac{n-s}{l-1} \pm 1=\left(\frac{1}{l} \pm \delta_{l-1}\right) n \tag{8}
\end{equation*}
$$

Let $W_{l}=X$ and let T_{l} be the l-partite k-graph with the vertex partition $W_{1} \cup \ldots \cup W_{l}$. By (5) and (8) T_{l} is $\frac{\delta_{l}}{2} n^{k}$-close to a $T_{l}^{k}(n)$ because we can transform one to the other by moving at most $\delta_{l-1} n \times l$ vertices between parts, thus changing at most $\delta_{l-1} l n \times\binom{ n-1}{k-1}<\left(\delta_{l} / 2\right) n^{k}$ edges.

We will show that

$$
\begin{equation*}
\left|G \backslash T_{l}\right| \leq \frac{\delta_{l}}{5} n^{k} \tag{9}
\end{equation*}
$$

This implies, in view of (3) and the inequality $\left|T_{l}\right| \leq t_{l}^{k}(n)$, that

$$
\left|G \triangle T_{l}\right|=\left|T_{l}\right|-|G|+2\left|G \backslash T_{l}\right| \leq \varepsilon_{l} n^{k}+\frac{2 \delta_{l}}{5} n^{k}<\frac{\delta_{l}}{2} n^{k}
$$

and the desired bound $\left|G \triangle T_{l}^{k}(n)\right| \leq \delta_{l} n^{k}$ follows from the triangle inequality.
From (4) we conclude that $e_{G}(X) \leq \varepsilon_{l} n^{k}$. Suppose on the contrary to (9) that we have more than $\frac{\delta_{l}}{5} n^{k}-\varepsilon_{l} n^{k}>\frac{\delta_{l}}{6} n^{k}$ edges of G intersecting some part of N in at least two vertices.

By averaging there is an $i \in[l-1]$ such that $|B| \geq \frac{\delta_{l}}{6 l} n^{2}$, where B consists of all 2-subsets of W_{i} covered by at least one edge of G. Assume that $i=l-1$ without loss of generality.

Let $w=\left(\frac{1}{l}-\delta_{l-1}\right) n$. Recall that w is a lower bound on each $\left|W_{i}\right|$ by (5) and (8). For every choice of $x_{1} \in W_{1}, \ldots, x_{l-2} \in W_{l-2}$ and $\left\{x_{l-1}, x_{l}\right\} \in B$, at least $w^{l-2} \times \frac{\delta_{l}}{6 l} n^{2}$ choices in total, we consider a potential copy of \mathcal{F}_{l+1}^{k} with core $C=\left\{x, x_{1}, \ldots, x_{l}\right\}$. (Recall that x is the chosen vertex of maximum degree.) As G is \mathcal{F}_{l+1}^{k}-free, at least one of the following must hold:

1. $K \notin G$, where $K=\left\{x, x_{1}, \ldots, x_{k-1}\right\}$.
2. A pair $\left\{x, x_{i}\right\}$ with $i \in[l]$ is not covered by an edge of G.
3. A pair $\left\{x_{i}, x_{j}\right\}$ with $\{i, j\} \neq\{l-1, l\}$ is not covered by an edge of G.

One of these three alternatives holds for at least one third of the choices of x_{i} 's. If it is Alternative 1 , then for each such K we have $K \backslash\{x\} \in T_{l-1} \backslash L$. Any fixed set K is counted at most n^{l-k+1} times. Now, since $\delta_{l-1} \ll \delta_{l}$, we obtain a contradiction to (7):

$$
\left|T_{l-1} \backslash L\right| \geq \frac{1}{3} \times w^{l-2} \times \frac{\delta_{l}}{6 l} n^{2} \times n^{-l+k-1}>\delta_{l-1}(n-s)^{k-1}
$$

