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Abstract

The Ramsey number rk(s, n) is the minimum N such that every red-blue coloring of the k-
subsets of {1, . . . , N} contains a red set of size s or a blue set of size n, where a set is red (blue)
if all of its k-subsets are red (blue). Let rk(Ps, n) be the minimum N such that every red-blue
coloring of the k-subsets of {1, . . . , N} results in a red ordered tight path with s vertices or a
blue set of size n. The problem of estimating both rk(s, n) and rk(Ps, n) for k = 2 goes back to
the seminal work of Erdős and Szekeres from 1935, while the case k ≥ 3 was first investigated
by Erdős and Rado in 1952.

In this paper, we deduce the first quantitative relationship between multicolor variants of
rk(Ps, n) and rk(n, n). This yields several consequences including the following:

• We determine the correct tower growth rate for both rk(s, n) and rk(Ps, n) for s ≥ k + 3.
The question of determining the tower growth rate of rk(s, n) for all s ≥ k + 1 was posed
by Erdős and Hajnal in 1972 and this is almost settled here.

• We show that determining the tower growth rate of r4(P5, n) is equivalent to determining
the tower growth rate of rk(n, n) for all k ≥ 3, which is a notorious conjecture of Erdős,
Hajnal and Rado from 1965 that remains open.

1 Introduction

A k-uniform hypergraphH with vertex set V is a collection of k-element subsets of V . We writeK
(k)
n

for the complete k-uniform hypergraph on an n-element vertex set. The Ramsey number rk(s, n) is

the minimum N such that every red-blue coloring of the edges of K
(k)
N contains a monochromatic

red copy of K
(k)
s or a monochromatic blue copy of K

(k)
n . Due to its wide range of applications in

logic, number theory, analysis, geometry, and computer science, estimating Ramsey numbers has
become one of the most central problems in combinatorics.

1.1 Diagonal Ramsey numbers.

The diagonal Ramsey number, rk(n, n) where k is fixed and n tends to infinity, has been studied
extensively over the past 80 years. Classic results of Erdős and Szekeres [16] and Erdős [12] imply
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that 2n/2 < r2(n, n) ≤ 22n for every integer n > 2. These bounds have been improved by various
authors (see [5, 25, 17]). However, the constant factors in the exponents have not changed over the
last 70 years. For 3-uniform hypergraphs, a result of Erdős, Hajnal, and Rado [14] gives the best

known lower and upper bounds for r3(n, n) which are of the form1 2Ω(n2) < r3(n, n) ≤ 22O(n)
. For

k ≥ 4, there is also a difference of one exponential between the known lower and upper bounds for
rk(n, n), that is,

twrk−1(Ω(n2)) ≤ rk(n, n) ≤ twrk(O(n)),

where the tower function twrk(x) is defined by twr1(x) = x and twri+1(x) = 2twri(x) (see [16, 15,
13]). A notoriously difficult conjecture of Erdős, Hajnal, and Rado states the following (Erdős
offered $500 for a proof).

Conjecture 1.1. (Erdős-Hajnal-Rado [14]) For k ≥ 3 fixed, rk(n, n) ≥ twrk(Ω(n)).

The study of r3(n, n) may be particularly important for our understanding of hypergraph Ramsey
numbers. Any improvement on the lower bound for r3(n, n) can be used with a result of Erdős
and Hajnal [13], known as the stepping-up lemma, to obtain improved lower bounds for rk(n, n),
for all k ≥ 4. In particular, proving that r3(n, n) grows at least double exponential in Ω(n), would
imply that rk(n, n) does indeed grow as a tower of height k in Ω(n), settling Conjecture 1.1. In
the other direction, any improvement on the upper bound for r3(n, n) can be used with a result
of Erdős and Rado [15], to obtain improved upper bounds for rk(n, n), for all k ≥ 4. It is widely
believed that Conjecture 1.1 is true, based on the fact that such bounds are known for four colors.
More precisely, the q-color Ramsey number,

