
Specified Intersections

Dhruv Mubayi ∗ and Vojtech Rödl †
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Abstract

Let M ⊂ [n] := {0, . . . , n} and A be a family of subsets of an n element set

such that |A∩B| ∈M for every A,B ∈ A. Suppose that l is the maximum number

of consecutive integers contained in M and n is sufficiently large. Then

|A| < min{1.622n102l+5 , 2n/2+l log
2 n}.

The first bound complements the previous bound of roughly (1.99)n due to Frankl

and the second author [9] proved under the assumption that M = [n] \{n/4}. For

l = o(n/ log2 n), the second bound above becomes better than the first bound.

In this case, it yields 2n/2+o(n) and this can be viewed as a generalization (in

an asymptotic sense) of the famous Eventown theorem of Berlekamp [2] and

Graver [12]. We conjecture that our bound 2n/2+o(n) remains valid as long as

l < n/10.

Our second result complements the result of [9] in a different direction. Fix

ε > 0 and εn < t < n/5 and let M = [n] \ (t, t + n0.525). Then, in the notation

above, we prove that for n sufficiently large,

|A| ≤ n

(
n

(n + t)/2

)
.

This is essentially sharp aside from the multiplicative factor of n. The short

proof uses the Frankl-Wilson theorem and results about the distribution of prime

numbers. We conjecture that a similar bound holds for M = [n] \ {t} whenever

εn < t < n/3. A similar conjecture when t is fixed and n is large was earlier made

by Frankl [6] and proved by Frankl and Füredi [7].
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1 Introduction

Throughout this paper, we let [n] := {0, 1, . . . , n} and V denote an n-element set. Say

that a family of sets A is M -intersecting if for every A,B ∈ A, we have |A ∩ B| ∈ M .

Suppose that A ⊂ 2V . Our starting point is the following result.

Theorem 1 (Frankl-Rödl [9]) For every 0 < η < 1/4 there exists ε > 0 and n0 such

that if n > n0, ηn < t < (1/2 − η)n, M = [n] \ {t} and A is M-intersecting, then

|A| < (2− ε)n.

Theorem 1 was previously conjectured by Erdős, and has applications in geometry [16],

combinatorics [5], coding theory, communication complexity [17] and quantum comput-

ing [3]. In words, the result says that if we forbid even one number t ∈ (cn, (1/2− c)n)

which is constant times n away from both 0 and n/2 as an intersection size, then the

size of our family must be exponentially smaller than the family of all sets. The result

of [9] was actually more general. Say that a pair (A,B) of set systems is M -intersecting

if for every A ∈ A and B ∈ B, we have |A ∩ B| ∈ M . Frankl and Rödl proved that in

the setup above, we have |A||B| < (4− ε)n. This is stronger, since we may let A = B.

At the other end of the spectrum, [9] also proves that if t ∈ [n] and M = {t}, then

|A||B| ≤ 2n (1)

and this is sharp for many values of t.

In this paper we consider the size of M -intersecting families for two different types of

M which are in between these two extremes.

1.1 Forbidding syndetic sets

A set of integers is called l-syndetic if it intersects every interval of length l. Also, for a

set M of integers, we define the length l(M) to be the maximum number of consecutive

integers contained in M . Clearly l(M) ≤ l iff M is (l + 1)-syndetic.

Our first result is concerned with finding upper bounds for families A ⊂ 2V that are M -

intersecting in terms of l(M). As l(M) gets smaller (i.e. the forbidden set of intersection

sizes intersects every interval of smaller length), this places more restrictions on A and

we therefore expect a better upper bound. Hence it is not surprising that as l(M)

becomes smaller, our bound is numerically better than the bound obtained in [9] for

M = [n] \ {t}. As in [9], we prove our result for pairs of families.
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Theorem 2 Let M ⊂ [n] with l(M) = l. Suppose that (A,B) is an M-intersecting pair

of families in 2V . Then

|A||B| < min
{

2.631n × 104l+10, 2n+2l log2 n
}
.

Remarks.

1) The constant 104l above has not been optimized and can be improved to slightly less

than 103l.

2) The theorem is meaningful only for small l, say l < n/10. Indeed, one quickly notices

that if l is a bit larger, say l = 0.15n, then both bounds in the minimization are larger

than 4n (for large n) which is a trivial bound. Therefore, when l > 0.15n, Theorem 2

says nothing nontrivial. For this case upper bounds of the form |A||B| < (4− ε)n follow

only from Theorem 1 and a result of Sgall [17]. When the two intersection sizes n/3 and

n/5 are forbidden, the best upper bound is due to Sgall [17].

