Quadruple Systems with Independent Neighborhoods

Zoltan Füredi *

Dhruv Mubayi ${ }^{\dagger}$

Oleg Pikhurko ${ }^{\ddagger}$

Abstract

A 4-graph is odd if its vertex set can be partitioned into two sets so that every edge intersects both parts in an odd number of points. Let $$
b(n)=\max _{\alpha}\left\{\alpha\binom{n-\alpha}{3}+(n-\alpha)\binom{\alpha}{3}\right\}=\left(\frac{1}{2}+o(1)\right)\binom{n}{4}
$$ denote the maximum number of edges in an n-vertex odd 4 -graph. Let n be sufficiently large, and let G be an n-vertex 4 -graph such that for every triple $x y z$ of vertices, the neighborhood $N(x y z)=\{w: w x y z \in G\}$ is independent. We prove that the number of edges of G is at most $b(n)$. Equality holds only if G is odd with the maximum number of edges. We also prove that there is $\varepsilon>0$ such that if a 4 -graph G has minimum degree at least $(1 / 2-\varepsilon)\binom{n}{3}$, then G is 2 -colorable.

Our results can be considered as a generalization of Mantel's theorem about triangle-free graphs, and we pose a conjecture about k-graphs for larger k as well.

1 Introduction

Let G be a k-uniform hypergraph (k-graph for short). The neighborhood of a vertex subset $S \subset V(G)$ of size $k-1$ is $N_{G}(S)=\{v: S \cup\{v\} \in G\}$ (we associate G with its edge set, and will often omit the subscript G). Suppose we impose the restriction that all neighborhoods of G are independent sets (that is, span no edges), and G has n vertices. What is the maximum number of edges that G can have? When $k=2$, the answer is $\left\lfloor n^{2} / 4\right\rfloor$, achieved by the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$. This result, due originally to Mantel in 1907, was the first result of extremal graph theory. Recently, the same question was answered for $k=3$, where the unique

[^0]extremal example (for n large) is obtained by partitioning the vertex set into two parts X, Y, where $||X|-2 n / 3|<1$, and taking all triples with two points in X. This was proved by Füredi, Pikhurko, and Simonovits [3, 4], and settled a conjecture of Mubayi and Rödl [7].

In this paper, we settle the next case, namely $k=4$. It is noteworthy that determining exact results for extremal problems about k-graphs is in general a hard problem. Consequently, our proof is by no means a straightforward generalization of the corresponding proofs for $k=2$ and 3 , and at present, we do not see how to generalize it to larger k.

Let F^{k} be the k-graph with $k+1$ edges, k of which share a common vertex set of size $k-1$, and the last edge contains the remaining vertex from each of the first k edges. Writing $[a, b]=$ $\{a, a+1, \ldots, b-1, b\}$ (with $[a, b]=\emptyset$ if $a>b$) and $[n]=\{1, \ldots, n\}$, a formal description is

$$
F^{k}=\{[k+i] \backslash[k, k+i-1]: 0 \leq i \leq k-1\} \cup([2 k-1] \backslash[k-1]) .
$$

Note that a k-graph contains no copy of F^{k} (as a not necessarily induced subsystem) if and only if each of its neighborhoods is independent.

Call a 4-graph odd if its vertex set can be partitioned into $X \cup Y$, such that every edge intersects X in an odd number of points. Let $B(n)$ be one of at most two odd 4 -graphs on n vertices with the maximum number of edges and let $b(n)=|B(n)|$. Note that the vertex partition of $B(n)$ is not into precisely equal parts, but they have sizes $n / 2-t$ and $n / 2+t$, where, as it follows from routine calculations,

$$
\left|t-\frac{1}{2} \sqrt{3 n-4}\right|<1
$$

It is easy to check that an odd 4-graph has independent neighborhoods, and one might believe that among all n-vertex 4 -graphs with independent neighborhoods, the odd ones have the most edges. Our first result confirms this for large n.

Theorem 1.1 (Exact Result) Let n be sufficiently large, and let G be an n-vertex 4 -graph with all neighborhoods being independent sets. Then $|G| \leq b(n)$, and if equality holds, then $G=B(n)$.

We also prove an approximate structure theorem, which states that if G has close to $b(n)$ edges, then the structure of G is close to $B(n)$.

Theorem 1.2 (Global Stability) For every $\delta>0$, there exists n_{0} such that the following holds for all $n>n_{0}$. Let G be an n-vertex 4-graph with independent neighborhoods, and $|G|>$ $(1 / 2-\varepsilon)\binom{n}{4}$, where $\varepsilon=\delta^{2} / 108$. Then G can be made odd by removing at most $\delta\binom{n}{4}$ edges.

