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Abstract

Chung, Graham, and Wilson proved that a graph is quasirandom if and only if
there is a large gap between its first and second largest eigenvalue. Recently, the
authors extended this characterization to coregular k-uniform hypergraphs with loops.
However, for k ≥ 3 no k-uniform hypergraph is coregular.

In this paper we remove the coregular requirement. Consequently, the characteriza-
tion can be applied to k-uniform hypergraphs; for example it is used in [5] to show that
a construction of a k-uniform hypergraph sequence has some quasirandom properties.
The specific statement that we prove here is that if a k-uniform hypergraph satisfies
the correct count of a specially defined four-cycle, then there is a gap between its first
and second largest eigenvalue.

1 Introduction

The authors [4] recently proved a hypergraph generalization of the famous Chung-Graham-
Wilson [1] characterization of quasirandom graph sequences. However, the proof only applied
to coregular hypergraph sequences. In this paper we prove this equivalence for all k-uniform
hypergraph sequences, not just the coregular ones. This paper should be viewed as a com-
panion to [4] and many details and definitions that appear in [4] are not repeated here.

Definition 1. Let Ω be a set and k an integer. A k-multiset S on Ω is a function S : Ω→ Z≥0

such that
∑

x∈Ω S(x) = k. A k-uniform hypergraph with loops H consists of a vertex set V (H)
and an edge set E(H) which is a collection of k-multisets on V (H). A k-uniform hypergraph
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with loops is coregular if there is a positive integer d such that for every (k − 1)-multiset S
on V (H),

|{T ∈ E(H) : ∀x ∈ V (H), S(x) ≤ T (x)}| = d

A k-uniform hypergraph is a k-uniform hypergraph with loops H such that for every S ∈
E(H), im(S) = {0, 1}. A graph is a 2-uniform hypergraph.

Remarks.
• Informally, in a k-uniform hypergraph with loops every edge has size exactly k but a vertex
is allowed to be repeated inside of an edge.
• For k = 2, a d-regular graph is a coregular 2-uniform hypergraph with loops, since each
1-multiset (i.e. a vertex) is contained in exactly d edges. But for k ≥ 3, a k-uniform
hypergraph cannot be coregular. For example, if H is a 3-uniform hypergraph then H is not
coregular because for each vertex x, the multiset {x, x} is not contained in any edge of H.

Let k ≥ 2 be an integer and let π be a proper partition of k, by which we mean that π
is an unordered list of at least two positive integers whose sum is k. For the partition π of
k given by k = k1 + · · · + kt, we will abuse notation by saying that π = k1 + · · · + kt. If F
and G are k-uniform hypergraphs with loops, a labeled copy of F in H is an edge-preserving
injection V (F )→ V (H), i.e. an injection α : V (F )→ V (H) such that if E is an edge of F ,
then {α(x) : x ∈ E} is an edge of H. The following is our main theorem.

Theorem 2. Let 0 < p < 1 be a fixed constant and let H = {Hn}n→∞ be a sequence of
k-uniform hypergraphs with loops such that |V (Hn)| = n and |E(Hn)| ≥ p

(
n
k

)
. Let π =

k1 + · · ·+ kt be a proper partition of k and let ` ≥ 1. Assume that H satisfies the property

• Cycle4`[π]: the number of labeled copies of Cπ,4` in Hn is at most p|E(Cπ,4`)|n|V (Cπ,4`)|+
o(n|V (Cπ,4`)|), where Cπ,4` is the hypergraph cycle of type π and length 4` defined in [4,
Section 2].

Then H satisfies the property

• Eig[π]: λ1,π(Hn) = pnk/2 + o(nk/2) and λ2,π(Hn) = o(nk/2), where λ1,π(Hn) and
λ2,π(Hn) are the first and second largest eigenvalues of Hn with respect to π, defined in
Section 2.

When Theorem 2 is combined with [4, Section 2], we obtain the following theorem which
generalizes many parts of [1] to hypergraphs.

Theorem 3. Let 0 < p < 1 be a fixed constant and let H = {Hn}n→∞ be a sequence of
k-uniform hypergraphs with loops such that |V (Hn)| = n and |E(Hn)| ≥ p

(
n
k

)
+ o(nk). Let

π = k1 + · · ·+ kt be a proper partition of k. The following properties are equivalent:

• Eig[π]: λ1,π(Hn) = pnk/2 + o(nk/2) and λ2,π(Hn) = o(nk/2), where λ1,π(Hn) and
λ2,π(Hn).
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• Expand[π]: For all Si ⊆
(
V (Hn)
ki

)
where 1 ≤ i ≤ t,

e(S1, . . . , St) = p

t∏
i=1

|Si|+ o
(
nk
)

where e(S1, . . . , St) is the number of tuples (s1, . . . , st) such that s1 ∪ · · · ∪ st is a
hyperedge and si ∈ Si.

• Count[π-linear]: If F is an f -vertex, m-edge, k-uniform, π-linear hypergraph, then the
number of labeled copies of F in Hn is pmnf +o(nf ). The definition of π-linear appears
in [4, Section 1].