Corollary 3 Let M ⊂ [n] with l(M) = l. Suppose that A ⊂ 2V is an M-intersecting

family. Then

|A| < min
{

1.622n × 102l+5 , 2n/2+l log
2 n
}
.

Remarks.

1) If l � n/ log2 n, then the first bound in Corollary 3 is better and if l � n/ log2 n,

then the second bound in Corollary 3 is better.

2) The first bound in Theorem 2 and Corollary 3 applies even when l is linear in n,

for example, when l = n/104 we get the upper bound 1.63n from Corollary 3. In this

case, the forbidden set of intersection sizes P = [n] \M could have only 104 numbers

in [n] that are close to being uniformly distributed. We are not aware of any result

that addresses such cases directly. As mentioned above, the only nontrivial bound we

know follows directly from Theorem 1 and is about (1.99)n (though by carefully going

through the calculations from [9] one could perhaps improve this slightly). A related

result of Sgall [17] gives better bounds than Theorem 1 in the case when more than one

intersection size is omitted, though the omitted sizes must correspond to congruence

classes modulo some integer; Theorem 2 does not require this.

3) If l = o(n/ log2 n), then the second bound in Corollary 3 is 2n/2+o(n) and this can be

viewed as a generalization (in an asymptotic sense) of the famous Eventown theorem

of Berlekamp [2] and Graver [12], which states that if M = {0, 2, ..} and |A| is even

for every A ∈ A, then |A| ≤ 2n/2. In particular, our bound does not require M to be
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any collection of residue classes. Moreover, the second bound in Theorem 2 can also be

viewed as a generalization (when viewed as an asymptotic result) of (1) which applies

for M = {t} since we may let l = 1.

The second bound in Theorem 2 cannot be extended to 2n+o(n) (independent of l) even for

small values of l. For example, one can let l = n/104, M = [n] \ {n/104, 2n/104, . . . , n},
A = 2V and B =

(
[n]

≤n/104−1

)
. Then |A ∩ B| ∈ M for every A ∈ A and B ∈ B and yet

|A||B| > 21.0001n. On the other hand, we are not able to obtain a construction of this

type for just one family, and the best construction we have for Corollary 3 is obtained by

the Eventown construction: assuming n is even, take all subsets of [n/2] and then double

each point. The resulting family has size 2n/2 and every two sets have even intersection

size. This leads us to make the following conjecture.

Conjecture 4 Let 1 < l < n/10 and M ⊂ [n] with l(M) = l. Suppose that A ⊂ 2V is

an M-intersecting family. Then

|A| < 2n/2+o(n).

Remark. The condition l < n/10 in Conjecture 4 is somewhat arbitrary, though some

bound on l of this type is required to prohibit constructions of the form
(

[n]
≤l−1

)
with

M = [n] \ {l, 2l, ..}. Such constructions have larger size than 2n/2 if l is large.

1.2 Small intervals

Our second result considers the case when M omits a very small interval. In this case we

prove an essentially sharp result for the maximum size of an M -intersecting family. The

starting point of this line of research is perhaps Katona’s theorem [14] which determines

the maximum size of an M -intersecting family of subsets of [n] when M = [n] \ [t]; in

other words, every two sets have at least t + 1 elements in common. To state Katona’s

result precisely, define A(n, t) to be {A ⊂ V : |A| ≥ (n + t + 1)/2} if n + t is odd and

{A ⊂ V : |A ∩ (V \ {v})| ≥ (n+ t)/2}, v ∈ V is fixed, if n+ t is even.

Theorem 5 (Katona [14]) Let A ⊂ 2V and suppose that |A ∩ A′| > t for every

A,A′ ∈ A. Then

|A| ≤ |A(n, t)|.

Moreover, if t ≥ 1 and |A| = |A(n, t)|, then A = A(n, t).
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The bound in Katona’s theorem is essentially
(

n
(n+t+1)/2

)
, achieved by taking all large

enough sets. If we weaken the hypothesis in Katona’s theorem by forbidding just one

intersection size, namely t, then Erdős [4] asked how large |A| could be. Later Frankl [6]

conjectured that for n > n0(t),

|A| ≤ |A∗(n, t)|

where A∗(n, t) is obtained from A(n, t) by adding all sets of size less than t. This was

later proved by Frankl and Füredi for fixed t (see also [8] for related results).

Theorem 6 (Frankl-Füredi [7]) Let A ⊂ 2V and suppose that |A ∩ A′| 6= t for every

A,A′ ∈ A. Then for n > n0(t),

|A| ≤ |A∗(n, t)|

and equality holds only for A = A∗(n, t).

The condition n > n0(t) above appears to be essential in the argument of [7] and if we do

not assume this, then the bound obtained from the proof in [7] is larger than |A∗(n, t)|
when t is linear in n.