One might suspect that Theorem 1.2 can be taken further, by showing that if G has minimum degree at least $(1 / 2-\gamma)\binom{n}{3}$ for some $\gamma>0$, then G is already odd. Such phenomena hold for $k=2$ and 3. For example, when $k=2$, a special case of the theorem of Andrásfai, Erdős, and

Sós [1] states that a triangle-free graph with minimum degree greater than $2 n / 5$ is bipartite. For $k=3$, a similar result was proved in [4]. The analogous statement is not true for $k=4$. Indeed, one can add an edge E to $B(n)$ that intersects each part in two vertices, and then delete all edges of $B(n)$ that intersect E in three vertices. The resulting 4-graph has independent neighborhoods, and yet its minimum degree is $(1 / 2)\binom{n}{3}-O\left(n^{5 / 2}\right)$. Nevertheless, a slightly weaker statement is true. Let us call a k-graph 2-colorable if its vertex set can be partitioned into two independent sets.

Theorem 1.3 Let G be an n-vertex 4-graph with independent neighborhoods. There exists $\varepsilon>0$ such that if n is sufficiently large and G has minimum degree greater than $(1 / 2-\varepsilon)\binom{n}{3}$, then G is 2 -colorable.

Call a k-graph odd if it has a vertex partition $X \cup Y$, and all edges intersect X in an odd number of points less than k. Let $B^{k}(n)$ be an odd k-graph with the maximum number of edges (this may not be unique).

Conjecture 1.4 Let n be sufficiently large and let G be an n-vertex k-graph with independent neighborhoods. Then $|G| \leq\left|B^{k}(n)\right|$, and if equality holds, then $G=B^{k}(n)$.

2 Asymptotic Result and Stability

In this section we prove Theorem 1.2. Before doing so we first prove an asymptotic result and a stability result under the assumption of large minimum degree.

Let ex $\left(n, F^{4}\right)$ denote the maximum number of edges in an n-vertex 4 -graph containing no copy of F^{4}. The results of Katona, Nemetz, and Simonovits [5] imply that $\lim _{n \rightarrow \infty} \operatorname{ex}\left(n, F^{4}\right) /\binom{n}{4}$ exists. Let the Turán density $\pi\left(F^{4}\right)$ be the value of the limit. We need the following standard lemma.

Lemma 2.1 (See Frankl and Füredi [2]) Let F be a k-graph with the property that every pair of its vertices lies in an edge. Then

$$
\pi(F)\binom{n}{k} \leq \operatorname{ex}(n, F) \leq \pi(F) \frac{n^{k}}{k!}
$$

Observe that F^{4} satisfies the hypothesis of Lemma 2.1. Write $d_{\min }(G)$ for the minimum vertex degree in G

Theorem 2.2 (Asymptotic Result and Minimum Degree Stability) For every $\delta>0$, there exists n_{1} such that the following holds for all $n>n_{1}$. Let G be an n-vertex 4-graph with independent neighborhoods and $d_{\min }(G)>\left(\pi\left(F^{4}\right)-\delta / 24\right)\binom{n}{3}$. Then G can be made odd by deleting at most $\delta\binom{n}{4}$ edges. Also, $\pi\left(F^{4}\right)=1 / 2$.

Proof. Suppose $\delta>0$ is given, and set $\gamma=\delta / 24<1 / 24$. Let $\pi=\pi\left(F^{4}\right)$. Note that $B(n)$ shows that $\pi \geq 1 / 2$. Let A be a maximum size neighborhood in G. By hypothesis, A is an independent set. Put $B=V \backslash A$, and $\mu=|A|$. Since $d_{\min }(G)>(\pi-\gamma)\binom{n}{3}$, we have $|G|>(\pi-\gamma)\binom{n}{3}(n / 4)$, and therefore $\mu>(\pi-\gamma) n$. Let H_{i} be the set of edges in G with precisely i vertices in B, and $h_{i}=\left|H_{i}\right|$. Observe that $h_{0}=0$ since A is an independent set. Recalling that $|G| \leq \pi n^{4} / 24$ by Lemma 2.1, we have

$$
\begin{equation*}
\sum_{i=1}^{4} i \cdot h_{i}=\sum_{x \in B} \operatorname{deg}(x)=4|G|-\sum_{x \in A} \operatorname{deg}(x)<3|G|+\pi \frac{n^{4}}{24}-\mu(\pi-\gamma)\binom{n}{3} \tag{1}
\end{equation*}
$$

