Eigenvalues of Non-Regular Linear Quasirandom Hypergraphs

John Lenz * University of Illinois at Chicago lenz@math.uic.edu Dhruv Mubayi[†] University of Illinois at Chicago mubayi@uic.edu

June 2, 2016

Abstract

Chung, Graham, and Wilson proved that a graph is quasirandom if and only if there is a large gap between its first and second largest eigenvalue. Recently, the authors extended this characterization to coregular k-uniform hypergraphs with loops. However, for $k \geq 3$ no k-uniform hypergraph is coregular.

In this paper we remove the coregular requirement. Consequently, the characterization can be applied to k-uniform hypergraphs; for example it is used in [5] to show that a construction of a k-uniform hypergraph sequence has some quasirandom properties. The specific statement that we prove here is that if a k-uniform hypergraph satisfies the correct count of a specially defined four-cycle, then there is a gap between its first and second largest eigenvalue.

1 Introduction

The authors [4] recently proved a hypergraph generalization of the famous Chung-Graham-Wilson [1] characterization of quasirandom graph sequences. However, the proof only applied to coregular hypergraph sequences. In this paper we prove this equivalence for all k-uniform hypergraph sequences, not just the coregular ones. This paper should be viewed as a companion to [4] and many details and definitions that appear in [4] are not repeated here.

Definition 1. Let Ω be a set and k an integer. A k-multiset S on Ω is a function $S : \Omega \to \mathbb{Z}^{\geq 0}$ such that $\sum_{x \in \Omega} S(x) = k$. A k-uniform hypergraph with loops H consists of a vertex set V(H)and an edge set E(H) which is a collection of k-multisets on V(H). A k-uniform hypergraph

^{*}Research partly supported by NSA Grant H98230-13-1-0224.

[†]Research supported in part by NSF Grants 0969092 and 1300138.

with loops is coregular if there is a positive integer d such that for every (k-1)-multiset S on V(H),

$$|\{T \in E(H) : \forall x \in V(H), S(x) \le T(x)\}| = d$$

A k-uniform hypergraph is a k-uniform hypergraph with loops H such that for every $S \in E(H)$, $im(S) = \{0, 1\}$. A graph is a 2-uniform hypergraph.

Remarks.

• Informally, in a k-uniform hypergraph with loops every edge has size exactly k but a vertex is allowed to be repeated inside of an edge.

• For k = 2, a *d*-regular graph is a coregular 2-uniform hypergraph with loops, since each 1-multiset (i.e. a vertex) is contained in exactly *d* edges. But for $k \ge 3$, a *k*-uniform hypergraph cannot be coregular. For example, if *H* is a 3-uniform hypergraph then *H* is not coregular because for each vertex *x*, the multiset $\{x, x\}$ is not contained in any edge of *H*.

Let $k \ge 2$ be an integer and let π be a proper partition of k, by which we mean that π is an unordered list of at least two positive integers whose sum is k. For the partition π of k given by $k = k_1 + \cdots + k_t$, we will abuse notation by saying that $\pi = k_1 + \cdots + k_t$. If F and G are k-uniform hypergraphs with loops, a *labeled copy of* F *in* H is an edge-preserving injection $V(F) \to V(H)$, i.e. an injection $\alpha : V(F) \to V(H)$ such that if E is an edge of F, then $\{\alpha(x) : x \in E\}$ is an edge of H. The following is our main theorem.

Theorem 2. Let $0 be a fixed constant and let <math>\mathcal{H} = \{H_n\}_{n\to\infty}$ be a sequence of k-uniform hypergraphs with loops such that $|V(H_n)| = n$ and $|E(H_n)| \ge p\binom{n}{k}$. Let $\pi = k_1 + \cdots + k_t$ be a proper partition of k and let $\ell \ge 1$. Assume that \mathcal{H} satisfies the property

• Cycle_{4ℓ}[π]: the number of labeled copies of $C_{\pi,4\ell}$ in H_n is at most $p^{|E(C_{\pi,4\ell})|}n^{|V(C_{\pi,4\ell})|} + o(n^{|V(C_{\pi,4\ell})|})$, where $C_{\pi,4\ell}$ is the hypergraph cycle of type π and length 4ℓ defined in [4, Section 2].

Then \mathcal{H} satisfies the property

• $Eig[\pi]$: $\lambda_{1,\pi}(H_n) = pn^{k/2} + o(n^{k/2})$ and $\lambda_{2,\pi}(H_n) = o(n^{k/2})$, where $\lambda_{1,\pi}(H_n)$ and $\lambda_{2,\pi}(H_n)$ are the first and second largest eigenvalues of H_n with respect to π , defined in Section 2.

When Theorem 2 is combined with [4, Section 2], we obtain the following theorem which generalizes many parts of [1] to hypergraphs.

Theorem 3. Let $0 be a fixed constant and let <math>\mathcal{H} = \{H_n\}_{n\to\infty}$ be a sequence of k-uniform hypergraphs with loops such that $|V(H_n)| = n$ and $|E(H_n)| \ge p\binom{n}{k} + o(n^k)$. Let $\pi = k_1 + \cdots + k_t$ be a proper partition of k. The following properties are equivalent:

• $Eig[\pi]: \lambda_{1,\pi}(H_n) = pn^{k/2} + o(n^{k/2})$ and $\lambda_{2,\pi}(H_n) = o(n^{k/2})$, where $\lambda_{1,\pi}(H_n)$ and $\lambda_{2,\pi}(H_n)$.

• Expand[π]: For all $S_i \subseteq \binom{V(H_n)}{k_i}$ where $1 \leq i \leq t$,

$$e(S_1, \dots, S_t) = p \prod_{i=1}^t |S_i| + o(n^k)$$

where $e(S_1, \ldots, S_t)$ is the number of tuples (s_1, \ldots, s_t) such that $s_1 \cup \cdots \cup s_t$ is a hyperedge and $s_i \in S_i$.

- Count[π-linear]: If F is an f-vertex, m-edge, k-uniform, π-linear hypergraph, then the number of labeled copies of F in H_n is p^mn^f + o(n^f). The definition of π-linear appears in [4, Section 1].
- Cycle₄[π]: The number of labeled copies of $C_{\pi,4}$ in H_n is at most $p^{|E(C_{\pi,4})|}n^{|V(C_{\pi,4})|} + o(n^{|V(C_{\pi,4})|})$.
- Cycle_{4ℓ}[π]: the number of labeled copies of $C_{\pi,4\ell}$ in H_n is at most $p^{|E(C_{\pi,4\ell})|}n^{|V(C_{\pi,4\ell})|} + o(n^{|V(C_{\pi,4\ell})|})$.

