Eigenvalues of Non-Regular Linear Quasirandom Hypergraphs

John Lenz *
University of Illinois at Chicago
lenz@math.uic.edu

Dhruv Mubayi ${ }^{\dagger}$
University of Illinois at Chicago
mubayi@uic.edu

June 2, 2016

Abstract

Chung, Graham, and Wilson proved that a graph is quasirandom if and only if there is a large gap between its first and second largest eigenvalue. Recently, the authors extended this characterization to coregular k-uniform hypergraphs with loops. However, for $k \geq 3$ no k-uniform hypergraph is coregular.

In this paper we remove the coregular requirement. Consequently, the characterization can be applied to k-uniform hypergraphs; for example it is used in [5] to show that a construction of a k-uniform hypergraph sequence has some quasirandom properties. The specific statement that we prove here is that if a k-uniform hypergraph satisfies the correct count of a specially defined four-cycle, then there is a gap between its first and second largest eigenvalue.

1 Introduction

The authors [4] recently proved a hypergraph generalization of the famous Chung-GrahamWilson [1] characterization of quasirandom graph sequences. However, the proof only applied to coregular hypergraph sequences. In this paper we prove this equivalence for all k-uniform hypergraph sequences, not just the coregular ones. This paper should be viewed as a companion to [4] and many details and definitions that appear in [4] are not repeated here.

Definition 1. Let Ω be a set and k an integer. A k-multiset S on Ω is a function $S: \Omega \rightarrow \mathbb{Z} \geq 0$ such that $\sum_{x \in \Omega} S(x)=k$. A k-uniform hypergraph with loops H consists of a vertex set $V(H)$ and an edge set $E(H)$ which is a collection of k-multisets on $V(H)$. A k-uniform hypergraph

[^0]with loops is coregular if there is a positive integer d such that for every $(k-1)$-multiset S on $V(H)$,
$$
|\{T \in E(H): \forall x \in V(H), S(x) \leq T(x)\}|=d
$$

A k-uniform hypergraph is a k-uniform hypergraph with loops H such that for every $S \in$ $E(H), \operatorname{im}(S)=\{0,1\}$. A graph is a 2-uniform hypergraph.

Remarks.

- Informally, in a k-uniform hypergraph with loops every edge has size exactly k but a vertex is allowed to be repeated inside of an edge.
- For $k=2$, a d-regular graph is a coregular 2-uniform hypergraph with loops, since each 1 -multiset (i.e. a vertex) is contained in exactly d edges. But for $k \geq 3$, a k-uniform hypergraph cannot be coregular. For example, if H is a 3 -uniform hypergraph then H is not coregular because for each vertex x, the multiset $\{x, x\}$ is not contained in any edge of H.

Let $k \geq 2$ be an integer and let π be a proper partition of k, by which we mean that π is an unordered list of at least two positive integers whose sum is k. For the partition π of k given by $k=k_{1}+\cdots+k_{t}$, we will abuse notation by saying that $\pi=k_{1}+\cdots+k_{t}$. If F and G are k-uniform hypergraphs with loops, a labeled copy of F in H is an edge-preserving injection $V(F) \rightarrow V(H)$, i.e. an injection $\alpha: V(F) \rightarrow V(H)$ such that if E is an edge of F, then $\{\alpha(x): x \in E\}$ is an edge of H. The following is our main theorem.

Theorem 2. Let $0<p<1$ be a fixed constant and let $\mathcal{H}=\left\{H_{n}\right\}_{n \rightarrow \infty}$ be a sequence of k-uniform hypergraphs with loops such that $\left|V\left(H_{n}\right)\right|=n$ and $\left|E\left(H_{n}\right)\right| \geq p\binom{n}{k}$. Let $\pi=$ $k_{1}+\cdots+k_{t}$ be a proper partition of k and let $\ell \geq 1$. Assume that \mathcal{H} satisfies the property

- Cycle $e_{4 \ell}[\pi]:$ the number of labeled copies of $C_{\pi, 4 \ell}$ in H_{n} is at most $p^{\left|E\left(C_{\pi, 4 \ell}\right)\right|} n^{\left|V\left(C_{\pi, 4 \ell}\right)\right|}+$ $o\left(n^{\left|V\left(C_{\pi, 4 \ell}\right)\right|}\right)$, where $C_{\pi, 4 \ell}$ is the hypergraph cycle of type π and length 4ℓ defined in [4, Section 2].

Then \mathcal{H} satisfies the property

- Eig[π]: $\lambda_{1, \pi}\left(H_{n}\right)=p n^{k / 2}+o\left(n^{k / 2}\right)$ and $\lambda_{2, \pi}\left(H_{n}\right)=o\left(n^{k / 2}\right)$, where $\lambda_{1, \pi}\left(H_{n}\right)$ and $\lambda_{2, \pi}\left(H_{n}\right)$ are the first and second largest eigenvalues of H_{n} with respect to π, defined in Section 2.

When Theorem 2 is combined with [4, Section 2], we obtain the following theorem which generalizes many parts of [1] to hypergraphs.

Theorem 3. Let $0<p<1$ be a fixed constant and let $\mathcal{H}=\left\{H_{n}\right\}_{n \rightarrow \infty}$ be a sequence of k-uniform hypergraphs with loops such that $\left|V\left(H_{n}\right)\right|=n$ and $\left|E\left(H_{n}\right)\right| \geq p\binom{n}{k}+o\left(n^{k}\right)$. Let $\pi=k_{1}+\cdots+k_{t}$ be a proper partition of k. The following properties are equivalent:

- Eig $[\pi]: \lambda_{1, \pi}\left(H_{n}\right)=p n^{k / 2}+o\left(n^{k / 2}\right)$ and $\lambda_{2, \pi}\left(H_{n}\right)=o\left(n^{k / 2}\right)$, where $\lambda_{1, \pi}\left(H_{n}\right)$ and $\lambda_{2, \pi}\left(H_{n}\right)$.
- Expand $[\pi]$: For all $S_{i} \subseteq\binom{V\left(H_{n}\right)}{k_{i}}$ where $1 \leq i \leq t$,

$$
e\left(S_{1}, \ldots, S_{t}\right)=p \prod_{i=1}^{t}\left|S_{i}\right|+o\left(n^{k}\right)
$$

where $e\left(S_{1}, \ldots, S_{t}\right)$ is the number of tuples $\left(s_{1}, \ldots, s_{t}\right)$ such that $s_{1} \cup \cdots \cup s_{t}$ is a hyperedge and $s_{i} \in S_{i}$.

- Count/ π-linear]: If F is an f-vertex, m-edge, k-uniform, π-linear hypergraph, then the number of labeled copies of F in H_{n} is $p^{m} n^{f}+o\left(n^{f}\right)$. The definition of π-linear appears in [4, Section 1].
- Cycle $[\pi]$: The number of labeled copies of $C_{\pi, 4}$ in H_{n} is at most $p^{\left|E\left(C_{\pi, 4}\right)\right|} n^{\left|V\left(C_{\pi, 4}\right)\right|}+$ $o\left(n^{\left|V\left(C_{\pi, 4}\right)\right|}\right)$.
- Cycle $e_{4 \ell}[\pi]$: the number of labeled copies of $C_{\pi, 4 \ell}$ in H_{n} is at most $p^{\left|E\left(C_{\pi, 4 \ell}\right)\right|} n^{\left|V\left(C_{\pi, 4 \ell}\right)\right|}+$ $o\left(n^{\left|V\left(C_{\pi, 4 \ell}\right)\right|}\right)$.

