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Abstract

We consider three extremal problems about the number of copies of a fixed graph in another
larger graph. First, we correct an error in a result of Reiher and Wagner [19] and prove that the
number of k-edge stars in a graph with density « € [0, 1] is asymptotically maximized by a clique
and isolated vertices or its complement. Next, among ordered n-vertex graphs with m edges,
we determine the maximum and minimum number of copies of a k-edge star whose nonleaf
vertex is minimum among all vertices of the star. Finally, for s > 2, we define a particular
3-edge-colored complete graph F' on 2s vertices with colors blue, green and red, and determine,
for each (xp,x4) with zp + 4 < 1 and zp, x4 > 0, the maximum density of F' in a large graph
whose blue, green and red edge sets have densities xp, x4 and 1 — x, — x4, respectively. These
are the first nontrivial examples of colored graphs for which such complete results are proved.

1 Introduction

The density of a graph G with n vertices and m edges is o(G) :=m/ (g) For a graph F with k < n
vertices, let N(F,G) be the number of subgraphs of G that are isomorphic to F'. We are interested
in the minimum and maximum values of N(F,G) over graphs G with a given value of o(G) as n
grows. We note that N(F,G) < (n)i/|Aut(F')|, where Aut(F') is the automorphism group of F' and
(n)g is the falling factorial n(n — 1) -+ (n — k + 1). Define the (labeled) density of F' in G to be

N(F,G) - |Aut(F)|
(n)k

We note that the notation tiyj(F, G) is often used in the literature for o(F,G), though it is more
convenient to use o(F,G) in this paper.

The classical Kruskal-Katona theorem [9, 10] implies that the maximum density of K, in a
graph of density x is achieved asymptotically by graphs consisting of a clique and isolated vertices.
The minimum density of K in a graph with density x was determined by Razborov [17] for s = 3,
by Nikiforov [15] for s = 4, and by Reiher [18] for all s > 4; this is achieved by complete multipartite
graphs. Let Sy denote the k-edge star. Ahlswede and Katona [1] determined the maximum number
of Sy’s in a graph with density x. Reiher and Wagner [19] claim to prove that the asymptotic
maximum value of N (S, G) when G has density x, is achieved by a clique and isolated vertices or

o(F,G) =

€ [0,1].
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its complement. We correct an error in their proof. We also consider this problem in the setting of
ordered graphs and prove the first nontrivial results on S whose vertices have a particular order.

Finally, we consider similar questions in the induced setting. For G with n vertices and F with k
vertices, let Nipg(F, G) be the number of induced subgraphs of G that are isomorphic to F'. In other
words, Nind(F, G) is the number of S C V(G) such that G[S] & F. Let gina(F,G) = Nina(F, G)/(})
be the induced density of F in G. In [11], the authors consider the region of possible asymptotic
values of ginq(F, G) for graphs G of fixed density. By coloring edges in G and F' red, and coloring
edges in their complements blue, it is obvious that counting induced subgraphs is the same as
counting copies of a two-edge-colored clique in a (larger) two-edge-colored clique. This leads us
to consider the maximum asymptotic density of g-edge-colored cliques in (larger) g-edge-colored
cliques with given color densities. For ¢ = 3, we prove the first nontrivial result in this setting.

In Section 2, we state our results. They are proved in Sections 3, 4, and 5.

2 Statements of results

2.1 Stars

Clearly N(Sk, G) =>_,cv(c) (d%))) and o(Sk, G) = N(Sk, G) - k!/(n)ky1. For x € [0,1], let I(Sk,x)
be the supremum of lim,_, 0(Sk, Gp) over all sequences of graphs (G)22; with |V (G,)| — oo,
0(Gp) — z and for which lim,,_,~ 0(Sk, G) exists. For each v € [0,1], let n =1 — /1 —~. Then
A E+D/2 and n+ (1 —n)n* are the asymptotic Sg-densities in a clique with isolated vertices and the
complement of a clique with isolated vertices, both with density v. Consequently,

I(Sk,7) > max{y*#+D/2 4 (1 — )y}

Reiher and Wagner [19] proved matching upper bounds on I(Sk,7). Their results are stated (and
proved) using the language of graphons, which are limit object of graphs. Formally, a graphon
W is a symmetric, measurable function W : [0,1]2 — [0,1] (see Lovész [12] for background on
graphons). For a graphon W, let dy (x) = fol W (z,y) dy be the degree of x in W, let t( | , W) =
f[0,1]2 W (z,y) drdy be the density of W, and let

1
t(Sk, W) :/0 i (z) da

be the homomorphism density of S in W.

Theorem 2.1 (Reiher-Wagner [19]). Let W be a graphon and let k be a positive integer. Set
y=t(|,W)andn=1—+/1T—~. Then
t(Sk, W) < max{y*FV72 4 (1 - )y}

By the general theory of graphons, Theorem 2.1 gives the same upper bound for I(Sk,~).
There appears to be an error in the proof of [19, Proposition 3.7], which is necessary for the proof
of Theorem 2.1. We correct this error and prove Theorem 2.1 in Section 3.