rk(n, . . . , n︸ ︷︷ ︸
q times

)

is the minimum N such that every q-coloring of the edges of the complete N -vertex k-uniform

hypergraph K
(k)
N , contains a monochromatic copy of K

(k)
n . A result of Erdős and Hajnal [13] shows

that r3(n, n, n, n) > 22Ω(n)
, and this implies that

rk(n, n, n, n) = twrk(Θ(n)),

for all fixed k ≥ 4. For three colors, Conlon, Fox, and Sudakov [7] showed that for fixed k ≥ 3,

rk(n, n, n) ≥ twrk(Ω(log2 n)).

1.2 Off-diagonal Ramsey numbers.

The off-diagonal Ramsey number, rk(s, n) with k, s fixed and n tending to infinity, has also been
extensively studied. It is known [2, 19, 3, 4] that r2(3, n) = Θ(n2/ log n) and, for fixed s > 3,

c1

(
n

log n

) s+1
2

≤ r2(s, n) ≤ c2
ns−1

logs−2 n
,

1We write f(n) = O(g(n)) if |f(n)| ≤ c|g(n)| for some fixed constant c and for all n ≥ 1; f(n) = Ω(g(n)) if
g(n) = O(f(n)); and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold.
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where c1 and c2 are absolute constants. For 3-uniform hypergraphs, a result of Conlon, Fox, and
Sudakov [7] shows that for fixed s ≥ 4

2Ω(n logn) ≤ r3(s, n) ≤ 2n
s−2 logn.

For fixed s > k ≥ 4, it is known that

rk(s, n) ≤ twrk−1(O(ns−2 log n)).

By applying the Erdős-Hajnal stepping up lemma in the off-diagonal setting, it follows that
rk(s, n) ≥ twrk−1(Ω(n)), for k ≥ 4 and for all s ≥ 2k−1 − k + 3. In 1972, Erdős and Hajnal
conjectured the following.

Conjecture 1.2. (Erdős-Hajnal [13]) For s ≥ k + 1 ≥ 5 fixed, rk(s, n) ≥ twrk−1(Ω(n)).

In fact, Erdős and Hajnal made a more general conjecture in [13] on the tower growth rate of the

minimum N = N(n, k, t), such that every red/blue coloring of the edges of K
(k)
N yields either a blue

clique of size n, or k+ 1 vertices that induces at least t red edges. For more results on their general
conjecture, see [24].

In [6], Conlon, Fox, and Sudakov modified the Erdős-Hajnal stepping-up lemma to show that
Conjecture 1.2 holds for all s ≥ d5k/2e − 3. Using a result of Duffus et al. [9] (see also Moshkovitz
and Shapira [22] and Milans et al. [21]), one can show that rk(s, n) ≥ twrk−2(Ω(n)) for all s ≥ k+1.
In this paper, we prove the following result that nearly settles Conjecture 1.2 by determining the
correct tower growth rate for s ≥ k + 3, and obtaining new bounds for the two remaining cases.2

Theorem 1.3. There is a positive constant c > 0 such that the following holds. For k ≥ 4 and
n > 3k, we have

1. rk(k + 3, n) ≥ twrk−1(cn),

2. rk(k + 2, n) ≥ twrk−1(c log2 n),

3. rk(k + 1, n) ≥ twrk−2(cn2).

There are two novel ingredients to our constructions. First, we relate these problems to estimates
for Ramsey numbers of tight-paths versus cliques, which we find of independent interest. Second,
we use (k− 1)-uniform diagonal Ramsey numbers for more than two colors to obtain constructions
for k-uniform off-diagonal Ramsey numbers for two colors. This differs from the usual paradigm
in this area, exemplified by the stepping up lemma, where the number of colors stays the same or
goes up as the uniformity increases (see, e.g. [1, 6, 7, 9, 13, 14, 20, 23]). This topic has also been
extensively studied in the context of partition relations for ordinals. It is quite possible that our
constructions can also be applied to the infinite setting, though we have not explored this here.