The remainder of this paper is organized as follows. Section 2 contains the definitions of eigenvalues we will require from [4] . Section 3 contains definitions about linear maps and also a statement of the main technical contribution of this note. Section 4 contains the algebraic properties required for the proof of Theorem 2. Section 5 contains a crucial lemma from [4] that relates cycles counts to the trace of higher order matrices, and finally Section 6 contains the proof of Theorem 2.

2 Hypergraph Eigenvalues

In this section, we give the definitions of the first and second largest eigenvalues of a hypergraph. These definitions are identical to those given in [4].

Definition 4. (Friedman and Wigderson [2, 3]) Let H be a k-uniform hypergraph with loops. The adjacency map of H is the symmetric k-linear map $\tau_{H}: W^{k} \rightarrow \mathbb{R}$ defined as follows, where W is the vector space over \mathbb{R} of dimension $|V(H)|$. First, for all $v_{1}, \ldots, v_{k} \in$ $V(H)$, let

$$
\tau_{H}\left(e_{v_{1}}, \ldots, e_{v_{k}}\right)= \begin{cases}1 & \left\{v_{1}, \ldots, v_{k}\right\} \in E(H) \\ 0 & \text { otherwise }\end{cases}
$$

where e_{v} denotes the indicator vector of the vertex v, that is the vector which has a one in coordinate v and zero in all other coordinates. We have defined the value of τ_{H} when the inputs are standard basis vectors of W. Extend τ_{H} to all the domain linearly.

Definition 5. Let W be a finite dimensional vector space over \mathbb{R}, let $\sigma: W^{k} \rightarrow \mathbb{R}$ be any k-linear function, and let $\vec{\pi}$ be a proper ordered partition of k, so $\vec{\pi}=\left(k_{1}, \ldots, k_{t}\right)$ for some integers k_{1}, \ldots, k_{t} with $t \geq 2$. Now define a t-linear function $\sigma_{\vec{\pi}}: W^{\otimes k_{1}} \times \cdots \times W^{\otimes k_{t}} \rightarrow \mathbb{R}$ by first defining $\sigma_{\vec{\pi}}$ when the inputs are basis vectors of $W^{\otimes k_{i}}$ and then extending linearly. For each $i, B_{i}=\left\{b_{i, 1} \otimes \cdots \otimes b_{i, k_{i}}: b_{i, j}\right.$ is a standard basis vector of $\left.W\right\}$ is a basis of $W^{\otimes k_{i}}$, so for each i, pick $b_{i, 1} \otimes \cdots \otimes b_{i, k_{i}} \in B_{i}$ and define

$$
\sigma_{\vec{\pi}}\left(b_{1,1} \otimes \cdots \otimes b_{1, k_{1}}, \ldots, b_{t, 1} \otimes \cdots \otimes b_{t, k_{t}}\right)=\sigma\left(b_{1,1}, \ldots, b_{1, k_{1}}, \ldots, b_{t, 1}, \ldots, b_{t, k_{t}}\right) .
$$

Now extend $\sigma_{\vec{\pi}}$ linearly to all of the domain. $\sigma_{\vec{\pi}}$ will be t-linear since σ is k-linear.
Let us give a simple example to illustrate this definition.
Example. Suppose for simplicity $W \cong \mathbb{R}^{n}$ and let e_{1}, \ldots, e_{n} be the standard basis vectors for W. Let $k=3, t=2, \vec{\pi}=(2,1)$ and $\sigma: W^{3} \rightarrow \mathbb{R}$ be a map representing an n-vertex 3-uniform hypergraph H. Then $\sigma_{\vec{\pi}}:(W \otimes W) \times W \rightarrow \mathbb{R}$ is defined by $\sigma_{\vec{\pi}}\left(e_{i} \otimes e_{j}, e_{k}\right)=\sigma\left(e_{i}, e_{j}, e_{k}\right)$ for every $(i, j, k) \in[n]^{3}$. Since the set $\left\{\left(e_{i} \otimes e_{j}, e_{k}\right):(i, j, k) \in[n]^{3}\right\}$ is a basis for $(W \otimes W) \times W$, we may use linearity to define $\sigma_{\vec{\pi}}(v)$ for all $v \in(W \otimes W) \times W$.

Definition 6. Let W_{1}, \ldots, W_{k} be finite dimensional vector spaces over \mathbb{R}, let $\|\cdot\|$ denote the Euclidean 2-norm on W_{i}, and let $\phi: W_{1} \times \cdots \times W_{k} \rightarrow \mathbb{R}$ be a k-linear map. The spectral norm of ϕ is

$$
\|\phi\|=\sup _{\substack{x_{i} \in W_{i} \\\left\|x_{i}\right\|=1}}\left|\phi\left(x_{1}, \ldots, x_{k}\right)\right| .
$$

Definition 7. Let H be an n vertex k-uniform hypergraph with loops, $W \cong \mathbb{R}^{n}, \tau=\tau_{H}$ be the (k-linear) adjacency map of H and $J: W^{k} \rightarrow \mathbb{R}$ be the k-linear map defined by $J\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)=1$ whenever $e_{i_{1}}, \ldots, e_{i_{k}}$ are any standard basis vectors of W. Let π be any (unordered) partition of k and let $\vec{\pi}$ be any ordering of π. The largest and second largest eigenvalues of H with respect to π, denoted $\lambda_{1, \pi}(H)$ and $\lambda_{2, \pi}(H)$, are defined as

$$
\lambda_{1, \pi}(H):=\left\|\tau_{\vec{\pi}}\right\| \quad \text { and } \quad \lambda_{2, \pi}(H):=\left\|\tau_{\vec{\pi}}-\frac{k!|E(H)|}{n^{k}} J_{\vec{\pi}}\right\| .
$$

3 Eigenvalues and Linear Maps

In this section we prove the main algebraic tool needed for the proof of Theorem 2, which extends to k-uniform hypergraphs the fact that in a graph sequence with density p and $\lambda_{2}(G)=o\left(\lambda_{1}(G)\right)$, the distance between the all-ones vector and the eigenvector corresponding to the largest eigenvalue is $o(1)$. We need several definitions first.

Definition 8. Let V_{1}, \ldots, V_{t} be finite dimensional vector spaces over \mathbb{R} and let $\phi, \psi: V_{1} \times$ $\cdots \times V_{t} \rightarrow \mathbb{R}$ be t-linear maps. The product of ϕ and ψ, written $\phi * \psi$, is a $(t-1)$-linear
map defined as follows. Let u_{1}, \ldots, u_{t-1} be vectors where $u_{i} \in V_{i}$. Let $\left\{b_{1}, \ldots, b_{\operatorname{dim}\left(V_{t}\right)}\right\}$ be any orthonormal basis of V_{t}.

$$
\begin{gathered}
\phi * \psi:\left(V_{1} \otimes V_{1}\right) \times\left(V_{2} \otimes V_{2}\right) \times \cdots \times\left(V_{t-1} \otimes V_{t-1}\right) \rightarrow \mathbb{R} \\
\phi * \psi\left(u_{1} \otimes v_{1}, \ldots, u_{t-1} \otimes v_{t-1}\right):=\sum_{j=1}^{\operatorname{dim}\left(V_{t}\right)} \phi\left(u_{1}, \ldots, u_{t-1}, b_{j}\right) \psi\left(v_{1}, \ldots, v_{t-1}, b_{j}\right)
\end{gathered}
$$

Extend the map $\phi * \psi$ linearly to all of the domain to produce a $(t-1)$-linear map.
Lemma 13 shows that the maps are well defined: the map is the same for any choice of orthonormal basis by the linearity of ϕ and ψ.