2.2 Ordered stars

An ordered graph G = (V, E) is a graph with a total order on V. We usually let V' = [n] := {1,...,n}
with the natural ordering. When we refer to an edge ij in E, it is implied that {i,j} € E and
i < j. Let F be an ordered graph on [s]. Let Noq(F,G) be the number of {vy,...,vs} C [n] with
v1 < v < --- < vg such that v;u; € E(Gvy,...,v,]) whenever ij € E(F). We consider Noyq(F, Q)
in the case that F' is an appropriate ordered S;. The following constructions provide lower bounds.



Construction 2.2. For positive integers n and m < (g), let a be the largest integer such that
f(n,a) = (5) +a(n —a) <m. As f(n,n) = (}), we have 0 < a < n. Set b =m — f(n,a). Since
f(n,a+1)— f(n,a) =n—a—1, we conclude that 0 < b < n—a—1. Let S;(n,m) be the ordered
graph with vertex set [n| and edge set

{vw:vea,wen}u{{a+1l,j}:a+2<j<a+b+1}.

In words, Sr(n,m) comprises a complete graph on [a], and in addition has all edges between |[a]
and [n] \ [a] and b edges between a+ 1 and the b smallest vertices in [n] \ [a + 1] (see Figure 1). Let
Sr(n,m) be defined as Sr(n,m), but where the total order on the vertices is reversed.

all edges

all
=

b edges

Figure 1: Sr(n,m).

Let Sr(k) := Sr(k + 1, k) be the ordered left star and Sr(k) := Sgr(k + 1,k) the ordered right
star. Note that Sr(k) has a =1 and b = 0 (see Figure 2).

all edges all edges
&>
=

Figure 2: Si(k) and Sg(k

Our main result for ordered graphs is the following theorem.

Theorem 2.3. Let G be an ordered graph with vertex set [n| and m edges. Then
Nord(SL(k), Sr(n,m)) < Nowa(SL(k), G) < Nowa(SL(k), Sp(n, m)).

Theorem 2.3 implies similar results for Sg(k). There are, up to obvious symmetries, [(k+1)/2]
different ordered stars with k£ edges and, apart from S (k), it remains open to prove analogous
results to Theorem 2.3 for them. Indeed, obtaining sharp bounds for these stars seems nontrivial.
We address the first open case when k = 2.

Let M be the ordered graph with vertex set [3] and edge set {12,23}. It seems very difficult to
obtain exact results for No.q(M, G) so we consider asymptotic growth rates. Let

Nord(Fv G)

(%)

Qord(F7 G) =



be the density of F' in G. Since the vertices are ordered, each s-tuple of vertices can contribute at
most one copy of F' s0 gora(F, G) € [0,1]. Let (G,,) := (Gy)22 be a sequence of ordered graphs with
lim,, o0 |V (Gr)| = 00. The sequence (G,) is F'-good if both lim,,_,~ 0(Gy,) and lim, o0 0ord (F, Gp)
exist. In this case, we set x := lim,, o 0(Gy) and y := limy, o0 0ord(F, Gy) and say that (G),)
realizes (x,y). Define

Iova(F,z) :=sup{y : (z,y) € [0, 1] is realized by some F-good (Gp)},
iord(Fyx) := inf{y : (z,y) € [0,1] is realized by some F-good (G,)}.

We first give a construction that achieves ioq(, ). As in [11], for any integers n > k > 2 and

real x € (%, %], let H*(n,x) be the complete k-partite graph on n vertices with parts Vi,...,Vj
of sizes |Vi| = -+ = |Vk—1| = |agn| and |Vi| =n — (k — 1) |agn |, where

1 k
=—1 1-— .
o k<+ k—lx)

It is simple to check that lim, o o(H*(n,z)) = x. We define

g3(x) := lim N(K3’H*(n’$)).

noee (5)

Let H'(n,z) be an ordered graph obtained from H*(n,z) with any vertex ordering for which u < v
whenever v € V;, v € Vj and ¢ < j. Then Noq(M, H'(n,z)) = Nowa (K3, H*(n,z)) and this implies
that ioq(M, x) < gs3(x). We further set G, = {(Gr) : lim,, o0 0(G,) = z} and define

i(K3,x) := min liminfw.
(Gn)EGy n—00 (%)

Lovész and Simonovits [13] conjectured that i(K3,x) = g3(z) for all z € [0, 1], and this was proven
by Razborov [17] (see also [5, 14, 16, 2, 8, 4]). As i(K3,z) = ixqa(K3,x) due to the structure
of K3, we have that ioq(K3,z) = g3(x). Note that M is a subgraph of the ordered K3, so
tord (K3, ) < iora(M, x). Therefore,

93(x) = Z.ord(}'{&x) < Z.ord(]\4ax)

and we conclude that ioq(M, z) = ioa(Ks, z) = g3(z).
Determining I,.q(M, x) appears to be more difficult.

€ [0,1]. For each
Ln(l - V1 —l‘)J,

Construction 2.4. We construct a sequence of graphs (P(n,z))s; for any z
n, define P(n,z) to be the ordered graph on [n] = AU B U C, where |B| =
|A| = |C||<1l,and a<b<cforallaec A be B, ce C with edge set

{ab:a € A, be B} U{biby : b1,bp € B} U{bc:be B,ce C}.
A short calculation shows that lim,_,~ 0(P(n,z)) = x and

n(3—n?)

Jim. Oord (M, P(n,z)) = 5

fory=1—+/1—zx.