The remainder of this paper is organized as follows. Section 2 contains the definitions of eigenvalues we will require from [4]. Section 3 contains definitions about linear maps and also a statement of the main technical contribution of this note. Section 4 contains the algebraic properties required for the proof of Theorem 2. Section 5 contains a crucial lemma from [4] that relates cycles counts to the trace of higher order matrices, and finally Section 6 contains the proof of Theorem 2.

2 Hypergraph Eigenvalues

In this section, we give the definitions of the first and second largest eigenvalues of a hypergraph. These definitions are identical to those given in [4].

Definition 4. (Friedman and Wigderson [2, 3]) Let H be a k-uniform hypergraph with loops. The adjacency map of H is the symmetric k-linear map $\tau_H : W^k \to \mathbb{R}$ defined as follows, where W is the vector space over \mathbb{R} of dimension |V(H)|. First, for all $v_1, \ldots, v_k \in$ V(H), let

$$\tau_H(e_{v_1},\ldots,e_{v_k}) = \begin{cases} 1 & \{v_1,\ldots,v_k\} \in E(H), \\ 0 & otherwise, \end{cases}$$

where e_v denotes the indicator vector of the vertex v, that is the vector which has a one in coordinate v and zero in all other coordinates. We have defined the value of τ_H when the inputs are standard basis vectors of W. Extend τ_H to all the domain linearly.

Definition 5. Let W be a finite dimensional vector space over \mathbb{R} , let $\sigma : W^k \to \mathbb{R}$ be any k-linear function, and let $\vec{\pi}$ be a proper ordered partition of k, so $\vec{\pi} = (k_1, \ldots, k_t)$ for some integers k_1, \ldots, k_t with $t \ge 2$. Now define a t-linear function $\sigma_{\vec{\pi}} : W^{\otimes k_1} \times \cdots \times W^{\otimes k_t} \to \mathbb{R}$ by first defining $\sigma_{\vec{\pi}}$ when the inputs are basis vectors of $W^{\otimes k_i}$ and then extending linearly. For each i, $B_i = \{b_{i,1} \otimes \cdots \otimes b_{i,k_i} : b_{i,j} \text{ is a standard basis vector of } W\}$ is a basis of $W^{\otimes k_i}$, so for each i, pick $b_{i,1} \otimes \cdots \otimes b_{i,k_i} \in B_i$ and define

$$\sigma_{\vec{\pi}} (b_{1,1} \otimes \cdots \otimes b_{1,k_1}, \dots, b_{t,1} \otimes \cdots \otimes b_{t,k_t}) = \sigma(b_{1,1}, \dots, b_{1,k_1}, \dots, b_{t,1}, \dots, b_{t,k_t}).$$

Now extend $\sigma_{\vec{\pi}}$ linearly to all of the domain. $\sigma_{\vec{\pi}}$ will be t-linear since σ is k-linear.

Let us give a simple example to illustrate this definition.

Example. Suppose for simplicity $W \cong \mathbb{R}^n$ and let e_1, \ldots, e_n be the standard basis vectors for W. Let $k = 3, t = 2, \vec{\pi} = (2, 1)$ and $\sigma : W^3 \to \mathbb{R}$ be a map representing an n-vertex 3-uniform hypergraph H. Then $\sigma_{\vec{\pi}} : (W \otimes W) \times W \to \mathbb{R}$ is defined by $\sigma_{\vec{\pi}}(e_i \otimes e_j, e_k) = \sigma(e_i, e_j, e_k)$ for every $(i, j, k) \in [n]^3$. Since the set $\{(e_i \otimes e_j, e_k) : (i, j, k) \in [n]^3\}$ is a basis for $(W \otimes W) \times W$, we may use linearity to define $\sigma_{\vec{\pi}}(v)$ for all $v \in (W \otimes W) \times W$.

Definition 6. Let W_1, \ldots, W_k be finite dimensional vector spaces over \mathbb{R} , let $\|\cdot\|$ denote the Euclidean 2-norm on W_i , and let $\phi: W_1 \times \cdots \times W_k \to \mathbb{R}$ be a k-linear map. The spectral norm of ϕ is

$$\|\phi\| = \sup_{\substack{x_i \in W_i \\ \|x_i\|=1}} |\phi(x_1, \dots, x_k)|.$$

Definition 7. Let H be an n vertex k-uniform hypergraph with loops, $W \cong \mathbb{R}^n$, $\tau = \tau_H$ be the (k-linear) adjacency map of H and $J : W^k \to \mathbb{R}$ be the k-linear map defined by $J(e_{i_1}, \ldots, e_{i_k}) = 1$ whenever e_{i_1}, \ldots, e_{i_k} are any standard basis vectors of W. Let π be any (unordered) partition of k and let $\vec{\pi}$ be any ordering of π . The largest and second largest eigenvalues of H with respect to π , denoted $\lambda_{1,\pi}(H)$ and $\lambda_{2,\pi}(H)$, are defined as

$$\lambda_{1,\pi}(H) := \|\tau_{\vec{\pi}}\|$$
 and $\lambda_{2,\pi}(H) := \|\tau_{\vec{\pi}} - \frac{k!|E(H)|}{n^k} J_{\vec{\pi}}\|$.

3 Eigenvalues and Linear Maps

In this section we prove the main algebraic tool needed for the proof of Theorem 2, which extends to k-uniform hypergraphs the fact that in a graph sequence with density p and $\lambda_2(G) = o(\lambda_1(G))$, the distance between the all-ones vector and the eigenvector corresponding to the largest eigenvalue is o(1). We need several definitions first.

Definition 8. Let V_1, \ldots, V_t be finite dimensional vector spaces over \mathbb{R} and let $\phi, \psi : V_1 \times \cdots \times V_t \to \mathbb{R}$ be t-linear maps. The product of ϕ and ψ , written $\phi * \psi$, is a (t-1)-linear

map defined as follows. Let u_1, \ldots, u_{t-1} be vectors where $u_i \in V_i$. Let $\{b_1, \ldots, b_{\dim(V_t)}\}$ be any orthonormal basis of V_t .

$$\phi * \psi : (V_1 \otimes V_1) \times (V_2 \otimes V_2) \times \dots \times (V_{t-1} \otimes V_{t-1}) \to \mathbb{R}$$

$$\phi * \psi(u_1 \otimes v_1, \dots, u_{t-1} \otimes v_{t-1}) := \sum_{j=1}^{\dim(V_t)} \phi(u_1, \dots, u_{t-1}, b_j) \psi(v_1, \dots, v_{t-1}, b_j)$$

Extend the map $\phi * \psi$ linearly to all of the domain to produce a (t-1)-linear map.

