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Abstract

Let F be a k-uniform set system defined on a ground set of size n with no singleton intersection,
i.e. no pair A,B ∈ F has |A∩B| = 1. Frankl showed that |F| ≤

(
n−2
k−2

)
for k ≥ 4 and n sufficiently

large, confirming a conjecture of Erdős and Sós. We determine the maximum size of F for k = 4
and all n, and also establish a stability result for general k, showing that any F with size asymptotic
to that of the best construction must be structurally similar to it.

1 Introduction

Say that a set system F is L-intersecting if for every A,B ∈ F we have |A ∩B| ∈ L. Ray-Chaudhuri
and Wilson [18] and Frankl and Wilson [10] obtained tight bounds for L-intersecting set systems. They
showed that if L is a set of s non-negative integers and F is an L-intersecting system on [n] = {1, · · · , n}
then |F| is at most

∑s
i=0

(
n
i

)
, and at most

(
n
s

)
if F is k-uniform for some k, i.e. |A| = k for each

A ∈ F . Equality can hold in these bounds when L = {0, · · · , s− 1}. It is natural to ask for the best
possible bound for each specific set L, and in general it is an open problem to even determine the
order of magnitude. A detailed compilation of results on the uniform version of this problem can be
found in [9].

We will consider the problem of finding the largest k-uniform family with no singleton intersection,
i.e. L-intersecting with L = {0, 2, 3, · · · , k}. One construction of such a family is to take all k-subsets
of [n] that contain two specified points; this gives a family of

(
n−2
k−2

)
sets with no singleton intersection,

which also happens to have no empty intersection. Erdős and Sós [4] conjectured that this is the
maximum number for k ≥ 4 and sufficiently large n, and this was proved by Frankl [6]. (Note that
when n = 3 the maximum number is n, which can be achieved when n is divisible by 4 by taking n/4
vertex disjoint copies of K

(3)
4 , i.e. the complete triple system on 4 points.)

For a more complete understanding of the problem, one might hope to find the maximum number
for all n, and to describe the structure of the maximum systems. Our first theorem achieves this when
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k = 4, and our approach gives some additional structural information for general k. Our basic idea is
to consider a maximum matching and estimate the rest of the family based on the intersections of its
sets with this matching. The same technique has recently been successful for various other extremal
problems, such as in [13] and [16].

Before stating our first theorem, we should mention the fundamental intersection theorem of Erdős,
Ko and Rado [5]. Say that a set system F is t-intersecting if for every A,B ∈ F we have |A ∩B| ≥ t.
They showed that, if F is k-uniform and t-intersecting on [n] with n sufficiently large, then |F| ≤

(
n−t
k−t

)
.

(The case t = 2 is pertinent to our current discussion.) Confirming a conjecture of Erdős, Wilson
[19] showed that this bound in fact holds for n ≥ (t + 1)(k − t + 1) (which is the best possible
strengthening), and furthermore that the unique maximum system consists of all k-sets containing
some fixed t-set. To describe the complete solution for all n we need to define the t-intersecting
systems Fk,t

i (n) = {A ⊂ [n] : |A| = k, |A ∩ [t + 2i]| ≥ t + i}, for 0 ≤ i ≤ k − t. The complete
intersection theorem, conjectured by Frankl, and proved by Ahlswede and Khachatrian [1], is that a
maximum size k-uniform t-intersecting family on [n] is isomorphic to Fk,t

i (n), for some i which can
easily be computed given n. Note that Fk,t

0 (n) is the system of all k-sets containing some fixed t-set.
These constructions also appear in our analysis for 4-uniform systems with no singleton intersection.

Theorem 1.1 Suppose F is a 4-uniform set system on [n] with no pair A,B ∈ F satisfying |A∩B| =
1. Then

|F| ≤


(
n
4

)
n = 4, 5, 6

15 n = 7
17 n = 8(
n−2

2

)
n ≥ 9

Furthermore, the only cases of equality are K
(4)
n for n = 4, 5, F4,2

2 (n) = K
(4)
6 for n = 6, 7, F4,2

1 (8)
for n = 8 and F4,2

0 (n) for n ≥ 9.

Many extremal problems have a property known as stability, meaning that not only do they
have a unique maximising construction, but also any family with size asymptotic to that of the best
construction must be structurally similar to it. Stability theorems can be useful tools for establishing
exact results (e.g. [15]), and for enumerating discrete structures (e.g. [3]). They are also interesting
in their own right, as they provide information about the problem that is structural, rather than just
numerical, and they often motivate new proof techniques where the original ones do not suffice.