Construction 2.5. We construct a sequence of graphs (Q(n,z))s,; for any = € [0, 1]. For each n,
define Q(n, z) to be the ordered graph on [n] with edge set

fij:j—i<|(1-vI—oml}.
A short calculation shows that lim,,_,~ 0(Q(n,x)) =  and that for n =1 — /1 — x,

6n° +6(1 —2n)n*  ifn<1/2,

hm M7 n’x = c
n_}QQQord( Q( )) {2773—6772+677_1 1f772 1/2

Constructions 2.4 and 2.5 show that for n =1— /1 — z,
I q(M,z) > max{ lim oorq(M, P(n,z)), lim Qord(M,Q(n,x))}.
n—oo n—oo

It is an interesting open problem to determine if the inequality is sharp.

Problem 2.6. Is
I g(M,z) = max{ lim oorq(M, P(n,z)), lim gord(M,Q(n,:L‘))}

for any (possibly all) x € [0,1]7

A short calculation shows that there exists z¢ € [0,1] such that lim, ,~ 0ora(M, Q(n,z)) <
limy, 00 Oord (M, P(n,x)) iff z < xo.

2.3 Colored graphs

A g-colored graph is a graph G = (V, E) together with a coloring function f : E — C, where
|C| = q. Fix ¢ € Z" and let G = (V, E) be a g-colored complete graph with coloring function f.
For 1 <i < g, let ¢;(G) = |{e € E : f(e) = i}| and let 9;(GQ) := ei(G)/(l‘Q/‘) be the density of
color i. Given a g-colored complete graph F with |V (F)| = s and coloring function g, a subset
X C V with |X| = s is a copy of F in G if there is a bijection o : V(F) — X such that
g(uwv) = g(o(u)o(v)) for all distinct u,v € V(F). Let Ny(F,G) be the number of copies of F in G
and let gq4(F, G) := Ny(F, G)/(“s/‘) be the density of F in G.

Let (G,)52; be a sequence of g-colored complete graphs with |V(Gy)| — oo. The sequence
(Gn)2, is F-good if z; = lim, o 0;(Gp) exists for all ¢ € [¢] and y = lim,, 00 0g(F, Gj) exists.
In this case, (Gy)32, realizes (z1,...,24-1,y). Note that we only list xy,...,24—1 since z, =
1 —(xz1+ -+ x4-1). Define

I,(F, (z1,...,2¢g-1)) :=sup{y : (x1,...,24-1,y) € [0,1]7 is realized by some F-good (Gp)p=;}.

For 2 < s <t let Kg’t be the 3-colored clique on vertex set V' = V; U Vo with |Vi| = s and
|Va| = t with coloring function f defined by

blue ifi,j €V,
f(ig) := { green ifi,j € Vs,

red otherwise,

for all distinct 4, j € [s + t] (see Figure 3).



Figure 3: K3 ,.

Theorem 2.7. Let 2 < s <t and xp, x4,z € [0,1] such that xp + x4 + x, = 1. Then
2 s/2 .
Ii(K. (2, 14)) = xz/ zy/ (%) if vEp + Ty < 1,
TUTTAEN®) dvmeymzL
Furthermore, if \/oy + /T4y < 1, then

s+t
B o)) = o722 ("),

Theorem 2.7 determines I3(K7 g, (0, z,)) for all vectors (zp, x4) in the region a3, x4 > 0 and 2+

ry < 1. Write ind (K7 ;) for the inducibility of K ; which is the maximum value of I3(K7 ;, (23, 4)).
An easy optimization shows that

() = 1 /) = (5) (%),

S

Note that I3(K7, (vp,2,)) is not known when \/zp + /Ty > 1 and s # t.

3 Proof of Theorem 2.1

In this section, we will correct the proof of Theorem 2.1 from [19]. This involves defining a new
parameter (called T'(W)) on graphons that we will optimize. Nevertheless, many parts of the
argument are identical to those in [19], and we will indicate when this is the case in various
lemmas, claims and propositions.

Given a measurable function F' : [0,1] — R, a graphon W, and « € [0, 1], let

D(F, W) = /01 Fldw (2)) dz,
MAX(v, F) := max{(1 — /7)F(0) + V7F(v/7), 1 —=n)F(n) +nF 1)},
where 7 =1 — yT—7. A measurable function F : [0,1] — R is good for W if
D(F,W) < MAX(y, F),

where v = t( | ,W) and n =1 — /T —~; F is bad for W if it is not good for W. A collection of
measurable functions is good (bad) for W if all its members are good (bad) for W. In [19], a set



¢ of twice differentiable convex functions F' : [0,1] — R satisfying certain conditions is defined.

We do not need the details of the conditions here, so we do not state them, but we note that %

contains the function F(z) = x*.

The error in [19] appears in the proof of the following proposition.
Proposition 3.1 (corresponds to [19, Proposition 3.7]). € is good for all step graphons.

To prove this proposition, we introduce the following more refined notion of “good.” For any
0 > 0, say that F' € € is d-good for a graphon W if

D(F,W) < MAX(v, F) + 6

for vy =t(|,W)and n=1—+/1—~. Say that F is §-bad for W if it is not d-good for W.
We next show that several lemmas from [19] still apply when we replace “good” with “J-good.”
The proofs are almost exact copies of those in [19], and are given in the Appendix.