• Cycle4[π]: The number of labeled copies of Cπ,4 in Hn is at most p|E(Cπ,4)|n|V (Cπ,4)| +
o(n|V (Cπ,4)|).

• Cycle4`[π]: the number of labeled copies of Cπ,4` in Hn is at most p|E(Cπ,4`)|n|V (Cπ,4`)|+
o(n|V (Cπ,4`)|).

The remainder of this paper is organized as follows. Section 2 contains the definitions
of eigenvalues we will require from [4] . Section 3 contains definitions about linear maps
and also a statement of the main technical contribution of this note. Section 4 contains the
algebraic properties required for the proof of Theorem 2. Section 5 contains a crucial lemma
from [4] that relates cycles counts to the trace of higher order matrices, and finally Section 6
contains the proof of Theorem 2.

2 Hypergraph Eigenvalues

In this section, we give the definitions of the first and second largest eigenvalues of a hyper-
graph. These definitions are identical to those given in [4].

Definition 4. (Friedman and Wigderson [2, 3]) Let H be a k-uniform hypergraph with
loops. The adjacency map of H is the symmetric k-linear map τH : W k → R defined as
follows, where W is the vector space over R of dimension |V (H)|. First, for all v1, . . . , vk ∈
V (H), let

τH(ev1 , . . . , evk) =

{
1 {v1, . . . , vk} ∈ E(H),

0 otherwise,

where ev denotes the indicator vector of the vertex v, that is the vector which has a one in
coordinate v and zero in all other coordinates. We have defined the value of τH when the
inputs are standard basis vectors of W . Extend τH to all the domain linearly.
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Definition 5. Let W be a finite dimensional vector space over R, let σ : W k → R be any
k-linear function, and let ~π be a proper ordered partition of k, so ~π = (k1, . . . , kt) for some
integers k1, . . . , kt with t ≥ 2. Now define a t-linear function σ~π : W⊗k1 × · · · ×W⊗kt → R
by first defining σ~π when the inputs are basis vectors of W⊗ki and then extending linearly.
For each i, Bi = {bi,1 ⊗ · · · ⊗ bi,ki : bi,j is a standard basis vector of W} is a basis of W⊗ki,
so for each i, pick bi,1 ⊗ · · · ⊗ bi,ki ∈ Bi and define

σ~π (b1,1 ⊗ · · · ⊗ b1,k1 , . . . , bt,1 ⊗ · · · ⊗ bt,kt) = σ(b1,1, . . . , b1,k1 , . . . , bt,1, . . . , bt,kt).

Now extend σ~π linearly to all of the domain. σ~π will be t-linear since σ is k-linear.

Let us give a simple example to illustrate this definition.

Example. Suppose for simplicity W ∼= Rn and let e1, . . . , en be the standard basis vectors for
W . Let k = 3, t = 2, ~π = (2, 1) and σ : W 3 → R be a map representing an n-vertex 3-uniform
hypergraph H. Then σ~π : (W ⊗W )×W → R is defined by σ~π(ei ⊗ ej, ek) = σ(ei, ej, ek) for
every (i, j, k) ∈ [n]3. Since the set {(ei⊗ ej, ek) : (i, j, k) ∈ [n]3} is a basis for (W ⊗W )×W ,
we may use linearity to define σ~π(v) for all v ∈ (W ⊗W )×W .

Definition 6. Let W1, . . . ,Wk be finite dimensional vector spaces over R, let ‖·‖ denote the
Euclidean 2-norm on Wi, and let φ : W1 × · · · ×Wk → R be a k-linear map. The spectral
norm of φ is

‖φ‖ = sup
xi∈Wi
‖xi‖=1

|φ(x1, . . . , xk)| .

Definition 7. Let H be an n vertex k-uniform hypergraph with loops, W ∼= Rn, τ = τH
be the (k-linear) adjacency map of H and J : W k → R be the k-linear map defined by
J(ei1 , . . . , eik) = 1 whenever ei1 , . . . , eik are any standard basis vectors of W . Let π be any
(unordered) partition of k and let ~π be any ordering of π. The largest and second largest
eigenvalues of H with respect to π, denoted λ1,π(H) and λ2,π(H), are defined as

λ1,π(H) := ‖τ~π‖ and λ2,π(H) :=

∥∥∥∥τ~π − k!|E(H)|
nk

J~π

∥∥∥∥ .
3 Eigenvalues and Linear Maps

In this section we prove the main algebraic tool needed for the proof of Theorem 2, which
extends to k-uniform hypergraphs the fact that in a graph sequence with density p and
λ2(G) = o(λ1(G)), the distance between the all-ones vector and the eigenvector correspond-
ing to the largest eigenvalue is o(1). We need several definitions first.

