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Abstract

We consider three extremal problems about the number of copies of a fixed graph in another
larger graph. First, we correct an error in a result of Reiher and Wagner [19] and prove that the
number of k-edge stars in a graph with density x ∈ [0, 1] is asymptotically maximized by a clique
and isolated vertices or its complement. Next, among ordered n-vertex graphs with m edges,
we determine the maximum and minimum number of copies of a k-edge star whose nonleaf
vertex is minimum among all vertices of the star. Finally, for s ≥ 2, we define a particular
3-edge-colored complete graph F on 2s vertices with colors blue, green and red, and determine,
for each (xb, xg) with xb + xg ≤ 1 and xb, xg ≥ 0, the maximum density of F in a large graph
whose blue, green and red edge sets have densities xb, xg and 1 − xb − xg, respectively. These
are the first nontrivial examples of colored graphs for which such complete results are proved.

1 Introduction

The density of a graph G with n vertices and m edges is ϱ(G) := m/
(
n
2

)
. For a graph F with k ≤ n

vertices, let N(F,G) be the number of subgraphs of G that are isomorphic to F . We are interested
in the minimum and maximum values of N(F,G) over graphs G with a given value of ϱ(G) as n
grows. We note that N(F,G) ≤ (n)k/|Aut(F )|, where Aut(F ) is the automorphism group of F and
(n)k is the falling factorial n(n− 1) · · · (n− k + 1). Define the (labeled) density of F in G to be

ϱ(F,G) :=
N(F,G) · |Aut(F )|

(n)k
∈ [0, 1].

We note that the notation tinj(F,G) is often used in the literature for ϱ(F,G), though it is more
convenient to use ϱ(F,G) in this paper.

The classical Kruskal–Katona theorem [9, 10] implies that the maximum density of Ks in a
graph of density x is achieved asymptotically by graphs consisting of a clique and isolated vertices.
The minimum density of Ks in a graph with density x was determined by Razborov [17] for s = 3,
by Nikiforov [15] for s = 4, and by Reiher [18] for all s ≥ 4; this is achieved by complete multipartite
graphs. Let Sk denote the k-edge star. Ahlswede and Katona [1] determined the maximum number
of S2’s in a graph with density x. Reiher and Wagner [19] claim to prove that the asymptotic
maximum value of N(Sk, G) when G has density x, is achieved by a clique and isolated vertices or
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its complement. We correct an error in their proof. We also consider this problem in the setting of
ordered graphs and prove the first nontrivial results on Sk whose vertices have a particular order.

Finally, we consider similar questions in the induced setting. For G with n vertices and F with k
vertices, let Nind(F,G) be the number of induced subgraphs of G that are isomorphic to F . In other
words, Nind(F,G) is the number of S ⊂ V (G) such that G[S] ∼= F . Let ϱind(F,G) = Nind(F,G)/

(
n
k

)
be the induced density of F in G. In [11], the authors consider the region of possible asymptotic
values of ϱind(F,G) for graphs G of fixed density. By coloring edges in G and F red, and coloring
edges in their complements blue, it is obvious that counting induced subgraphs is the same as
counting copies of a two-edge-colored clique in a (larger) two-edge-colored clique. This leads us
to consider the maximum asymptotic density of q-edge-colored cliques in (larger) q-edge-colored
cliques with given color densities. For q = 3, we prove the first nontrivial result in this setting.

In Section 2, we state our results. They are proved in Sections 3, 4, and 5.

2 Statements of results

2.1 Stars

Clearly N(Sk, G) =
∑

v∈V (G)

(d(v)
k

)
and ϱ(Sk, G) = N(Sk, G) · k!/(n)k+1. For x ∈ [0, 1], let I(Sk, x)

be the supremum of limn→∞ ϱ(Sk, Gn) over all sequences of graphs (Gn)
∞
n=1 with |V (Gn)| → ∞,

ϱ(Gn) → x and for which limn→∞ ϱ(Sk, Gn) exists. For each γ ∈ [0, 1], let η = 1 −
√
1− γ. Then

γ(k+1)/2 and η+(1− η)ηk are the asymptotic Sk-densities in a clique with isolated vertices and the
complement of a clique with isolated vertices, both with density γ. Consequently,

I(Sk, γ) ≥ max{γ(k+1)/2, η + (1− η)ηk}.

Reiher and Wagner [19] proved matching upper bounds on I(Sk, γ). Their results are stated (and
proved) using the language of graphons, which are limit object of graphs. Formally, a graphon
W is a symmetric, measurable function W : [0, 1]2 → [0, 1] (see Lovász [12] for background on
graphons). For a graphon W , let dW (x) =

∫ 1
0 W (x, y) dy be the degree of x in W , let t( | ,W ) =∫

[0,1]2 W (x, y) dxdy be the density of W , and let

t(Sk,W ) =

∫ 1

0
dkW (x) dx

be the homomorphism density of Sk in W .

Theorem 2.1 (Reiher–Wagner [19]). Let W be a graphon and let k be a positive integer. Set
γ = t( | ,W ) and η = 1−

√
1− γ. Then

t(Sk,W ) ≤ max{γ(k+1)/2, η + (1− η)ηk}.

By the general theory of graphons, Theorem 2.1 gives the same upper bound for I(Sk, γ).
There appears to be an error in the proof of [19, Proposition 3.7], which is necessary for the proof
of Theorem 2.1. We correct this error and prove Theorem 2.1 in Section 3.

2.2 Ordered stars

An ordered graphG = (V,E) is a graph with a total order on V . We usually let V = [n] := {1, . . . , n}
with the natural ordering. When we refer to an edge ij in E, it is implied that {i, j} ∈ E and
i < j. Let F be an ordered graph on [s]. Let Nord(F,G) be the number of {v1, . . . , vs} ⊆ [n] with
v1 < v2 < · · · < vs such that vivj ∈ E(G[v1, . . . , vs]) whenever ij ∈ E(F ). We consider Nord(F,G)
in the case that F is an appropriate ordered Sk. The following constructions provide lower bounds.
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Construction 2.2. For positive integers n and m ≤
(
n
2

)
, let a be the largest integer such that

f(n, a) :=
(
a
2

)
+ a(n − a) ≤ m. As f(n, n) =

(
n
2

)
, we have 0 ≤ a ≤ n. Set b = m − f(n, a). Since

f(n, a+ 1)− f(n, a) = n− a− 1, we conclude that 0 ≤ b < n− a− 1. Let SL(n,m) be the ordered
graph with vertex set [n] and edge set

{vw : v ∈ [a], w ∈ [n]} ∪ {{a+ 1, j} : a+ 2 ≤ j ≤ a+ b+ 1}.