Lemma 3.2 (corresponds to [19, Lemma 3.2]). If all functions in € are §-good for a graphon W,
then the same is true for the graphon 1 — W.

Given a graphon W and a real number A € [0, 1], let [\, W] be the graphon satisfying

0 fo<z<Ador0<y<A,
W(“””*’\, %) otherwise.

A Wz, y) = {

—
>

Lemma 3.3 (corresponds to [19, Lemma 3.5]). If A € [0,1] and the graphon W has the property
that all functions in € are 0-good for it, then the same applies to [\, W].

Similarly, let [W, A] be the graphon satisfying

W, 4 f0<z<l-Aand 0<y<1-)\,
e - {0 ) IO 1o nmiosy

otherwise.

The next lemma follows from the previous two lemmas and the observation that [V, ] is
isomorphic to 1 — [\, 1 — W].

Lemma 3.4 (corresponds to [19, Lemma 3.6]). If all functions in € are d-good for the graphon W
and X\ € [0, 1], then all functions in € are good for [W, \| as well.

We now prove Proposition 3.1. Let G be the collection of all step graphons and let G; be the
collection of all step graphons with ¢ parts.

Proof of Proposition 3.1. Suppose for a contradiction that there exists W’ € G and F’ € ¢ such
that F’ is bad for W’. This means that D(F',W’') > MAX(y, W’). Then there exists § > 0 such
that D(F',W') > MAX(y, W’) 4+ 6. In other words, F' is d-bad for W’. Let

S§=80)={(F,W) €% xG:Fisd-bad for W}.
Note that (F/,W’) € S, so S # () . Partition S into |J;2, S;, where

Si:={(F, W)€% xg,:F is d-bad for W}.



Let k be the smallest integer such that S, # (. As all convex functions are good for all constant
graphons (see [19, Observation 2.1]), we have k > 2. Pick F' € € such that (F,W) € S for some
W. Let

W:={W:(F,W) e S}

Let u be the Lebesgue measure on R. Each W € W is a step function with respect to a partition
P ={P1,..., P} of the unit interval with a; = p(F;) for all i € [k] and §;; the value attained by
W on P; x Pj for i,j € [k]. By the choice of k, we deduce a,...,a; > 0 for all W € W. Define

k
T(W) =) ai(dw(i))?,
i=1
where i
1
dw (7)) = W (i dy = ;i B
W() /0 (7y) Yy jzl ]B]
for all i € [k].

Claim 3.5. T := supycyy T'(W) = maxwew T'(W).

Proof. First we note that each G, has a natural compact topology corresponding to convergence
0+1
of all parameters ; and f;;. In particular, the space is homeomorphic to A=t x [0, 1]( 2 >, where

A1 is the standard (¢ — 1)-simplex since Zle a; = 1. In this topology, it is straightforward to
check that T (W), D(F,W) and MAX(yw, F') are continuous functions of W provided that F' is
continuous and that the property of being d-bad is preserved under taking the limit. (This is why
we needed to define the property of being J-bad, as this would not be true if we replaced “d-bad”
with just “bad.”) In particular, this implies that the set W is closed, hence compact. Thus, T'(W)
must attain its maximum in the compact set W. O

Fix W € W with partition P = {Py,..., P} and parameters o; and f;; € [0, 1] for all 4, j € [K]
such that T'(W) = T. Recall that by the minimality of k, we know that «; € (0,1). By definition
of W, F is ¢-bad for W. Set d; := dw (7). To obtain the necessary contradiction to complete the
proof of the proposition, we will show that F' is d-good for W, i.e. that

1 k
D(F,W) = / F(dw(x)) dz =Y o;F(d;) < MAX(v, F) + 6,
0 i=1
fory=t(|, W)= Zle a;d;. Without loss of generality, we may assume dy < dy < --- < dj.
Claim 3.6 (corresponds to [19, Claim 3.8]). If 1 <r < s <k and Biy > 0, then ;s = 1.
Proof of Claim 3.6. Suppose, for contradiction, that B; > 0 and ;s < 1. Define Q) € G, with the

same partition P as follows: let J;; denote the Kronecker delta, and set, for x € P, and y € P,

—(1+0ip)as if {m,n} ={i,r},
Qz,y) = ¢ L+ dis)ar  if {m,n} = {i,s},
0 otherwise.

Let £ > 0 be maximal such that W, = W + eQ still satisfies W, (z,y) € [0, 1] for all z,y € [0,1]. By
our assumptions on S; and f;s, we know that € > 0.



For all j € [k], let d; denote the value attained by dw. (z) for all z € P;. We have
Cl; —d, = —(1 + 5#)0@0@5 + 5”=(1 + (51'3)041'0158 = —Q,;0gE,

and similarly
d’s —ds = a;ouE.