In our final result we weaken the condition n > n0(t) to n > 5t, but enlarge the set

of missing intersection sizes from one number (namely t) to a small interval around t.

Under these conditions, we obtain an upper bound that is not exactly |A∗(n, t)|, though

the logarithm of our upper bound is asymptotically equal to log |A∗(n, t)|.

Theorem 7 Let 0 < ε < 1/5 be fixed, n > n0(ε), εn < t < n/5 and M = [n] \ (t, t +

n0.525). Suppose that A is an M-intersecting family of subsets of [n]. Then

|A| < n

(
n

(n+ t)/2

)
.

Remark. The constant 0.525 that appears above is a direct consequence of the result

of Baker-Harman-Pintz [1] that there is a prime in every interval (s − s0.525, s) as long

as s is sufficiently large.

We conjecture that |A| <
(

n
(n+t)/2

)
2o(n) for all t < n/3 even in the case whenM = [n]\{t}.

For n/3 ≤ t < (1/2− ε)n, we conjecture that |A| <
(
n
t

)
2o(n).

2 Proof of Theorem 2

We prove Theorem 2 in two sections, each devoted to one of the bounds in the minimum.
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2.1 The first bound

In this section we prove that |A||B| < 2.631n104l+10.

Definitions and Notation.

It is more convenient to phrase our proof in terms of complements of M , so we say

that (A,B) is P -omitting if |A ∩ B| 6∈ P for each A ∈ A, B ∈ B. We will assume that

P = [n] \M and l(M) = l in the rest of this section.

Let F ⊂ 2V such that F is P -omitting. Define

p(F) =
|F|
2|V |

.

For all v ∈ V let

F1(v) = {F \ {v} : v ∈ F ∈ F} and F0(v) = {F ∈ F : v 6∈ F}.

Note that F1(v),F0(v) ⊂ 2V \{v}.

Given a set S ⊂ [n] and an integer r let S − r = {s− r : s ∈ S}.

We now begin the proof of the first bound in Theorem 2. Let ε = 2/104 and a0 =

6− 2
√

5 < 2. Put

f(x) = 2− x

2−
√
x
.

An easy calculation shows that f(a0) = 0. Moreover, if x is slightly less than a0, then

f(x) > 0. Hence we may choose δ = 0.007 such that f(a) >
√
ε, where a = a0 − δ.

Before embarking on the proof, let us make some preliminary observations. Suppose

that F ,G ∈ 2V and (F ,G) is P -omitting. Let v ∈ V and write Hi for Hi(v) where

H ∈ {F ,G} and i ∈ {0, 1}. Then

• (F1,G1) is P ′-omitting where P ′ = P − 1

• (F0,G0 ∪ G1) is P -omitting

• (F1,G0 ∩ G1) is P ′-omitting, where P ′ = (P − 1) ∪ P .

The most salient of the three properties above is the last one, since it implies that if

l([n] \ P ) = l, then l([n] \ P ′) = l − 1.

The proof of the result, which extends the approach taken in [9], is algorithmic. Given a

pair (F ,G) that is P -omitting where l([n] \P ) = l, we decompose it into the three pairs

above. We will argue that the product of at least one of them must be large if |F||G| is
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large. In the first two cases, the families become more dense, while the third case when

the family gets a bit sparser may happen only a few times.

Procedure.

Recall that ε = 2/104, a0 = 6− 2
√

5, δ = 0.007 and a = a0 − δ.

Input: A 4-tuple (F ,G, P, V ) such that the pair (F ,G) is P -omitting, F ,G ⊂ 2V and

F ,G 6= ∅.

Suppose that there exists v ∈ V such that for Fi = Fi(v),Gi = Gi(v), i = 0, 1, one of the

three possibilities (2), (3), (4) below holds.

1) If

p(F1)p(G1) > ap(F)p(G) (2)

holds, then set F ′ = F1 and G ′ = G1 and repeat the procedure with (F ,G, P, V ) replaced

by (F ′,G ′, P − 1, V \ {v}).

2) If (2) fails but

p(G0 ∪ G1)p(F0) > ap(F)p(G) (3)

holds, then set F ′ = F0 and G ′ = G0 ∪ G1 and repeat the procedure with (F ,G, P, V )

replaced by (F ′,G ′, P, V \ {v}).

3) If (2) and (3) fail but

p(G0 ∩ G1)p(F1) > ε p(F)p(G) (4)

holds, then set F ′ = F1 and G ′ = G0 ∩ G1, P ′ = (P − 1) ∪ P and repeat the procedure

with (F ,G, P, V ) replaced by (F ′,G ′, P ′, V \ {v}).

If (2), (3) and (4) all fail, then Stop.