A strong stability version of the Erdős-Ko-Rado theorem was obtained by Frankl [7], extending an
earlier result of Hilton and Milner [11]. A similar result with different assumptions on the parameters
was also obtained by Anstee and Keevash [2]. A simple consequence of Frankl’s theorem (which is also
easy to prove directly) is that, for any k there is c(k) such that, if F is k-uniform and t-intersecting
on [n] with |F| > c(k)nk−t−1 and n sufficiently large, then there is a set of t points that is contained
in every set of F .

These stability theorems are stronger than the usual stability paradigm in two senses: firstly the
supposed lower bound on |F| is of a lower order of magnitude than the maximum possible (rather than
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asymptotic to it), and secondly the conclusion is that F is contained in the best construction (rather
than structurally similar to it). An example of a stability theorem for set systems that is not strong
was given by Mubayi [17]. Also, a strong stability theorem cannot hold for our problem of having no
singleton intersection. To see this, note that if A and B are families on disjoint sets X and Y with no
singleton intersection then A ∪ B is a family on A ∪ Y with no singleton intersection. If X ∪ Y = [n]
and |Y | = o(n) we can take |A| ∼

(
n−2
k−2

)
but there need not be two points that belong to all of the

sets. Our next result is a (normal) stability theorem for systems having no singleton intersection.

Theorem 1.2 For any ε > 0 there is δ > 0 such that if F is a k-uniform family on [n] with no
singleton intersection and |F| ≥ (1 − δ)

(
n−2
k−2

)
, then there are two points x, y so that all but at most

εnk−2 sets of F contain both x and y.

A result that is useful in the proof of Theorem 1.2, and is of independent interest, is the following
bound, which is slightly suboptimal, but has the advantage of being valid for all n.

Theorem 1.3 Let F be a k-uniform family on [n] with no singleton intersection, where k ≥ 3. Then
|F| ≤

(
n

k−2

)
.

The rest of this paper is organised as follows. We start, in the next section, by quickly deducing
Theorem 1.3 from a result of Frankl and Wilson [10]. Then we prove Theorem 1.1 in section 3. Some
lemmas used in the proof of Theorem 1.2 are given in section 4, and the proof itself in section 5.

Notation: We write [n] = {1, · · · , n}. Typically F is a k-uniform set system (or family, or hypergraph)
with ground set [n]. Given A ⊂ [n], the link of F from A is F(A) = {F\A : A ⊂ F ∈ F}.
The complete r-uniform hypergraph on s vertices is denoted K

(r)
s . For 0 ≤ i ≤ k − t we define

Fk,t
i (n) = {A ⊂ [n] : |A| = k, |A ∩ [t + 2i]| ≥ t + i}.

2 A bound for all n

In this section we prove Theorem 1.3. It is a simple consequence of the following theorem of Frankl
and Wilson, implicit in [10]. For the convenience of the reader we briefly reproduce their proof.

Theorem 2.1 Suppose p is prime, k ∈ N, L ⊂ {0, · · · , k−1}, and f(x) is an integer-valued polynomial
of degree d ≤ k such that f(`) ≡ 0 mod p for ` ∈ L and f(k) 6≡ 0 mod p. If F is a k-uniform L-
intersecting set system on [n] then |F| ≤

(
n
d

)
.

Proof. Let Wi,j be the matrix with rows indexed by the i-subsets of [n] and columns by the j-subsets
of [n], where given |A| = i and |B| = j, the entry Wi,j(A,B) is 1 if A ⊂ B and 0 if A 6⊂ B. Let V be
the row space of Wd,k. The identity Wi,dWd,k =

(
k−i
d−i

)
Wi,k implies that V contains the row space of

Wi,k for all i ≤ d. Since f is integer-valued there are integers a0, · · · , ad such that f(x) =
∑d

i=0 ai

(
x
i

)
,
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where
(
x
i

)
is the polynomial 1

i!x(x− 1) · · · (x− i+1). Consider the matrix M =
∑d

i=0 aiW
T
i,kWi,k. The

row space of M is contained in V , so rank M ≤ dim V ≤
(
n
d

)
. On the other hand, given k-sets A,B we

have M(A,B) =
∑d

i=0 ai

(|A∩B|
i

)
= f(|A ∩ B|). Let M0 be the submatrix of M consisting of elements

M(A,B) with A,B ∈ F . By our assumptions M(A,B) ≡ 0 mod p for A 6= B and M(A,A) 6≡ 0 mod
p, so M0 is non-singular. Therefore |F| = rank M0 ≤ rank M ≤

(
n
d

)
. �

Proof of Theorem 1.3. Let p be a prime that divides k−1 and f(x) =
(
x−2
k−2

)
, a polynomial of degree

k − 2. Then f(i) = 0 for 2 ≤ i ≤ k − 1, f(0) = (−1)k−2(k − 1) ≡ 0 mod p and f(k) = 1. By Theorem
2.1, if F is a k-uniform family on [n] with no singleton intersection, then |F| ≤

(
n

k−2

)
. �

3 Solution for 4-uniform families

Throughout we suppose that F is a 4-uniform set system on [n] with no singleton intersection, i.e.
there is no pair A,B ∈ F with |A∩B| = 1. In this section we will prove Theorem 1.1, which describes
such families F of maximum size. We start by discussing the small values of n. Trivially K

(4)
n is the

maximum family for n = 4, 5, 6. Also, when n = 7 then F cannot contain two disjoint sets, so is 2-
intersecting, and the complete intersection theorem shows that the maximum family is F4,2

2 (7) = K
(4)
6 .