If it is Alternative 2, then we obtain a contradiction as follows. For every uncovered pair $\left\{x, x_{i}\right\}$, the vertex x_{i} belongs to at least w^{k-2} edges of the $(k-1)$-graph T_{l-1}. None of these edges belongs to L, for otherwise the pair $\left\{x, x_{i}\right\}$ would be covered by an edge of G. On the other hand, every edge $D \in T_{l-1} \backslash L$ appears this way for at most $(k-1) n^{l-1}$ choices of the sequence $\left(x_{1}, \ldots, x_{l}\right)$: we have to choose $x_{i} \in D$ and then the other $l-1$ vertices x_{j}. Thus we have

$$
\left|T_{l-1} \backslash L\right| \geq \frac{1}{3} \times w^{l-2} \times \frac{\delta_{l}}{6 l} n^{2} \times w^{k-2} \times \frac{1}{(k-1) n^{l-1}}>\delta_{l-1}(n-s)^{k-1}
$$

again a contradiction to (7). Finally, suppose that Alternative 3 appears frequently. Each pair $\left\{x_{i}, x_{j}\right\}$ belongs to at least w^{k-3} edges of $T_{l-1} \backslash L$. However, each such edge is counted at most $\binom{k-1}{2} n^{l-2}$ times. Hence,

$$
\left|T_{l-1} \backslash L\right| \geq \frac{1}{3} \times w^{l-2} \times \frac{\delta_{l}}{6 l} n^{2} \times w^{k-3} \times\binom{ k-1}{2}^{-1} n^{-l+2}>\delta_{l-1}(n-s)^{k-1}
$$

Again we obtain a contradiction to (7). This completes the proof of Theorem 4.

3 Step 3: F_{l+1}^{k} is stable

Please note that Theorem 5 below is formally stronger than Theorem 4. However, it follows from Theorem 4 by an application of Lemma 4 from [15]. The last result indirectly relies on the recent Hypergraph Regularity Lemma of Gowers [7] or Nagle-Rödl-Schacht-Skokan [14, 18, 17].

For our particular hypergraph F_{l+1}^{k}, the recourse to such a complicated technique is not really necessary and we present a short and self-contained proof, similar to the proof of Lemma 3 in [15].

Theorem 5 For any $l \geq k \geq 2$ and $\delta>0$ there exist $\varepsilon>0$ and M such that the following holds for all $n>M$: Any n-vertex F_{l+1}^{k}-free k-graph G with at least $t_{l}^{k}(n)-\varepsilon n^{k}$ edges is δn^{k}-close to $T_{l}^{k}(n)$.

Proof. Given $\delta>0$, let $\delta \gg \varepsilon \gg 1 / M$.
Suppose that $n>M$ and G is an n-vertex F_{l+1}^{k}-free k-graph with at least $t_{l}^{k}(n)-\varepsilon n^{k}$ edges. Let G^{\prime} be obtained from G by deleting all edges that contain a pair of vertices whose codegree is at most $l^{3}\binom{n}{k-3}$. Since the number of pairs of vertices is $\binom{n}{2}$, we have

$$
\begin{equation*}
\left|G \backslash G^{\prime}\right| \leq l^{3}\binom{n}{k-3} \times\binom{ n}{2}<\epsilon n^{k}<\frac{\delta}{2} n^{k} \tag{10}
\end{equation*}
$$

Now we argue that G^{\prime} is \mathcal{F}_{l+1}^{k}-free. Suppose on the contrary that G^{\prime} contains a copy of some $F \in \mathcal{F}_{l+1}^{k}$ with core C and edge $D \subset C$. Since every pair of vertices $x, y \in C$ is contained in an edge of G^{\prime}, we have, by $l \geq k \geq 2$,

$$
\operatorname{codeg}_{G}(x, y) \geq l^{3}\binom{n}{k-3}>\left(\binom{l+1}{2}(k-2)+l+1\right)\binom{n}{k-3}
$$

Hence we can greedily choose edges of G containing all pairs in $\binom{C}{2} \backslash\binom{D}{2}$, so that these edges intersect C in precisely two vertices and are pairwise disjoint outside C. The resulting set of $\binom{l+1}{2}-\binom{k}{2}$ edges, together with D, forms a copy of F_{l+1}^{k} in G, a contradiction.