Suppose that for all v, all of (2), (3) and (4) fail and we have stopped the algorithm.

Then

p(F1)p(G1) ≤ a p(F)p(G)

and hence for each v ∈ V , either

p(F1) ≤
√
a p(F) or p(G1) ≤

√
a p(G) (5)

Moreover, since (3) and (4) fail, we may assume

p(G0 ∪ G1)p(F0) ≤ a p(F)p(G) (6)

and

p(G0 ∩ G1)p(F1) ≤ ε p(F)p(G). (7)
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We will show that under the assumptions (5), (6) and (7), the inequalities in (5) can be

strengthened as follows:

Claim. For all v ∈ V , either

a) p(F1) ≤
√
εp(F), or

b) p(G1) ≤
√
εp(G).

Proof of Claim. We will use the identities

p(H1) + p(H0) = 2p(H) = p(H0 ∪H1) + p(H0 ∩H1)

for H ∈ {F ,G}. Let v ∈ V be a vertex for which the first inequality in (5) holds. Then

ε p(G)p(F) ≥ p(G0 ∩ G1)p(F1) = (2p(G)− p(G0 ∪ G1))p(F1)

≥
(

2p(G)− a p(G)p(F)

p(F0)

)
p(F1)

=

(
2− a p(F)

2p(F)− p(F1)

)
p(G)p(F1)

≥
(

2− a

2−
√
a

)
p(G)p(F1).

≥
√
ε p(G)p(F1).

Comparing the LHS and RHS of the inequalities above yields p(F1) ≤
√
εp(F). The

proof of the other case is analogous.

Let (F (i),G(i), P (i), V (i)) be the quadruple obtained by iterating the above procedure i

times.

Summary of output of procedure. The procedure applied to (F (i),G(i), P (i), V (i))

with V (i) :∼= [n − i] either stops or yields (F (i+1),G(i+1), P (i+1), V (i+1)) with V (i+1) :∼=
[n− i− 1]. Moreover,

i) p(F (i+1))p(G(i+1)) > ap(F (i))p(G(i)) and P (i+1) ∈ {P (i) − 1, P (i)} or

ii) p(F (i+1))p(G(i+1)) > ε p(F (i))p(G(i)) and P (i+1) = (P (i) − 1) ∪ P (i).

Observe that ii) can occur at most l times. Indeed, if P (i+1) ⊃ (P (i) − 1)∪ P (i) happens

for l values of i, then (since l([n]\P ) = l) the resulting set of forbidden intersection sizes

consists of all nonnegative integers. Consequently one of the resulting families would

have to be empty. This however means that all of (2), (3), (4) fail and hence the algo-

rithm stops.
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We will begin the procedure with (F ,G) = (F (0),G(0)) = (A,B) and distinguish two

cases.

Suppose that the procedure does not stop until i = n. Then for each i ≤ n we have

p(F (i+1))p(G(i+1)) ≥ a p(Fi)p(Gi) or p(F (i+1))p(G(i+1)) ≥ ε p(Fi)p(Gi).

Since ii) occurs at most l times and ε < a we obtain

1 ≥ p(Fn)p(Gn) ≥ an−lεlp(A)p(B). (8)

Consequently,

|A||B| = p(A)p(B)4n <
4n

an−lεl
< K

(
4

a

)n
where K = (a/ε)l < (2/ε)l. As ε = 2/104, and 4/a < 2.631, this implies that

|A||B| <
(

4

a

)n(
2

ε

)l
< 2.631n × 104l.

Suppose now that the procedure stops at some stage i < n. Then the Claim shows that

for all v ∈ V (i) :∼= [n− i] either

p(F (i)
1 (v)) ≤

√
εp(F (i)) or p(G(i)1 (v)) ≤

√
εp(G(i)).

We will prove a similar bound for |A||B| in this case. Let

WF = {v ∈ V (i) : p(F (i)
1 (v)) < ε1/2 p(F (i))} and WG = V (i) \WF .

Observe that p(G(i)1 (v)) <
√
εp(G(i)) for all v ∈ WG.

Let us now focus on F (i) and WF . Consider the bipartite graph HF with bipartition

WF and F (i) where v ∈ WF is joined to A ∈ F (i) if A \ {v} ∈ F1(v). Then the degree

degHF
(v) of v ∈ WF in HF is

|F (i)
1 (v)| = p(F (i)

1 (v))2|V
(i)|−1 < ε1/2p(F (i))2|V

(i)|−1 = ε1/2
|F|

2|V (i)|
2|V

(i)|−1 =
1

2
ε1/2|F (i)|.