Next suppose that n = 8. If F does not contain two disjoint sets then as before it is 2-intersecting, so
contains at most 17 sets, with equality only for F4,2

1 (8). In fact, this is the maximum family, as shown
by the case t = 2 of the next lemma.

Lemma 3.1 Suppose that F is a 4-uniform family on [n] with no singleton intersection, and contains
a perfect matching A1, · · · , At, with t ≥ 2. Then |F| ≤ 3

(
2t
2

)
− 2t.

Proof. We argue by induction on t. First we do the base case, where t = 2 and it is required to show
that |F| ≤ 14. Note that every set in F other than A1 or A2 has two points in each of A1 and A2.
Given a pair uv in A1 let F(uv) be its link in A2, i.e. the set of pairs xy in A2 for which uvxy is
in F , and write d(uv) = |F(uv)|. Since F has no singleton intersection the links have the following
properties:

(i) If uv and wx are disjoint pairs in A1 and a, b, c are distinct points of A2 then we do not have
ab ∈ F(uv) and ac ∈ F(wx).

(ii) If ab and cd are disjoint pairs in A2 and u, v, w are distinct points of A1 then we do not have
ab ∈ F(uv) and cd ∈ F(uw).

We consider cases according to the maximum value of d(uv). The above properties imply that if
there is a pair uv in A1 with d(uv) = 6 then d(u′v′) = 0 for all other pairs u′v′ in A1, and if there
is a pair uv in A1 with d(uv) = 5 then d(u′v′) ≤ 1 for all other pairs u′v′ in A1. In either case we
have |F| = 2 +

∑
u,v∈A1

d(uv) < 14. Otherwise, if d(uv) ≤ 4 for all pairs uv in A1, we claim that
for any two opposite pairs uv, wx in A1 we have d(uv) + d(wx) ≤ 4. To see this, we can suppose
that say d(uv) ≥ 3. But now, if ab ∈ F(wx), by property (i) F(uv) can only contain ab or A2 \ ab,
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contradicting the assumption that d(uv) ≥ 3. Therefore d(wx) = 0, so d(uv) + d(wx) ≤ 4. Since K4

can be decomposed into 3 matchings, |F| = 2 +
∑

u,v∈A1
d(uv) ≤ 2 + 3 · 4 = 14, as required.

Now suppose t ≥ 3. By the case t = 2, for every 1 ≤ i ≤ t−1 there are at most 12 sets with 2 points
in each of Ai and At. Thus there are at most 12(t−1)+1 sets incident to At. By induction hypothesis
there are at most 3

(
2(t−1)

2

)
− 2(t− 1) sets within ∪t−1

i=1Ai, so in total we have at most 3
(
2t
2

)
− 2t. �

The heart of the proof of Theorem 1.1 is contained in the following theorem, which in the case
when F is not intersecting gives a stronger bound on its size. We define

b2(n) = 13 + max
{

7(n− 8),
(

n− 6
2

)}
, and

bt(n) = 3
(

2t

2

)
− 2t− 1 + max

{
3t(n− 4t),

(
n− 4t + 2

2

)}
for t ≥ 3.

Theorem 3.2 Suppose that F is a 4-uniform family on [n] with no singleton intersection. Let
A1, · · · , At be a maximum matching in F , and suppose t ≥ 2. Then |F| ≤ bt(n).

Proof. Let A = ∪t
i=1Ai and B = [n]\A. By maximality of t there are no sets of F contained in B.

The sets contained within A may be estimated by Lemma 3.1: there are at most 3
(
2t
2

)
− 2t of them.

The remaining sets intersect both A and B, and since there are no singleton intersections they have
two possible types: 2 points in some Ai and 2 in B or 3 points in some Ai and 1 in B.