Definition 8. Let V1, . . . , Vt be finite dimensional vector spaces over R and let φ, ψ : V1 ×
· · · × Vt → R be t-linear maps. The product of φ and ψ, written φ ∗ ψ, is a (t − 1)-linear
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map defined as follows. Let u1, . . . , ut−1 be vectors where ui ∈ Vi. Let {b1, . . . , bdim(Vt)} be
any orthonormal basis of Vt.

φ ∗ ψ : (V1 ⊗ V1)× (V2 ⊗ V2)× · · · × (Vt−1 ⊗ Vt−1)→ R

φ ∗ ψ(u1 ⊗ v1, . . . , ut−1 ⊗ vt−1) :=

dim(Vt)∑
j=1

φ(u1, . . . , ut−1, bj)ψ(v1, . . . , vt−1, bj)

Extend the map φ ∗ ψ linearly to all of the domain to produce a (t− 1)-linear map.

Lemma 13 shows that the maps are well defined: the map is the same for any choice of
orthonormal basis by the linearity of φ and ψ.

Definition 9. Let V1, . . . , Vt be finite dimensional vector spaces over R, φ : V1×· · ·×Vt → R
be a t-linear map and s be an integer 0 ≤ s ≤ t− 1. Define

φ2s : V ⊗2s

1 × · · · × V ⊗2s

t−s → R where φ20 := φ and φ2s := φ2s−1 ∗ φ2s−1

.

Definition 10. Let V1, . . . , Vt be finite dimensional vector spaces over R and let φ : V1 ×
· · ·×Vt → R be a t-linear map and define A[φ2t−1

] to be the following square matrix/bilinear
map. Let u1, . . . , u2t−2 , v1, . . . , v2t−2 be vectors where ui, vi ∈ V1.

A[φ2t−1

] : V ⊗2t−2

1 × V ⊗2t−2

1 → R
A[φ2t−1

](u1 ⊗ · · · ⊗ u2t−2 , v1 ⊗ . . . v2t−2) := φ2t−1

(u1 ⊗ v1 ⊗ u2 ⊗ v2 ⊗ · · · ⊗ u2t−2 ⊗ v2t−2).

Extend the map linearly to the entire domain to produce a bilinear map.

Lemma 16 below proves that A[φ2t−1
] is a square symmetric real valued matrix. The

following is the main algebraic result required for the proof of Theorem 2.

Proposition 11. Let {ψr}r→∞ be a sequence of symmetric k-linear maps, where ψr : V k
r →

R, Vr is a vector space over R of finite dimension, and dim(Vr) → ∞ as r → ∞. Let 1̂
denote the all-ones vector in Vr scaled to unit length and let J : V k

r → R be the k-linear all-
ones map. Let π be a proper (unordered) partition of k, and assume that for every ordering
~π of π,

λ1(A[ψ2t−1

~π ]) = (1 + o(1))ψ
(
1̂, . . . , 1̂

)2t−1

,

λ2(A[ψ2t−1

~π ]) = o
(
λ1(A[ψ2t−1

~π ])
)
.

Then for every ordering ~π of π,

‖ψ~π − qJ~π‖ = o(ψ(1̂, . . . , 1̂)),

where q = dim(Vr)
−k/2ψ(1̂, . . . , 1̂).

For graphs, A[τ 2] is the adjacency matrix squared so Proposition 11 states that ‖A −
2|E(G)|
n2 J‖ = o(

√
λ1(A2)), exactly what is proved by Chung, Graham, and Wilson (see the

bottom of page 350 in [1]). The proof of Proposition 11 appears in the next section.
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4 Algebraic properties of multilinear maps

In this section we prove several algebraic facts about multilinear maps, including Proposi-
tion 11. Throughout this section, V and Vi are finite dimensional vector spaces over R. Also
in this section we make no distinction between bilinear maps and matrices, using whichever
formulation is convenient. We will use a symbol · to denote the input to a linear map; for
example, if φ : V1 × V2 × V3 → R is a trilinear map and x1 ∈ V1 and x2 ∈ V2, then by the
expression φ(x1, x2, ·) we mean the linear map from V3 to R which takes a vector x3 ∈ V3 to
φ(x1, x2, x3). Lastly, we use several basic facts about tensors, all of which follow from the
fact that for finite dimensional spaces, the tensor product of V and W is the vector space
over R of dimension dim(V ) dim(W ). For example, if x and y are unit length, then x⊗ y is
also unit length.

4.1 Preliminary Lemmas

Lemma 12. Let φ : V → R be a linear map. There exists a vector v such that φ = 〈v, ·〉.

Proof. v is the vector dual to φ in the dual of the vector space V . Alternatively, let the ith
coordinate of v be φ(ei), since then for any x,

φ(x) = φ

dim(V )∑
i=1

〈x, ei〉 ei

 =

dim(V )∑
i=1

〈x, ei〉φ(ei) =

dim(V )∑
i=1

〈x, ei〉 〈v, ei〉 = 〈x, v〉 .