Lemma 13 shows that the maps are well defined: the map is the same for any choice of orthonormal basis by the linearity of ϕ and ψ .

Definition 9. Let V_1, \ldots, V_t be finite dimensional vector spaces over \mathbb{R} , $\phi : V_1 \times \cdots \times V_t \to \mathbb{R}$ be a t-linear map and s be an integer $0 \le s \le t - 1$. Define

$$\phi^{2^s}: V_1^{\otimes 2^s} \times \dots \times V_{t-s}^{\otimes 2^s} \to \mathbb{R} \qquad \text{where} \quad \phi^{2^0}:=\phi \quad \text{and} \quad \phi^{2^s}:=\phi^{2^{s-1}}*\phi^{2^{s-1}}.$$

Definition 10. Let V_1, \ldots, V_t be finite dimensional vector spaces over \mathbb{R} and let $\phi : V_1 \times \cdots \times V_t \to \mathbb{R}$ be a t-linear map and define $A[\phi^{2^{t-1}}]$ to be the following square matrix/bilinear map. Let $u_1, \ldots, u_{2^{t-2}}, v_1, \ldots, v_{2^{t-2}}$ be vectors where $u_i, v_i \in V_1$.

$$A[\phi^{2^{t-1}}]: V_1^{\otimes 2^{t-2}} \times V_1^{\otimes 2^{t-2}} \to \mathbb{R}$$
$$A[\phi^{2^{t-1}}](u_1 \otimes \cdots \otimes u_{2^{t-2}}, v_1 \otimes \ldots v_{2^{t-2}}) := \phi^{2^{t-1}}(u_1 \otimes v_1 \otimes u_2 \otimes v_2 \otimes \cdots \otimes u_{2^{t-2}} \otimes v_{2^{t-2}}).$$

Extend the map linearly to the entire domain to produce a bilinear map.

Lemma 16 below proves that $A[\phi^{2^{t-1}}]$ is a square symmetric real valued matrix. The following is the main algebraic result required for the proof of Theorem 2.

Proposition 11. Let $\{\psi_r\}_{r\to\infty}$ be a sequence of symmetric k-linear maps, where $\psi_r : V_r^k \to \mathbb{R}$, V_r is a vector space over \mathbb{R} of finite dimension, and $\dim(V_r) \to \infty$ as $r \to \infty$. Let $\hat{1}$ denote the all-ones vector in V_r scaled to unit length and let $J : V_r^k \to \mathbb{R}$ be the k-linear all-ones map. Let π be a proper (unordered) partition of k, and assume that for every ordering $\vec{\pi}$ of π ,

$$\lambda_1(A[\psi_{\vec{\pi}}^{2^{t-1}}]) = (1+o(1))\psi\left(\hat{1},\ldots,\hat{1}\right)^{2^{t-1}} \\ \lambda_2(A[\psi_{\vec{\pi}}^{2^{t-1}}]) = o\left(\lambda_1(A[\psi_{\vec{\pi}}^{2^{t-1}}])\right).$$

Then for every ordering $\vec{\pi}$ of π ,

$$\|\psi_{\vec{\pi}} - qJ_{\vec{\pi}}\| = o(\psi(\hat{1}, \dots, \hat{1})),$$

where $q = \dim(V_r)^{-k/2}\psi(\hat{1},\ldots,\hat{1}).$

For graphs, $A[\tau^2]$ is the adjacency matrix squared so Proposition 11 states that $||A - \frac{2|E(G)|}{n^2}J|| = o(\sqrt{\lambda_1(A^2)})$, exactly what is proved by Chung, Graham, and Wilson (see the bottom of page 350 in [1]). The proof of Proposition 11 appears in the next section.

4 Algebraic properties of multilinear maps

In this section we prove several algebraic facts about multilinear maps, including Proposition 11. Throughout this section, V and V_i are finite dimensional vector spaces over \mathbb{R} . Also in this section we make no distinction between bilinear maps and matrices, using whichever formulation is convenient. We will use a symbol \cdot to denote the input to a linear map; for example, if $\phi : V_1 \times V_2 \times V_3 \to \mathbb{R}$ is a trilinear map and $x_1 \in V_1$ and $x_2 \in V_2$, then by the expression $\phi(x_1, x_2, \cdot)$ we mean the linear map from V_3 to \mathbb{R} which takes a vector $x_3 \in V_3$ to $\phi(x_1, x_2, x_3)$. Lastly, we use several basic facts about tensors, all of which follow from the fact that for finite dimensional spaces, the tensor product of V and W is the vector space over \mathbb{R} of dimension dim(V) dim(W). For example, if x and y are unit length, then $x \otimes y$ is also unit length.

4.1 Preliminary Lemmas

Lemma 12. Let $\phi: V \to \mathbb{R}$ be a linear map. There exists a vector v such that $\phi = \langle v, \cdot \rangle$.

Proof. v is the vector dual to ϕ in the dual of the vector space V. Alternatively, let the *i*th coordinate of v be $\phi(e_i)$, since then for any x,

$$\phi(x) = \phi\left(\sum_{i=1}^{\dim(V)} \langle x, e_i \rangle e_i\right) = \sum_{i=1}^{\dim(V)} \langle x, e_i \rangle \phi(e_i) = \sum_{i=1}^{\dim(V)} \langle x, e_i \rangle \langle v, e_i \rangle = \langle x, v \rangle.$$

Lemma 13. Let $\phi, \psi : V_1 \times \cdots \times V_t \to \mathbb{R}$ be t-linear maps. The maps $\phi * \psi$ and $A[\phi^{2^{t-1}}]$ are well defined. Also, $\phi * \psi$ is basis independent in the sense that the definition of $\phi * \psi$ is independent of the choice of orthonormal basis b_1, \ldots, b_t of V_t .