Let x := |WF | and s := d1
2
ε1/2xe. Counting the edges of HF in two different ways yields∑

S∈F(i)

|S ∩WF | =
∑
S∈F(i)

degHF
(S) =

∑
v∈WF

degHF
(v) <

1

2
ε1/2x|F (i)| ≤ s|F (i)|. (9)

For integers a ≥ b ≥ 0, write
(
a
≤b

)
to denote

∑b
i=0

(
a
i

)
.

Claim. |F (i)| ≤ (s+ 1)
(
x
≤s

)
2|V

(i)|−x.
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Proof of Claim. Let us suppose for contradiction that |F (i)| > (s + 1)
(
x
≤s

)
2|V

(i)|−x.

Write F (i) = F ′ ∪ F ′′ where

F ′ = {S ∈ F (i) : |S ∩WF | ≤ s} and F ′′ = F (i) \ F ′.

Then, trivially

|F ′| ≤
(
x

≤ s

)
2|V

(i)|−x <
1

s+ 1
|F (i)|.

Consequently,∑
S∈F(i)

|S ∩WF | ≥
∑
S∈F ′′

|S ∩WF | >
s

s+ 1
|F (i)|(s+ 1) = s|F (i)|.

This contradicts (9) and the claim is therefore proved.

Similarly,

|G(i)| ≤ (t+ 1)

(
y

≤ t

)
2|V

(i)|−y

where y := |WG| and t := d1
2
ε1/2ye. Note that x + y = |WF | + |WG| = |V (i)| = n − i.

Putting this together we get

|F (i)||G(i)| ≤ (s+ 1)(t+ 1)

(
x

≤ s

)(
y

≤ t

)
2|V

(i)|−x2|V
(i)|−y

≤ (s+ 1)2(t+ 1)2
(
x

s

)(
y

t

)
2|V

(i)|−x2|V
(i)|−y.

The inequality ab ≤ (a+ b)2/4 for positive reals a, b yields

(s+1)2(t+1)2 ≤
(
s+ t+ 2

2

)4

≤
(

1

4
ε1/2(n− i) + 1

)4

=

(
1

16
ε(n− i)2 +

1

2
ε1/2(n− i) + 1

)2

.

Since ε = 2/104 and n− i ≥ 1,

1 <
105

3
ε(n− i)2 and

1

2
ε1/2(n− i) < 105

3
ε(n− i)2.

Consequently, (s+ 1)2(t+ 1)2 < 1010ε2(n− i)4, and we therefore have

|F (i)||G(i)| ≤ 1010ε2(n− i)4
(
x

s

)(
y

t

)
2|V

(i)|−x2|V
(i)|−y

≤ 1010ε2(n− i)4
(xe
s

)s (ye
t

)t
2|V

(i)|−x2|V
(i)|−y

≤ 1010ε2(n− i)4
(

2e

ε1/2

) 1
2
ε1/2(x+y)

22n−2i−x−y

= 1010(ε1/2(n− i))4
(

2e

ε1/2

) 1
2
ε1/2(n−i)

2n−i.
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Set

σ =
4 log2(ε

1/2(n− i))
n− i

+
1

2
ε1/2 log2(2e/ε

1/2)

and suppose that the algorithm stops at stage i with (F (i),G(i)). Then we have shown

above that |F (i)||G(i)| < 10102(n−i)(1+σ). As in (8), we obtain

p(A)p(B)ai−lεl < p(F (i))p(G(i)) < 10102(n−i)(1+σ)

22(n−i) = 10102(n−i)(σ−1).

Consequently,

|A||B| ≤ 4np(A)p(B) ≤ 4n
10102(n−i)(σ−1)

ai−lεl
=

10104n

2n(1−σ)

(
2(1−σ)

a

)i (a
ε

)l
. (10)

We now provide an upper bound for σ. Consider the real valued function f(m) =

4 log2(ε
1/2m)/m where 1 ≤ m ≤ n. Easy calculus shows that f(m) is maximized when

m = eε−1/2, where its value is (4/e ln 2)ε1/2. Using ε = 2/104 and a < 6− 2
√

5 < 1.53,

we obtain

σ ≤ 4ε1/2

e ln 2
+

1

2
ε1/2 log2(2e/ε

1/2) < 0.1 < 0.38 < 1− log2 a.

Consequently, 21−σ > a and the RHS in (10) is upper bounded by

10104n
1

2(1−σ)(n−i)ai

(a
ε

)l
< 1010

(
4

a

)n (a
ε

)l
.

This implies that

|A||B| < 1010

(
4

a

)n(
2

ε

)l
< 2.631n × 104l+10.

Remark. As mentioned earlier, we have not optimized the value of ε in our proof,

indeed the inequality 0.1 < 0.38 above reflects the slack in our calculations.