Lemma 13. Let φ, ψ : V1 × · · · × Vt → R be t-linear maps. The maps φ ∗ ψ and A[φ2t−1
]

are well defined. Also, φ ∗ ψ is basis independent in the sense that the definition of φ ∗ ψ is
independent of the choice of orthonormal basis b1, . . . , bt of Vt.

Proof. First, extending the definitions of φ ∗ ψ and A[φ2t−1
] linearly to the entire domain

(non-simple tensors) is well defined, since φ and ψ are linear. That is, write each ui and vi
in terms of some orthonormal basis and expand each tensor in Vi ⊗ Vi also in terms of this
basis. The linearity of φ and ψ then shows that the definitions of φ ∗ ψ and A[φ2t−1

] are
well defined and linear. To see basis independence of φ ∗ ψ, by Lemma 12 the linear map
φ(u1, . . . , ut−1, ·) : Vt → R equals 〈u′, ·〉 for some vector u′. Similarly, ψ(v1, . . . , vt, ·) equals
〈v′, ·〉 for some vector v′. Then

(φ ∗ ψ)(u1 ⊗ v1, . . . , ut−1 ⊗ vt−1) =

dim(Vt)∑
i=1

〈u′, bi〉 〈v′, bi〉 = 〈u′, v′〉 .

The last equality is valid for any orthonormal basis, since the dot product of u′ and v′ sums
the product of the ith coordinate of u′ in the basis {b1, . . . , bdim(Vt)} with the ith coordinate
of v′ in the basis {b1, . . . , bdim(Vt)}.
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Definition 14. For s ≥ 0 and V a finite dimensional vector space over R, define the
vector space isomorphism ΓV,s : V ⊗2s → V ⊗2s as follows. If s = 0, define ΓV,0 to be the
identity map. If s ≥ 1, let {b1, . . . , bdim(V )} be any orthonormal basis of V and define for all
(i1, . . . , i2s−1 , j1, . . . , j2s−1) ∈ [dim(V )]2

s
,

ΓV,s(bi1 ⊗ bj1 ⊗ · · · ⊗ bi2s−1 ⊗ bj2s−1 ) = bj1 ⊗ bi1 ⊗ · · · ⊗ bj2s−1 ⊗ bi2s−1 . (1)

Extend ΓV,s linearly to all of V ⊗2s.

Remarks. ΓV,s is a vector space isomorphism since it restricts to a bijection of an orthonor-
mal basis to itself. Also, it is easy to see that ΓV,s is well defined and independent of the
choice of orthonormal basis, since each bi can be written as a linear combination of an or-
thonormal basis {b′1, . . . , b′dim(V )} and (1) can be expanded using linearity. For notational
convenience, we will usually drop the subscript V and write Γs for ΓV,s.

Lemma 15. Let φ : V1 × · · · × Vt → R be a t-linear map, let 0 ≤ s ≤ t − 1, and let
x1 ∈ V ⊗2s

1 , . . . , xt−s ∈ V ⊗2s

t−s . Then

φ2s(x1, . . . , xt−s) = φ2s(Γs(x1), . . . ,Γs(xt−s)).

Proof. By induction on s. The base case is s = 0 where Γ0 is the identity map. Expand the
definition of φ2s+1

and use induction to obtain

φ2s+1

(x1⊗y1, . . . , xt−s−1 ⊗ yt−s−1) =

dim(V ⊗2s

t−s )∑
j=1

φ2s(x1, . . . , xt−s−1, bj)φ
2s(y1, . . . , yt−s−1, bj)

=

dim(V ⊗2s

t−s )∑
j=1

φ2s
(
Γs(x1), . . . ,Γs(xt−s−1),Γs(bj)

)
φ2s
(
Γs(y1), . . . ,Γs(yt−s−1),Γs(bj)

)
.

But since Γs is a vector space isomorphism, {Γs(b1), . . . ,Γs(bdim(V ⊗2s

t−s ))} is an orthonormal

basis of V ⊗2s

t−s . Thus Lemma 13 shows that

dim(V ⊗2s

t−s )∑
j=1

φ2s
(
Γs(x1), . . . ,Γs(xt−s−1),Γs(bj)

)
φ2s
(
Γs(y1), . . . ,Γs(yt−s−1),Γs(bj)

)
= φ2s+1(

Γs(x1)⊗ Γs(y1), . . . ,Γs(xt−s−1)⊗ Γs(yt−s−1)
)

Finally, Γs(xi) ⊗ Γs(yi) = Γs+1(xi ⊗ yi) (write xi and yi as linear combinations, expand
Γs+1(xi ⊗ yi) using linearity, and apply (1)). Thus φ2s+1

(x1 ⊗ y1, . . . , xt−s−1 ⊗ yt−s−1) =
φ2s+1

(Γs+1(x1 ⊗ y1), . . . ,Γs+1(xt−s−1 ⊗ yt−s−1)), completing the proof.