We have

$$
\left|G^{\prime}\right|>|G|-\epsilon n^{k} \geq\left(t_{l}^{k}(n)-\varepsilon n^{k}\right)-\epsilon n^{k}=t_{l}^{k}(n)-2 \varepsilon n^{k} .
$$

We apply Theorem 4 to G^{\prime} and conclude that G^{\prime} is $\frac{\delta}{2} n^{k}$-close to $T_{l}^{k}(n)$. By (10), G and $T_{l}^{k}(n)$ are δn^{k}-close. The proof is complete.

4 Step 4: Proof of Theorem 3

Proof. If $k=2$, then Theorem 3 is precisely the Turán theorem [22]. Thus let us assume that $l \geq k \geq 3$. Choose small $c \gg c^{\prime} \gg \delta>0$. Let n be large.

Let G be an F_{l+1}^{k}-free k-graph on $[n]$ with $|G|=t_{l}^{k}(n)$. We will show that G is l-partite. This implies the theorem because $T_{l}^{k}(n)$ is the unique l-partite k-graph on n vertices with $t_{l}^{k}(n)$ edges, and the addition of any edge to $T_{l}^{k}(n)$ yields a copy of F_{l+1}^{k}.

Let $W_{1} \cup \cdots \cup W_{l}$ be a partition of $[n]$ such that

$$
f=\sum_{D \in G}\left|\left\{i \in[l]: D \cap W_{i} \neq \emptyset\right\}\right|
$$

is maximum possible. Let T be the complete l-partite k-graph on $W_{1} \cup \cdots \cup W_{l}$. Let us call the edges in $T \backslash G$ missing and the edges in $G \backslash T$ bad. As $|T| \leq t_{l}^{k}(n)=|G|$, the number of bad edges is at least the number of missing edges.

By Theorem 5, there is an l-partite k-graph which is δn^{k}-close to G. Consequently, $f \geq$ $k\left(|G|-\delta n^{k}\right)$. On the other hand,

$$
f \leq k|G \cap T|+(k-1)|G \backslash T|=k|G|-|G \backslash T| .
$$

This implies that $|G \backslash T| \leq k \delta n^{k}$ and, in view of $|T| \leq|G|$,

$$
\begin{equation*}
|T \backslash G| \leq k \delta n^{k} \tag{11}
\end{equation*}
$$

Thus we have $|T| \geq|G \cap T| \geq t_{l}^{k}(n)-k \delta n^{k}$. From (2) we conclude that for each $i \in[l]$ we have, for example, $\left|\left|W_{i}\right|-\frac{n}{l}\right| \leq \frac{n}{2 l}$.

If $G \subset T$, then we are done. Thus, let us assume that B is non-empty, where the 2-graph B consists of all bad pairs, that is, pairs of vertices which come from the same part W_{i} and are covered by an edge of G.

For distinct vertices x, y call the pair $\{x, y\}$ sparse if G has at most $\left(\binom{l+1}{2}(k-2)+l+1\right)\binom{n}{k-3}$ edges containing both x and y; otherwise $\{x, y\}$ is called dense. It is easy to see that if we have a fixed $(l+1)$-set $C \subset V(G)$ containing at least one edge $D \in G$, then at least one pair of vertices $\{x, y\}$ from $\binom{C}{2} \backslash\binom{D}{2}$ is sparse. (For otherwise we can greedily build a copy of F_{l+1}^{k} in G with the core C.)

Let A consist of those $z \in V(G)$ which are incident to at least $c n^{k-1}$ missing edges.
Claim 1 Any bad pair $\left\{x_{0}, x_{1}\right\}$ intersects A.
Proof of Claim. Assume without loss of generality that $x_{0}, x_{1} \in W_{1}$ are covered by $D \in G$.
It is easy to see that for any choice of $x_{i} \in W_{i} \backslash D$ for $i \in[2, l]$ (at least $\left(\frac{n}{2 l}-k\right)^{l-1}>\left(\frac{n}{3 l}\right)^{l-1}$ choices), at least one pair $\left\{x_{i}, x_{j}\right\}$ with $\{i, j\} \neq\{0,1\}$ is sparse or the k-tuple $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is missing for otherwise we obtain a copy of F_{l+1}^{k}. (In fact, we can make stronger claims but this one suffices.)