In words, SL(n,m) comprises a complete graph on [a], and in addition has all edges between [a]
and [n] \ [a] and b edges between a+1 and the b smallest vertices in [n] \ [a+1] (see Figure 1). Let
SR(n,m) be defined as SL(n,m), but where the total order on the vertices is reversed.

a+ 1

emptycomplete

all edges

all
b edges

Figure 1: SL(n,m).

Let SL(k) := SL(k + 1, k) be the ordered left star and SR(k) := SR(k + 1, k) the ordered right
star. Note that SL(k) has a = 1 and b = 0 (see Figure 2).

empty

all edges

empty

all edges

Figure 2: SL(k) and SR(k).

Our main result for ordered graphs is the following theorem.

Theorem 2.3. Let G be an ordered graph with vertex set [n] and m edges. Then

Nord(SL(k), SR(n,m)) ≤ Nord(SL(k), G) ≤ Nord(SL(k), SL(n,m)).

Theorem 2.3 implies similar results for SR(k). There are, up to obvious symmetries, ⌈(k+1)/2⌉
different ordered stars with k edges and, apart from SL(k), it remains open to prove analogous
results to Theorem 2.3 for them. Indeed, obtaining sharp bounds for these stars seems nontrivial.
We address the first open case when k = 2.

Let M be the ordered graph with vertex set [3] and edge set {12, 23}. It seems very difficult to
obtain exact results for Nord(M,G) so we consider asymptotic growth rates. Let

ϱord(F,G) :=
Nord(F,G)(

n
s

)
3



be the density of F in G. Since the vertices are ordered, each s-tuple of vertices can contribute at
most one copy of F so ϱord(F,G) ∈ [0, 1]. Let (Gn) := (Gn)

∞
n=1 be a sequence of ordered graphs with

limn→∞ |V (Gn)| = ∞. The sequence (Gn) is F -good if both limn→∞ ϱ(Gn) and limn→∞ ϱord(F,Gn)
exist. In this case, we set x := limn→∞ ϱ(Gn) and y := limn→∞ ϱord(F,Gn) and say that (Gn)
realizes (x, y). Define

Iord(F, x) := sup{y : (x, y) ∈ [0, 1] is realized by some F -good (Gn)},
iord(F, x) := inf{y : (x, y) ∈ [0, 1] is realized by some F -good (Gn)}.

We first give a construction that achieves iord(, x). As in [11], for any integers n ≥ k ≥ 2 and
real x ∈ (k−2

k−1 ,
k−1
k ], let H∗(n, x) be the complete k-partite graph on n vertices with parts V1, . . . , Vk

of sizes |V1| = · · · = |Vk−1| = ⌊αkn⌋ and |Vk| = n− (k − 1)⌊αkn⌋, where

αk =
1

k

(
1 +

√
1− k

k − 1
x

)
.

It is simple to check that limn→∞ ϱ(H∗(n, x)) = x. We define

g3(x) := lim
n→∞

N(K3, H
∗(n, x))(

n
3

) .

Let H ′(n, x) be an ordered graph obtained from H∗(n, x) with any vertex ordering for which u < v
whenever u ∈ Vi, v ∈ Vj and i < j. Then Nord(M,H ′(n, x)) = Nord(K3, H

∗(n, x)) and this implies
that iord(M,x) ≤ g3(x). We further set Gx = {(Gn) : limn→∞ ϱ(Gn) = x} and define

i(K3, x) := min
(Gn)∈Gx

lim inf
n→∞

N(K3, Gn)(
n
3

) .

Lovász and Simonovits [13] conjectured that i(K3, x) = g3(x) for all x ∈ [0, 1], and this was proven
by Razborov [17] (see also [5, 14, 16, 2, 8, 4]). As i(K3, x) = iord(K3, x) due to the structure
of K3, we have that iord(K3, x) = g3(x). Note that M is a subgraph of the ordered K3, so
iord(K3, x) ≤ iord(M,x). Therefore,

g3(x) = iord(K3, x) ≤ iord(M,x)

and we conclude that iord(M,x) = iord(K3, x) = g3(x).
Determining Iord(M,x) appears to be more difficult.

Construction 2.4. We construct a sequence of graphs (P (n, x))∞n=1 for any x ∈ [0, 1]. For each
n, define P (n, x) to be the ordered graph on [n] = A ⊔ B ⊔ C, where |B| = ⌊n(1 −

√
1− x)⌋,

||A| − |C|| ≤ 1, and a < b < c for all a ∈ A, b ∈ B, c ∈ C with edge set

{ab : a ∈ A, b ∈ B} ∪ {b1b2 : b1, b2 ∈ B} ∪ {bc : b ∈ B, c ∈ C}.

A short calculation shows that limn→∞ ϱ(P (n, x)) = x and

lim
n→∞

ϱord(M,P (n, x)) =
η(3− η2)

2

for η = 1−
√
1− x.
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Construction 2.5. We construct a sequence of graphs (Q(n, x))∞n=1 for any x ∈ [0, 1]. For each n,
define Q(n, x) to be the ordered graph on [n] with edge set

{ij : j − i ≤ ⌊(1−
√
1− x)n⌋}.

A short calculation shows that limn→∞ ϱ(Q(n, x)) = x and that for η = 1−
√
1− x,

lim
n→∞

ϱord(M,Q(n, x)) =

{
6η3 + 6(1− 2η)η2 if η ≤ 1/2,

2η3 − 6η2 + 6η − 1 if η ≥ 1/2.