Lemma 16. Let V1, . . . , Vt be finite dimensional vector spaces over R. If φ : V1×· · ·×Vt → R
is a t-linear map, then A[φ2t−1

] is a square symmetric real valued matrix.
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Proof. Let φ : V1 × · · · × Vt → R be a t-linear map. A[φ2t−1
] is a bilinear map from

V ⊗2t−2

1 × V ⊗2t−2

1 → R and so is a square matrix of dimension dim(V1)2t−2
. Lemma 15 shows

that A[φ2t−1
] is a symmetric matrix, since

A[φ2t−1

](x1 ⊗ · · · ⊗ x2t−2 , y1 ⊗ · · · ⊗ y2t−2) = φ2t−1

(x1 ⊗ y1 ⊗ · · · ⊗ x2t−2 ⊗ y2t−2)

= φ2t−1

(Γ(x1 ⊗ y1 ⊗ · · · ⊗ x2t−2 ⊗ y2t−2))

= φ2t−1

(y1 ⊗ x1 ⊗ · · · ⊗ y2t−2 ⊗ x2t−2)

= A[φ2t−1

](y1 ⊗ · · · ⊗ y2t−2 , x1 ⊗ · · · ⊗ x2t−2).

The above equation is valid for all xi, yi ∈ V1, in particular for all basis elements of V1 which
implies that A[φ2t−1

](w, z) = A[φ2t−1
](z, w) for all basis vectors w, z of V ⊗2t−2

1 . Thus A[φ2t−1
]

is a square symmetric real-valued matrix.

Lemma 17. Let φ : V1× · · · × Vt → R be a t-linear map and let x1 ∈ V1, . . . , xt ∈ Vt be unit
length vectors. Then

|φ(x1, . . . , xt)|2 ≤
∣∣φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1)

∣∣ .
Proof. Consider the linear map φ(x1, . . . , xt−1, ·) which is a linear map from Vt to R. By
Lemma 12, there exists a vector w ∈ Vt such that φ(x1, . . . , xt−1, ·) = 〈w, ·〉. Now expand
out the definition of φ2:

φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1) =

dim(Vt)∑
j=1

|φ(x1, . . . , xt−1, bj)|2 =

dim(Vt)∑
j=1

|〈w, bj〉|2 = 〈w,w〉

where the last equality is because {bj} is an orthonormal basis of Vt. Since ‖w‖ =
√
〈w,w〉,

∣∣φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1)
∣∣ = |〈w,w〉| =

∣∣∣∣〈w, w

‖w‖

〉∣∣∣∣2 .
But since xt is unit length and 〈w, ·〉 is maximized over the unit ball at vectors parallel to w

(so maximized at w/ ‖w‖),
∣∣∣〈w, w

‖w‖

〉∣∣∣ ≥ |〈w, xt〉|. Thus

∣∣φ2(x1 ⊗ x1, . . . , xt−1 ⊗ xt−1)
∣∣ =

∣∣∣∣〈w, w

‖w‖

〉∣∣∣∣2 ≥ |〈w, xt〉|2 = |φ(x1, . . . , xt)|2 .

The last equality used the definition of w, that φ(x1, . . . , xt−1, ·) = 〈w, ·〉.

Lemma 18. Let φ : V1× · · · × Vt → R be a t-linear map and let x1 ∈ V1, . . . , xt ∈ Vt be unit
length vectors. Then for 0 ≤ s ≤ t− 1,

|φ(x1, . . . , xt)|2
s

≤

∣∣∣∣∣∣φ2s(x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2s

, . . . , xt−s ⊗ · · · ⊗ xt−s︸ ︷︷ ︸
2s

)

∣∣∣∣∣∣
8



which implies that

|φ(x1, . . . , xt)|2
t−1

≤

∣∣∣∣∣∣A[φ2t−1

](x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

, x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

)

∣∣∣∣∣∣ .
Proof. By induction on s. The base case is s = 0 where both sides are equal and the
induction step follows from Lemma 17. By definition of A[φ2t−1

],∣∣∣∣∣∣A[φ2t−1

](x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

, x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

)

∣∣∣∣∣∣ =

∣∣∣∣∣∣φ2t−1

(x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−1

)

∣∣∣∣∣∣ ,
completing the proof.

Lemma 19. Let V1, . . . , Vt be vector spaces over R and let φ : V1×· · ·×Vt → R be a t-linear

map. Then ‖φ‖2t−1

≤ λ1(A[φ2t−1
]).

Proof. Pick x1, . . . , xt unit length vectors to maximize φ, so φ(x1, . . . , xt) = ‖φ‖. Then
Lemma 18 shows that

‖φ‖2t−1

= |φ(x1, . . . , xt)|2
t−1

≤

∣∣∣∣∣∣A[φ2t−1

](x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

, x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
2t−2

)

∣∣∣∣∣∣
Since x1 ⊗ · · · ⊗ x1 is unit length, the above expression is upper bounded by the spectral
norm of A[φ2t−1

].