Say that a pair xy in B has colour i if there is a pair ab in Ai such that abxy is a set of F . Note
that a pair may have more than one colour, or be uncoloured. Let M be the set of all pairs xy in B

which are coloured but do not intersect any other coloured pair. Thus M is a perfect matching on
some set D ⊂ B. Now if a pair xy has more than one colour there can be no set of F that intersects it
in one point: this would create a singleton intersection. In this case all sets in F meeting xy consist of
xy together with a pair in some Ai, so there are at most 6t such sets. On the other hand, if xy has a
unique colour i then all sets meeting it are contained in Ai ∪ {x, y}, so there are at most

(
6
4

)
− 1 = 14

such sets. Thus the number of sets of F meeting a coloured pair xy is at most max{6t, 14}. Setting
d = |D| = 2|M |, this gives at most max{3td, 7d} sets of F meeting D.

All other coloured pairs are contained in B\D. Let Gi be those of colour i and Ci be those vertices
contained in some pair of Gi. Note that Ci can be empty. The crucial observation of the proof is that
C1, · · · , Ct are disjoint (and so the same is true of G1, · · · , Gt). To see this, suppose to the contrary
that x ∈ Ci ∩ Cj . Then xy ∈ Gi and xz ∈ Gj for some y, z. If y 6= z then we would have a singleton
intersection in F . On the other hand, if y = z, we note that since xy /∈ M there is another coloured
pair P that intersects it. A colour of P is different from at least one of i and j, so again we have a
singleton intersection. Thus C1, · · · , Ct are disjoint.

Let C = ∪t
i=1Ci and E = B\(C ∪D). Any set in F meeting E has 1 point in E and 3 points in

some Ai, which must be uniquely specified to avoid a singleton intersection. Thus there are at most
4e such sets, where e = |E|. All other sets in F meet C, so are contained in Ai ∪ Ci for some i.
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Next we note that the sets in F within Ai∪Ci form a 2-intersecting family; for there are no singleton
intersections, and if Ai∪Ci contained two disjoint sets we could enlarge the matching A1, · · · , At. Let
ci = |Ci|, so that |Ai ∪ Ci| = ci + 4. Note that ci is either 0 or ≥ 3, as ci = 2 would correspond to a
coloured pair that does not intersect any other coloured pair, but by definition these pairs belong to D,
not C. By the complete intersection theorem, the number of sets within Ai∪Ci is at most f(ci), defined
to be

(
ci+2

2

)
for ci ≥ 5, 17 for ci = 4, 15 for ci = 3, 1 for ci = 0. Now given |C| = c =

∑t
i=1 ci, we claim

that
∑t

i=1 f(ci) ≤ f(c) + t − 1, with equality holding when ci = c for some i, and cj = 0 otherwise.
This follows from a variational argument, using the inequalities f(a + 1) + f(b− 1) ≥ f(a) + f(b) for
a ≥ b ≥ 4 and f(a + 3) + f(0) ≥ f(a) + f(3) for a ≥ 3, which are easy to verify. Excluding the sets
A1, · · · , At, we conclude that the number of sets in F meeting C is at most f(c)− 1.

Putting everything together we have |F| ≤ 3
(
2t
2

)
− 2t + max{3td, 7d} + 4e + f(c) − 1, where

n = 4t + c + d + e. For t ≥ 3 we can write |F| ≤ 3
(
2t
2

)
− 2t + 3t(n − 4t − c) + f(c) − 1. This is a

quadratic in c with positive coefficient of c2 for 5 ≤ c ≤ n− 4t, so in this range its maximum occurs at
c = 5 or c = n− 4t. Furthermore, it is easy to see that the value at c = 0 is larger than at c = 3, 4, 5
(and c = 2 is impossible as no ci equals 1 or 2). Therefore the overall maximum occurs at c = 0 or
c = n− 4t, which gives the stated bound. The bound for t = 2 follows in the same way, replacing 3td

by 7d in the upper bound for F . �

Proof of Theorem 1.1. Suppose that F is a 4-uniform family on [n] with no singleton intersection.
If F is intersecting then it is 2-intersecting, so we are done by the complete intersection theorem.
Otherwise, suppose the maximum matching has size t ≥ 2, so n ≥ 8. We have an upper bound on |F|
given in Theorem 3.2, and we claim that this is always less than

(
n−2

2

)
.

First we consider the case t = 2. When n = 8 we have
(
n−2

2

)
= 15 and b2(n) = 14; when

n = 9 we have
(
n−2

2

)
= 21 and b2(n) = 20. For n ≥ 10 we note that

(
n−2

2

)
−

(
n−1−2

2

)
= n − 3 and

b2(n) − b2(n − 1) ≤ max{7, n − 6} ≤ n − 3, where we use the inequality max{a, b} − max{a′, b′} ≤
max{a− a′, b− b′}. Therefore b2(n) <

(
n−2

2

)
for all n ≥ 8.