2.2 The second bound

In this section we prove that |A||B| < 2n+2l log2 n. We will use a very general result of

Sgall [17] and show that it can be applied to our setting. To describe the result of Sgall,

we need some definitions.

Definition 8 Say that a function h : N<∞ → N ∪ {∞} is a height function if the

following four properties hold:
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(A1) h(L) = 0 if and only if L = ∅,

(A2) if h(L) <∞ and L′ ⊂ L, then h(L′) ≤ h(L),

(A3) if h(L) <∞ and L′ ⊂ L− 1, then h(L′) ≤ h(L),

(A4) if h(L), h(L′) ≤ s <∞, then either h(L′ ∩ L) ≤ s− 1 or h(L′ ∩ (L− 1)) ≤ s− 1.

Definition 9 Given a family A and a set B, define the signature of B to be the set

LAB = {|A ∩B| : A ∈ A}.

Definition 10 A pair of families (A,B) has height s if there is a height function h such

that for all B ∈ B we have h(LAB) ≤ s.

We now state Sgall’s theorem.

Theorem 11 (Sgall [17]) Suppose that (A,B) is a pair of families on V , |V | = n and

(A,B) has height s ≤ n+ 1. Then

|A||B| ≤ 2n+s−1
(

n

s− 1

)
.

If (A,B) is M -intersecting, and there is a height function h with h(M) ≤ s, then

(A,B) has height s. Indeed, this holds because M = ∪B∈BLAB and by (A2) we have

h(LAB) ≤ h(M) for every B ∈ B.

In order to prove the second bound in Theorem 2 it will therefore be sufficient to define

a height function h such that h(M) ≤ 1+2l(M) log n as long as l(M) < n/(2 log n) (this

will ensure that h(M) ≤ n+ 1). Then, if l(M) = l, and n is sufficiently large, Theorem

11 immediately gives

|A||B| ≤ 2n+2l logn

(
n

2l log n

)
< 2n+2l log2 n.

Definition of height function h. The height function h is defined recursively. First,

let h(∅) = 0. Now suppose that L 6= ∅ and h has been defined on all sets with size less

than |L|. Then

h(L) = 1 + max{h(L ∩ (L+ 1)), max
M∈T (L)

min{h(L ∩M), h(L ∩ (M − 1))}}, (11)

12



where

T (L) = {M ⊂ N<∞ : M 6∈ {L,L+ 1} and 0 < |M | ≤ |L|}.

An easy consequence of the above definition is that h(L) = 1 if |L| = 1.

Another easy consequence of this definition is that h satisfies (A2). Indeed, let us

prove (A2) by induction on |L|. The result clearly holds if |L| = 1 so let |L| ≥ 2 and

L′ ( L. First suppose that h(L′) = 1 + h(L′ ∩ (L′ + 1)). Since |L ∩ (L + 1)| < |L| and

L′ ∩ (L′ + 1) ⊂ L ∩ (L+ 1), we can apply induction to get

h(L′) = 1 + h(L′ ∩ (L+ 1)) ≤ 1 + h(L ∩ (L+ 1)) ≤ h(L)

where the last inequality holds by the definition of h(L).

We may now suppose that there is an M ∈ T (L′) ⊂ T (L) with

h(L′) = 1 + min{h(L′ ∩M), h(L′ ∩ (M − 1))}.

Since |M | ≤ |L′| < |L|, we have |L∩M | < |L| and |L∩(M−1)| < |L|. As L′∩M ⊂ L∩M
and L′ ∩ (M − 1) ⊂ L ∩ (M − 1) we have by induction

1 + min{h(L′ ∩M), h(L′ ∩ (M − 1))} ≤ 1 + min{h(L ∩M), h(L ∩ (M − 1))}.

Since M ∈ T (L′) ⊂ T (L), the RHS above is at most

1 + max
M∈T (L)

min{h(L ∩M), h(L ∩ (M − 1))} ≤ h(L)

and therefore h(L′) ≤ h(L).

Having shown that h satisfies (A2) allows us to give a slightly simpler expression for h

as follows.

Proposition 12 The height function h satisfies h(∅) = 0, and if |L| > 0, then

h(L) = 1 + max
M∈S(L)

min{h(L ∩M), h(L ∩ (M − 1))}, (12)

where

S(L) = {M ⊂ N<∞ : M 6= L and 0 < |M | ≤ |L|}.

Proof: Let t = maxM∈T (L) min{h(L ∩M), h(L ∩ (M − 1))} so that by definition,

h(L) = 1 + max{h(L ∩ (L+ 1)), t}.

13



By A2, h(L ∩ (L+ 1)) ≤ h(L), so

min{h(L ∩ (L+ 1)), h(L)} = h(L ∩ (L+ 1)).