Lemma 20. Let {Mr}r→∞ be a sequence of square symmetric real-valued matrices with
dimension going to infinity where λ2(Mr) = o(λ1(Mr)). Let ur be a unit length eigenvector
corresponding to the largest eigenvalue in absolute value of Mr. If {xr} is a sequence of unit
length vectors such that

∣∣xTrMrxr
∣∣ = (1 + o(1))λ1(Mr), then

‖ur − xr‖ = o(1).

Consequently, for any unit length sequence {yr} where each yr is perpendicular to xr,∣∣yTrMryr
∣∣ = o(λ1(Mr)).

Proof. Throughout this proof, the subscript r is dropped; all terms o(·) should be interpreted
as r → ∞. This exact statement was proved by Chung, Graham, and Wilson [1], although
they do not clearly state it as such. We give a proof here for completeness using slightly
different language but the same proof idea: if x projected onto u⊥ is too big then the
second largest eigenvalue is too big. Write x = αv + βu where v is a unit length vector
perpendicular to u and α, β ∈ C and α2 + β2 = 1 (since u is an eigenvector it might have
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complex entries). Let φ(x, y) = xTMy be the bilinear map corresponding to M . Since
uTMv = λ1u

Tv = λ1 〈u, v〉 = 0, we have φ(u, v) = 0. This implies that

φ(x, x) = φ(αv + βu, αv + βu) = α2φ(v, v) + β2φ(u, u) + 2αβφ(u, v)

= α2φ(v, v) + β2φ(u, u).

The second largest eigenvalue of M is the largest eigenvalue of M − λ1(M)uuT which is the
spectral norm of M − λ1(M)uuT . Thus

|φ(v, v)| = |vTMv| = |vT (M − λ1(M)uuT )v| ≤ λ2(M). (2)

Using that φ(u, u) = λ1(M) and the triangle inequality, we obtain

|φ(x, x)| ≤ α2λ2(M) + β2λ1(M). (3)

Since α2 + β2 = 1, |α| and |β| are between zero and one. Combining this with (3) and
|φ(x, x)| = (1 + o(1))λ1(M) and λ2(M) = o(λ1(M)), we must have |β| = 1 + o(1) which in
turn implies that |α| = o(1). Consequently,

‖u− x‖2 = 〈u− x, u− x〉 = 〈u, u〉+ 〈x, x〉 − 2 〈u, x〉 = 2− 2β = o(1).

Now consider some y perpendicular to x and similarly to the above, write y = γw + δu
for some unit length vector w perpendicular to u and γ, δ ∈ C with γ2 + δ2 = 1. Then

φ(y, y) = φ(γw + δu, γw + δu) = γ2φ(w,w) + δ2φ(u, u)

and as in (2), we have |φ(w,w)| ≤ λ2(M). Thus

|φ(y, y)| ≤ γ2λ2(M) + δ2λ1(M).

We want to conclude that the above expression is o(λ1(M)). Since λ2(M) = o(λ1(M)), we
must prove that |δ| = o(1) to complete the proof.

δ = 〈y, u〉 =

〈
y,
x− αv
β

〉
=

1

β

(
〈y, x〉 − α 〈y, v〉

)
=
−α 〈y, v〉

β
.

But |α| = o(1), |β| = 1 + o(1), and ‖y‖ = ‖v‖ = 1 so |δ| = o(1) as required.

Lemma 21. Let J : V1 × · · · × Vt → R be the all-ones map and let ~1i be the all-ones vector
in Vi. Then for all x1, . . . , xt with xi ∈ Vi,

J(x1, . . . , xt) =
〈
~11, x1

〉
· · ·
〈
~1t, xt

〉
. (4)

Proof. If x1, . . . , xt are standard basis vectors, then the left and right hand side of (4) are
the same. By linearity, (4) is then the same for all x1, . . . , xt.
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4.2 Proof of Proposition 11

Proof of Proposition 11. Again throughout this proof, the subscript r is dropped; all terms
o(·) should be interpreted as r → ∞. Let 1̂ denote the all-ones vector scaled to unit
length in the appropriate vector space. Pick an ordering ~π = (k1, . . . , kt) of π. The def-
inition of spectral norm is independent of the choice of the ordering for the entries of ~π,
so ‖ψ~π − qJ~π‖ is the same for all orderings. Let w1, . . . , wt be unit length vectors where
(ψ~π − qJ~π)(w1, . . . , wt) = ‖ψ~π − qJ~π‖ and write wi = αiyi + βi1̂ where yi is a unit length
vector perpendicular to the all-ones vector and αi, βi ∈ R with α2

i + β2
i = 1. Then

‖ψ~π − qJ~π‖ = (ψ~π − qJ~π)(w1, . . . , wt) = (ψ~π − qJ~π)(α1y1 + β11̂, . . . , αtyt + βt1̂)

= ψ~π(α1y1 + β11̂, . . . , αtyt + βt1̂)− q dim(Vr)
k/2

t∏
i=1

βi. (5)