2After this paper was written, we learned that a bound similar to Theorem 1.3 part 1 was recently claimed by
Conlon, Fox, and Sudakov (unpublished), using the more traditional stepping-up argument of Erdős and Hajnal.
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1.3 Tight-path versus clique.

Consider an ordered N -vertex k-uniform hypergraph H, that is, a hypergraph whose vertex set is

[N ] = {1, 2, . . . , N}. A tight path of size s in H, denoted by P
(k)
s , comprises a set of s vertices

v1, . . . , vs ∈ [N ], v1 < · · · < vs, such that (vj , vj+1, . . . , vj+k−1) ∈ E(H) for j = 1, 2, . . . , s − k + 1.

The length of P
(k)
s is the number of edges, s− k + 1.

Here, we obtain lower and upper bounds for Ramsey numbers for tight-paths versus cliques. To be
more precise, we need the following definition. Given q ordred k-uniform hypergraphs F1, . . . , Fq,
the Ramsey number r(F1, . . . , Fq) is the minimum N such that every q-coloring of the edges of

the complete N -vertex k-uniform hypergraph K
(k)
N , whose vertex set is [N ] = {1, . . . , N}, contains

an i-colored copy of Fi for some i. In order to avoid the excessive use of superscripts, we use the
simpler notation

rk(Ps, Pn) = r(P (k)
s , P (k)

n ) and rk(Ps, n) = r(P (k)
s ,K(k)

n ).

The proofs of two famous theorems of Erdős and Szekeres in [16], known as the monotone sub-
sequence theorem and the cups-caps theorem, imply that r2(Ps, Pn) = (n − 1)(s − 1) + 1 and
r3(Ps, Pn) =

(
n+s−4
s−2

)
+1 (see [10]). Fox, Pach, Sudakov, and Suk [10] later extended their results to

k-uniform hypergraphs, and gave a geometric application related to the Happy Ending Theorem.3

See also [9, 22, 21] for related results.

The proof of the Erdős-Szekeres monotone subsequence theorem [16] (see also Dilworth’s Theorem
[8]) actually implies that r2(Ps, n) = (n− 1)(s− 1) + 1. For k ≥ 3, estimating rk(Ps, n) appears to
be more difficult. Clearly we have

rk(Ps, n) ≤ rk(s, n) ≤ twrk−1(O(ns−2 log n)). (1)

Our main result is a new connection between rk(Ps, n) and rk(n, n). Again, we will use the simpler
notation

rk(n; q) = rk(n, . . . , n︸ ︷︷ ︸
q times

) and rk(Ps1 , . . . , Pst , n) = r(P (k)
s1
, . . . , P (k)

st ,K
(k)
n ).

Theorem 1.4. (Main Result) Let k ≥ 2 and s1, . . . , st ≥ k+1. Then for q = (s1−k+1) · · · (st−
k + 1), we have

rk−1(bn/qc; q) ≤ rk(Ps1 , . . . , Pst , n) ≤ rk−1(n; q).

Theorem 1.4 when t = 1 reduces to the following simpler statement for all s > k ≥ 2:

rk−1

(⌊
n

s− k + 1

⌋
; s− k + 1

)
≤ rk(Ps, n) ≤ rk−1(n; s− k + 1).

This has several consequences, the first of which is a considerable improvement to the upper bound
for rk(Ps, n) in (1).

3The main result in [16], known as the Happy Ending Theorem, states that for any positive integer n, any
sufficiently large set of points in the plane in general position has a subset of n members that form the vertices of a
convex polygon.
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Corollary 1.5. For fixed k ≥ 3 and s ≥ k + 1, we have rk(Ps, n) ≤ twrk−1(O(sn log s)).