Definition 9. Let V_{1}, \ldots, V_{t} be finite dimensional vector spaces over \mathbb{R}, $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map and s be an integer $0 \leq s \leq t-1$. Define

$$
\phi^{2^{s}}: V_{1}^{\otimes 2^{s}} \times \cdots \times V_{t-s}^{\otimes 2^{s}} \rightarrow \mathbb{R} \quad \text { where } \quad \phi^{2^{0}}:=\phi \quad \text { and } \quad \phi^{2^{s}}:=\phi^{2^{s-1}} * \phi^{2^{s-1}}
$$

Definition 10. Let V_{1}, \ldots, V_{t} be finite dimensional vector spaces over \mathbb{R} and let $\phi: V_{1} \times$ $\cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map and define $A\left[\phi^{2^{t-1}}\right]$ to be the following square matrix/bilinear map. Let $u_{1}, \ldots, u_{2^{t-2}}, v_{1}, \ldots, v_{2^{t-2}}$ be vectors where $u_{i}, v_{i} \in V_{1}$.

$$
\begin{gathered}
A\left[\phi^{2^{t-1}}\right]: V_{1}^{\otimes 2^{t-2}} \times V_{1}^{\otimes 2^{t-2}} \rightarrow \mathbb{R} \\
A\left[\phi^{2 t-1}\right]\left(u_{1} \otimes \cdots \otimes u_{2^{t-2}}, v_{1} \otimes \ldots v_{2^{t-2}}\right):=\phi^{2^{t-1}}\left(u_{1} \otimes v_{1} \otimes u_{2} \otimes v_{2} \otimes \cdots \otimes u_{2^{t-2}} \otimes v_{2^{t-2}}\right) .
\end{gathered}
$$

Extend the map linearly to the entire domain to produce a bilinear map.
Lemma 16 below proves that $A\left[\phi^{2^{t-1}}\right]$ is a square symmetric real valued matrix. The following is the main algebraic result required for the proof of Theorem 2.
Proposition 11. Let $\left\{\psi_{r}\right\}_{r \rightarrow \infty}$ be a sequence of symmetric k-linear maps, where $\psi_{r}: V_{r}^{k} \rightarrow$ \mathbb{R}, V_{r} is a vector space over \mathbb{R} of finite dimension, and $\operatorname{dim}\left(V_{r}\right) \rightarrow \infty$ as $r \rightarrow \infty$. Let $\hat{1}$ denote the all-ones vector in V_{r} scaled to unit length and let $J: V_{r}^{k} \rightarrow \mathbb{R}$ be the k-linear allones map. Let π be a proper (unordered) partition of k, and assume that for every ordering $\vec{\pi}$ of π,

$$
\begin{aligned}
& \lambda_{1}\left(A\left[\psi_{\vec{\pi}}^{2^{t-1}}\right]\right)=(1+o(1)) \psi(\hat{1}, \ldots, \hat{1})^{2^{t-1}}, \\
& \lambda_{2}\left(A\left[\psi_{\vec{\pi}}^{2^{t-1}}\right]\right)=o\left(\lambda_{1}\left(A\left[\psi_{\vec{\pi}}^{2^{t-1}}\right]\right)\right) .
\end{aligned}
$$

Then for every ordering $\vec{\pi}$ of π,

$$
\left\|\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right\|=o(\psi(\hat{1}, \ldots, \hat{1})),
$$

where $q=\operatorname{dim}\left(V_{r}\right)^{-k / 2} \psi(\hat{1}, \ldots, \hat{1})$.
For graphs, $A\left[\tau^{2}\right]$ is the adjacency matrix squared so Proposition 11 states that $\| A-$ $\frac{2|E(G)|}{n^{2}} J \|=o\left(\sqrt{\lambda_{1}\left(A^{2}\right)}\right)$, exactly what is proved by Chung, Graham, and Wilson (see the bottom of page 350 in [1]). The proof of Proposition 11 appears in the next section.

4 Algebraic properties of multilinear maps

In this section we prove several algebraic facts about multilinear maps, including Proposition 11. Throughout this section, V and V_{i} are finite dimensional vector spaces over \mathbb{R}. Also in this section we make no distinction between bilinear maps and matrices, using whichever formulation is convenient. We will use a symbol • to denote the input to a linear map; for example, if $\phi: V_{1} \times V_{2} \times V_{3} \rightarrow \mathbb{R}$ is a trilinear map and $x_{1} \in V_{1}$ and $x_{2} \in V_{2}$, then by the expression $\phi\left(x_{1}, x_{2}, \cdot\right)$ we mean the linear map from V_{3} to \mathbb{R} which takes a vector $x_{3} \in V_{3}$ to $\phi\left(x_{1}, x_{2}, x_{3}\right)$. Lastly, we use several basic facts about tensors, all of which follow from the fact that for finite dimensional spaces, the tensor product of V and W is the vector space over \mathbb{R} of dimension $\operatorname{dim}(V) \operatorname{dim}(W)$. For example, if x and y are unit length, then $x \otimes y$ is also unit length.

4.1 Preliminary Lemmas

Lemma 12. Let $\phi: V \rightarrow \mathbb{R}$ be a linear map. There exists a vector v such that $\phi=\langle v, \cdot\rangle$.
Proof. v is the vector dual to ϕ in the dual of the vector space V. Alternatively, let the i th coordinate of v be $\phi\left(e_{i}\right)$, since then for any x,

$$
\phi(x)=\phi\left(\sum_{i=1}^{\operatorname{dim}(V)}\left\langle x, e_{i}\right\rangle e_{i}\right)=\sum_{i=1}^{\operatorname{dim}(V)}\left\langle x, e_{i}\right\rangle \phi\left(e_{i}\right)=\sum_{i=1}^{\operatorname{dim}(V)}\left\langle x, e_{i}\right\rangle\left\langle v, e_{i}\right\rangle=\langle x, v\rangle .
$$

Lemma 13. Let $\phi, \psi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be t-linear maps. The maps $\phi * \psi$ and $A\left[\phi^{2^{t-1}}\right]$ are well defined. Also, $\phi * \psi$ is basis independent in the sense that the definition of $\phi * \psi$ is independent of the choice of orthonormal basis b_{1}, \ldots, b_{t} of V_{t}.