Further, if i € {r, s}, then
d; - dz = ar(ﬁir - as) + O‘S(ﬂis + ar) - (arﬁh‘ + O‘sﬁis) =0

Therefore d; =d; for all j ¢ {r,s}. Consequently,

k
TW.)—T(W) = Z Z aj = a,(dy — ajose)? — apd? + as(ds + aae)? — agd?
j=1

= 2eqiopas(ds — dy) + 2t arag(ay + as)

> 2alarag(ay + ag) > 0

since o, ay, a5, > 0 and ds > d, by assumption. Thus T(W.) > T(W), and clearly W, € Gy,
so we conclude by the choice of W that W, & W. To complete the proof, we will now obtain the
contradiction W, € W by showing that F' is d-bad for W;. First, observe that

0.1 Q(ZE, y) drdy = aiaras((l + 51’3)(2 - 513) - (1 + 5ir)(2 - 517")) =0.
0,1]2

This implies that t( | ,W.) =¢(|,W) = . Next,

D(F,WE)—D(F,W):/ (dw. (z dx—/ F(dw (z

= ZaJ-(F(d;) — F(d)))
j=1

= a5(F(ds + ajope) — F(ds)) + o (F(dr — cijase) — F(dy))
> ajopase(F'(ds) — F'(dy)) >0

by convexity of F' and ds > d,.. Since F' is d-bad for W, we obtain
D(F,W.) > D(F,W) > MAX(y, F) + .
This shows that F' is d-bad for W, and completes the proof of the claim. O

Claim 3.7 (corresponds to [19, Claim 3.9]). S1x > 0.

Proof. 1f this does not hold, then 81 = 0 and the previous claim implies $1; = 0 for all i € [k — 1].
It follows that there exists W’ € Gy_1 such that W is isomorphic to [ag, W']. Due to the minimality
of k all functions in € are d-good for W’ and by Lemma 3.3 the same applies to the graphon W,
contrary to its choice. O

Claim 3.8 (corresponds to [19, Claim 3.10]). S < 1.



Proof. Suppose for contradiction that S5 = 1. Then [ = f1x > 0, and Claim 3.6 implies 8; = 1
for all 1 < i < k. So some W' € Gi_; has the property that [W’, aj] is isomorphic to W. This
implies that all functions in ¢ are d-good for W' and then Lemma 3.4 implies that all functions in
% are 0-good for W, contradiction. O

By Claims 3.7 and 3.8, we have 0 < 315 < 1. Moreover, by Claim 3.6, 81; = 0 for all i € [k — 1]
and B;, = 1 for all j with 2 < j < k. Divide P, into two measurable subsets Q) and Qi1
satisfying u(Qg) = (1 — Bix)ax and, consequently, u(Qr11) = Pirag. Set Q; = P; for i € [k — 1]
and Q = {Q1,...,Qr+1}- Let W’ be the step graphon with respect to Q defined as follows: for
z € Q; and y € Qj,

W (z,y) =10 if i =1 and j € [k] or vice versa,
1 ifi=k+1lorj=%k+1.

By the last two clauses W’ is isomorphic to a graphon of the form [[a1/(1 — Birar), W], Biro]
for some graphon W’ and by the first clause W” € Gi_1. So Lemmas 3.3 and 3.4 show that F' is
§-good for W’. Set d' := dj, — a1 By and d” := d + a1(1 — By1x). Since ¢t( | ,W') =¢t( |, W) =~
and (1 — B1)d + B1xd” = dj, Jensen’s Inequality implies that

B

k -1
D(F,W) = aiF(d) <> aiF(di) + ar((1 = Bix) F(d) + e F(d")) = D(F,W").
=1 1

-
Il

Therefore, D(F,W) < D(F,W') < MAX(~, F) 4+ 6 so F is d-good for W, a contradiction. O

The proof of Theorem 2.1 follows from Proposition 3.1 exactly as in [19].

The error in [19] is in the proof of their Claim 3.8 (which corresponds to our Claim 3.6).
In [19], T is defined as the number of pairs (i,5) € [k]? for which 8;; € {0,1} and W € Gy, is
chosen to maximize 7. Then Claim 3.8 in [19] states that 8; > 0 and B;s < 1 together imply
that W, is 0 or 1 on at least 1"+ 1 of the sets F; x P; by construction. However, this is not
true if B;, = 1 and B;s = 0. For example, consider the graphon W defined on the partition
Py = [0,2/5), Py = [2/5,4/5), Py = [4/5,1] by

1 if (x,y) € (P1 X Pg) U (P2 X PQ) U (P2 X Pg)
0 if (x,y) € (P1 X Pl) U (P1 X PQ) @] (Pg X P3)

W(l‘, y) - {

(see Figure 4). We see that dy = 1/5, do = 3/5, and d3 = 4/5, so di < dg < d3 is satisfied. Setting
1=3,r=2,and s = 3, we have that 5; =1 > 0 and ;s = 0 < 1. However, all entries are already
Oor 1in W, so W, cannot equal 0 or 1 on more sets than W. Note that any step graphon with parts
ordered by degree such that ;. = 1 and B;s = 0 for some ¢ and r < s is also a counterexample; the
other entries need not equal 0 or 1 as in this example.

4 Proof of Theorem 2.3

Recall that we are assuming G = ([n], E). For a vertex i in G, the right-degree of i is df;(i) :=
{j > i:ij € E}|. Recall that when we write uv for an edge, we implicitly mean u < v. The
left vertex of vw € E is v. A vertex v has full right-degree if E O {vw : w > v}. Note that

G
Nowa(Sz(k), G) = Yicvay (*69).
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Figure 4: A counterexample to [19, Claim 3.8] (shaded squares have 3 value 1).