Indeed, using the standard Erdős-Szekeres recurrence [16], we have r2(n; q) < qnq = twr2(O(qn log q)),
and the upper bound argument of Erdős-Rado [15] then yields rk−1(n; q) < twrk−1(O(qn log q)).
Applying Theorem 1.4 with t = 1, s1 = s, and q = s− k + 1 < s, now implies Corollary 1.5.

Combining the lower bounds in Theorem 1.4 with the known lower bounds for rk−1(n, n, n, n)
in [13], rk−1(n, n, n) in [7], and rk−1(n, n) in [13], we establish the following inequalities. There is
an absolute constant c > 0 such that for all k ≥ 4 and n > 4k

rk(Pk+3, n) ≥ rk−1

(n
4
,
n

4
,
n

4
,
n

4

)
≥ twrk−1(cn),

rk(Pk+2, n) ≥ rk−1

(n
3
,
n

3
,
n

3

)
≥ twrk−1(c log2 n),

rk(Pk+1, n) ≥ rk−1

(n
2
,
n

2

)
≥ twrk−2(cn2).

Summarizing, we have just proved parts 1–3 of the following theorem, which is a strengthening of
Theorem 1.3 as rk(s, n) ≥ rk(Ps, n).

Theorem 1.6. There is a positive constant c > 0 such that r3(P4, n) > 2cn, and for k ≥ 4 and
n > 3k,

1. rk(Pk+3, n) ≥ twrk−1(cn),

2. rk(Pk+2, n) ≥ twrk−1(c log2 n),

3. rk(Pk+1, n) ≥ twrk−2(cn2).

We conjecture the following strengthening of the Erdős-Hajnal conjecture.

Conjecture 1.7. For k ≥ 4 fixed, rk(Pk+1, n) ≥ twrk−1(Ω(n)).

For t = 1, q = 2, and s1 = k+1 in Theorem 1.4, we have rk−1(n/2, n/2) ≤ rk(Pk+1, n) ≤ rk−1(n, n).
Hence, we obtain the following corollary which relates r4(P5, n) to the diagonal Ramsey number.

Corollary 1.8. Conjecture 1.1 holds if and only if there is a constant c > 0 such that

r4(P5, n) ≥ 22cn .

Corollary 1.8 shows that our lack of understanding of the Ramsey number rk(Pk+1, n) is due to
our lack of understanding of the diagonal Ramsey number rk−1(n, n). However, if we add one
additional color, then Theorem 1.4 with t = 2 implies that rk(Pk+1, Pk+1, n) does indeed grow as a
tower of height k − 1 in Ω(n).

Corollary 1.9. There is a positive constant c > 0 such that for k ≥ 4 and n > 3k,

rk(k + 1, k + 1, n) ≥ rk(Pk+1, Pk+1, n) ≥ rk−1

(n
4
,
n

4
,
n

4
,
n

4

)
≥ twrk−1(cn).
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Note that by the results of Erdős and Rado [15], for every k ≥ 4, there is an ck > 0 such that
rk(k + 1, k + 1, n) ≤ twrk−1(nck).

In the next Section, we prove Theorem 1.4 and the inequality r3(P4, n) > 2Ω(n) from Theorem 1.6.
We sometimes omit floor and ceiling signs whenever they are not crucial for the sake of clarity of
presentation.

2 Ramsey numbers for tight paths versus cliques

In this section, we prove Theorem 1.4.

Proof of Theorem 1.4. Let us first prove the upper bound. Set qi = si−k+1 so that q = q1 · · · qt,
and N = rk−1(n; q). Let χ :

([N ]
k

)
→ {1, 2, . . . , t + 1} be a (t + 1)-coloring of the edges of K

(k)
N .

We will show that χ must produce a monochromatic copy of P
(k)
si in color i, for some i, or a

monochromatic copy of K
(k)
n in color t+ 1.

Define φ :
( [N ]
k−1

)
→ Zt by φ(v1, . . . , vk−1) = (a1, . . . , at) for v1, . . . , vk−1 ∈ [N ] and v1 < · · · < vk−1,

where ai is the length of the longest monochromatic tight-path in color i ending with v1, . . . , vk−1.