Consequently,

h(L) = 1 + max{min{h(L ∩ (L+ 1)), h(L)}, t} (13)

Since S(L) = T (L) ∪ {L+ 1} the RHS of (12) equals the RHS of (13).

To finish the proof, it suffices to prove the following two propositions.

Proposition 13 The function h defined above is a height function

Proposition 14 If M ⊂ [n] and l(M) = l, then h(M) ≤ 1 + 2l log n.

We now prove each of these propositions.

Proof of Proposition 13. We must show that (A1)–(A4) hold. Clearly (A1) holds by

definition and we have already shown that (A2) holds. Let us now prove that (A3) and

(A4) hold. In what follows we will use the expression for h(L) given in (12).

(A3) We will prove (A3) by induction on |L|. The result clearly holds if |L| = 1 so let

|L| ≥ 2. By (12), there is an M ∈ S(L− 1) with

h(L− 1) = 1 + min{h((L− 1) ∩M), h((L− 1) ∩ (M − 1))}.

Since M 6= L− 1, we have |L ∩ (M + 1)| < |L|. W will distinguish two cases.

a) If M 6= L we have |L ∩M | < |L|. Hence by induction

h((L− 1) ∩M) ≤ h(L ∩ (M + 1)).

Similarly, we also have

h((L− 1) ∩ (M − 1)) ≤ h(L ∩M).

Since M ∈ S(L− 1), we have M + 1 ∈ S(L). Thus

h(L− 1) ≤ 1 + min{h(L ∩ (M + 1)), h(L ∩M)} ≤ h(L)

and hence A3 holds on the assumption M 6= L.

b) If M = L, then by (A2), h((L− 1) ∩M) ≤ h((L− 1) ∩ (M − 1)), and hence

h(L− 1) = 1 + h((L− 1) ∩ L).
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Furthermore, |L ∩ (L + 1)| < |L| so by induction, h((L − 1) ∩ L) ≤ h(L ∩ (L + 1)).

Consequently,

h(L− 1) = 1 + min{h((L− 1) ∩M), h((L− 1) ∩ (M − 1))}
≤ 1 + min{h(L ∩ (M + 1)), h(L ∩M)} ≤ h(L).

(A4) Let L,L′ be given with h(L), h(L′) ≤ s. First let us consider the case that L = L′.

In that case, let us assume for contradiction that h(L) ≥ s and h(L ∩ (L − 1)) ≥ s.

Now let M = L + 1 ∈ S(L) and thus h(L ∩ (M − 1)) = h(L) ≥ s. Then by (A3),

h(L ∩M) ≥ h(L ∩ (L− 1)) ≥ s. Consequently, we have the contradiction

h(L) ≥ 1 + min{h(L ∩M), h(L ∩ (M − 1))} ≥ s+ 1.

So we henceforth assume that L 6= L′. Now by (12)

max
M∈S(L)

min{h(L ∩M), h(L ∩ (M − 1))} ≤ s− 1 (14)

and

max
M ′∈S(L′)

min{h(L′ ∩M ′), h(L′ ∩ (M ′ − 1))} ≤ s− 1 (15)

Let use first suppose that |L| ≤ |L′| and put M ′ = L in (15). Notice that L 6= L′ and

|L| ≤ |L′| yield M ′ ∈ S(L′). Then (15) gives precisely what we want:

min{h(L′ ∩ L), h(L′ ∩ (L− 1))} ≤ s− 1.

Next suppose that |L′| < |L| and put M = L′ + 1 in (14); since |L′| < |L| we have

L′ + 1 6= L and hence M ∈ S(L). Then (A3) implies that

h(L′ ∩ (L− 1)) ≤ h((L′ + 1) ∩ L) = h(L ∩M).

Finally, (14) yields

min{h(L′ ∩ L), h(L′ ∩ (L− 1))} ≤ min{h(L ∩ (M − 1)), h(L ∩M)} ≤ s− 1.

This completes the proof of the proposition.

Proof of Proposition 14. Let W ⊂ [n] and l(W ) = l. We are going to show that

h(W ) ≤ 1 + 2l log n. We will prove by induction on |W | that if l(W ) = l, then
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(
2l

2l − 1

)h(W )−1

≤ |W |. (16)

The result is trivial if |W | = l (|W | < l is impossible), since in this case (12) implies

that h(W ) ≤ l. The identity (2l/(2l − 1))l−1 ≤ l is now easily checked. So assume that

|W | > l. For the induction step, we have

h(W ) = 1 + min{h(W ∩M), h(W ∩ (M − 1))} (17)

for some M ∈ S(W ). We may assume that W is critical, namely that if W ′ ( W , then

h(W ′) < h(W ). This is because if W is not critical, then there is some critical W ′ ( W

with h(W ′) = h(W ), and if we have proved the result for critical sets, then

|W | ≥ |W ′| ≥ (2l/(2l − 1))h(W
′)−1 = (2l/(2l − 1))h(W )−1.