Constructions 2.4 and 2.5 show that for η = 1−
√
1− x,

Iord(M,x) ≥ max
{
lim
n→∞

ϱord(M,P (n, x)), lim
n→∞

ϱord(M,Q(n, x))
}
.

It is an interesting open problem to determine if the inequality is sharp.

Problem 2.6. Is

Iord(M,x) = max
{
lim
n→∞

ϱord(M,P (n, x)), lim
n→∞

ϱord(M,Q(n, x))
}

for any (possibly all) x ∈ [0, 1]?

A short calculation shows that there exists x0 ∈ [0, 1] such that limn→∞ ϱord(M,Q(n, x)) ≤
limn→∞ ϱord(M,P (n, x)) iff x < x0.

2.3 Colored graphs

A q-colored graph is a graph G = (V,E) together with a coloring function f : E → C, where
|C| = q. Fix q ∈ Z+ and let G = (V,E) be a q-colored complete graph with coloring function f .
For 1 ≤ i ≤ q, let ei(G) = |{e ∈ E : f(e) = i}| and let ϱi(G) := ei(G)/

(|V |
2

)
be the density of

color i. Given a q-colored complete graph F with |V (F )| = s and coloring function g, a subset
X ⊂ V with |X| = s is a copy of F in G if there is a bijection σ : V (F ) → X such that
g(uv) = g(σ(u)σ(v)) for all distinct u, v ∈ V (F ). Let Nq(F,G) be the number of copies of F in G

and let ϱq(F,G) := Nq(F,G)/
(|V |

s

)
be the density of F in G.

Let (Gn)
∞
n=1 be a sequence of q-colored complete graphs with |V (Gn)| → ∞. The sequence

(Gn)
∞
n=1 is F -good if xi = limn→∞ ϱi(Gn) exists for all i ∈ [q] and y = limn→∞ ϱq(F,Gn) exists.

In this case, (Gn)
∞
n=1 realizes (x1, . . . , xq−1, y). Note that we only list x1, . . . , xq−1 since xq =

1− (x1 + · · ·+ xq−1). Define

Iq(F, (x1, . . . , xq−1)) := sup{y : (x1, . . . , xq−1, y) ∈ [0, 1]q is realized by some F -good (Gn)
∞
n=1}.

For 2 ≤ s ≤ t, let K ′
s,t be the 3-colored clique on vertex set V = V1 ⊔ V2 with |V1| = s and

|V2| = t with coloring function f defined by

f(ij) :=


blue if i, j ∈ V1,

green if i, j ∈ V2,

red otherwise,

for all distinct i, j ∈ [s+ t] (see Figure 3).
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Figure 3: K ′
3,4.

Theorem 2.7. Let 2 ≤ s ≤ t and xb, xg, xr ∈ [0, 1] such that xb + xg + xr = 1. Then

I3(K
′
s,s, (xb, xg)) =

{
x
s/2
b x

s/2
g

(
2s
s

)
if
√
xb +

√
xg ≤ 1,(

xr
2

)s(2s
s

)
if
√
xb +

√
xg ≥ 1.

Furthermore, if
√
xb +

√
xg ≤ 1, then

I3(K
′
s,t, (xb, xg)) = x

s/2
b xt/2g

(
s+ t

s

)
.

Theorem 2.7 determines I3(K
′
s,s, (xb, xg)) for all vectors (xb, xg) in the region xb, xg ≥ 0 and xb+

xg ≤ 1. Write ind(K ′
s,s) for the inducibility of K ′

s,s which is the maximum value of I3(K
′
s,s, (xb, xg)).

An easy optimization shows that

ind(K ′
s,s) = I3(K

′
s,s, (1/4, 1/4)) =

(
1

4

)s(2s
s

)
.

Note that I3(K
′
s,t, (xb, xg)) is not known when

√
xb +

√
xg > 1 and s ̸= t.

3 Proof of Theorem 2.1

In this section, we will correct the proof of Theorem 2.1 from [19]. This involves defining a new
parameter (called T (W )) on graphons that we will optimize. Nevertheless, many parts of the
argument are identical to those in [19], and we will indicate when this is the case in various
lemmas, claims and propositions.

Given a measurable function F : [0, 1] → R, a graphon W , and γ ∈ [0, 1], let

D(F,W ) :=

∫ 1

0
F (dW (x)) dx,

MAX(γ, F ) := max{(1−√
γ)F (0) +

√
γF (

√
γ), (1− η)F (η) + ηF (1)},

where η = 1−
√
1− γ. A measurable function F : [0, 1] → R is good for W if

D(F,W ) ≤ MAX(γ, F ),

where γ = t( | ,W ) and η = 1 −
√
1− γ; F is bad for W if it is not good for W . A collection of

measurable functions is good (bad) for W if all its members are good (bad) for W . In [19], a set
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C of twice differentiable convex functions F : [0, 1] → R satisfying certain conditions is defined.
We do not need the details of the conditions here, so we do not state them, but we note that C
contains the function F (x) = xk.

The error in [19] appears in the proof of the following proposition.

Proposition 3.1 (corresponds to [19, Proposition 3.7]). C is good for all step graphons.

To prove this proposition, we introduce the following more refined notion of “good.” For any
δ > 0, say that F ∈ C is δ-good for a graphon W if

D(F,W ) < MAX(γ, F ) + δ

for γ = t( | ,W ) and η = 1−
√
1− γ. Say that F is δ-bad for W if it is not δ-good for W .

We next show that several lemmas from [19] still apply when we replace “good” with “δ-good.”
The proofs are almost exact copies of those in [19], and are given in the Appendix.

Lemma 3.2 (corresponds to [19, Lemma 3.2]). If all functions in C are δ-good for a graphon W ,
then the same is true for the graphon 1−W .

Given a graphon W and a real number λ ∈ [0, 1], let [λ,W ] be the graphon satisfying

[λ,W ](x, y) =

{
0 if 0 ≤ x < λ or 0 ≤ y < λ,

W
(
x−λ
1−λ ,

y−λ
1−λ

)
otherwise.

Lemma 3.3 (corresponds to [19, Lemma 3.5]). If λ ∈ [0, 1] and the graphon W has the property
that all functions in C are δ-good for it, then the same applies to [λ,W ].