Proof of Theorem 2.3. If m =0orm = (g), the theorem is trivial, so we assume that 0 < m < (g)

Let G = ([n], E) with |E| = m > 0 such that G maximizes the number of copies of S7,(k) among
all ordered n vertex m edge graphs. Suppose that there exists i € [n—1] such that d,(i) < d5(i+1).
Let G; be the ordered graph obtained from G by interchanging the positions of ¢ and ¢ 4+ 1 in the
ordering of V(G). We say that G; is obtained from G by swapping i and i + 1.

Since i and i + 1 are consecutive in the ordering of G, we have that dj(j) = da (y) for all
j € [n]\ {i,i + 1}. If there is no edge between i and i + 1, then d,(i) = da(z) and df(i +1) =
dgi (14 1) as well, so N(SL(k),G;) = N(SL(k),G). If there is an edge between i and i + 1, then
da (i) = df(i) — 1 and da (i+1) =d5(i+ 1)+ 1. By convexity of the binomial coefficient and the
fact that df,(i) < d&(i + 1),

Nowa(Sp(k),Gi) — Nowa(Sp(k),G) = Y (dé}%(j)>_ 3 <dg;§j))

JEV(G;) JEV(Q@)

_ dg, (i) Ao, (i +1)\\ _ [ (d&@) dh(i+1)
<<dilz¢) >:r ( G dli(z’ +>1))+ 1<< Gk )dj:(i() G ' d+2i>+ 1)
()= () - ((57) (7)) =

We continue swapping adjacent vertices in this way until there is no ¢ € [n — 1] such that dg(z) <
df(i +1). Call the resulting graph G’. Then df, (v) > df,(w) for all v < w and Nowq(Si(k), G') =
Nora(SL(k), G) by our assumption on G.

Let vy := min{i € [n] : df, (i) < n — i}, which exists since m < (}), and choose w € [n] such
that w > ve and verw € E(G'). Let g := max{i € [n] : dZ, (i) > 0}, which exists since m > 0.
For brevity, set v’ := vg and 2’ := zg. Note that if v/ = 1, then 2’ > 1 = v'; if v/ > 2, then the
definition of v’ implies that df,(v' — 1) =n —v' +1 >0, 80 2’ > v — 1. Thus v’ < 2’ + 1. In the
next paragraph, we show that there is a graph G” with the same number of copies of Sy (k) as G’
satisfying xgrn < var < xgr + 1.

Suppose that v < 2’ and fix y € [n] such that 2’y € E(G’) (recall that this notation implies
7' <y). Let H = ([n], (B(G")U{v'w})\{z'y}). Then dj;(v') = d},(v)+1 and dj;(2') = df,(2') - 1.
By convexity of the binomial coefficient and the fact that d, (v') > dZ,(z'),

Nord(SL(k)aH) > Nord(SL(k)’G,) = Nord(SL(k)vG)'

We continue adding and deleting edges in this way until we reach a new graph, call it G”, satisfying
vgr > xar. Notice that xgr < vgr < xgrn + 1 and Nyq(SL(k), G") = Nowa(SL(k), G).
Setting v := vgr, we further see that

E(G={ij:iev-1,j€n]}UA
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for some A C {vj:j € {v+1,v+2,...,n}} with |A] = b for some 0 < b < n—wv. Since d},(v) =b
and df, (w) = 0 for w > v,

Nord(SL(k), G) = Nord(SL(k), G”) = Nord(SL(k), SL(TL, m))

as required.

Let G = ([n], E) with |E| = m such that G minimizes the number of copies of Sr (k) among all
ordered n vertex m edge graphs. Suppose further that there are some i,j € V(G) with ¢ < j such
that df,(j) < n—j and df,(i) > d{,(j). Then choose v € [n] such that j < v and jv ¢ E. As df(i) >
d5(j) > 0, we also choose w € [n] such that i < w and iw € E. Let H = ([n], (E U {jv}) \ {iw}).
Then dj; (i) = df,(i) — 1 and df;(j) = d&(j) + 1. By convexity of the binomial coefficient,

NOI'd(SL(k)u H) < Nord(SL(k)y G)
By our assumption on G, we must have Noyq(SL(k), H) = Nowa(SL(k), G). We repeatedly remove
an edge 1w and add an edge jv for i < j satisfying d*(j) < n —j and d* (i) > d*(j) until no such

i and j exist. Call the resulting graph G’ and note that G’ has m edges. Then Nyq(SL(k),G') =
Nord(SL(k)> G) and

for all i < j in G', either df,(j) = n — j or df, (i) < dt, () ().

We note here that the right degree sequence of Sgr(n, m) is given by (not necessarily in the vertex
order):

0,1,...,a—1,a,...,a,a+1,...,a+1. (1)
—_—— —— —
n—a—b b

Our plan is to alter G’ until its right degree sequence is the same as in (1). This will allow us to
conclude that No.q(Sr(k), G/) = Nora(Sr(k), Sr(n,m)).

Set ver := min{j € [n] : d%,(j) = n — j}. For brevity, set v/ := ver. Then df, (i) < df,(j) for
all i < j < v’ —1 by (). Furthermore, if there exists ¢ > v’ such that d, (i) < n — i, then we can
find consecutive vertices x, ¥y such that v/ < x <y, dg, (y) <n —yand d5, (z) = n — 2. But this is
impossible as (*) implies that dj,(y) > df, (z) = n — z > n —y. Consequently, df, (i) = n — i for
allie {v, v +1,...,n}.