If ai ≥ qi for some i, then we have a monochromatic copy of P
(k)
si in color i and are done. Therefore,

we can assume ai ∈ {0, 1, . . . , qi − 1} for all i, and hence φ uses at most q colors.

Since N = rk−1(n; q), there is a subset S ⊂ [N ] of n vertices such that φ colors every (k − 1)-tuple
in S the same color, say with color (b1, . . . , bt). Then for every k-tuple (v1, . . . , vk) ∈

(
S
k

)
, we have

χ(v1, . . . , vk) = t+1. Indeed, suppose there are k vertices v1, . . . , vk ∈ S such that χ(v1, . . . , vk) = i,
where i ≤ t. Since the longest monochromatic tight-path in color i ending with vertices v1, . . . , vk−1

is bi, the longest monochromatic tight-path in color i ending with vertices v2, . . . , vk is at least bi+1,

a contradiction. Therefore, S induces a monochromatic copy of K
(k)
n in color t+ 1. This concludes

the proof of the upper bound.

We now prove the lower bound. Set N = rk−1(bn/qc; q)−1 and qi = si−k+1, so that q = q1 · · · qt.
Let K

(k−1)
N be the complete N -vertex (k − 1)-uniform hypergraph with vertex set [N ]. Next, let

φ :

(
N

k − 1

)
→ [q1]× · · · × [qt]

be a q-coloring on the edges of K
(k−1)
N , that does not produce a monochromatic copy of K

(k−1)
bn/qc .

Such a coloring φ exists since N = rk−1(bn/qc; q)− 1. We now define a (t+ 1)-coloring

χ :

(
[N ]

k

)
→ [t+ 1]

on the k-tuples of [N ] as follows. For v1, . . . , vk ∈ [N ], where v1 < · · · < vk, let χ(v1, . . . , vk) = i
if and only if for φ(v1, . . . , vk−1) = (a1, . . . , at) and φ(v2, . . . , vk) = (b1, . . . , bt), i is the minimum
index such that ai < bi. If no such i exists, then χ(v1, . . . , vk) = t + 1. We will show that χ does

not produce a monochromatic i-colored copy of P
(k)
si , for i ≤ t, nor a monochromatic (t+1)-colored

copy of K
(k)
n .
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First, suppose that the coloring χ produces a monochromatic P
(k)
si in color i. That is, there

are si vertices v1, v2, . . . , vsi ∈ [N ], v1 < · · · < vsi , such that χ(vj , vj+1, . . . , vj+k−1) = i for
j = 1, . . . , si − k + 1. Let φ(vj , vj+1, . . . , vj+k−2) = (aj,1, . . . , aj,t), for j = 1, . . . , si − k + 2. Then
we have

a1,i < a2,i < · · · < asi−k+2,i,

which is a contradiction since qi < si− k+ 2. Hence, χ does not produce a monochromatic P
(k)
si in

color i for i ≤ t.

Next, we show that χ does not produce a monochromatic copy of K
(k)
n in color t + 1. Again, for

sake of contradiction, suppose there is a set S ⊂ [N ] where S = {v1, . . . , vn}, v1 < · · · < vn, such
that χ colors every k-tuple of S with color t + 1. We obtain a contradiction from the following
claim.

Claim 2.1. Let S = {v1, . . . , vn}, χ, and φ be as above, and 1 ≤ ` ≤ q. If φ uses at most ` distinct
colors on

(
S

k−1

)
, and if χ colors every k-tuple of S with color t+ 1, then there is a subset T ⊂ S of

size bn/`c and a color a = (a1, . . . , at) such that φ(T ′) = a for every T ′ ∈
(

T
k−1

)
.

The contradiction follows from the fact that bn/`c ≥ bn/qc, and φ does not produce a monochro-

matic copy of K
(k−1)
bn/qc .