Proof. First, extending the definitions of $\phi * \psi$ and $A\left[\phi^{2^{t-1}}\right]$ linearly to the entire domain (non-simple tensors) is well defined, since ϕ and ψ are linear. That is, write each u_{i} and v_{i} in terms of some orthonormal basis and expand each tensor in $V_{i} \otimes V_{i}$ also in terms of this basis. The linearity of ϕ and ψ then shows that the definitions of $\phi * \psi$ and $A\left[\phi^{2^{t-1}}\right]$ are well defined and linear. To see basis independence of $\phi * \psi$, by Lemma 12 the linear map $\phi\left(u_{1}, \ldots, u_{t-1}, \cdot\right): V_{t} \rightarrow \mathbb{R}$ equals $\left\langle u^{\prime}, \cdot\right\rangle$ for some vector u^{\prime}. Similarly, $\psi\left(v_{1}, \ldots, v_{t}, \cdot\right)$ equals $\left\langle v^{\prime}, \cdot\right\rangle$ for some vector v^{\prime}. Then

$$
(\phi * \psi)\left(u_{1} \otimes v_{1}, \ldots, u_{t-1} \otimes v_{t-1}\right)=\sum_{i=1}^{\operatorname{dim}\left(V_{t}\right)}\left\langle u^{\prime}, b_{i}\right\rangle\left\langle v^{\prime}, b_{i}\right\rangle=\left\langle u^{\prime}, v^{\prime}\right\rangle .
$$

The last equality is valid for any orthonormal basis, since the dot product of u^{\prime} and v^{\prime} sums the product of the i th coordinate of u^{\prime} in the basis $\left\{b_{1}, \ldots, b_{\operatorname{dim}\left(V_{t}\right)}\right\}$ with the i th coordinate of v^{\prime} in the basis $\left\{b_{1}, \ldots, b_{\operatorname{dim}\left(V_{t}\right)}\right\}$.

Definition 14. For $s \geq 0$ and V a finite dimensional vector space over \mathbb{R}, define the vector space isomorphism $\Gamma_{V, s}: V^{\otimes 2^{s}} \rightarrow V^{\otimes 2^{s}}$ as follows. If $s=0$, define $\Gamma_{V, 0}$ to be the identity map. If $s \geq 1$, let $\left\{b_{1}, \ldots, b_{\operatorname{dim}(V)}\right\}$ be any orthonormal basis of V and define for all $\left(i_{1}, \ldots, i_{2^{s-1}}, j_{1}, \ldots, j_{2^{s-1}}\right) \in[\operatorname{dim}(V)]^{2^{s}}$,

$$
\begin{equation*}
\Gamma_{V, s}\left(b_{i_{1}} \otimes b_{j_{1}} \otimes \cdots \otimes b_{i_{2^{s-1}}} \otimes b_{j_{2^{s-1}}}\right)=b_{j_{1}} \otimes b_{i_{1}} \otimes \cdots \otimes b_{j_{2^{s-1}}} \otimes b_{i_{2^{s-1}}} \tag{1}
\end{equation*}
$$

Extend $\Gamma_{V, s}$ linearly to all of $V^{\otimes 2^{s}}$.
Remarks. $\Gamma_{V, s}$ is a vector space isomorphism since it restricts to a bijection of an orthonormal basis to itself. Also, it is easy to see that $\Gamma_{V, s}$ is well defined and independent of the choice of orthonormal basis, since each b_{i} can be written as a linear combination of an orthonormal basis $\left\{b_{1}^{\prime}, \ldots, b_{\operatorname{dim}(V)}^{\prime}\right\}$ and (1) can be expanded using linearity. For notational convenience, we will usually drop the subscript V and write Γ_{s} for $\Gamma_{V, s}$.

Lemma 15. Let $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map, let $0 \leq s \leq t-1$, and let $x_{1} \in V_{1}^{\otimes 2^{s}}, \ldots, x_{t-s} \in V_{t-s}^{\otimes 2^{s}}$. Then

$$
\phi^{2^{s}}\left(x_{1}, \ldots, x_{t-s}\right)=\phi^{2^{s}}\left(\Gamma_{s}\left(x_{1}\right), \ldots, \Gamma_{s}\left(x_{t-s}\right)\right)
$$

Proof. By induction on s. The base case is $s=0$ where Γ_{0} is the identity map. Expand the definition of $\phi^{2^{s+1}}$ and use induction to obtain

$$
\begin{array}{r}
\phi^{2^{s+1}}\left(x_{1} \otimes y_{1}, \ldots, x_{t-s-1} \otimes y_{t-s-1}\right)=\sum_{j=1}^{\operatorname{dim}\left(V_{t-s}^{\otimes 2^{s}}\right)} \phi^{2^{s}}\left(x_{1}, \ldots, x_{t-s-1}, b_{j}\right) \phi^{2^{s}}\left(y_{1}, \ldots, y_{t-s-1}, b_{j}\right) \\
=\sum_{j=1}^{\operatorname{dim}\left(V_{t-s}^{\otimes 2^{s}}\right)} \phi^{2^{s}}\left(\Gamma_{s}\left(x_{1}\right), \ldots, \Gamma_{s}\left(x_{t-s-1}\right), \Gamma_{s}\left(b_{j}\right)\right) \phi^{2^{s}}\left(\Gamma_{s}\left(y_{1}\right), \ldots, \Gamma_{s}\left(y_{t-s-1}\right), \Gamma_{s}\left(b_{j}\right)\right) .
\end{array}
$$

But since Γ_{s} is a vector space isomorphism, $\left\{\Gamma_{s}\left(b_{1}\right), \ldots, \Gamma_{s}\left(b_{\operatorname{dim}\left(V_{t-s}^{\left.\otimes 2^{s}\right)}\right.}\right)\right\}$ is an orthonormal basis of $V_{t-s}^{\otimes 2^{s}}$. Thus Lemma 13 shows that

$$
\begin{gathered}
\sum_{j=1}^{\operatorname{dim}\left(V_{t-s}^{\otimes 2^{s}}\right)} \phi^{2^{s}}\left(\Gamma_{s}\left(x_{1}\right), \ldots, \Gamma_{s}\left(x_{t-s-1}\right), \Gamma_{s}\left(b_{j}\right)\right) \phi^{2^{s}}\left(\Gamma_{s}\left(y_{1}\right), \ldots, \Gamma_{s}\left(y_{t-s-1}\right), \Gamma_{s}\left(b_{j}\right)\right) \\
\quad=\phi^{2^{s+1}}\left(\Gamma_{s}\left(x_{1}\right) \otimes \Gamma_{s}\left(y_{1}\right), \ldots, \Gamma_{s}\left(x_{t-s-1}\right) \otimes \Gamma_{s}\left(y_{t-s-1}\right)\right)
\end{gathered}
$$

Finally, $\Gamma_{s}\left(x_{i}\right) \otimes \Gamma_{s}\left(y_{i}\right)=\Gamma_{s+1}\left(x_{i} \otimes y_{i}\right)$ (write x_{i} and y_{i} as linear combinations, expand $\Gamma_{s+1}\left(x_{i} \otimes y_{i}\right)$ using linearity, and apply (1)). Thus $\phi^{2^{s+1}}\left(x_{1} \otimes y_{1}, \ldots, x_{t-s-1} \otimes y_{t-s-1}\right)=$ $\phi^{2^{s+1}}\left(\Gamma_{s+1}\left(x_{1} \otimes y_{1}\right), \ldots, \Gamma_{s+1}\left(x_{t-s-1} \otimes y_{t-s-1}\right)\right)$, completing the proof.

Lemma 16. Let V_{1}, \ldots, V_{t} be finite dimensional vector spaces over \mathbb{R}. If $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ is a t-linear map, then $A\left[\phi^{2^{t-1}}\right]$ is a square symmetric real valued matrix.