For general t, when n = 4t we have
(
n−2

2

)
− bt(4t) = (2t− 3)(t− 1) > 0. Also, for n > 4t we have(

n−2
2

)
−

(
n−1−2

2

)
= n− 3 and bt(n)− bt(n− 1) ≤ max{3t, n− 4t + 1} ≤ n− 3, so bt(n) <

(
n−2

2

)
for all

n ≥ 4t. �

4 Three lemmas

Here we prove some lemmas that will be used in the next section. Our first lemma concerns a
multicoloured version of our problem, in the sense of [12].

Lemma 4.1 Suppose F1, · · · ,Fc are k-uniform families on [n] so that there is no X ∈ Fi, Y ∈ Fj

with |X ∩ Y | = 1 for any i 6= j. Then
∑
|Fi| ≤ c

(
n

k−2

)
+

(
n
k

)
.

Proof. Let A be the family of sets that occur in more than one Fi and B the family of sets that occur
in exactly one Fi. Then A has no singleton intersection, so |A| ≤

(
n

k−2

)
by Theorem 1.3. Therefore
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∑
|Fi| ≤ c|A|+ |B| ≤ c

(
n

k−2

)
+

(
n
k

)
. �

Remark. By analogy with [14] one might expect that the bound can be improved to max{c
(

n
k−2

)
,
(
n
k

)
},

but we do not need such a bound here.

Next we have a lemma on matchings. The argument is similar to one given by Frankl [8] (Propo-
sition 11.6). Here also, it should be possible to replace the summation with a maximum.

Lemma 4.2 Suppose X and Y are disjoint sets with |X| = x, |Y | = y and F is a set system on
X ∪ Y such that |F ∩X| = s, |F ∩ Y | = t for every F ∈ F . If F contains no matching of size m then
|F| < m

((
x−1
s−1

)(
y
t

)
+

(
y−1
t−1

)(
x
s

))
.

Proof. We argue by induction on s, t, x, y. First we note that in the case x ≤ ms the number of possible
intersections of a set F with X is

(
x
s

)
≤ m

(
x−1
s−1

)
, so trivially |F| ≤

(
x
s

)(
y
t

)
< m

((
x−1
s−1

)(
y
t

)
+

(
y−1
t−1

)(
x
s

))
.

Similarly we are done when y ≤ mt. To complete the base of the induction, note that in the case
s = t = 1 the system F is a bipartite graph with no matching of size m, and it is easy to see (e.g. by
König’s theorem) that |F| < mmax{x, y} ≤ m(x + y).

For the general case, we use the compression method of Erdős, Ko and Rado [5]. Define arbitrary
linear orders <X on X and <Y on Y . Given a, b ∈ X a <X b we define the ab-shift Sab by Sab(F) =
{Sab(F ) : F ∈ F}, where Sab(F ) is equal to F ′ = F \ {b} ∪ {a} if F ′ /∈ F , but equal to F if F ′ ∈ F .
The same definition applies for a, b ∈ Y with a <Y b. Clearly |Sab(F)| = |F|. A well-known easy
property of the shift is that the maximum matching in Sab(F) is no larger than that in F . Iterating
these shifts will eventually produce a family which is invariant with respect to Sab, for any a, b ∈ X

or a, b ∈ Y . We can assume that F has this property.

Suppose, without loss of generality, that s > 1. Let a be the maximal element of X. Consider the
systems F0 = {F : a /∈ F ∈ F} and F1 = {F \ {a} : a ∈ F ∈ F} defined on X \ {a} ∪ Y . Since F0

does not have a matching of size m we have |F0| ≤ m
((

x−2
s−1

)(
y
t

)
+

(
y−1
t−1

)(
x−1

s

))
by induction. Also F1

contains no matching of size m. For suppose F1, · · · , Fm are disjoint sets in F1. Each has s− 1 points
in X, so we can find distinct points a1, · · · , am in X \ ∪m

i=1Fi. Since F is invariant with respect to
ab-shifts with a, b ∈ X it contains the sets Fi ∪ {ai}. However, these form a matching, so indeed F1

contains no matching of size m. Therefore |F1| ≤ m
((

x−2
s−2

)(
y
t

)
+

(
y−1
t−1

)(
x−1
s−1

))
by induction.

We conclude that |F| = |F0|+ |F1| ≤ m
((

x−1
s−1

)(
y
t

)
+

(
y−1
t−1

)(
x
s

))
. �

Finally, we give a simple optimisation lemma concerning sums of binomial coefficients.

Lemma 4.3 Consider a function f(z) =
∑m

j=1 cj

(
z+sj

tj

)
where cj ≥ 0 and sj , tj are non-negative

integers with sj ≥ tj − 1 for all j. For any positive integers x1, · · · , xn, writing x =
∑n

i=1 xi, we have∑n
i=1 f(xi) ≤ f(x) + (n− 1)f(0).