Similarly, let [W,λ] be the graphon satisfying

[W,λ](x, y) =

{
W
(

x
1−λ ,

y
1−λ

)
if 0 ≤ x ≤ 1− λ and 0 ≤ y ≤ 1− λ,

1 otherwise.

The next lemma follows from the previous two lemmas and the observation that [W,λ] is
isomorphic to 1− [λ, 1−W ].

Lemma 3.4 (corresponds to [19, Lemma 3.6]). If all functions in C are δ-good for the graphon W
and λ ∈ [0, 1], then all functions in C are good for [W,λ] as well.

We now prove Proposition 3.1. Let G be the collection of all step graphons and let Gi be the
collection of all step graphons with i parts.

Proof of Proposition 3.1. Suppose for a contradiction that there exists W ′ ∈ G and F ′ ∈ C such
that F ′ is bad for W ′. This means that D(F ′,W ′) > MAX(γ,W ′). Then there exists δ > 0 such
that D(F ′,W ′) ≥ MAX(γ,W ′) + δ. In other words, F ′ is δ-bad for W ′. Let

S = S(δ) := {(F,W ) ∈ C × G : F is δ-bad for W}.

Note that (F ′,W ′) ∈ S, so S ≠ ∅ . Partition S into
⋃∞

i=1 Si, where

Si := {(F,W ) ∈ C × Gi : F is δ-bad for W}.
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Let k be the smallest integer such that Sk ̸= ∅. As all convex functions are good for all constant
graphons (see [19, Observation 2.1]), we have k ≥ 2. Pick F ∈ C such that (F,W ) ∈ Sk for some
W . Let

W := {W : (F,W ) ∈ Sk}.

Let µ be the Lebesgue measure on R. Each W ∈ W is a step function with respect to a partition
P = {P1, . . . , Pk} of the unit interval with αi = µ(Pi) for all i ∈ [k] and βij the value attained by
W on Pi × Pj for i, j ∈ [k]. By the choice of k, we deduce α1, . . . , αk > 0 for all W ∈ W. Define

T (W ) :=
k∑

i=1

αi(dW (i))2,

where

dW (i) =

∫ 1

0
W (i, y) dy =

k∑
j=1

αjβij

for all i ∈ [k].

Claim 3.5. T := supW∈W T (W ) = maxW∈W T (W ).

Proof. First we note that each Gℓ has a natural compact topology corresponding to convergence

of all parameters αi and βij . In particular, the space is homeomorphic to ∆ℓ−1 × [0, 1](
ℓ+1
2 ), where

∆ℓ−1 is the standard (ℓ − 1)-simplex since
∑ℓ

i=1 αi = 1. In this topology, it is straightforward to
check that T (W ), D(F,W ) and MAX(γW , F ) are continuous functions of W provided that F is
continuous and that the property of being δ-bad is preserved under taking the limit. (This is why
we needed to define the property of being δ-bad, as this would not be true if we replaced “δ-bad”
with just “bad.”) In particular, this implies that the set W is closed, hence compact. Thus, T (W)
must attain its maximum in the compact set W.

Fix W ∈ W with partition P = {P1, . . . , Pk} and parameters αi and βij ∈ [0, 1] for all i, j ∈ [k]
such that T (W ) = T . Recall that by the minimality of k, we know that αi ∈ (0, 1). By definition
of W, F is δ-bad for W . Set di := dW (i). To obtain the necessary contradiction to complete the
proof of the proposition, we will show that F is δ-good for W , i.e. that

D(F,W ) =

∫ 1

0
F (dW (x)) dx =

k∑
i=1

αiF (di) < MAX(γ, F ) + δ,

for γ = t( | ,W ) =
∑k

i=1 αidi. Without loss of generality, we may assume d1 ≤ d2 ≤ · · · ≤ dk.

Claim 3.6 (corresponds to [19, Claim 3.8]). If 1 ≤ r < s ≤ k and βir > 0, then βis = 1.

Proof of Claim 3.6. Suppose, for contradiction, that βir > 0 and βis < 1. Define Q ∈ Gk with the
same partition P as follows: let δij denote the Kronecker delta, and set, for x ∈ Pm and y ∈ Pn,

Q(x, y) =


−(1 + δir)αs if {m,n} = {i, r},
(1 + δis)αr if {m,n} = {i, s},
0 otherwise.

Let ε ≥ 0 be maximal such that Wε = W + εQ still satisfies Wε(x, y) ∈ [0, 1] for all x, y ∈ [0, 1]. By
our assumptions on βir and βis, we know that ε > 0.
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For all j ∈ [k], let d′j denote the value attained by dWε(x) for all x ∈ Pj . We have

d′r − dr = −(1 + δir)αiαsε+ δir(1 + δis)αiαsε = −αiαsε,

and similarly
d′s − ds = αiαrε.

Further, if i ̸∈ {r, s}, then

d′i − di = αr(βir − αs) + αs(βis + αr)− (αrβir + αsβis) = 0.

Therefore d′j = dj for all j /∈ {r, s}. Consequently,

T (Wε)− T (W ) =
k∑

j=1

αj(d
′
j)

2 −
k∑

j=1

αjd
2
j = αr(dr − αiαsε)

2 − αrd
2
r + αs(ds + αiαrε)

2 − αsd
2
s

= 2εαiαrαs(ds − dr) + ε2α2
iαrαs(αr + αs)

≥ ε2α2
iαrαs(αr + αs) > 0

since αi, αr, αs, ε > 0 and ds ≥ dr by assumption. Thus T (Wε) > T (W ), and clearly Wε ∈ Gk,
so we conclude by the choice of W that Wε ̸∈ W. To complete the proof, we will now obtain the
contradiction Wε ∈ W by showing that F is δ-bad for Wε. First, observe that∫

[0,1]2
Q(x, y) dxdy = αiαrαs((1 + δis)(2− δis)− (1 + δir)(2− δir)) = 0.