The last equality used that yi is perpendicular to 1̂, so Lemma 21 implies that if yi appears
as input to J~π then the outcome is zero no matter what the other vectors are. Thus the only
non-zero term involving J~π is J~π(1̂, . . . , 1̂) = dim(Vr)

k/2. Note that ψ(1̂, . . . , 1̂) = ψ~π(1̂, . . . , 1̂)
since the all-ones vector scaled to unit length in V ⊗ki is the tensor product of the all-ones
vector scaled to unit length in V . Inserting q = dim(Vr)

−k/2ψ~π(1̂, . . . , 1̂) in (5), we obtain

‖ψ~π − qJ~π‖ = ψ~π(α1y1 + β11̂, . . . , αtyt + βt1̂)−

(
t∏
i=1

βi

)
ψ~π(1̂, . . . , 1̂). (6)

Now consider expanding ψ~π in (6) using linearity; the term (
∏
βi)ψ~π(1̂, . . . , 1̂) cancels, so all

terms include at least one yi. We claim that each of these terms is small; the following claim
finishes the proof, since ‖ψ~π − qJ~π‖ is the sum of terms each of which o(ψ(1̂, . . . , 1̂)).

Claim: If z1, . . . , zi−1, zi+1, . . . , zt are unit length vectors, then

|ψ~π(z1, . . . , zi−1, yi, zi+1, . . . , zt)| = o(ψ(1̂, . . . , 1̂)).

Proof. Change the ordering of ~π to an ordering ~π′ that differs from ~π by swapping 1 and i.
Since ψ is symmetric,

ψ~π(z1, . . . , zi−1, yi, zi+1, . . . , zt) = ψ~π′(yi, z2, . . . , zi−1, z1, zi+1, . . . , zt). (7)

Therefore proving the claim comes down to bounding ψ~π′(yi, z2, . . . , zi−1, z1, zi+1, . . . , zt),
which is a combination of Lemma 18 and Lemma 20 as follows. For the remainder of
this proof, denote by A the matrix A[ψ2t−1

~π′ ]. By assumption, we have λ2(A) = o(λ1(A)) so
Lemma 20 can be applied to the matrix sequence A. Next we would like to show that we can
use 1̂ for x in the statement of Lemma 20; i.e. that A(1̂, 1̂) = (1 + o(1))λ1(A). By Lemma 18
and the assumption λ1(A) = (1 + o(1))ψ(1̂, . . . , 1̂)2t−1

, we have∣∣ψ~π′(1̂, . . . , 1̂)
∣∣2t−1

≤
∣∣A(1̂, 1̂)

∣∣ ≤ λ1(A) = (1 + o(1))ψ
(
1̂, . . . , 1̂

)2t−1

.
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Using the definition of ψ~π′ , we have ψ~π′(1̂, . . . , 1̂) = ψ(1̂, . . . , 1̂), which implies asymptotic
equality through the above equation. In particular, |A(1̂, 1̂)| = (1 + o(1))λ1(A) which is
the condition in Lemma 20 for x = 1̂. Lastly, to apply Lemma 20 we need a vector y
perpendicular to 1̂. The vector yi ⊗ · · · ⊗ yi ∈ V ⊗ki2

t−2
is perpendicular to 1̂ (in V ⊗ki2

t−2
)

since yi itself is perpendicular to 1̂ (in V ⊗ki). Thus Lemma 20 implies that∣∣∣∣∣∣A(yi ⊗ · · · ⊗ yi︸ ︷︷ ︸
2t−2

, yi ⊗ · · · ⊗ yi︸ ︷︷ ︸
2t−2

)

∣∣∣∣∣∣ = o(λ1(A)). (8)

Using Lemma 18 again shows that

|ψ~π′(yi, z2, . . . , zi−1, z1, zi+1, . . . , zt)|2
t−1

≤

∣∣∣∣∣∣A(yi ⊗ · · · ⊗ yi︸ ︷︷ ︸
2t−2

, yi ⊗ · · · ⊗ yi︸ ︷︷ ︸
2t−2

)

∣∣∣∣∣∣ .
Combining this equation with (7) and (8) shows that |ψ~π(z1, . . . , zi−1, yi, zi+1, . . . , zt)|2

t−1

=
o(λ1(A)). By assumption, λ1(A) = (1 + o(1))ψ(1̂, . . . , 1̂)2t−1

, completing the proof of the
claim.

5 Cycles and Traces

A key result we require from [4] relates the count of the number of cycles of type π and
length 4` to the trace of the matrix A[τ 2t−1

~π ]2`. We will use this result (Proposition 23 below)
as a black box, and we refer the reader to [4, Section 2] for a proof. The definition of Cπ,2`
can be found in [4, Section 2] and is independent of the ordering ~π. Figure 1 and [4, Figures
3 and 4] contains figures of paths and cycles for various k and π.