Consider the two sets W ∩M and W ∩ (M − 1). To every element x ∈ W ∩ (M − 1)

associate the element x + 1 ∈ M (this is clearly an injection). Since l(W ) = l, we can

write W as a union of disjoint intervals each of length at most l. The first element of

each of these intervals cannot belong to W ∩ (W + 1), and there are at least |W |/l such

elements. Consequently, |W ∩ (W + 1)| ≤ (1− 1/l)|W |, and so

|W ∩M |+ |W ∩ (M − 1)| = |W ∩M |+ |(W + 1) ∩M |
≤ |W ∩ (W + 1)|+ |M |
≤ |M |+ (1− 1/l)|W | ≤ (2− 1/l)|W |.

So either |W ∩M | < |W |(2l− 1)/(2l) or |W ∩ (M − 1)| ≤ |W |(2l− 1)/(2l). Suppose the

former holds. Since M 6= W and W is critical, h(W ∩M) ≤ h(W ) − 1. On the other

hand by (17) h(W )− 1 ≤ h(W ∩M) and thus h(W )− 1 = h(W ∩M). So by induction

on |W ∩M |,

(2l/(2l − 1))h(W )−1 = (2l/(2l − 1))h(W∩M) ≤ (2l/(2l − 1))|W ∩M | ≤ |W |. (18)

Next suppose that |W ∩ (M −1)| ≤ |W |(2l−1)/(2l). In this case W 6= M −1 must hold

and since W is critical, h(W ∩ (M − 1)) = h(W )− 1. Now we apply induction as in (18)

withW∩M replaced byW∩(M−1). In either case we obtain |W | ≥ (1+1/(2l−1))h(W )−1

or equivalently,

h(W ) ≤ 1 +
log |W |

log
(
1 + 1

2l−1

) .
as long as l(W ) = l. This completes the induction proof of (16).
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Since log(1 + x) > x− x2/2 for |x| < 1, we have

log

(
1 +

1

2l − 1

)
>

1

2l − 1
− 1

2(2l − 1)2
=

4l − 3

2(2l − 1)2
≥ 1

2l
.

Inserting this above yields h(W ) < 1 + 2l log n as required.

3 Proof of Theorem 7

In this section we present the short proof of Theorem 7.

Our main tool is the following result which follows from the Frankl-Wilson Theorem [11].

Theorem 15 Let n > k > 2t. Suppose that B is a {t}-omitting family of k-element

subsets of [n]. If

gcd

((
k − 1

k − t− 1

)
,

(
k − 2

k − t− 1

)
, . . . ,

(
k − t

k − t− 1

))
> 1, (∗)

then |B| ≤
(

n
k−t−1

)
.

It is easy to see that (∗) holds if, for example, k − t is prime.

We will also use the result of Baker-Harman-Pintz [1] which states that for all s suffi-

ciently large, there is a prime in the interval (s− s0.525, s).

Proof of Theorem 7. We will omit floor and ceiling symbols. Let γ = 0.525, 0 < ε <

1/5 and assume that a (t, t+nγ)-omitting family A ⊂ 2V is given, and n > n0(ε). Write

Ak for the family of those subsets of A of size exactly k. Then

|A| =
∑
k≤2t

|Ak|+
∑

2t<k≤(n+t)/2

|Ak|+
∑

k>(n+t)/2

|Ak|.

Each term in the first summation is bounded by
(
n
2t

)
<
(

n
(n+t)/2

)
since t < n/5. Each

term in the last summation is clearly bounded by
(

n
(n+t)/2

)
.

Now consider Ak with 2t < k ≤ (n + t)/2. Since A is {t}-omitting, Ak is {t′}-omitting

for every t′ ∈ (t, t+ nγ). By the result of [1], since k − t > t > εn and n > n0(ε) we can

find a prime p ∈ (k − t− (k − t)γ, k − t). So p = k − tk where t ≤ tk ≤ t+ nγ and A is
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{tk}-omitting. Now apply Theorem 15 to bound each term in the second summation by(
n

k−tk−1

)
. Since tk ≥ t, the bounds in the second summation are at most(

n

t

)
, . . . ,

(
n

(n− t)/2− 1

)
.

As t < n/5, we have t < (n− t)/2 < n/2, and each of these terms is less than
(

n
(n−t)/2

)
.

Thus we get

|A| ≤ n

(
n

(n− t)/2

)
= n

(
n

(n+ t)/2

)
and the proof is complete.
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