Proof. Let $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map. $A\left[\phi^{2^{t-1}}\right]$ is a bilinear map from $V_{1}^{\otimes 2^{t-2}} \times V_{1}^{\otimes 2^{t-2}} \rightarrow \mathbb{R}$ and so is a square matrix of dimension $\operatorname{dim}\left(V_{1}\right)^{2^{t-2}}$. Lemma 15 shows that $A\left[\phi^{2^{t-1}}\right]$ is a symmetric matrix, since

$$
\begin{aligned}
A\left[\phi^{2^{t-1}}\right]\left(x_{1} \otimes \cdots \otimes x_{2^{t-2}}, y_{1} \otimes \cdots \otimes y_{2^{t-2}}\right) & =\phi^{2^{t-1}}\left(x_{1} \otimes y_{1} \otimes \cdots \otimes x_{2^{t-2}} \otimes y_{2^{t-2}}\right) \\
& =\phi^{2^{t-1}}\left(\Gamma\left(x_{1} \otimes y_{1} \otimes \cdots \otimes x_{2^{t-2}} \otimes y_{2^{t-2}}\right)\right) \\
& =\phi^{2^{t-1}}\left(y_{1} \otimes x_{1} \otimes \cdots \otimes y_{2^{t-2}} \otimes x_{2^{t-2}}\right) \\
& =A\left[\phi^{2^{t-1}}\right]\left(y_{1} \otimes \cdots \otimes y_{2^{t-2}}, x_{1} \otimes \cdots \otimes x_{2^{t-2}}\right) .
\end{aligned}
$$

The above equation is valid for all $x_{i}, y_{i} \in V_{1}$, in particular for all basis elements of V_{1} which implies that $A\left[\phi^{2^{t-1}}\right](w, z)=A\left[\phi^{2^{t-1}}\right](z, w)$ for all basis vectors w, z of $V_{1}^{\otimes 2^{t-2}}$. Thus $A\left[\phi^{2^{t-1}}\right]$ is a square symmetric real-valued matrix.

Lemma 17. Let $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map and let $x_{1} \in V_{1}, \ldots, x_{t} \in V_{t}$ be unit length vectors. Then

$$
\left|\phi\left(x_{1}, \ldots, x_{t}\right)\right|^{2} \leq\left|\phi^{2}\left(x_{1} \otimes x_{1}, \ldots, x_{t-1} \otimes x_{t-1}\right)\right|
$$

Proof. Consider the linear map $\phi\left(x_{1}, \ldots, x_{t-1}, \cdot\right)$ which is a linear map from V_{t} to \mathbb{R}. By Lemma 12, there exists a vector $w \in V_{t}$ such that $\phi\left(x_{1}, \ldots, x_{t-1}, \cdot\right)=\langle w, \cdot\rangle$. Now expand out the definition of ϕ^{2} :

$$
\phi^{2}\left(x_{1} \otimes x_{1}, \ldots, x_{t-1} \otimes x_{t-1}\right)=\sum_{j=1}^{\operatorname{dim}\left(V_{t}\right)}\left|\phi\left(x_{1}, \ldots, x_{t-1}, b_{j}\right)\right|^{2}=\sum_{j=1}^{\operatorname{dim}\left(V_{t}\right)}\left|\left\langle w, b_{j}\right\rangle\right|^{2}=\langle w, w\rangle
$$

where the last equality is because $\left\{b_{j}\right\}$ is an orthonormal basis of V_{t}. Since $\|w\|=\sqrt{\langle w, w\rangle}$,

$$
\left|\phi^{2}\left(x_{1} \otimes x_{1}, \ldots, x_{t-1} \otimes x_{t-1}\right)\right|=|\langle w, w\rangle|=\left|\left\langle w, \frac{w}{\|w\|}\right\rangle\right|^{2} .
$$

But since x_{t} is unit length and $\langle w, \cdot\rangle$ is maximized over the unit ball at vectors parallel to w (so maximized at $w /\|w\|$), $\left|\left\langle w, \frac{w}{\|w\|}\right\rangle\right| \geq\left|\left\langle w, x_{t}\right\rangle\right|$. Thus

$$
\left|\phi^{2}\left(x_{1} \otimes x_{1}, \ldots, x_{t-1} \otimes x_{t-1}\right)\right|=\left|\left\langle w, \frac{w}{\|w\|}\right\rangle\right|^{2} \geq\left|\left\langle w, x_{t}\right\rangle\right|^{2}=\left|\phi\left(x_{1}, \ldots, x_{t}\right)\right|^{2} .
$$

The last equality used the definition of w, that $\phi\left(x_{1}, \ldots, x_{t-1}, \cdot\right)=\langle w, \cdot\rangle$.
Lemma 18. Let $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map and let $x_{1} \in V_{1}, \ldots, x_{t} \in V_{t}$ be unit length vectors. Then for $0 \leq s \leq t-1$,

$$
\left|\phi\left(x_{1}, \ldots, x_{t}\right)\right|^{2^{s}} \leq|\phi^{2^{s}}(\underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{s}}, \ldots, \underbrace{x_{t-s} \otimes \cdots \otimes x_{t-s}}_{2^{s}})|
$$

which implies that

$$
\left|\phi\left(x_{1}, \ldots, x_{t}\right)\right|^{2^{t-1}} \leq|A\left[\phi^{2^{t-1}}\right](\underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-2}}, \underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-2}})| .
$$

Proof. By induction on s. The base case is $s=0$ where both sides are equal and the induction step follows from Lemma 17. By definition of $A\left[\phi^{2^{t-1}}\right]$,

$$
|A\left[\phi^{2^{t-1}}\right](\underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-2}}, \underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-2}})|=|\phi^{2^{t-1}}(\underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-1}})|,
$$

completing the proof.
Lemma 19. Let V_{1}, \ldots, V_{t} be vector spaces over \mathbb{R} and let $\phi: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be a t-linear map. Then $\|\phi\|^{2 t-1} \leq \lambda_{1}\left(A\left[\phi^{2^{t-1}}\right]\right)$.

Proof. Pick x_{1}, \ldots, x_{t} unit length vectors to maximize ϕ, so $\phi\left(x_{1}, \ldots, x_{t}\right)=\|\phi\|$. Then Lemma 18 shows that

$$
\|\phi\|^{2^{t-1}}=\left|\phi\left(x_{1}, \ldots, x_{t}\right)\right|^{2^{t-1}} \leq|A\left[\phi^{2^{t-1}}\right](\underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-2}}, \underbrace{x_{1} \otimes \cdots \otimes x_{1}}_{2^{t-2}})|
$$

Since $x_{1} \otimes \cdots \otimes x_{1}$ is unit length, the above expression is upper bounded by the spectral norm of $A\left[\phi^{2^{t-1}}\right]$.