If o' = n, then df,(n — 1) = 0 and d, (i) < df,(n—1) =0 for all i € [n — 1], so |E(G’)| = 0.
This contradicts m > 0, so we must have v’ < n. If d}, (i) > n —v' + 1 for some i € [v' — 1],
then since i < v’ — 1, we have d}, (v — 1) > df, (i) > n—v' +1 =n— (v/ — 1). This implies that
d5 (v —1) =n— (v — 1), contradicting the definition of v'. Therefore v’ < n and d, (i) <n—v
for all i € [v" —1].

Next, suppose that d, (1) < n—v'—1. Note that d,(v') =n—1v" >n—v'—1 > df,(1) implies
that df,(v') > d},(1) + 2. Choose z € [n]\ {1} such that 1z ¢ E(G') and y € {v' +1,...,n}
such that v'y € E(G'). Let H = ([n], (E(G") U {1z}) \ {v'y}). Then d}, (1) = df,(1) + 1 and
di; (v') = df,(v)) — 1. By convexity of binomial coefficients and the fact that df, (v') > df, (1) + 2,

Nord(SL(k)7 H/) < Nord(SL(k)a G,) = Nord(SL(k)a G)
We continue adding and deleting edges in this way until we reach a graph, call it G”, that satisfies
dg/,(].) 2 n—uvqgr — 1. Note that n — vgr — 1 S dg/,(].) S n—uoagr.

Set v := vgr. Since the right-degrees of vertices x are nondecreasing for 1 < x < v, there is
some 0 < by < v such that d, (i) =n —v—1for all i € [v— bg], d}. (i) = n — v for the remaining
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bo vertices v — by + 1 < i < v; we have already observed that df,, (i) = n— for all i > v. Thus the
right degree sequence of G” is given by

0,1,....n-v—2,n—v—1,....n—v—1,n—wv,....,n—v. (2)

v+1—bo bO

If g = v, set b =0 and a = n — v. Otherwise, set b = byg and a = n — v — 1. In either case, the
degree sequence of Sg(n,m) in (1) is the same as that of G” in (2) and therefore

Nord(SL(k), G) = Nord(SL(k), G//) = Nord(SL(k)a SR(n, m))

as required. 0

5 Proof of Theorem 2.7

Let (Gy) := (Gn)22, be a sequence of graphs with lim,_, |V (Gy)| = co. The sequence (Gy,) is
F-good if both © = lim,,_,~ 0(G,) and y = lim,, o0 0inq(F, Gy) exist. In this case, we say that (G,,)
realizes (x,y). Define

Ling(F,x) :=sup{y : (z,y) € [0, 1] is realized by some F-good (G)}.
The following two results will be needed to give upper bounds.

Theorem 5.1 (Kruskal-Katona [9, 10]). Let r > 2 be an integer. Then for every x € [0,1] we have
Iind(Krax) < a2,

Theorem 5.2 (Liu, Mubayi, Reiher [11, Theorem 1.16]). Let s > 2 be an integer. Then for every
x € [0,1] we have Lina(Kss, ) < (QSS)xS/?.

Proof of Theorem 2.7. We address the two cases separately.

Case 1: /7, + /Ty < 1.

We first prove the upper bound. Suppose that (Gy)32; be a K g,t—good sequence that realizes
((wp,2g), I3(K 4, (zh,4))) and let f,, be the coloring function for G,. Let K} = ([s], (3)) with
coloring function f, = blue. Similarly, let K| = ([t], (;)) have coloring function f; = green. Since

K¢, contains exactly one copy of K and one copy of Kj,
No(KLp, G) < Ny(K, Gu) N3, G). 3)

By deleting edges that are not colored blue and applying Theorem 5.1, we obtain

N3(K!, G, s
lim sup 3K, Gn) < I3(K., (xp,14)) < Lna(Ks, ) < /2,

n—s00 (IV(Gn)\) b

Similarly, by deleting edges not colored green, we obtain

N3(K!
lim sup 3(KG, Gn)

N3lhe, Gn) / , t/2
oo |V(Gn)‘ S I3(Kt7 (J"b? xg)) S Ilnd(Kbxg) S J)g .
)

Together with (3), we get

/2 (V@Y . 18/2 V(G|
/ R G . A G VY E
Is(Kopr (@0, 29)) < limn (V@) =alt )
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We now prove the lower bound. As |[n./xy| + [n,/T4] < ny/Ty + n/Ty < n, there exist disjoint
subsets A, and B,, of [n| with |A,| = [n\/zp] and |B,| = [n,/Z4] for all n. For each n > 1, let

Gn = ([n], ([g])) have coloring function f,, defined by

blue i, j € Ay,
fn(ij) = < green  ifi,j € By,

red otherwise.

See Figure 5 for an illustration. Clearly, limy, o 0blue(Grn) = 2 and limy, o0 Ogreen(Gn) = x4. If

A, B,

Figure 5: Construction maximizing K ;vt—density when /z, + /T4 < 1.