Proof. First, extending the definitions of $\phi * \psi$ and $A[\phi^{2^{t-1}}]$ linearly to the entire domain (non-simple tensors) is well defined, since ϕ and ψ are linear. That is, write each u_i and v_i in terms of some orthonormal basis and expand each tensor in $V_i \otimes V_i$ also in terms of this basis. The linearity of ϕ and ψ then shows that the definitions of $\phi * \psi$ and $A[\phi^{2^{t-1}}]$ are well defined and linear. To see basis independence of $\phi * \psi$, by Lemma 12 the linear map $\phi(u_1, \ldots, u_{t-1}, \cdot) : V_t \to \mathbb{R}$ equals $\langle u', \cdot \rangle$ for some vector u'. Similarly, $\psi(v_1, \ldots, v_t, \cdot)$ equals $\langle v', \cdot \rangle$ for some vector v'. Then

$$(\phi * \psi)(u_1 \otimes v_1, \dots, u_{t-1} \otimes v_{t-1}) = \sum_{i=1}^{\dim(V_t)} \langle u', b_i \rangle \langle v', b_i \rangle = \langle u', v' \rangle$$

The last equality is valid for any orthonormal basis, since the dot product of u' and v' sums the product of the *i*th coordinate of u' in the basis $\{b_1, \ldots, b_{\dim(V_t)}\}$ with the *i*th coordinate of v' in the basis $\{b_1, \ldots, b_{\dim(V_t)}\}$.

Definition 14. For $s \ge 0$ and V a finite dimensional vector space over \mathbb{R} , define the vector space isomorphism $\Gamma_{V,s} : V^{\otimes 2^s} \to V^{\otimes 2^s}$ as follows. If s = 0, define $\Gamma_{V,0}$ to be the identity map. If $s \ge 1$, let $\{b_1, \ldots, b_{\dim(V)}\}$ be any orthonormal basis of V and define for all $(i_1, \ldots, i_{2^{s-1}}, j_1, \ldots, j_{2^{s-1}}) \in [\dim(V)]^{2^s}$,

$$\Gamma_{V,s}(b_{i_1} \otimes b_{j_1} \otimes \cdots \otimes b_{i_{2^{s-1}}} \otimes b_{j_{2^{s-1}}}) = b_{j_1} \otimes b_{i_1} \otimes \cdots \otimes b_{j_{2^{s-1}}} \otimes b_{i_{2^{s-1}}}.$$
 (1)

Extend $\Gamma_{V,s}$ linearly to all of $V^{\otimes 2^s}$.

Remarks. $\Gamma_{V,s}$ is a vector space isomorphism since it restricts to a bijection of an orthonormal basis to itself. Also, it is easy to see that $\Gamma_{V,s}$ is well defined and independent of the choice of orthonormal basis, since each b_i can be written as a linear combination of an orthonormal basis $\{b'_1, \ldots, b'_{\dim(V)}\}$ and (1) can be expanded using linearity. For notational convenience, we will usually drop the subscript V and write Γ_s for $\Gamma_{V,s}$.

Lemma 15. Let $\phi: V_1 \times \cdots \times V_t \to \mathbb{R}$ be a t-linear map, let $0 \leq s \leq t-1$, and let $x_1 \in V_1^{\otimes 2^s}, \ldots, x_{t-s} \in V_{t-s}^{\otimes 2^s}$. Then

$$\phi^{2^{s}}(x_1,\ldots,x_{t-s}) = \phi^{2^{s}}(\Gamma_s(x_1),\ldots,\Gamma_s(x_{t-s})).$$

Proof. By induction on s. The base case is s = 0 where Γ_0 is the identity map. Expand the definition of $\phi^{2^{s+1}}$ and use induction to obtain

$$\phi^{2^{s+1}}(x_1 \otimes y_1, \dots, x_{t-s-1} \otimes y_{t-s-1}) = \sum_{j=1}^{\dim(V_{t-s}^{\otimes 2^s})} \phi^{2^s}(x_1, \dots, x_{t-s-1}, b_j) \phi^{2^s}(y_1, \dots, y_{t-s-1}, b_j)$$
$$= \sum_{j=1}^{\dim(V_{t-s}^{\otimes 2^s})} \phi^{2^s}(\Gamma_s(x_1), \dots, \Gamma_s(x_{t-s-1}), \Gamma_s(b_j)) \phi^{2^s}(\Gamma_s(y_1), \dots, \Gamma_s(y_{t-s-1}), \Gamma_s(b_j)).$$

But since Γ_s is a vector space isomorphism, $\{\Gamma_s(b_1), \ldots, \Gamma_s(b_{\dim(V_{t-s}^{\otimes 2^s})})\}$ is an orthonormal basis of $V_{t-s}^{\otimes 2^s}$. Thus Lemma 13 shows that

$$\sum_{j=1}^{\dim(V_{t-s}^{\otimes 2^s})} \phi^{2^s} \big(\Gamma_s(x_1), \dots, \Gamma_s(x_{t-s-1}), \Gamma_s(b_j) \big) \phi^{2^s} \big(\Gamma_s(y_1), \dots, \Gamma_s(y_{t-s-1}), \Gamma_s(b_j) \big)$$
$$= \phi^{2^{s+1}} \big(\Gamma_s(x_1) \otimes \Gamma_s(y_1), \dots, \Gamma_s(x_{t-s-1}) \otimes \Gamma_s(y_{t-s-1}) \big)$$

Finally, $\Gamma_s(x_i) \otimes \Gamma_s(y_i) = \Gamma_{s+1}(x_i \otimes y_i)$ (write x_i and y_i as linear combinations, expand $\Gamma_{s+1}(x_i \otimes y_i)$ using linearity, and apply (1)). Thus $\phi^{2^{s+1}}(x_1 \otimes y_1, \ldots, x_{t-s-1} \otimes y_{t-s-1}) = \phi^{2^{s+1}}(\Gamma_{s+1}(x_1 \otimes y_1), \ldots, \Gamma_{s+1}(x_{t-s-1} \otimes y_{t-s-1})))$, completing the proof. \Box

Lemma 16. Let V_1, \ldots, V_t be finite dimensional vector spaces over \mathbb{R} . If $\phi : V_1 \times \cdots \times V_t \to \mathbb{R}$ is a t-linear map, then $A[\phi^{2^{t-1}}]$ is a square symmetric real valued matrix.