Proof of Claim. We proceed by induction on `. The base case ` = 1 is trivial. For the inductive
step, assume that the statement holds for `′ < `. Let C be the set of ` distinct colors defined by
φ on

(
S

k−1

)
, and let (a∗1, . . . , a

∗
t ) ∈ C be the smallest element in C with respect to the lexicographic

ordering. We set S1 = {v1, . . . , vn−bn/`c} and S2 = {vn−bn/`c+1, . . . , vn}. The proof now falls into
two cases.

Case 1. Suppose there is a (k − 1)-tuple (u1, . . . , uk−1) ∈
(

S1

k−1

)
such that φ(u1, . . . , uk−1) =

(a∗1, . . . , a
∗
t ). Then we have φ(T ′) = (a∗1, . . . , a

∗
t ) for all T ′ ∈

(
S2

k−1

)
. Indeed let T ′ = (w1, . . . , wk−1) ∈(

S2

k−1

)
. Since χ(u1, . . . , uk−1, w1) = t+1, we have φ(u2, . . . , uk−1, w1) = (a∗1, . . . , a

∗
t ). Likewise, since

we have χ(u2, . . . , uk−1, w1, w2) = t+1, we have φ(u3, . . . , uk−1, w1, w2) = (a∗1, . . . , a
∗
t ). By repeating

this argument k − 3 more times, φ(w1, . . . , wk−1) = (a∗1, . . . , a
∗
t ).

Case 2. If we are not in Case 1, then φ(T ′) ∈ C \ {(a∗1, . . . , a∗t )} for every T ′ ∈
(

S1

k−1

)
. Hence φ uses

at most `− 1 distinct colors on
(

S1

k−1

)
. By the induction hypothesis, there is a subset T ⊂ S1 of size

(n− bn/`c)/(`− 1) ≥ bn/`c and a color a = (a1, . . . , at) such that φ(T ′) = a for every T ′ ∈
(

T
k−1

)
.

This concludes the proof of the claim and the theorem.

Lower bound construction for r3(P4, n) in Theorem 1.6. Set N = 2cn where c will be
determined later. Consider the coloring φ :

(
[N ]
2

)
→ {1, 2}, where each edge has probability 1/2 of

being a particular color independent of all other edges. Using φ, we define the coloring χ :
(

[N ]
3

)
→

{red, blue}, where the triple (v1, v2, v3), v1 < v2 < v3, is red if φ(v1, v2) < φ(v2, v3), and is blue

otherwise. It is easy to see that χ does not produce a monochromatic red copy of P
(3)
4 .
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Next we estimate the expected number of monochromatic blue copies of K
(k)
n in χ. For a given

triple {v1, v2, v3} ∈
(

[N ]
3

)
, the probability that χ(v1, v2, v3) = blue is 3/4. Let T = {v1, . . . , vn} be a

set of n vertices in [N ], where v1 < · · · < vn. Let S be a partial Steiner (n, 3, 2)-system with vertex
set T , that is, S is a 3-uniform hypergraph such that each 2-element set of vertices is contained
in at most one edge in S. Moreover, S satisfies |S| = c′n2. It is known that such a system exists.
Then the probability that every triple in T is blue is at most the probability that every triple in
S is blue. Since the edges in S are independent, that is no two edges have more than one vertex

in common, the probability that T is a monochromatic blue clique is at most
(

3
4

)|S| ≤ (3
4

)c′n2

.

Therefore the expected number of monochromatic blue copies of K
(k)
n produced by χ is at most

(
N

n

)(
3

4

)c′n2

< 1,

for an appropriate choice for c. Hence, there is a coloring χ with no monochromatic red copy of

P
(3)
4 , and no monochromatic blue copy of K

(k)
n . Therefore r3(P4, n) > 2Ω(n).

Acknowledgments. We thank David Conlon and Jacob Fox for comments that helped improve
the presentation of this paper.
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