Ais a copy of K{ in G, and B is a copy of K; in G, then AU B is a copy of K, in Gy, as
fn(ij) =red for all i € A,, j € By,. Thus, (Gy)52, realizes (xp,z4,y), where
() - ()

s/2 ¢ t/2
L , L / L (s +t)n°x, ntay _s/2 st
=l oKL Gn) =l Sy = i g = (L)

Consequently, Ig(K;t, (xp,2g)) > xz/2x§/2 (SH).

S
Case 2: /7, + /74 > 1.

We first prove the upper bound. Set x;, := 1 —z — x4. Let (Gn)pZ; be a K| ;-good sequence that
realizes ((wy, ), I3( K} 5, (25, 24))). Every copy of K ; contains a red copy of K s. Consequently,
Theorem 5.2 implies that

. N3(Ks s’G ) Tr\®(2s
I3(KS o (xl”xg)) = T}L}HO]O (“/(7)') S Iind(Ks,sa«Tr) S <?> < s > .
2s

We now prove the lower bound. Note that

\‘ J<2wb+$r 1+:cb—xgn 2\ﬁ

N N NN
since /Ty +/T4 > 1 implies x4y > 1—2,/2,+x. For each n, let A,LIB,, C [n], where |A,| = [n./z]
and |B,| = |nz,/(2y/2p)]| and let G\, = ([n], ([Z])) have coloring function f,, defined by

[nv/@) +

blue  ifi,j € Ay,
fn(ig) = < red ifie A,,j€ B,orje€ A, i€ B,,

green otherwise.

See Figure 6 for an illustration. Now lim, o0 0plue(Grn) = xp, and
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Figure 6: Construction maximizing K;js—density when /z, + /T4 > 1.

— lim [nv/@o] - [ner /2] _ 20/ _ Ty
() 2/m

lim Ored (Gn)
n—o00

We conclude that limy, oo Ogreen(Gn) = 1 — 2y — x, = x4. Every pair of s vertices in A, and s
vertices in By, induces a copy of K, so (Gy,)52 realizes (xp,2,,y), where

/2 2 —s/2
) lim (Ln\éﬂTbJ) . Qn:c /S\/EJ) . nsxz/ stixb s/ ‘ <23> _ (xfr)s(Zs)‘

n—00 (25) n—00 n=s2s S 2 S
Consequently, I3(F, (zp, z4)) > (%)5(2;) O
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Appendix

Proof of Lemma 3.2. Let F' € € be the function that we want to prove d-good for 1 — W. Using
the fact that G : [0,1] — R given by G(z) := F(1 — z) from [19, Lemma 3.1(ii)] is d-good for W
we find that

y=t(|,1-W)=1-t([,W)andn=1-/1-1
satisfy
1 1
/0 F(dyw(x)) = /0 Gldw ()

< max{(l Y 7>G(O) /1o ’yG(«/l - 7), VG = y7) + (1 — \ﬁ)G(l)} +6
=max{(1 —n)F(n) + nF(1), (1 —7)F0) +7F(/7)}+0
as desired. O
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Proof of Lemma 3.3. Let F' € € be any function that we want to prove d-good for [A, W]. By [19,
Lemma 3.1(iii)], the function H : [0,1] — R given by H(z) = F((1 — A\)z) for all x € [0,1] is in .
Thus it is d-good for W, which tells us that

1
/0 H{(dw (2)) dz < max{(1 - /*)H(0) + v7H(/7), (1 = n)H(n) + nH (1)} + 6,
where v =t( | ,W) and n =1 — /1T —~. Since

/01 F(dpw(2)) dz = AF(0) + /: F((l - A)dW<”13 - i)) dx

1
— AF(0)+ (1 — )\)/0 H{dw (z)) da,

it follows that either

1
/0 Fdpwy(2)) de < AF(0) + (1 = A)((1 = v7)F0) + V7E((1 = A)v7) +6)

= AF(0) + (1 - )1 YE(0) 4+ (1= A)yAF((1 = A)yA) + (1= A8
<AF(0) + (1 = A1 = ) F(0) + (1 = N)VAF((1 = A)y7) +6,

\/T},
ﬁ

1
/0 Fldpw(@)) de < AF(0) + (1= A)((1 =n)F((1 = A)n) +nF (1 = A) +6)

=AF0)+ 1 =-XNA-nF((1-=XMn)+ 1 =AnF(1-=X)+(1—-XN)d
SAFO)+ (1 =XN)1=n)F({(1=Xn)+ 1 —=XnF(1 -\ +4.

In the former case the right side simplifies to

(1 - W)F(O) + ﬁF(ﬁ) +9,

where v/ = (1 — \)%y = (| , [\, W]), meaning that F is, in particular, §-good for [\, W].
So we may assume that the second alternative occurs. Setting x = A, y = (1 — A)n, and
z=(1-=X)(1—n) we thus get

1
/ F(dpwy(z)) dz < xF(0) + 2F (y) + yF(y + 2) + 0.
0
Since y% + 2yz = (1 — A\)2(2n — ) = (1 — A\)?y =/, it follows in view of [19, Lemma 3.3] that

/01 F(dpw)(@)) dz < max{ (1= /) FO) + VFF (V7). =0 )F@) +0F()} +5,

where ' =1 — /1 —~/. This tells us that F is indeed §-good for [\, W]. O
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