This implies that t( | ,Wε) = t( | ,W ) = γ. Next,

D(F,Wε)−D(F,W ) =

∫ 1

0
F (dWε(x)) dx−

∫ 1

0
F (dW (x)) dx

=
k∑

j=1

αj(F (d′j)− F (dj))

= αs(F (ds + αiαrε)− F (ds)) + αr(F (dr − αiαsε)− F (dr))

≥ αiαrαsε(F
′(ds)− F ′(dr)) ≥ 0

by convexity of F and ds ≥ dr. Since F is δ-bad for W , we obtain

D(F,Wε) ≥ D(F,W ) ≥ MAX(γ, F ) + δ.

This shows that F is δ-bad for Wε and completes the proof of the claim.

Claim 3.7 (corresponds to [19, Claim 3.9]). β1k > 0.

Proof. If this does not hold, then β1k = 0 and the previous claim implies β1i = 0 for all i ∈ [k− 1].
It follows that there exists W ′ ∈ Gk−1 such that W is isomorphic to [α1,W

′]. Due to the minimality
of k all functions in C are δ-good for W ′ and by Lemma 3.3 the same applies to the graphon W ,
contrary to its choice.

Claim 3.8 (corresponds to [19, Claim 3.10]). β1k < 1.

9



Proof. Suppose for contradiction that β1k = 1. Then βk1 = β1k > 0, and Claim 3.6 implies βki = 1
for all 1 ≤ i ≤ k. So some W ′ ∈ Gk−1 has the property that [W ′, αk] is isomorphic to W . This
implies that all functions in C are δ-good for W ′ and then Lemma 3.4 implies that all functions in
C are δ-good for W , contradiction.

By Claims 3.7 and 3.8, we have 0 < β1k < 1. Moreover, by Claim 3.6, β1i = 0 for all i ∈ [k− 1]
and βjk = 1 for all j with 2 ≤ j ≤ k. Divide Pk into two measurable subsets Qk and Qk+1

satisfying µ(Qk) = (1 − β1k)αk and, consequently, µ(Qk+1) = β1kαk. Set Qi = Pi for i ∈ [k − 1]
and Q = {Q1, . . . , Qk+1}. Let W ′ be the step graphon with respect to Q defined as follows: for
x ∈ Qi and y ∈ Qj ,

W ′(x, y) =


βij if 2 ≤ i ≤ k and 2 ≤ j ≤ k,

0 if i = 1 and j ∈ [k] or vice versa,

1 if i = k + 1 or j = k + 1.

By the last two clauses W ′ is isomorphic to a graphon of the form [[α1/(1 − β1kαk),W
′′], β1kαk]

for some graphon W ′′, and by the first clause W ′′ ∈ Gk−1. So Lemmas 3.3 and 3.4 show that F is
δ-good for W ′. Set d′ := dk − α1β1k and d′′ := dk + α1(1 − β1k). Since t( | ,W ′) = t( | ,W ) = γ
and (1− β1k)d

′ + β1kd
′′ = dk, Jensen’s Inequality implies that

D(F,W ) =

k∑
i=1

αiF (di) ≤
k−1∑
i=1

αiF (di) + αk((1− β1k)F (d′) + β1kF (d′′)) = D(F,W ′).

Therefore, D(F,W ) ≤ D(F,W ′) < MAX(γ, F ) + δ so F is δ-good for W , a contradiction.

The proof of Theorem 2.1 follows from Proposition 3.1 exactly as in [19].

The error in [19] is in the proof of their Claim 3.8 (which corresponds to our Claim 3.6).
In [19], T is defined as the number of pairs (i, j) ∈ [k]2 for which βij ∈ {0, 1} and W ∈ Gk is
chosen to maximize T . Then Claim 3.8 in [19] states that βir > 0 and βis < 1 together imply
that Wε is 0 or 1 on at least T + 1 of the sets Pi × Pj by construction. However, this is not
true if βir = 1 and βis = 0. For example, consider the graphon W defined on the partition
P1 = [0, 2/5), P2 = [2/5, 4/5), P3 = [4/5, 1] by

W (x, y) =

{
1 if (x, y) ∈ (P1 × P3) ∪ (P2 × P2) ∪ (P2 × P3)

0 if (x, y) ∈ (P1 × P1) ∪ (P1 × P2) ∪ (P3 × P3)

(see Figure 4). We see that d1 = 1/5, d2 = 3/5, and d3 = 4/5, so d1 ≤ d2 ≤ d3 is satisfied. Setting
i = 3, r = 2, and s = 3, we have that βir = 1 > 0 and βis = 0 < 1. However, all entries are already
0 or 1 in W , so Wε cannot equal 0 or 1 on more sets than W . Note that any step graphon with parts
ordered by degree such that βir = 1 and βis = 0 for some i and r < s is also a counterexample; the
other entries need not equal 0 or 1 as in this example.

4 Proof of Theorem 2.3

Recall that we are assuming G = ([n], E). For a vertex i in G, the right-degree of i is d+G(i) :=
|{j > i : ij ∈ E}|. Recall that when we write uv for an edge, we implicitly mean u < v. The
left vertex of vw ∈ E is v. A vertex v has full right-degree if E ⊃ {vw : w > v}. Note that

Nord(SL(k), G) =
∑

i∈V (G)

(d+G(i)
k

)
.
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0

2/5

4/5

1

2/5 4/5 1

Figure 4: A counterexample to [19, Claim 3.8] (shaded squares have β value 1).

Proof of Theorem 2.3. If m = 0 or m =
(
n
2

)
, the theorem is trivial, so we assume that 0 < m <

(
n
2

)
.

Let G = ([n], E) with |E| = m > 0 such that G maximizes the number of copies of SL(k) among
all ordered n vertex m edge graphs. Suppose that there exists i ∈ [n−1] such that d+G(i) < d+G(i+1).
Let Gi be the ordered graph obtained from G by interchanging the positions of i and i+ 1 in the
ordering of V (G). We say that Gi is obtained from G by swapping i and i+ 1.