Proof. Note that
(
xi+1+sj

tj

)
+

(
xi′−1+sj

tj

)
−

((
xi+sj

tj

)
+

(
xi′+sj

tj

))
=

(xi+sj

tj−1

)
−

(xi′−1+sj

tj−1

)
≥ 0 if xi ≥ xi′−1.

So starting from any sequence x1, · · · , xn we can move to the sequence x, 0, · · · , 0 without decreasing
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the function
∑n

i=1 f(xi), and the final value gives the stated upper bound. �

5 A stability result

In this section we prove Theorem 1.2, which states: for any ε > 0 there is δ > 0 such that if F is
a k-uniform family on [n] with no singleton intersection and |F| ≥ (1 − δ)

(
n−2
k−2

)
, then there are two

points x, y so that all but at most εnk−2 sets of F contain both x and y.

Proof of Theorem 1.2. Suppose that F is a k-uniform family on [n] with no singleton intersection,
and |F| ≥ (1−δ)

(
n−2
k−2

)
. We can suppose in all estimates that δ is sufficiently small, and n is sufficiently

large (by making δ small). Let A1, · · · , At be a matching in F with t as large as possible. If t = 1 then
F is intersecting, so 2-intersecting. As we mentioned in the introduction, a result of Frankl implies
that there is a constant c(k) such that if F is 2-intersecting and |F| > c(k)nk−3 then there are two
points x, y contained in every set of F . Since |F| ≥ (1− δ)

(
n−2
k−2

)
> c(k)nk−3 for large n, we are done

in the case t = 1. Now suppose t ≥ 2. Let A = ∪t
i=1Ai, B = [n]\A. Note that all sets in F meet A,

and if they meet any Ai they meet it in at least 2 points.

Let F ′ ⊂ F be the family of sets meeting exactly one Ai, i.e.

F ′ = {F ∈ F : ∃1 ≤ i(F ) ≤ t, F ∩Ai(F ) 6= ∅, F ∩Aj = ∅ ∀j 6= i(F )}.

Let G = {F ∩ B : F ∈ F ′}. Say that G ∈ G has colour i if G = F ∩ B for some F that meets Ai.
(A set can have more than one colour.) For b ∈ B a ‘flower’ on b is a system {G1, · · · , Gk−2} ⊂ G, so
that Gi ∩Gj = {b} for every i 6= j. The key observation is that if there is a flower on b then there is
a unique i so that all sets in G containing b have colour i and no other colour. To see this first note
that all the sets in the flower must have the same colour (say i), and no other, to avoid a singleton
intersection. Now consider any G ∈ G that contains b. Then |G| ≤ k − 2 so there are at most k − 3
sets in the flower that intersect G in a point other than b. Therefore we can find 1 ≤ j ≤ k− 2 so that
Gj ∩G = b, and so to avoid a singleton intersection Gj and G cannot have two different colours, i.e.
both have only colour i.

Let Xi be the set of all b for which there is a flower of colour i on b. It follows from the above
observation that X1, · · · , Xt are pairwise disjoint. We also note for future reference that there are no
two disjoint sets of F contained in Ai∪Xi for any i; otherwise we could use them instead of Ai to find
a larger matching in F . Since there are no singleton intersections the sets of F contained in Ai ∪Xi

form a 2-intersecting family. Write X = ∪t
i=1Xi, x = |X|, xi = |Xi|, Y = B\X, y = |Y |.

Estimate of |F ′|

(1) First we count sets corresponding to those elements of G contained within X, so Xi for some
i. By Theorem 1.3 Ai ∪ Xi contains at most

(
xi+k
k−2

)
sets. (In fact, we have noted that these sets

form a 2-intersecting family, so we could even obtain a stronger bound from the complete intersection
theorem mentioned in the introduction, but this expression will be more convenient.)

(2) Next we count sets corresponding to J = {G : G ∈ G, G ⊂ Y }. Let J s = {G : G ∈ J , |G| = s},
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and partition J s = J s
1 ∪ J s

2 , where J s
1 contains those G with exactly one colour and J s

2 those with
more than one colour. Now J s

2 has no singleton intersection, or there would be corresponding sets in
F ′′ with singleton intersection, so |J s

2 | ≤
(

y
s−2

)
by Theorem 1.3. It follows that at most t

(
k
s

)(
y

s−2

)
sets

in F ′ correspond to sets of J s
2 .

Also, for each a ∈ Y , s ≥ 2 the link J s
1 (a) is a (s− 1)-uniform system on Y with no matching of

size k − 2. This is immediate from the definition of X, as if J s
1 (a) has a matching of size k − 2 then

there is a flower on a, i.e. a ∈ X. By Lemma 4.2 |J s
1 (a)| ≤ (k − 2)

(
y−1
s−2

)
. Therefore the number of

sets in F ′ corresponding to sets of J s
1 is at most

(
k
s

) ∑
a |J s

1 (a)| <
(
k
s

)
y(k − 2)

(
y−1
s−2

)
. (In fact we are

even overestimating by an extra factor of s corresponding to the different choices of a in a set of J s
1 .)