Lemma 20. Let $\left\{M_{r}\right\}_{r \rightarrow \infty}$ be a sequence of square symmetric real-valued matrices with dimension going to infinity where $\lambda_{2}\left(M_{r}\right)=o\left(\lambda_{1}\left(M_{r}\right)\right)$. Let u_{r} be a unit length eigenvector corresponding to the largest eigenvalue in absolute value of M_{r}. If $\left\{x_{r}\right\}$ is a sequence of unit length vectors such that $\left|x_{r}^{T} M_{r} x_{r}\right|=(1+o(1)) \lambda_{1}\left(M_{r}\right)$, then

$$
\left\|u_{r}-x_{r}\right\|=o(1) .
$$

Consequently, for any unit length sequence $\left\{y_{r}\right\}$ where each y_{r} is perpendicular to x_{r},

$$
\left|y_{r}^{T} M_{r} y_{r}\right|=o\left(\lambda_{1}\left(M_{r}\right)\right) .
$$

Proof. Throughout this proof, the subscript r is dropped; all terms $o(\cdot)$ should be interpreted as $r \rightarrow \infty$. This exact statement was proved by Chung, Graham, and Wilson [1], although they do not clearly state it as such. We give a proof here for completeness using slightly different language but the same proof idea: if x projected onto u^{\perp} is too big then the second largest eigenvalue is too big. Write $x=\alpha v+\beta u$ where v is a unit length vector perpendicular to u and $\alpha, \beta \in \mathbb{C}$ and $\alpha^{2}+\beta^{2}=1$ (since u is an eigenvector it might have
complex entries). Let $\phi(x, y)=x^{T} M y$ be the bilinear map corresponding to M. Since $u^{T} M v=\lambda_{1} u^{T} v=\lambda_{1}\langle u, v\rangle=0$, we have $\phi(u, v)=0$. This implies that

$$
\begin{aligned}
\phi(x, x) & =\phi(\alpha v+\beta u, \alpha v+\beta u)=\alpha^{2} \phi(v, v)+\beta^{2} \phi(u, u)+2 \alpha \beta \phi(u, v) \\
& =\alpha^{2} \phi(v, v)+\beta^{2} \phi(u, u) .
\end{aligned}
$$

The second largest eigenvalue of M is the largest eigenvalue of $M-\lambda_{1}(M) u u^{T}$ which is the spectral norm of $M-\lambda_{1}(M) u u^{T}$. Thus

$$
\begin{equation*}
|\phi(v, v)|=\left|v^{T} M v\right|=\left|v^{T}\left(M-\lambda_{1}(M) u u^{T}\right) v\right| \leq \lambda_{2}(M) . \tag{2}
\end{equation*}
$$

Using that $\phi(u, u)=\lambda_{1}(M)$ and the triangle inequality, we obtain

$$
\begin{equation*}
|\phi(x, x)| \leq \alpha^{2} \lambda_{2}(M)+\beta^{2} \lambda_{1}(M) . \tag{3}
\end{equation*}
$$

Since $\alpha^{2}+\beta^{2}=1,|\alpha|$ and $|\beta|$ are between zero and one. Combining this with (3) and $|\phi(x, x)|=(1+o(1)) \lambda_{1}(M)$ and $\lambda_{2}(M)=o\left(\lambda_{1}(M)\right)$, we must have $|\beta|=1+o(1)$ which in turn implies that $|\alpha|=o(1)$. Consequently,

$$
\|u-x\|^{2}=\langle u-x, u-x\rangle=\langle u, u\rangle+\langle x, x\rangle-2\langle u, x\rangle=2-2 \beta=o(1) .
$$

Now consider some y perpendicular to x and similarly to the above, write $y=\gamma w+\delta u$ for some unit length vector w perpendicular to u and $\gamma, \delta \in \mathbb{C}$ with $\gamma^{2}+\delta^{2}=1$. Then

$$
\phi(y, y)=\phi(\gamma w+\delta u, \gamma w+\delta u)=\gamma^{2} \phi(w, w)+\delta^{2} \phi(u, u)
$$

and as in (2), we have $|\phi(w, w)| \leq \lambda_{2}(M)$. Thus

$$
|\phi(y, y)| \leq \gamma^{2} \lambda_{2}(M)+\delta^{2} \lambda_{1}(M)
$$

We want to conclude that the above expression is $o\left(\lambda_{1}(M)\right)$. Since $\lambda_{2}(M)=o\left(\lambda_{1}(M)\right)$, we must prove that $|\delta|=o(1)$ to complete the proof.

$$
\delta=\langle y, u\rangle=\left\langle y, \frac{x-\alpha v}{\beta}\right\rangle=\frac{1}{\beta}(\langle y, x\rangle-\alpha\langle y, v\rangle)=\frac{-\alpha\langle y, v\rangle}{\beta} .
$$

But $|\alpha|=o(1),|\beta|=1+o(1)$, and $\|y\|=\|v\|=1$ so $|\delta|=o(1)$ as required.
Lemma 21. Let $J: V_{1} \times \cdots \times V_{t} \rightarrow \mathbb{R}$ be the all-ones map and let $\overrightarrow{1}_{i}$ be the all-ones vector in V_{i}. Then for all x_{1}, \ldots, x_{t} with $x_{i} \in V_{i}$,

$$
\begin{equation*}
J\left(x_{1}, \ldots, x_{t}\right)=\left\langle\overrightarrow{1}_{1}, x_{1}\right\rangle \cdots\left\langle\overrightarrow{1}_{t}, x_{t}\right\rangle . \tag{4}
\end{equation*}
$$

Proof. If x_{1}, \ldots, x_{t} are standard basis vectors, then the left and right hand side of (4) are the same. By linearity, (4) is then the same for all x_{1}, \ldots, x_{t}.

4.2 Proof of Proposition 11

Proof of Proposition 11. Again throughout this proof, the subscript r is dropped; all terms $o(\cdot)$ should be interpreted as $r \rightarrow \infty$. Let $\hat{1}$ denote the all-ones vector scaled to unit length in the appropriate vector space. Pick an ordering $\vec{\pi}=\left(k_{1}, \ldots, k_{t}\right)$ of π. The definition of spectral norm is independent of the choice of the ordering for the entries of $\vec{\pi}$, so $\left\|\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right\|$ is the same for all orderings. Let w_{1}, \ldots, w_{t} be unit length vectors where $\left(\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right)\left(w_{1}, \ldots, w_{t}\right)=\left\|\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right\|$ and write $w_{i}=\alpha_{i} y_{i}+\beta_{i} \hat{1}$ where y_{i} is a unit length vector perpendicular to the all-ones vector and $\alpha_{i}, \beta_{i} \in \mathbb{R}$ with $\alpha_{i}^{2}+\beta_{i}^{2}=1$. Then

$$
\begin{align*}
\left\|\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right\| & =\left(\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right)\left(w_{1}, \ldots, w_{t}\right)=\left(\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right)\left(\alpha_{1} y_{1}+\beta_{1} \hat{1}, \ldots, \alpha_{t} y_{t}+\beta_{t} \hat{1}\right) \\
& =\psi_{\vec{\pi}}\left(\alpha_{1} y_{1}+\beta_{1} \hat{1}, \ldots, \alpha_{t} y_{t}+\beta_{t} \hat{1}\right)-q \operatorname{dim}\left(V_{r}\right)^{k / 2} \prod_{i=1}^{t} \beta_{i} . \tag{5}
\end{align*}
$$