Proof. Let $\phi : V_1 \times \cdots \times V_t \to \mathbb{R}$ be a *t*-linear map. $A[\phi^{2^{t-1}}]$ is a bilinear map from $V_1^{\otimes 2^{t-2}} \times V_1^{\otimes 2^{t-2}} \to \mathbb{R}$ and so is a square matrix of dimension $\dim(V_1)^{2^{t-2}}$. Lemma 15 shows that $A[\phi^{2^{t-1}}]$ is a symmetric matrix, since

$$A[\phi^{2^{t-1}}](x_1 \otimes \cdots \otimes x_{2^{t-2}}, y_1 \otimes \cdots \otimes y_{2^{t-2}}) = \phi^{2^{t-1}}(x_1 \otimes y_1 \otimes \cdots \otimes x_{2^{t-2}} \otimes y_{2^{t-2}})$$
$$= \phi^{2^{t-1}}(\Gamma(x_1 \otimes y_1 \otimes \cdots \otimes x_{2^{t-2}} \otimes y_{2^{t-2}}))$$
$$= \phi^{2^{t-1}}(y_1 \otimes x_1 \otimes \cdots \otimes y_{2^{t-2}} \otimes x_{2^{t-2}})$$
$$= A[\phi^{2^{t-1}}](y_1 \otimes \cdots \otimes y_{2^{t-2}}, x_1 \otimes \cdots \otimes x_{2^{t-2}}).$$

The above equation is valid for all $x_i, y_i \in V_1$, in particular for all basis elements of V_1 which implies that $A[\phi^{2^{t-1}}](w, z) = A[\phi^{2^{t-1}}](z, w)$ for all basis vectors w, z of $V_1^{\otimes 2^{t-2}}$. Thus $A[\phi^{2^{t-1}}]$ is a square symmetric real-valued matrix.

Lemma 17. Let $\phi: V_1 \times \cdots \times V_t \to \mathbb{R}$ be a t-linear map and let $x_1 \in V_1, \ldots, x_t \in V_t$ be unit length vectors. Then

$$\left|\phi(x_1,\ldots,x_t)\right|^2 \le \left|\phi^2(x_1\otimes x_1,\ldots,x_{t-1}\otimes x_{t-1})\right|.$$

Proof. Consider the linear map $\phi(x_1, \ldots, x_{t-1}, \cdot)$ which is a linear map from V_t to \mathbb{R} . By Lemma 12, there exists a vector $w \in V_t$ such that $\phi(x_1, \ldots, x_{t-1}, \cdot) = \langle w, \cdot \rangle$. Now expand out the definition of ϕ^2 :

$$\phi^2(x_1 \otimes x_1, \dots, x_{t-1} \otimes x_{t-1}) = \sum_{j=1}^{\dim(V_t)} |\phi(x_1, \dots, x_{t-1}, b_j)|^2 = \sum_{j=1}^{\dim(V_t)} |\langle w, b_j \rangle|^2 = \langle w, w \rangle$$

where the last equality is because $\{b_j\}$ is an orthonormal basis of V_t . Since $||w|| = \sqrt{\langle w, w \rangle}$,

$$\left|\phi^{2}(x_{1}\otimes x_{1},\ldots,x_{t-1}\otimes x_{t-1})\right|=\left|\langle w,w
ight>\right|=\left|\left\langle w,\frac{w}{\|w\|}\right\rangle\right|^{2}$$

But since x_t is unit length and $\langle w, \cdot \rangle$ is maximized over the unit ball at vectors parallel to w (so maximized at w/||w||), $\left|\left\langle w, \frac{w}{||w||}\right\rangle\right| \ge |\langle w, x_t\rangle|$. Thus

$$\left|\phi^{2}(x_{1}\otimes x_{1},\ldots,x_{t-1}\otimes x_{t-1})\right| = \left|\left\langle w,\frac{w}{\|w\|}\right\rangle\right|^{2} \geq \left|\left\langle w,x_{t}\right\rangle\right|^{2} = \left|\phi(x_{1},\ldots,x_{t})\right|^{2}.$$

The last equality used the definition of w, that $\phi(x_1, \ldots, x_{t-1}, \cdot) = \langle w, \cdot \rangle$.

Lemma 18. Let $\phi: V_1 \times \cdots \times V_t \to \mathbb{R}$ be a t-linear map and let $x_1 \in V_1, \ldots, x_t \in V_t$ be unit length vectors. Then for $0 \leq s \leq t - 1$,

$$\left|\phi(x_1,\ldots,x_t)\right|^{2^s} \le \left|\phi^{2^s}(\underbrace{x_1\otimes\cdots\otimes x_1}_{2^s},\ldots,\underbrace{x_{t-s}\otimes\cdots\otimes x_{t-s}}_{2^s})\right|$$

which implies that

$$\left|\phi(x_1,\ldots,x_t)\right|^{2^{t-1}} \leq \left|A[\phi^{2^{t-1}}](\underbrace{x_1\otimes\cdots\otimes x_1}_{2^{t-2}},\underbrace{x_1\otimes\cdots\otimes x_1}_{2^{t-2}})\right|.$$

Proof. By induction on s. The base case is s = 0 where both sides are equal and the induction step follows from Lemma 17. By definition of $A[\phi^{2^{t-1}}]$,

$$\left| A[\phi^{2^{t-1}}](\underbrace{x_1 \otimes \cdots \otimes x_1}_{2^{t-2}}, \underbrace{x_1 \otimes \cdots \otimes x_1}_{2^{t-2}}) \right| = \left| \phi^{2^{t-1}}(\underbrace{x_1 \otimes \cdots \otimes x_1}_{2^{t-1}}) \right|,$$

completing the proof.

Lemma 19. Let V_1, \ldots, V_t be vector spaces over \mathbb{R} and let $\phi : V_1 \times \cdots \times V_t \to \mathbb{R}$ be a t-linear map. Then $\|\phi\|^{2^{t-1}} \leq \lambda_1(A[\phi^{2^{t-1}}])$.

Proof. Pick x_1, \ldots, x_t unit length vectors to maximize ϕ , so $\phi(x_1, \ldots, x_t) = \|\phi\|$. Then Lemma 18 shows that

$$\|\phi\|^{2^{t-1}} = |\phi(x_1, \dots, x_t)|^{2^{t-1}} \le \left|A[\phi^{2^{t-1}}](\underbrace{x_1 \otimes \dots \otimes x_1}_{2^{t-2}}, \underbrace{x_1 \otimes \dots \otimes x_1}_{2^{t-2}})\right|$$

Since $x_1 \otimes \cdots \otimes x_1$ is unit length, the above expression is upper bounded by the spectral norm of $A[\phi^{2^{t-1}}]$.