For s = 1 we clearly have |J 1
1 | ≤ y, corresponding to at most ky sets of F ′.

In total, the number of sets in F ′ corresponding to elements of J is at most

ky +
k−2∑
s=2

(
t

(
k

s

)(
y

s− 2

)
+

(
k

s

)
y(k − 2)

(
y − 1
s− 2

))
< ky + (t + ky)

(
y + k

k − 4

) k−2∑
s=2

(
k

s

)
< 2k(ky + t)

(
y + k

k − 4

)
.

(3) Finally, consider those sets corresponding to K, defined as those G ∈ G that meet both X and
Y . Such a G is contained in Xi∪Y for some i, and has colour i but no other colour. For 2 ≤ s ≤ k−2,
let Ks

i = {G : G ∈ K, |G| = s,G ⊂ Xi∪Y }. As in estimate (2), for each a ∈ Y , s ≥ 2 the link Ks
i (a) is a

(s−1)-uniform system with no matching of size k−2. Considering each possible intersection size with
Xi and Y separately, we apply Lemma 4.2 to get |Ks

i (a)| ≤
∑s−2

α=1(k−2)
((

xi−1
α−1

)(
y−1

s−α−1

)
+

(
y−2

s−α−2

)(
xi
α

))
.

Applying Lemma 4.3, we can bound the number of sets in F ′ corresponding to elements of K by

t∑
i=1

k−2∑
s=2

∑
a∈Y

(
k

s

)
|Ks

i (a)| =
k−2∑
s=2

(
k

s

) ∑
a∈Y

t∑
i=1

|Ks
i (a)|

≤
k−2∑
s=2

(
k

s

)
y

t∑
i=1

s−2∑
α=1

(k − 2)
((

xi

α− 1

)(
y

s− α− 1

)
+

(
y

s− α− 2

)(
xi

α

))

≤
k−2∑
s=2

(
k

s

)
y(k − 2)

s−2∑
α=1

(
x

α− 1

)(
y

s− α− 1

)
+

(
y

s− α− 2

)(
x

α

)

≤
k−2∑
s=2

(
k

s

)
y(k − 2) · 2

(
x + y

s− 2

)
< 2k+1ky

(
x + y + k

k − 4

)
.

Adding the estimates (1), (2) and (3) we have

|F ′| ≤
t∑

i=1

(
xi + k

k − 2

)
+ 2k(ky + t)

(
y + k

k − 4

)
+ 2k+1ky

(
x + y + k

k − 4

)
.

Estimate of |F\F ′|
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Suppose 2 ≤ α ≤ t and β = (β1, · · · , βα) with βj ≥ 2 and β∗ =
∑α

j=1 βi ≤ k are given. Let Hβ be
the collection of all sets H ⊂ ∪iAi such that the list |H ∩Ai|, 1 ≤ i ≤ t consists of β and t−α zeroes,
in some order. Then |Hβ | ≤ α!

(
t
α

) ∏α
j=1

(
k
βj

)
< 2k2

tα, where we crudely estimate that each product

term
(

k
βj

)
is at most 2k and there are at most k terms (as β∗ ≤ k).

We can obtain a matching of size t in Hβ as follows. For 1 ≤ i ≤ t let A1
i , · · · , Aα

i be disjoint
subsets of Ai with |Aj

i | = βj for 1 ≤ j ≤ α. Let Mγ = ∪α
j=1A

j
γ+j for 1 ≤ γ ≤ t where Aγ+j is

to be interpreted as Aγ+j−t for γ + j > t. Then M = {M1, · · · ,Mt} is a matching in Hβ . Let
Gγ = {F ∩ B : F ∩ ∪iAi = Mγ}. Then Gγ for 1 ≤ γ ≤ t are (k − β∗)-uniform systems satisfying the
hypothesis of Lemma 4.1, so have total size

t∑
γ=1

|Gγ | ≤ t

(
n− kt

k − β∗ − 2

)
+

(
n− kt

k − β∗

)
.

Now we average this estimate over all possible isomorphic choices of the matching M in Hβ. Let
m be the number of such matchings and m′ be the number of such matchings that contain some fixed
set M ∈ Hβ (this is independent of M). By counting pairs (M,M) where M is a maximum matching
containing a set M we see that mt = |Hβ|m′. Writing

Fβ = {F ∈ F : F ∩ ∪iAi ∈ Hβ},

we have (recalling that Fβ(M) denotes the link of Fβ from M)

|Fβ| =
∑

M∈Hβ

|Fβ(M)| =
∑

M∈Hβ

1
m′

∑
M3M

|Fβ(M)|

=
1
m′

∑
M

∑
M∈M

|Fβ(M)| ≤ m

m′

(
t

(
n− kt

k − β∗ − 2

)
+

(
n− kt

k − β∗

))
= |Hβ|

((
n− kt

k − β∗ − 2

)
+ t−1

(
n− kt

k − β∗

))
.