The last equality used that y_{i} is perpendicular to $\hat{1}$, so Lemma 21 implies that if y_{i} appears as input to $J_{\vec{\pi}}$ then the outcome is zero no matter what the other vectors are. Thus the only non-zero term involving $J_{\vec{\pi}}$ is $J_{\vec{\pi}}(\hat{1}, \ldots, \hat{1})=\operatorname{dim}\left(V_{r}\right)^{k / 2}$. Note that $\psi(\hat{1}, \ldots, \hat{1})=\psi_{\vec{\pi}}(\hat{1}, \ldots, \hat{1})$ since the all-ones vector scaled to unit length in $V^{\otimes k_{i}}$ is the tensor product of the all-ones vector scaled to unit length in V. Inserting $q=\operatorname{dim}\left(V_{r}\right)^{-k / 2} \psi_{\vec{\pi}}(\hat{1}, \ldots, \hat{1})$ in (5), we obtain

$$
\begin{equation*}
\left\|\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right\|=\psi_{\vec{\pi}}\left(\alpha_{1} y_{1}+\beta_{1} \hat{1}, \ldots, \alpha_{t} y_{t}+\beta_{t} \hat{1}\right)-\left(\prod_{i=1}^{t} \beta_{i}\right) \psi_{\vec{\pi}}(\hat{1}, \ldots, \hat{1}) \tag{6}
\end{equation*}
$$

Now consider expanding $\psi_{\vec{\pi}}$ in (6) using linearity; the term $\left(\prod \beta_{i}\right) \psi_{\vec{\pi}}(\hat{1}, \ldots, \hat{1})$ cancels, so all terms include at least one y_{i}. We claim that each of these terms is small; the following claim finishes the proof, since $\left\|\psi_{\vec{\pi}}-q J_{\vec{\pi}}\right\|$ is the sum of terms each of which $o(\psi(\hat{1}, \ldots, \hat{1}))$.
Claim: If $z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{t}$ are unit length vectors, then

$$
\left|\psi_{\vec{\pi}}\left(z_{1}, \ldots, z_{i-1}, y_{i}, z_{i+1}, \ldots, z_{t}\right)\right|=o(\psi(\hat{1}, \ldots, \hat{1})) .
$$

Proof. Change the ordering of $\vec{\pi}$ to an ordering $\vec{\pi}^{\prime}$ that differs from $\vec{\pi}$ by swapping 1 and i. Since ψ is symmetric,

$$
\begin{equation*}
\psi_{\vec{\pi}}\left(z_{1}, \ldots, z_{i-1}, y_{i}, z_{i+1}, \ldots, z_{t}\right)=\psi_{\vec{\pi}^{\prime}}\left(y_{i}, z_{2}, \ldots, z_{i-1}, z_{1}, z_{i+1}, \ldots, z_{t}\right) \tag{7}
\end{equation*}
$$

Therefore proving the claim comes down to bounding $\psi_{\vec{\pi}^{\prime}}\left(y_{i}, z_{2}, \ldots, z_{i-1}, z_{1}, z_{i+1}, \ldots, z_{t}\right)$, which is a combination of Lemma 18 and Lemma 20 as follows. For the remainder of this proof, denote by A the matrix $A\left[\psi_{\vec{\pi}^{\prime}}^{2 t-1}\right]$. By assumption, we have $\lambda_{2}(A)=o\left(\lambda_{1}(A)\right)$ so Lemma 20 can be applied to the matrix sequence A. Next we would like to show that we can use $\hat{1}$ for x in the statement of Lemma 20; i.e. that $A(\hat{1}, \hat{1})=(1+o(1)) \lambda_{1}(A)$. By Lemma 18 and the assumption $\lambda_{1}(A)=(1+o(1)) \psi(\hat{1}, \ldots, \hat{1})^{2^{t-1}}$, we have

$$
\left|\psi_{\vec{\pi}^{\prime}}(\hat{1}, \ldots, \hat{1})\right|^{2^{t-1}} \leq|A(\hat{1}, \hat{1})| \leq \lambda_{1}(A)=(1+o(1)) \psi(\hat{1}, \ldots, \hat{1})^{2^{t-1}}
$$

Using the definition of $\psi_{\vec{\pi}^{\prime}}$, we have $\psi_{\vec{\pi}^{\prime}}(\hat{1}, \ldots, \hat{1})=\psi(\hat{1}, \ldots, \hat{1})$, which implies asymptotic equality through the above equation. In particular, $|A(\hat{1}, \hat{1})|=(1+o(1)) \lambda_{1}(A)$ which is the condition in Lemma 20 for $x=\hat{1}$. Lastly, to apply Lemma 20 we need a vector y perpendicular to $\hat{1}$. The vector $y_{i} \otimes \cdots \otimes y_{i} \in V^{\otimes k_{i} 2^{t-2}}$ is perpendicular to $\hat{1}$ (in $V^{\otimes k_{2} 2^{2-2}}$) since y_{i} itself is perpendicular to $\hat{1}$ (in $V^{\otimes k_{i}}$). Thus Lemma 20 implies that

$$
\begin{equation*}
|A(\underbrace{y_{i} \otimes \cdots \otimes y_{i}}_{2^{t-2}}, \underbrace{y_{i} \otimes \cdots \otimes y_{i}}_{2^{t-2}})|=o\left(\lambda_{1}(A)\right) \tag{8}
\end{equation*}
$$

Using Lemma 18 again shows that

$$
\left|\psi_{\pi^{\prime}}\left(y_{i}, z_{2}, \ldots, z_{i-1}, z_{1}, z_{i+1}, \ldots, z_{t}\right)\right|^{2^{t-1}} \leq \mid A \underbrace{\left(y_{i} \otimes \cdots \otimes y_{i}\right.}_{2^{t-2}}, \underbrace{y_{i} \otimes \cdots \otimes y_{i}}_{2^{t-2}}) \mid \text {. }
$$

Combining this equation with (7) and (8) shows that $\left|\psi_{\vec{\pi}}\left(z_{1}, \ldots, z_{i-1}, y_{i}, z_{i+1}, \ldots, z_{t}\right)\right|^{2^{t-1}}=$ $o\left(\lambda_{1}(A)\right)$. By assumption, $\lambda_{1}(A)=(1+o(1)) \psi(\hat{1}, \ldots, \hat{1})^{2^{t-1}}$, completing the proof of the claim.

5 Cycles and Traces

A key result we require from [4] relates the count of the number of cycles of type π and length 4ℓ to the trace of the matrix $A\left[\tau_{\vec{\pi}}^{2^{t-1}}\right]^{2 \ell}$. We will use this result (Proposition 23 below) as a black box, and we refer the reader to [4, Section 2] for a proof. The definition of $C_{\pi, 2 \ell}$ can be found in [4, Section 2] and is independent of the ordering $\vec{\pi}$. Figure 1 and [4, Figures 3 and 4] contains figures of paths and cycles for various k and π.

Figure 1: $C_{(1,1,1), 4}$

Definition 22. Let $\ell \geq 2$. A circuit of type π of length 2ℓ in a hypergraph H is a homomorphism $f: V\left(C_{\pi, 2 \ell}\right) \rightarrow V(H)$. Informally, a circuit is a cycle where the vertices are not necessarily distinct.

Proposition 23. [4, Proposition 6] Let H be a k-uniform hypergraph, let $\vec{\pi}$ be a proper ordered partition of k, and let $\ell \geq 2$ be an integer. Let τ be the adjacency map of H. Then $\operatorname{Tr}\left[A\left[\tau_{\vec{\pi}}^{2^{t-1}}\right]^{\ell}\right]$ is the number of labeled circuits of type $\vec{\pi}$ and length 2ℓ in H.