Since i and i + 1 are consecutive in the ordering of G, we have that d+G(j) = d+Gi
(j) for all

j ∈ [n] \ {i, i + 1}. If there is no edge between i and i + 1, then d+G(i) = d+Gi
(i) and d+G(i + 1) =

d+Gi
(i + 1) as well, so N(SL(k), Gi) = N(SL(k), G). If there is an edge between i and i + 1, then

d+Gi
(i) = d+G(i)− 1 and d+Gi

(i+1) = d+G(i+1)+ 1. By convexity of the binomial coefficient and the

fact that d+G(i) < d+G(i+ 1),

Nord(SL(k), Gi) − Nord(SL(k), G) =
∑

j∈V (Gi)

(
d+Gi

(j)

k

)
−

∑
j∈V (G)

(
d+G(j)

k

)

=

((
d+Gi

(i)

k

)
+

(
d+Gi

(i+ 1)

k

))
−
((

d+G(i)

k

)
+

(
d+G(i+ 1)

k

))
=

((
d+G(i)− 1

k

)
+

(
d+G(i+ 1) + 1

k

))
−
((

d+G(i)

k

)
+

(
d+G(i+ 1)

k

))
≥ 0.

We continue swapping adjacent vertices in this way until there is no i ∈ [n− 1] such that d+G(i) <
d+G(i+ 1). Call the resulting graph G′. Then d+G′(v) ≥ d+G′(w) for all v < w and Nord(SL(k), G

′) =
Nord(SL(k), G) by our assumption on G.

Let vG′ := min{i ∈ [n] : d+G′(i) < n − i}, which exists since m <
(
n
2

)
, and choose w ∈ [n] such

that w > vG′ and vG′w ̸∈ E(G′). Let xG′ := max{i ∈ [n] : d+G′(i) > 0}, which exists since m > 0.
For brevity, set v′ := vG′ and x′ := xG′ . Note that if v′ = 1, then x′ ≥ 1 = v′; if v′ ≥ 2, then the
definition of v′ implies that d+G′(v′ − 1) = n − v′ + 1 > 0, so x′ ≥ v′ − 1. Thus v′ ≤ x′ + 1. In the
next paragraph, we show that there is a graph G′′ with the same number of copies of SL(k) as G

′

satisfying xG′′ ≤ vG′′ ≤ xG′′ + 1.
Suppose that v′ < x′ and fix y ∈ [n] such that x′y ∈ E(G′) (recall that this notation implies

x′ < y). Let H = ([n], (E(G′)∪{v′w})\{x′y}). Then d+H(v′) = d+G′(v′)+1 and d+H(x′) = d+G′(x′)−1.
By convexity of the binomial coefficient and the fact that d+G′(v′) ≥ d+G′(x′),

Nord(SL(k), H) ≥ Nord(SL(k), G
′) = Nord(SL(k), G).

We continue adding and deleting edges in this way until we reach a new graph, call it G′′, satisfying
vG′′ ≥ xG′′ . Notice that xG′′ ≤ vG′′ ≤ xG′′ + 1 and Nord(SL(k), G

′′) = Nord(SL(k), G).
Setting v := vG′′ , we further see that

E(G′′) = {ij : i ∈ [v − 1], j ∈ [n]} ∪A
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for some A ⊂ {vj : j ∈ {v+1, v+2, . . . , n}} with |A| = b for some 0 ≤ b < n− v. Since d+G′′(v) = b
and d+G′′(w) = 0 for w > v,

Nord(SL(k), G) = Nord(SL(k), G
′′) = Nord(SL(k), SL(n,m))

as required.
Let G = ([n], E) with |E| = m such that G minimizes the number of copies of SL(k) among all

ordered n vertex m edge graphs. Suppose further that there are some i, j ∈ V (G) with i < j such
that d+G(j) < n−j and d+G(i) > d+G(j). Then choose v ∈ [n] such that j < v and jv /∈ E. As d+G(i) >
d+G(j) ≥ 0, we also choose w ∈ [n] such that i < w and iw ∈ E. Let H = ([n], (E ∪ {jv}) \ {iw}).
Then d+H(i) = d+G(i)− 1 and d+H(j) = d+G(j) + 1. By convexity of the binomial coefficient,

Nord(SL(k), H) ≤ Nord(SL(k), G).

By our assumption on G, we must have Nord(SL(k), H) = Nord(SL(k), G). We repeatedly remove
an edge iw and add an edge jv for i < j satisfying d+(j) < n− j and d+(i) > d+(j) until no such
i and j exist. Call the resulting graph G′ and note that G′ has m edges. Then Nord(SL(k), G

′) =
Nord(SL(k), G) and

for all i < j in G′, either d+G′(j) = n− j or d+G′(i) ≤ d+G′(j) (∗).

We note here that the right degree sequence of SR(n,m) is given by (not necessarily in the vertex
order):

0, 1, . . . , a− 1, a, . . . , a︸ ︷︷ ︸
n−a−b

, a+ 1, . . . , a+ 1︸ ︷︷ ︸
b

. (1)

Our plan is to alter G′ until its right degree sequence is the same as in (1). This will allow us to
conclude that Nord(SL(k), G

′) = Nord(SL(k), SR(n,m)).
Set vG′ := min{j ∈ [n] : d+G′(j) = n − j}. For brevity, set v′ := vG′ . Then d+G′(i) ≤ d+G′(j) for

all i < j ≤ v′ − 1 by (∗). Furthermore, if there exists i ≥ v′ such that d+G′(i) < n− i, then we can
find consecutive vertices x, y such that v′ ≤ x < y, d+G′(y) < n− y and d+G′(x) = n− x. But this is
impossible as (∗) implies that d+G′(y) ≥ d+G′(x) = n − x > n − y. Consequently, d+G′(i) = n − i for
all i ∈ {v′, v′ + 1, . . . , n}.