If the second alternative occurs at least a half of the time, then $x_{1} \in A$. Indeed, any k-tuple $D \ni x_{1}$ is counted at most n^{l-k} times (the number of ways to choose x_{k+1}, \ldots, x_{l}), so x_{1} belongs to at least $\frac{1}{2}\left(\frac{n}{3 l}\right)^{l-1} / n^{l-k} \geq c n^{k-1}$ missing edges, as required.

So, suppose that for at least half of the choices, the first alternative holds, i.e., there is a sparse pair. Each such pair $\left\{x_{i}, x_{j}\right\}$ appears, very roughly, at most n^{l-3} times unless $\left\{x_{i}, x_{j}\right\} \cap$ $\left\{x_{0}, x_{1}\right\} \neq \emptyset$ when the pair is counted at most n^{l-2} times. There are two further alternatives to consider.

If at least a quarter of the time, the found sparse pair is disjoint from $\left\{x_{0}, x_{1}\right\}$, then we obtain at least $\frac{1}{4}\left(\frac{n}{3 l}\right)^{l-1} / n^{l-3} \geq c n^{2}$ sparse pairs, each intersecting two parts W_{i}. But this leads to a contradiction to (11): each such sparse pair in contained in at least, say, $\left(\frac{n}{3 l}\right)^{k-2}$ missing edges while each missing edge contains at most $\binom{k}{2}$ sparse pairs. Hence, at least a quarter of the time, the sparse pair intersects $\left\{x_{0}, x_{1}\right\}$, so one of these vertices, say x_{0}, is in at least $\frac{1}{8}\left(\frac{n}{3 l}\right)^{l-1} / n^{l-2}$ sparse pairs, which implies that $x_{0} \in A$. The claim has been proved. I

Considering vertices from A, we obtain at least $|A| \times c n^{k-1} / k$ missing edges and, consequently, at least $|A| \times c n^{k-1} / k$ bad edges. Let \mathcal{B} consist of the pairs $(D,\{x, y\})$, where $\{x, y\} \in B, D \in G$ and $x, y \in D$. (Thus D is a bad edge.) As each bad edge contains at least one bad pair, we conclude that $|\mathcal{B}| \geq|A| \times c n^{k-1} / k$. For any $(D,\{x, y\}) \in \mathcal{B}$, we have $\{x, y\} \cap A \neq \emptyset$ by Claim 1. If we fix x and D, then, obviously, there are at most $k-1$ ways to choose a bad pair $\{x, y\} \subset D$. By Claim 1 , some vertex $x \in A$, say $x \in W_{1}$, belongs to at least

$$
\frac{|\mathcal{B}|}{(k-1)|A|} \geq \frac{c}{k(k-1)} n^{k-1}
$$

bad edges, each intersecting W_{1} in another vertex y.
Let $Y_{1} \subset W_{1}$ be the neighborhood of x in the 2-graph B. Let $Z_{1} \subset Y_{1}$ be the set of those vertices z for which $\{x, z\}$ is dense. The number of edges containing x and some vertex of $Y_{1} \backslash Z_{1}$ is at most $l^{3} n^{k-2}<\frac{c}{2 k(k-1)} n^{k-1}$. Consequently, the number of bad edges containing x and some vertex of Z_{1} is at least $\frac{c}{2 k(k-1)} n^{k-1}$. Therefore $\left|Z_{1}\right| \geq \frac{c}{2 k(k-1)} n \geq c^{\prime} n$.

Let Z_{j} consist of those $z \in W_{j}$ for which $\{x, z\}$ is dense, $j \in[2, l]$. If $\left|Z_{j}\right| \geq c^{\prime} n$ for each $j \in[2, l]$, then every l-tuple $\left(x_{1}, x_{2}, \ldots, x_{l}\right)$ with $x_{j} \in Z_{j}$ (at least $\left(c^{\prime} n\right)^{l}$ choices) generates a sparse pair not containing x or the edge $\left\{x_{1}, \ldots, x_{k}\right\}$ is missing. The latter alternative cannot happen, say, at least half of the time because otherwise we obtain more than $\frac{1}{2}\left(c^{\prime} n\right)^{l} / n^{l-k}>$ $k \delta n^{k}$ missing edges, a contradiction to (11). Thus at least half of the time, we obtain a sparse pair disjoint from x. This gives at least $\frac{1}{2}\left(c^{\prime} n\right)^{l} / n^{l-2}$ sparse pairs, each intersecting some two parts, which leads to a contradiction to (11).