Figure 1: C(1,1,1),4

Definition 22. Let ` ≥ 2. A circuit of type π of length 2` in a hypergraph H is a homo-
morphism f : V (Cπ,2`) → V (H). Informally, a circuit is a cycle where the vertices are not
necessarily distinct.
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Proposition 23. [4, Proposition 6] Let H be a k-uniform hypergraph, let ~π be a proper
ordered partition of k, and let ` ≥ 2 be an integer. Let τ be the adjacency map of H. Then

Tr
[
A[τ 2t−1

~π ]`
]

is the number of labeled circuits of type ~π and length 2` in H.

6 Cycle4`[π] ⇒ Eig[π]

In this section, we prove that Cycle4`[π] ⇒ Eig[π] using Propositions 11 and 23.

Proof that Cycle4`[π] ⇒ Eig[π]. Let H = {Hn}n→∞ be a sequence of hypergraphs and let
τn be the adjacency map of Hn. For notational convenience, the subscript on n is dropped
below. Throughout this proof, we use 1̂ to denote the all-ones vector scaled to unit length.
Wherever we use the notation 1̂, it is the input to a multilinear map and so 1̂ denotes the
all-ones vector in the appropriate vector space corresponding to whatever space the map is
expecting as input. This means that in the equations below 1̂ can stand for different vectors
in the same expression, but attempting to subscript 1̂ with the vector space (for example
1̂V3) would be notationally awkward.

The proof that Cycle4`[π] ⇒ Eig[π] comes down to checking the conditions of Proposi-
tion 11. Let ~π be any ordering of the entries of π. We will show that the first and second
largest eigenvalues of A = A[τ 2t−1

~π ] are separated. Let m = |E(Cπ,4`)| = 2`2t−1 and note that
|V (Cπ,4`)| = mk/2 since Cπ,4` is two-regular. A is a square symmetric real valued matrix, so
let µ1, . . . , µd be the eigenvalues of A arranged so that |µ1| ≥ · · · ≥ |µd|, where d = dim(A).
The eigenvalues of A2` are µ2`

1 , . . . , µ
2`
d and the trace of A2` is

∑
i µ

2`
i . Since all µ2`

i ≥ 0,
Proposition 23 and Cycle4`[π] implies that

µ2`
1 + µ2`

2 ≤ Tr
[
A2`
]

= #{possibly degenerate Cπ,4` in Hn} ≤ pmnmk/2 + o(nmk/2). (9)

We now verify the conditions on µ1 and µ2 in Proposition 11, and to do that we need to
compute τ(1̂, . . . , 1̂). Simple computations show that

τ(1̂, . . . , 1̂) = τ~π(1̂, . . . , 1̂) =
k!|E(H)|
nk/2

. (10)

Using that |E(Hn)| ≥ p
(
n
k

)
+ o(nk), Lemma 19, and µ2`

1 ≤ pmnmk/2 + o(nmk/2) from (9),

pnk/2 + o(nk/2) ≤ k!|E(H)|
nk/2

= τ~π(1̂, . . . , 1̂) ≤ ‖τ~π‖ ≤ µ
1/2t−1

1 ≤ pnk/2 + o(nk/2). (11)

This implies equality up to o(nk/2) throughout the above expression, so

τ(1̂, . . . , 1̂) = pnk/2 + o(nk/2), λ1,π(Hn) = ‖τ~π‖ = pnk/2 + o(nk/2)

and
µ1 = p2t−1

nk2t−2

+ o(nk2t−2

) = (1 + o(1))τ(1̂, . . . , 1̂)2t−1

.
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Insert µ1 = p2t−1
nk2t−2

+ o(nk2t−2
) into (9) to show that µ2 = o(nk2t−2

). Therefore, the
conditions of Proposition 11 are satisfied, so

‖τ~π − qJ~π‖ = o(τ(1̂, . . . , 1̂)) = o(nk/2),

where q = n−k/2τ(1̂, . . . , 1̂). Using (10), q = k!|E(H)|/nk. Thus ‖τ~π − qJ~π‖ = λ2,π(Hn) and
the proof is complete.

The above proof can be extended to even length cycles in the case when ~π = (k1, k2)
is a partition into two parts. For these ~π, the matrix A[τ 2

~π ] can be shown to be positive
semidefinite since A[τ 2

~π ] will equal MMT where M is the matrix associated to the bilinear
map τ~π. Since A[τ 2

~π ] is positive semidefinite, each µi ≥ 0 so any power of µi is non-negative.
For partitions into more than two parts, we do not know if the matrix A[τ 2t−1

~π ] is always
positive semidefinite or not.

References

[1] F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs. Combinatorica,
9(4):345–362, 1989.

[2] J. Friedman. Some graphs with small second eigenvalue. Combinatorica, 15(1):31–42,
1995.

[3] J. Friedman and A. Wigderson. On the second eigenvalue of hypergraphs. Combinatorica,
15(1):43–65, 1995.

[4] J. Lenz and D. Mubayi. Eigenvalues and linear quasirandom hypergraphs. accepted in
Forum of Mathematics, Sigma.

[5] J. Lenz and D. Mubayi. The poset of hypergraph quasirandomness. accepted in Random
Structures and Algorithms. http://arxiv.org/abs/1208.5978.

14