Lemma 20. Let $\{M_r\}_{r\to\infty}$ be a sequence of square symmetric real-valued matrices with dimension going to infinity where $\lambda_2(M_r) = o(\lambda_1(M_r))$. Let u_r be a unit length eigenvector corresponding to the largest eigenvalue in absolute value of M_r . If $\{x_r\}$ is a sequence of unit length vectors such that $|x_r^T M_r x_r| = (1 + o(1))\lambda_1(M_r)$, then

$$||u_r - x_r|| = o(1).$$

Consequently, for any unit length sequence $\{y_r\}$ where each y_r is perpendicular to x_r ,

$$\left|y_r^T M_r y_r\right| = o(\lambda_1(M_r)).$$

Proof. Throughout this proof, the subscript r is dropped; all terms $o(\cdot)$ should be interpreted as $r \to \infty$. This exact statement was proved by Chung, Graham, and Wilson [1], although they do not clearly state it as such. We give a proof here for completeness using slightly different language but the same proof idea: if x projected onto u^{\perp} is too big then the second largest eigenvalue is too big. Write $x = \alpha v + \beta u$ where v is a unit length vector perpendicular to u and $\alpha, \beta \in \mathbb{C}$ and $\alpha^2 + \beta^2 = 1$ (since u is an eigenvector it might have complex entries). Let $\phi(x, y) = x^T M y$ be the bilinear map corresponding to M. Since $u^T M v = \lambda_1 u^T v = \lambda_1 \langle u, v \rangle = 0$, we have $\phi(u, v) = 0$. This implies that

$$\phi(x,x) = \phi(\alpha v + \beta u, \alpha v + \beta u) = \alpha^2 \phi(v,v) + \beta^2 \phi(u,u) + 2\alpha \beta \phi(u,v)$$
$$= \alpha^2 \phi(v,v) + \beta^2 \phi(u,u).$$

The second largest eigenvalue of M is the largest eigenvalue of $M - \lambda_1(M)uu^T$ which is the spectral norm of $M - \lambda_1(M)uu^T$. Thus

$$|\phi(v,v)| = |v^T M v| = |v^T (M - \lambda_1(M) u u^T) v| \le \lambda_2(M).$$
(2)

Using that $\phi(u, u) = \lambda_1(M)$ and the triangle inequality, we obtain

$$|\phi(x,x)| \le \alpha^2 \lambda_2(M) + \beta^2 \lambda_1(M).$$
(3)

Since $\alpha^2 + \beta^2 = 1$, $|\alpha|$ and $|\beta|$ are between zero and one. Combining this with (3) and $|\phi(x,x)| = (1+o(1))\lambda_1(M)$ and $\lambda_2(M) = o(\lambda_1(M))$, we must have $|\beta| = 1 + o(1)$ which in turn implies that $|\alpha| = o(1)$. Consequently,

$$||u - x||^2 = \langle u - x, u - x \rangle = \langle u, u \rangle + \langle x, x \rangle - 2 \langle u, x \rangle = 2 - 2\beta = o(1).$$

Now consider some y perpendicular to x and similarly to the above, write $y = \gamma w + \delta u$ for some unit length vector w perpendicular to u and $\gamma, \delta \in \mathbb{C}$ with $\gamma^2 + \delta^2 = 1$. Then

$$\phi(y,y) = \phi(\gamma w + \delta u, \gamma w + \delta u) = \gamma^2 \phi(w,w) + \delta^2 \phi(u,u)$$

and as in (2), we have $|\phi(w, w)| \leq \lambda_2(M)$. Thus

$$|\phi(y,y)| \le \gamma^2 \lambda_2(M) + \delta^2 \lambda_1(M).$$

We want to conclude that the above expression is $o(\lambda_1(M))$. Since $\lambda_2(M) = o(\lambda_1(M))$, we must prove that $|\delta| = o(1)$ to complete the proof.

$$\delta = \langle y, u \rangle = \left\langle y, \frac{x - \alpha v}{\beta} \right\rangle = \frac{1}{\beta} \left(\langle y, x \rangle - \alpha \langle y, v \rangle \right) = \frac{-\alpha \langle y, v \rangle}{\beta}.$$

But $|\alpha| = o(1)$, $|\beta| = 1 + o(1)$, and ||y|| = ||v|| = 1 so $|\delta| = o(1)$ as required.

Lemma 21. Let $J: V_1 \times \cdots \times V_t \to \mathbb{R}$ be the all-ones map and let $\vec{1}_i$ be the all-ones vector in V_i . Then for all x_1, \ldots, x_t with $x_i \in V_i$,

$$J(x_1, \dots, x_t) = \left\langle \vec{1}_1, x_1 \right\rangle \cdots \left\langle \vec{1}_t, x_t \right\rangle.$$
(4)

Proof. If x_1, \ldots, x_t are standard basis vectors, then the left and right hand side of (4) are the same. By linearity, (4) is then the same for all x_1, \ldots, x_t .

4.2 **Proof of Proposition 11**

Proof of Proposition 11. Again throughout this proof, the subscript r is dropped; all terms $o(\cdot)$ should be interpreted as $r \to \infty$. Let $\hat{1}$ denote the all-ones vector scaled to unit length in the appropriate vector space. Pick an ordering $\vec{\pi} = (k_1, \ldots, k_t)$ of π . The definition of spectral norm is independent of the choice of the ordering for the entries of $\vec{\pi}$, so $\|\psi_{\vec{\pi}} - qJ_{\vec{\pi}}\|$ is the same for all orderings. Let w_1, \ldots, w_t be unit length vectors where $(\psi_{\vec{\pi}} - qJ_{\vec{\pi}})(w_1, \ldots, w_t) = \|\psi_{\vec{\pi}} - qJ_{\vec{\pi}}\|$ and write $w_i = \alpha_i y_i + \beta_i \hat{1}$ where y_i is a unit length vector perpendicular to the all-ones vector and $\alpha_i, \beta_i \in \mathbb{R}$ with $\alpha_i^2 + \beta_i^2 = 1$. Then

$$\|\psi_{\vec{\pi}} - qJ_{\vec{\pi}}\| = (\psi_{\vec{\pi}} - qJ_{\vec{\pi}})(w_1, \dots, w_t) = (\psi_{\vec{\pi}} - qJ_{\vec{\pi}})(\alpha_1 y_1 + \beta_1 \hat{1}, \dots, \alpha_t y_t + \beta_t \hat{1})$$

$$= \psi_{\vec{\pi}}(\alpha_1 y_1 + \beta_1 \hat{1}, \dots, \alpha_t y_t + \beta_t \hat{1}) - q \dim(V_r)^{k/2} \prod_{i=1}^t \beta_i.$$
(5)