Since β∗ =
∑

j βj satisfies 2α ≤ β∗ ≤ k and α ≥ 2 we have

|F\F ′| ≤
∑
α,β

|Fβ| ≤
∑
α,β

2k2
tα

((
n− kt

k − β∗ − 2

)
+ t−1

(
n− kt

k − β∗

))
≤ 2k2

max
α

tα(nk−2α−2 + t−1nk−2α) ·
∑
α,β

1

< 23k2
nk−3,

where we crudely estimate that there are at most kk+1 < 22k2
ways to choose the numbers α, β1, · · · , βα.

Adding the estimates for |F ′| and |F\F ′| we obtain

|F| ≤
t∑

i=1

(
xi + k

k − 2

)
+ δ

(
n

k − 2

)
,
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for n sufficiently large. By the hypothesis of the theorem this gives
∑t

i=1

(
xi+k
k−2

)
≥ (1 − 2δ)

(
n−2
k−2

)
.

Suppose, without loss of generality, that x1 ≥ xi for all i.

Now some routine calculations imply that x1 > (1 − 8δ)n. For the convenience of the reader we
will give the details here, but the casual reader may skip to the last paragraph of the proof. Write
1/(r + 1) < x1/n ≤ 1/r for some natural number r. It follows easily from Lemma 4.3 and induction
that

∑t
i=1

(
xi+k
k−2

)
≤ r

(n/r+k
k−2

)
+ 1t>r(t− r)

(
k

k−2

)
. This is less than (1− 2δ)

(
n−2
k−2

)
if r ≥ 2 (since k ≥ 4)

so we have r = 1. Now Lemma 4.3 gives

t∑
i=1

(
xi + k

k − 2

)
≤

(
x1 + k

k − 2

)
+

(
x− x1 + k

k − 2

)
+ (t− 2)

(
k

k − 2

)
.

From the identity
(
a+b

c

)
=

∑
i

(
a
i

)(
b

c−i

)
we have(

x1 + k

k − 2

)
+

(
x− x1 + k

k − 2

)
≤

(
x + 2k

k − 2

)
− (x− x1 + k)

(
x1 + k

k − 3

)
,

so

(1− 3δ)
(

n− 2
k − 2

)
≤

(
x + 2k

k − 2

)
− (x− x1 + k)

(
x1 + k

k − 3

)
.

In particular (1 − 3δ)
(
n−2
k−2

)
≤

(
x+2k
k−2

)
, so x > (1 − 4δ)n. Also, since

(
x+2k
k−2

)
< (1 + δ)

(
n−2
k−2

)
, we must

have (x − x1 + k)
(
x1+k
k−3

)
< 4δ

(
n−2
k−2

)
. Now f(q) = (x − q + k)

(
q+k
k−3

)
is a concave function of q; to see

this, note that

f(q)2

f(q − 1)f(q + 1)
=

(q + 4)(q + k)(x− q + k)2

(q + 3)(q + k + 1)((x− q + k)2 − 1)
>

(q + 4)(q + k)
(q + 3)(q + k + 1)

> 1.

If x1 ≤ (1 − 8δ)n, since x1 ≥ n/2, it follows that f(x1) ≥ min{f(n/2), f((1 − 8δ)n)} > 4δ
(
n−2
k−2

)
,

contradiction. Therefore x1 > (1− 8δ)n, as claimed.

The number of sets of F not contained in A1∪X1 is at most
∑t

i=2

(
xi+k
k−2

)
+ δ

(
n

k−2

)
<

(
8δn+k
k−2

)
+(t−

2)
(

k
k−2

)
+ δ

(
n

k−2

)
< εnk−2, for small δ. Also, the sets of F contained in A1 ∪X1 form a 2-intersecting

family, and as in the first paragraph of the proof, it follows that there are two points x, y such that
every set in A1 ∪X1 contains both x and y. This completes the proof. �

Remarks.

1. The proof shows not only that there are at most εnk−2 sets that do not contain both x and y

but also that all such sets intersect a set A1 ∪X1 of size at most say εn.

2. A more careful analysis of the argument gives a new proof of Frankl’s result, and some numerical
experiments indicate that the smallest n for which the proof works is considerably smaller than his
value, perhaps n = k5 will do, compared with kΘ(k). We will not attempt to present these calculations
here, as the main goal should be to prove the result for all n.
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