$6 \operatorname{Cycle}_{4 \ell}[\pi] \Rightarrow \operatorname{Eig}[\pi]$

In this section, we prove that $\mathrm{Cycle}_{4 \ell}[\pi] \Rightarrow \operatorname{Eig}[\pi]$ using Propositions 11 and 23.
Proof that Cycle $e_{4 \ell}[\pi] \Rightarrow$ Eig $[\pi]$. Let $\mathcal{H}=\left\{H_{n}\right\}_{n \rightarrow \infty}$ be a sequence of hypergraphs and let τ_{n} be the adjacency map of H_{n}. For notational convenience, the subscript on n is dropped below. Throughout this proof, we use $\hat{1}$ to denote the all-ones vector scaled to unit length. Wherever we use the notation $\hat{1}$, it is the input to a multilinear map and so $\hat{1}$ denotes the all-ones vector in the appropriate vector space corresponding to whatever space the map is expecting as input. This means that in the equations below $\hat{1}$ can stand for different vectors in the same expression, but attempting to subscript $\hat{1}$ with the vector space (for example $\hat{1}_{V_{3}}$) would be notationally awkward.

The proof that $\mathrm{Cycle}_{4 \ell}[\pi] \Rightarrow \operatorname{Eig}[\pi]$ comes down to checking the conditions of Proposition 11. Let $\vec{\pi}$ be any ordering of the entries of π. We will show that the first and second largest eigenvalues of $A=A\left[\tau_{\vec{\pi}}^{2^{t-1}}\right]$ are separated. Let $m=\left|E\left(C_{\pi, 4 \ell}\right)\right|=2 \ell 2^{t-1}$ and note that $\left|V\left(C_{\pi, 4 \ell}\right)\right|=m k / 2$ since $C_{\pi, 4 \ell}$ is two-regular. A is a square symmetric real valued matrix, so let μ_{1}, \ldots, μ_{d} be the eigenvalues of A arranged so that $\left|\mu_{1}\right| \geq \cdots \geq\left|\mu_{d}\right|$, where $d=\operatorname{dim}(A)$. The eigenvalues of $A^{2 \ell}$ are $\mu_{1}^{2 \ell}, \ldots, \mu_{d}^{2 \ell}$ and the trace of $A^{2 \ell}$ is $\sum_{i} \mu_{i}^{2 \ell}$. Since all $\mu_{i}^{2 \ell} \geq 0$, Proposition 23 and $\mathrm{Cycle}_{4 \ell}[\pi]$ implies that

$$
\begin{equation*}
\mu_{1}^{2 \ell}+\mu_{2}^{2 \ell} \leq \operatorname{Tr}\left[A^{2 \ell}\right]=\#\left\{\text { possibly degenerate } C_{\pi, 4 \ell} \text { in } H_{n}\right\} \leq p^{m} n^{m k / 2}+o\left(n^{m k / 2}\right) \tag{9}
\end{equation*}
$$

We now verify the conditions on μ_{1} and μ_{2} in Proposition 11, and to do that we need to compute $\tau(\hat{1}, \ldots, \hat{1})$. Simple computations show that

$$
\begin{equation*}
\tau(\hat{1}, \ldots, \hat{1})=\tau_{\vec{\pi}}(\hat{1}, \ldots, \hat{1})=\frac{k!|E(H)|}{n^{k / 2}} \tag{10}
\end{equation*}
$$

Using that $\left|E\left(H_{n}\right)\right| \geq p\binom{n}{k}+o\left(n^{k}\right)$, Lemma 19, and $\mu_{1}^{2 \ell} \leq p^{m} n^{m k / 2}+o\left(n^{m k / 2}\right)$ from (9),

$$
\begin{equation*}
p n^{k / 2}+o\left(n^{k / 2}\right) \leq \frac{k!|E(H)|}{n^{k / 2}}=\tau_{\vec{\pi}}(\hat{1}, \ldots, \hat{1}) \leq\left\|\tau_{\vec{\pi}}\right\| \leq \mu_{1}^{1 / 2^{t-1}} \leq p n^{k / 2}+o\left(n^{k / 2}\right) \tag{11}
\end{equation*}
$$

This implies equality up to $o\left(n^{k / 2}\right)$ throughout the above expression, so

$$
\tau(\hat{1}, \ldots, \hat{1})=p n^{k / 2}+o\left(n^{k / 2}\right), \quad \lambda_{1, \pi}\left(H_{n}\right)=\left\|\tau_{\vec{\pi}}\right\|=p n^{k / 2}+o\left(n^{k / 2}\right)
$$

and

$$
\mu_{1}=p^{2^{t-1}} n^{k 2^{t-2}}+o\left(n^{k 2^{t-2}}\right)=(1+o(1)) \tau(\hat{1}, \ldots, \hat{1})^{2^{t-1}}
$$

Insert $\mu_{1}=p^{2^{t-1}} n^{k 2^{t-2}}+o\left(n^{k 2^{t-2}}\right)$ into (9) to show that $\mu_{2}=o\left(n^{k 2^{t-2}}\right)$. Therefore, the conditions of Proposition 11 are satisfied, so

$$
\left\|\tau_{\vec{\pi}}-q J_{\vec{\pi}}\right\|=o(\tau(\hat{1}, \ldots, \hat{1}))=o\left(n^{k / 2}\right)
$$

where $q=n^{-k / 2} \tau(\hat{1}, \ldots, \hat{1})$. Using (10), $q=k!|E(H)| / n^{k}$. Thus $\left\|\tau_{\vec{\pi}}-q J_{\vec{\pi}}\right\|=\lambda_{2, \pi}\left(H_{n}\right)$ and the proof is complete.

The above proof can be extended to even length cycles in the case when $\vec{\pi}=\left(k_{1}, k_{2}\right)$ is a partition into two parts. For these $\vec{\pi}$, the matrix $A\left[\tau_{\vec{\pi}}^{2}\right]$ can be shown to be positive semidefinite since $A\left[\tau_{\vec{\pi}}^{2}\right]$ will equal $M M^{T}$ where M is the matrix associated to the bilinear map $\tau_{\vec{\pi}}$. Since $A\left[\tau_{\vec{\pi}}^{2}\right]$ is positive semidefinite, each $\mu_{i} \geq 0$ so any power of μ_{i} is non-negative. For partitions into more than two parts, we do not know if the matrix $A\left[\tau_{\pi}^{t^{t-1}}\right]$ is always positive semidefinite or not.

References

[1] F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs. Combinatorica, 9(4):345-362, 1989.
[2] J. Friedman. Some graphs with small second eigenvalue. Combinatorica, 15(1):31-42, 1995.
[3] J. Friedman and A. Wigderson. On the second eigenvalue of hypergraphs. Combinatorica, 15(1):43-65, 1995.
[4] J. Lenz and D. Mubayi. Eigenvalues and linear quasirandom hypergraphs. accepted in Forum of Mathematics, Sigma.
[5] J. Lenz and D. Mubayi. The poset of hypergraph quasirandomness. accepted in Random Structures and Algorithms. http://arxiv.org/abs/1208.5978.

[^0]: *Research partly supported by NSA Grant H98230-13-1-0224.
 ${ }^{\dagger}$ Research supported in part by NSF Grants 0969092 and 1300138.