The last equality used that y_i is perpendicular to $\hat{1}$, so Lemma 21 implies that if y_i appears as input to $J_{\vec{\pi}}$ then the outcome is zero no matter what the other vectors are. Thus the only non-zero term involving $J_{\vec{\pi}}$ is $J_{\vec{\pi}}(\hat{1},\ldots,\hat{1}) = \dim(V_r)^{k/2}$. Note that $\psi(\hat{1},\ldots,\hat{1}) = \psi_{\vec{\pi}}(\hat{1},\ldots,\hat{1})$ since the all-ones vector scaled to unit length in $V^{\otimes k_i}$ is the tensor product of the all-ones vector scaled to unit length in V. Inserting $q = \dim(V_r)^{-k/2}\psi_{\vec{\pi}}(\hat{1},\ldots,\hat{1})$ in (5), we obtain

$$\|\psi_{\vec{\pi}} - qJ_{\vec{\pi}}\| = \psi_{\vec{\pi}}(\alpha_1 y_1 + \beta_1 \hat{1}, \dots, \alpha_t y_t + \beta_t \hat{1}) - \left(\prod_{i=1}^t \beta_i\right)\psi_{\vec{\pi}}(\hat{1}, \dots, \hat{1}).$$
 (6)

Now consider expanding $\psi_{\vec{\pi}}$ in (6) using linearity; the term $(\prod \beta_i)\psi_{\vec{\pi}}(\hat{1},\ldots,\hat{1})$ cancels, so all terms include at least one y_i . We claim that each of these terms is small; the following claim finishes the proof, since $\|\psi_{\vec{\pi}} - qJ_{\vec{\pi}}\|$ is the sum of terms each of which $o(\psi(\hat{1},\ldots,\hat{1}))$.

Claim: If $z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_t$ are unit length vectors, then

$$|\psi_{\vec{\pi}}(z_1,\ldots,z_{i-1},y_i,z_{i+1},\ldots,z_t)| = o(\psi(\hat{1},\ldots,\hat{1}))$$

Proof. Change the ordering of $\vec{\pi}$ to an ordering $\vec{\pi}'$ that differs from $\vec{\pi}$ by swapping 1 and *i*. Since ψ is symmetric,

$$\psi_{\vec{\pi}}(z_1,\ldots,z_{i-1},y_i,z_{i+1},\ldots,z_t) = \psi_{\vec{\pi}'}(y_i,z_2,\ldots,z_{i-1},z_1,z_{i+1},\ldots,z_t).$$
(7)

Therefore proving the claim comes down to bounding $\psi_{\vec{\pi}'}(y_i, z_2, \ldots, z_{i-1}, z_1, z_{i+1}, \ldots, z_t)$, which is a combination of Lemma 18 and Lemma 20 as follows. For the remainder of this proof, denote by A the matrix $A[\psi_{\vec{\pi}'}^{2^{t-1}}]$. By assumption, we have $\lambda_2(A) = o(\lambda_1(A))$ so Lemma 20 can be applied to the matrix sequence A. Next we would like to show that we can use $\hat{1}$ for x in the statement of Lemma 20; i.e. that $A(\hat{1}, \hat{1}) = (1 + o(1))\lambda_1(A)$. By Lemma 18 and the assumption $\lambda_1(A) = (1 + o(1))\psi(\hat{1}, \ldots, \hat{1})^{2^{t-1}}$, we have

$$\left|\psi_{\vec{\pi}'}(\hat{1},\ldots,\hat{1})\right|^{2^{t-1}} \leq \left|A(\hat{1},\hat{1})\right| \leq \lambda_1(A) = (1+o(1))\psi\left(\hat{1},\ldots,\hat{1}\right)^{2^{t-1}}$$

Using the definition of $\psi_{\vec{\pi}'}$, we have $\psi_{\vec{\pi}'}(\hat{1},\ldots,\hat{1}) = \psi(\hat{1},\ldots,\hat{1})$, which implies asymptotic equality through the above equation. In particular, $|A(\hat{1},\hat{1})| = (1 + o(1))\lambda_1(A)$ which is the condition in Lemma 20 for $x = \hat{1}$. Lastly, to apply Lemma 20 we need a vector yperpendicular to $\hat{1}$. The vector $y_i \otimes \cdots \otimes y_i \in V^{\otimes k_i 2^{t-2}}$ is perpendicular to $\hat{1}$ (in $V^{\otimes k_i 2^{t-2}}$) since y_i itself is perpendicular to $\hat{1}$ (in $V^{\otimes k_i}$). Thus Lemma 20 implies that

$$\left|A(\underbrace{y_i \otimes \cdots \otimes y_i}_{2^{t-2}}, \underbrace{y_i \otimes \cdots \otimes y_i}_{2^{t-2}})\right| = o(\lambda_1(A)).$$
(8)

Using Lemma 18 again shows that

$$\left|\psi_{\vec{\pi}'}(y_i, z_2, \dots, z_{i-1}, z_1, z_{i+1}, \dots, z_t)\right|^{2^{t-1}} \leq \left|A(\underbrace{y_i \otimes \dots \otimes y_i}_{2^{t-2}}, \underbrace{y_i \otimes \dots \otimes y_i}_{2^{t-2}})\right|.$$

Combining this equation with (7) and (8) shows that $|\psi_{\vec{\pi}}(z_1, \ldots, z_{i-1}, y_i, z_{i+1}, \ldots, z_t)|^{2^{t-1}} = o(\lambda_1(A))$. By assumption, $\lambda_1(A) = (1 + o(1))\psi(\hat{1}, \ldots, \hat{1})^{2^{t-1}}$, completing the proof of the claim.

5 Cycles and Traces

A key result we require from [4] relates the count of the number of cycles of type π and length 4ℓ to the trace of the matrix $A[\tau_{\pi}^{2^{t-1}}]^{2\ell}$. We will use this result (Proposition 23 below) as a black box, and we refer the reader to [4, Section 2] for a proof. The definition of $C_{\pi,2\ell}$ can be found in [4, Section 2] and is independent of the ordering π . Figure 1 and [4, Figures 3 and 4] contains figures of paths and cycles for various k and π .

Figure 1: $C_{(1,1,1),4}$

Definition 22. Let $\ell \geq 2$. A circuit of type π of length 2ℓ in a hypergraph H is a homomorphism $f: V(C_{\pi,2\ell}) \to V(H)$. Informally, a circuit is a cycle where the vertices are not necessarily distinct.