If v′ = n, then d+G′(n − 1) = 0 and d+G′(i) ≤ d+G′(n − 1) = 0 for all i ∈ [n − 1], so |E(G′)| = 0.
This contradicts m > 0, so we must have v′ < n. If d+G′(i) ≥ n − v′ + 1 for some i ∈ [v′ − 1],
then since i ≤ v′ − 1, we have d+G′(v′ − 1) ≥ d+G′(i) ≥ n − v′ + 1 = n − (v′ − 1). This implies that
d+G′(v′ − 1) = n− (v′ − 1), contradicting the definition of v′. Therefore v′ < n and d+G′(i) ≤ n− v′

for all i ∈ [v′ − 1].
Next, suppose that d+G′(1) < n− v′− 1. Note that d+G′(v′) = n− v′ > n− v′− 1 > d+G′(1) implies

that d+G′(v′) ≥ d+G′(1) + 2. Choose x ∈ [n] \ {1} such that 1x /∈ E(G′) and y ∈ {v′ + 1, . . . , n}
such that v′y ∈ E(G′). Let H ′ = ([n], (E(G′) ∪ {1x}) \ {v′y}). Then d+H′(1) = d+G′(1) + 1 and
d+H′(v′) = d+G′(v′)− 1. By convexity of binomial coefficients and the fact that d+G′(v′) ≥ d+G′(1) + 2,

Nord(SL(k), H
′) ≤ Nord(SL(k), G

′) = Nord(SL(k), G).

We continue adding and deleting edges in this way until we reach a graph, call it G′′, that satisfies
d+G′′(1) ≥ n− vG′′ − 1. Note that n− vG′′ − 1 ≤ d+G′′(1) ≤ n− vG′′ .

Set v := vG′′ . Since the right-degrees of vertices x are nondecreasing for 1 ≤ x ≤ v, there is
some 0 < b0 ≤ v such that d+G′′(i) = n− v − 1 for all i ∈ [v − b0], d

+
G′′(i) = n− v for the remaining

12



b0 vertices v− b0 + 1 ≤ i ≤ v; we have already observed that d+G′′(i) = n− i for all i > v. Thus the
right degree sequence of G′′ is given by

0, 1, . . . , n− v − 2, n− v − 1, . . . , n− v − 1︸ ︷︷ ︸
v+1−b0

, n− v, . . . , n− v︸ ︷︷ ︸
b0

. (2)

If b0 = v, set b = 0 and a = n − v. Otherwise, set b = b0 and a = n − v − 1. In either case, the
degree sequence of SR(n,m) in (1) is the same as that of G′′ in (2) and therefore

Nord(SL(k), G) = Nord(SL(k), G
′′) = Nord(SL(k), SR(n,m))

as required.

5 Proof of Theorem 2.7

Let (Gn) := (Gn)
∞
n=1 be a sequence of graphs with limn→∞ |V (Gn)| = ∞. The sequence (Gn) is

F -good if both x = limn→∞ ϱ(Gn) and y = limn→∞ ϱind(F,Gn) exist. In this case, we say that (Gn)
realizes (x, y). Define

Iind(F, x) := sup{y : (x, y) ∈ [0, 1] is realized by some F -good (Gn)}.

The following two results will be needed to give upper bounds.

Theorem 5.1 (Kruskal–Katona [9, 10]). Let r ≥ 2 be an integer. Then for every x ∈ [0, 1] we have
Iind(Kr, x) ≤ xr/2.

Theorem 5.2 (Liu, Mubayi, Reiher [11, Theorem 1.16]). Let s ≥ 2 be an integer. Then for every
x ∈ [0, 1] we have Iind(Ks,s, x) ≤

(
2s
s

)
xs/2s.

Proof of Theorem 2.7. We address the two cases separately.

Case 1:
√
xb +

√
xg ≤ 1.

We first prove the upper bound. Suppose that (Gn)
∞
n=1 be a K ′

s,t-good sequence that realizes
((xb, xg), I3(K

′
s,t, (xb, xg))) and let fn be the coloring function for Gn. Let K ′

s = ([s],
(
s
2

)
) with

coloring function fb ≡ blue. Similarly, let K ′
t = ([t],

(
t
2

)
) have coloring function fg ≡ green. Since

K ′
s,t contains exactly one copy of K ′

s and one copy of K ′
t,

N3(K
′
s,t, Gn) ≤ N3(K

′
s, Gn)N3(K

′
t, Gn). (3)

By deleting edges that are not colored blue and applying Theorem 5.1, we obtain

lim sup
n→∞

N3(K
′
s, Gn)(|V (Gn)|
s

) ≤ I3(K
′
s, (xb, xg)) ≤ Iind(Ks, xb) ≤ x

s/2
b .

Similarly, by deleting edges not colored green, we obtain

lim sup
n→∞

N3(K
′
t, Gn)(|V (Gn)|
t

) ≤ I3(K
′
t, (xb, xg)) ≤ Iind(Kt, xg) ≤ xt/2g .

Together with (3), we get

I3(K
′
s,t, (xb, xg)) ≤ lim

n→∞

x
s/2
b

(|V (Gn)|
s

)
· xt/2g

(|V (Gn)|
t

)(|V (Gn)|
s+t

) = x
s/2
b xt/2g

(
s+ t

s

)
.

13



We now prove the lower bound. As ⌊n√xb⌋ + ⌊n√xg⌋ ≤ n
√
xb + n

√
xg ≤ n, there exist disjoint

subsets An and Bn of [n] with |An| = ⌊n√xb⌋ and |Bn| = ⌊n√xg⌋ for all n. For each n ≥ 1, let

Gn = ([n],
(
[n]
2

)
) have coloring function fn defined by

fn(ij) =


blue if i, j ∈ An,

green if i, j ∈ Bn,

red otherwise.

See Figure 5 for an illustration. Clearly, limn→∞ ϱblue(Gn) = xb and limn→∞ ϱgreen(Gn) = xg. If

.

.

.

An Bn

Figure 5: Construction maximizing K ′
s,t-density when

√
xb +

√
xg ≤ 1.

A is a copy of K ′
s in Gn and B is a copy of K ′

t in Gn, then A ∪ B is a copy of K ′
s,t in Gn, as

fn(ij) = red for all i ∈ An, j ∈ Bn. Thus, (Gn)
∞
n=1 realizes (xb, xg, y), where

y = lim
n→∞

ϱ3(K
′
s,t, Gn) = lim

n→∞

(⌊n√xb⌋
s

)
·
(⌊n√xg⌋

t

)(
n

s+t

) = lim
n→∞

(s+ t)!nsx
s/2
b ntx

t/2
g

ns+ts!t!
= x

s/2
b xt/2g

(
s+ t

s

)
.