Hence, assume that, for example, $\left|Z_{2}\right|<c^{\prime} n$. This means that all but at most $c^{\prime} n$ pairs $\{x, z\}$ with $z \in W_{2}$ are sparse, that is, there are at most $l^{3} n^{k-2}+c^{\prime} n^{k-1}<2 c^{\prime} n^{k-1} G$-edges containing x and intersecting W_{2}. Let us contemplate moving x from W_{1} to W_{2}. Some edges of G may decrease their contribution to f. But each such edge must contain x and intersect W_{2} so the corresponding decrease is at most $2 c^{\prime} n^{k-1}$. On the other hand, the number of edges of G
containing x, intersecting $W_{1} \backslash\{x\}$, and disjoint from W_{2} is at least $\left(\frac{c}{k(k-1)}-2 c^{\prime}\right) n^{k-1}>2 c^{\prime} n^{k-1}$. Hence, by moving x from W_{1} to W_{2} we strictly increase f, a contradiction to the choice of the parts W_{i}. The theorem is proved.

Acknowledgment

We thank the referees for their careful reading of the manuscript.

References

[1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974), 21-24.
[2] D. de Caen, Uniform hypergraphs with no block containing the symmetric difference of any two other blocks, Congres. Numer. 47 (1985), 249-253.
[3] P. Frankl, Asymptotic solution of a Turán-type problem, Graphs Combin. 6 (1990), 223-227.
[4] P. Frankl and Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983), 341-349.
[5] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of the small Wittdesigns, J. Combin. Theory (A) 52 (1989), 129-147.
[6] Z. Füredi and M. Simonovits, Triple systems not containing a Fano configuration, Combin. Prob. Comput. 14 (2005) 467-488.
[7] W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi's theorem, Manuscript, 2005.
[8] J. Kahn, Coloring nearly-disjoint hypergraphs with $n+o(n)$ colors, J. Combin. Theory (A) 59 (1992), 31-39.
[9] G. O. H. Katona, Extremal problems for hypergraphs, Combinatorics, vol. 56, Math. Cent. Tracts, 1974, pp. 13-42.
[10] P. Keevash and D. Mubayi, Stability results for cancellative hypergraphs, J. Combin. Theory (B), 92 (2004), 163-175.
[11] P. Keevash and B. Sudakov, On a hypergraph Turán problem of Frankl, Combinatorica, 25 (2005) 673-706.
[12] P. Keevash and B. Sudakov, The exact Turán number of the Fano plane, Combinatorica, 25 (2005) 561-574.
[13] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory (B), 96 (2006) 122-134.
[14] B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Struct. Algorithms, 28 (2006) 113-179.
[15] O. Pikhurko, Exact computation of the hypergraph Turán function for expanded complete 2-graphs, arXiv:math.CO/0510227. This paper was accepted by J. Comb. Th. (B) but its publication is suspended, because of disagreement over copyright, see http://www.math.cmu.edu/~pikhurko/Copyright.html, 2005.
[16] O. Pikhurko, An exact Turán result for the generalized triangle, Submitted, 2005.
[17] V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Struct. Algorithms 25 (2004), 1-42.
[18] V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Struct. Algorithms, 28 (2006) 180-194.
[19] J. B. Shearer, A new construction for cancellative families of sets, Electronic J. Combin. 3 (1996), 3pp.
[20] A. F. Sidorenko, The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Math Notes 41 (1987), 247-259, Translated from Mat. Zametki.
[21] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, 1968, pp. 279-319.
[22] P. Turán, On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok 48 (1941), 436-452.

[^0]: *Partially supported by NSF Grant DMS-0400812, and an Alfred P. Sloan Research Fellowship.
 ${ }^{\dagger}$ Partially supported by NSF Grant DMS-0457512.