Proposition 23. [4, Proposition 6] Let H be a k-uniform hypergraph, let $\vec{\pi}$ be a proper ordered partition of k, and let $\ell \geq 2$ be an integer. Let τ be the adjacency map of H. Then $Tr\left[A[\tau_{\vec{\pi}}^{2^{t-1}}]^{\ell}\right]$ is the number of labeled circuits of type $\vec{\pi}$ and length 2ℓ in H.

$\mathbf{6} \quad \texttt{Cycle}_{4\ell}[\pi] \Rightarrow \texttt{Eig}[\pi]$

In this section, we prove that $Cycle_{4\ell}[\pi] \Rightarrow Eig[\pi]$ using Propositions 11 and 23.

Proof that $Cycle_{4\ell}[\pi] \Rightarrow Eig[\pi]$. Let $\mathcal{H} = \{H_n\}_{n \to \infty}$ be a sequence of hypergraphs and let τ_n be the adjacency map of H_n . For notational convenience, the subscript on n is dropped below. Throughout this proof, we use $\hat{1}$ to denote the all-ones vector scaled to unit length. Wherever we use the notation $\hat{1}$, it is the input to a multilinear map and so $\hat{1}$ denotes the all-ones vector in the appropriate vector space corresponding to whatever space the map is expecting as input. This means that in the equations below $\hat{1}$ can stand for different vectors in the same expression, but attempting to subscript $\hat{1}$ with the vector space (for example $\hat{1}_{V_3}$) would be notationally awkward.

The proof that $\operatorname{Cycle}_{4\ell}[\pi] \Rightarrow \operatorname{Eig}[\pi]$ comes down to checking the conditions of Proposition 11. Let $\vec{\pi}$ be any ordering of the entries of π . We will show that the first and second largest eigenvalues of $A = A[\tau_{\vec{\pi}}^{2^{t-1}}]$ are separated. Let $m = |E(C_{\pi,4\ell})| = 2\ell 2^{t-1}$ and note that $|V(C_{\pi,4\ell})| = mk/2$ since $C_{\pi,4\ell}$ is two-regular. A is a square symmetric real valued matrix, so let μ_1, \ldots, μ_d be the eigenvalues of A arranged so that $|\mu_1| \geq \cdots \geq |\mu_d|$, where $d = \dim(A)$. The eigenvalues of $A^{2\ell}$ are $\mu_1^{2\ell}, \ldots, \mu_d^{2\ell}$ and the trace of $A^{2\ell}$ is $\sum_i \mu_i^{2\ell}$. Since all $\mu_i^{2\ell} \geq 0$, Proposition 23 and $\operatorname{Cycle}_{4\ell}[\pi]$ implies that

$$\mu_1^{2\ell} + \mu_2^{2\ell} \le \text{Tr}\left[A^{2\ell}\right] = \#\{\text{possibly degenerate } C_{\pi,4\ell} \text{ in } H_n\} \le p^m n^{mk/2} + o(n^{mk/2}).$$
(9)

We now verify the conditions on μ_1 and μ_2 in Proposition 11, and to do that we need to compute $\tau(\hat{1}, \ldots, \hat{1})$. Simple computations show that

$$\tau(\hat{1},\ldots,\hat{1}) = \tau_{\vec{\pi}}(\hat{1},\ldots,\hat{1}) = \frac{k!|E(H)|}{n^{k/2}}.$$
(10)

Using that $|E(H_n)| \ge p\binom{n}{k} + o(n^k)$, Lemma 19, and $\mu_1^{2\ell} \le p^m n^{mk/2} + o(n^{mk/2})$ from (9),

$$pn^{k/2} + o(n^{k/2}) \le \frac{k! |E(H)|}{n^{k/2}} = \tau_{\vec{\pi}}(\hat{1}, \dots, \hat{1}) \le ||\tau_{\vec{\pi}}|| \le \mu_1^{1/2^{t-1}} \le pn^{k/2} + o(n^{k/2}).$$
(11)

This implies equality up to $o(n^{k/2})$ throughout the above expression, so

$$\tau(\hat{1},\ldots,\hat{1}) = pn^{k/2} + o(n^{k/2}), \quad \lambda_{1,\pi}(H_n) = \|\tau_{\vec{\pi}}\| = pn^{k/2} + o(n^{k/2})$$

and

$$\mu_1 = p^{2^{t-1}} n^{k2^{t-2}} + o(n^{k2^{t-2}}) = (1 + o(1))\tau(\hat{1}, \dots, \hat{1})^{2^{t-1}}.$$

Insert $\mu_1 = p^{2^{t-1}} n^{k2^{t-2}} + o(n^{k2^{t-2}})$ into (9) to show that $\mu_2 = o(n^{k2^{t-2}})$. Therefore, the conditions of Proposition 11 are satisfied, so

$$\|\tau_{\vec{\pi}} - qJ_{\vec{\pi}}\| = o(\tau(\hat{1}, \dots, \hat{1})) = o(n^{k/2}),$$

where $q = n^{-k/2} \tau(\hat{1}, ..., \hat{1})$. Using (10), $q = k! |E(H)| / n^k$. Thus $||\tau_{\vec{\pi}} - qJ_{\vec{\pi}}|| = \lambda_{2,\pi}(H_n)$ and the proof is complete.

The above proof can be extended to even length cycles in the case when $\vec{\pi} = (k_1, k_2)$ is a partition into two parts. For these $\vec{\pi}$, the matrix $A[\tau_{\vec{\pi}}^2]$ can be shown to be positive semidefinite since $A[\tau_{\vec{\pi}}^2]$ will equal MM^T where M is the matrix associated to the bilinear map $\tau_{\vec{\pi}}$. Since $A[\tau_{\vec{\pi}}^2]$ is positive semidefinite, each $\mu_i \ge 0$ so any power of μ_i is non-negative. For partitions into more than two parts, we do not know if the matrix $A[\tau_{\vec{\pi}}^{2^{t-1}}]$ is always positive semidefinite or not.

References

- F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs. Combinatorica, 9(4):345–362, 1989.
- [2] J. Friedman. Some graphs with small second eigenvalue. Combinatorica, 15(1):31-42, 1995.
- [3] J. Friedman and A. Wigderson. On the second eigenvalue of hypergraphs. Combinatorica, 15(1):43-65, 1995.
- [4] J. Lenz and D. Mubayi. Eigenvalues and linear quasirandom hypergraphs. accepted in *Forum of Mathematics, Sigma*.
- [5] J. Lenz and D. Mubayi. The poset of hypergraph quasirandomness. accepted in *Random Structures and Algorithms*. http://arxiv.org/abs/1208.5978.