Consequently, I3(K
′
s,t, (xb, xg)) ≥ x

s/2
b x

t/2
g

(
s+t
s

)
.

Case 2:
√
xb +

√
xg ≥ 1.

We first prove the upper bound. Set xr := 1− xb − xg. Let (Gn)
∞
n=1 be a K ′

s,s-good sequence that
realizes ((xb, xg), I3(K

′
s,s, (xb, xg))). Every copy of K ′

s,s contains a red copy of Ks,s. Consequently,
Theorem 5.2 implies that

I3(K
′
s,s, (xb, xg)) = lim

n→∞

N3(K
′
s,s, Gn)(|V (Gn)|
2s

) ≤ Iind(Ks,s, xr) ≤
(xr
2

)s(2s
s

)
.

We now prove the lower bound. Note that

⌊n
√
xb⌋+

⌊
n

xr
2
√
xb

⌋
≤ 2xb + xr

2
√
xb

n =
1 + xb − xg

2
√
xb

n ≤
2
√
xb

2
√
xb

n = n

since
√
xb+

√
xg ≥ 1 implies xg ≥ 1−2

√
xb+xb. For each n, let An⊔Bn ⊆ [n], where |An| = ⌊n√xb⌋

and |Bn| = ⌊nxr/(2
√
xb)⌋ and let Gn = ([n],

(
[n]
2

)
) have coloring function fn defined by

fn(ij) =


blue if i, j ∈ An,

red if i ∈ An, j ∈ Bn or j ∈ An, i ∈ Bn,

green otherwise.

See Figure 6 for an illustration. Now limn→∞ ϱblue(Gn) = xb, and
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.

.

.

An Bn

Figure 6: Construction maximizing K ′
s,s-density when

√
xb +

√
xg > 1.

lim
n→∞

ϱred(Gn) = lim
n→∞

⌊n√xb⌋ · ⌊nxr/2
√
xb⌋(

n
2

) =
2xr

√
xb

2
√
xb

= xr.

We conclude that limn→∞ ϱgreen(Gn) = 1 − xb − xr = xg. Every pair of s vertices in An and s
vertices in Bn induces a copy of K ′

s,s, so (Gn)
∞
n=1 realizes (xb, xg, y), where

y = lim
n→∞

(⌊n√xb⌋
s

)
·
(⌊nxr/2

√
xb⌋

s

)(
n
2s

) = lim
n→∞

nsx
s/2
b nsxsrx

−s/2
b

n2s2s
·
(
2s

s

)
=
(xr
2

)s(2s
s

)
.

Consequently, I3(F, (xb, xg)) ≥
(
xr
2

)s(2s
s

)
.
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Appendix

Proof of Lemma 3.2. Let F ∈ C be the function that we want to prove δ-good for 1 −W . Using
the fact that G : [0, 1] → R given by G(x) := F (1 − x) from [19, Lemma 3.1(ii)] is δ-good for W
we find that

γ = t( | , 1−W ) = 1− t( | ,W ) and η = 1−
√
1− γ

satisfy∫ 1

0
F (d1−W (x)) =

∫ 1

0
G(dW (x))

< max
{(

1−
√

1− γ
)
G(0) +

√
1− γG

(√
1− γ

)
,
√
γG(1−√

γ) + (1−√
γ)G(1)

}
+ δ

= max{(1− η)F (η) + ηF (1), (1−√
γ)F (0) +

√
γF (

√
γ)}+ δ

as desired.
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Proof of Lemma 3.3. Let F ∈ C be any function that we want to prove δ-good for [λ,W ]. By [19,
Lemma 3.1(iii)], the function H : [0, 1] → R given by H(x) = F ((1− λ)x) for all x ∈ [0, 1] is in C .
Thus it is δ-good for W , which tells us that∫ 1

0
H(dW (x)) dx < max{(1−√

γ)H(0) +
√
γH(

√
γ), (1− η)H(η) + ηH(1)}+ δ,

where γ = t( | ,W ) and η = 1−
√
1− γ. Since∫ 1

0
F (d[λ,W ](x)) dx = λF (0) +

∫ 1

λ
F

(
(1− λ)dW

(
x− λ

1− λ

))
dx

= λF (0) + (1− λ)

∫ 1

0
H(dW (x)) dx,

it follows that either∫ 1

0
F (d[λ,W ](x)) dx < λF (0) + (1− λ)((1−√

γ)F (0) +
√
γF ((1− λ)

√
γ) + δ)

= λF (0) + (1− λ)(1−√
γ)F (0) + (1− λ)

√
γF ((1− λ)

√
γ) + (1− λ)δ

≤ λF (0) + (1− λ)(1−√
γ)F (0) + (1− λ)

√
γF ((1− λ)

√
γ) + δ,

or ∫ 1

0
F (d[λ,W ](x)) dx < λF (0) + (1− λ)((1− η)F ((1− λ)η) + ηF (1− λ) + δ)

= λF (0) + (1− λ)(1− η)F ((1− λ)η) + (1− λ)ηF (1− λ) + (1− λ)δ

≤ λF (0) + (1− λ)(1− η)F ((1− λ)η) + (1− λ)ηF (1− λ) + δ.

In the former case the right side simplifies to(
1−

√
γ′
)
F (0) +

√
γ′F

(√
γ′
)
+ δ,

where γ′ = (1− λ)2γ = t( | , [λ,W ]), meaning that F is, in particular, δ-good for [λ,W ].
So we may assume that the second alternative occurs. Setting x = λ, y = (1 − λ)η, and

z = (1− λ)(1− η) we thus get∫ 1

0
F (d[λ,W ](x)) dx < xF (0) + zF (y) + yF (y + z) + δ.

Since y2 + 2yz = (1− λ)2(2η − η2) = (1− λ)2γ = γ′, it follows in view of [19, Lemma 3.3] that∫ 1

0
F (d[λ,W ](x)) dx < max

{(
1−

√
γ′
)
F (0) +

√
γ′F

(√
γ′
)
, (1− η′)F (η′) + η′F (1)

}
+ δ,

where η′ = 1−
√
1− γ′. This tells us that F is indeed δ-good for [λ,W ].
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