Let $\sum_{A A B}$ denote the summation of $\left|N_{G}(S)\right|$ over all sets $S=\{u, v, w\}$, with $u, v \in A$ and $w \in B$. By the definition of A, each of these terms is at most μ. Consequently,

$$
\begin{equation*}
3 h_{1}+2 h_{2}=\sum_{A A B} \leq \mu(n-\mu)\binom{\mu}{2} . \tag{2}
\end{equation*}
$$

Now we add (1) and $2 / 3$ times (2). Using $|G|=\sum_{i=1}^{4} h_{i}$, we obtain

$$
\frac{h_{2}}{3}+h_{4}<\gamma \mu \frac{n^{3}}{6}+\frac{1}{3} \mu^{3}(n-\mu)+\frac{\pi}{24}(n-4 \mu) n^{3}+O\left(n^{2}\right) .
$$

The right hand side simplifies to

$$
\gamma \mu \frac{n^{3}}{6}+\frac{1}{48}(2 \mu+n)(n-2 \mu)^{3}+\frac{\pi-1 / 2}{24}(n-4 \mu) n^{3}+O\left(n^{2}\right) .
$$

Since $2 n>2 \mu>2(\pi-\gamma) n \geq(1-2 \gamma) n$, the second summand above is at most $\left(\gamma^{3} / 2\right) n^{4}$. If $\pi \geq 1 / 2+3 \gamma$, then $\mu>n / 2$ and

$$
\gamma \mu \frac{n^{3}}{6}+\frac{\pi-1 / 2}{24}(n-4 \mu) n^{3} \leq-\frac{\gamma}{24} n^{4} .
$$

This implies that $h_{2} / 3+h_{4}$ is negative, which is a contradiction. Consequently, $\pi<1 / 2+3 \gamma$, and since γ can be arbitrarily close to 0 , we conclude that $\pi=1 / 2$.
Using $\pi=1 / 2$ and $n>n_{1}$ now yields $h_{2} / 3+h_{4}<\left(\gamma / 6+\gamma^{3} / 2\right) n^{4}<8 \gamma\binom{n}{4}$. Therefore $h_{2}+h_{4}<$ $24 \gamma\binom{n}{4}=\delta\binom{n}{4}$. Since we have already argued that $h_{0}=0$, the vertex partition A, B satisfies the requirements of the theorem, and the proof is complete.

Proof of Theorem 1.2. The proof is a standard reduction to Theorem 2.2. Let $\delta>0$ be given. We can assume that $\delta<1$. Suppose that n_{1} is the output of Theorem 2.2 with input $\delta / 2$. Set $\gamma=\delta / 48$, and let $n>n_{1} /(1-\delta)$ be sufficiently large. Let $G_{n}=G$ be the given 4 -graph G with the properties in Theorem 1.2.
If the current 4 -graph G_{i} with i vertices has a vertex x of degree at most $(1 / 2-\gamma)\binom{i}{3}$, then remove x obtaining the new 4 -graph G_{i-1}, and repeat; otherwise we terminate the procedure. Let G_{m} be
the final graph. By Lemma 2.1,

$$
\begin{aligned}
\frac{m^{4}}{48} & \geq\left|G_{m}\right| \geq\left(\frac{1}{2}-\varepsilon\right)\binom{n}{4}-\left(\frac{1}{2}-\gamma\right) \sum_{i=m+1}^{n}\binom{i}{3} \\
& =(\gamma-\varepsilon) \frac{n^{4}}{24}+(1-2 \gamma) \frac{m^{4}}{48}+O\left(n^{3}\right) .
\end{aligned}
$$

It follows that

$$
m / n \geq(1-\varepsilon / \gamma)^{1 / 4}+o(1)>1-\varepsilon / 4 \gamma=1-\delta / 9
$$

and $m>n_{1}$. Applying Theorem 2.2 to the 4 -graph G_{m} of minimum degree at least $(1 / 2-\gamma)\binom{m}{3}$, we obtain a partition $X \cup Y$ of $V\left(G_{1}\right)$ with all but $(\delta / 2)\binom{m}{4}$ edges having even intersection with the parts. We removed at most $\delta n / 9$ vertices (and thus at most $(\delta / 2)\binom{n}{4}$ edges) from G to form G_{m}. Therefore, we can remove at most $\delta\binom{n}{4}$ edges from G to make it odd.

3 A Magnification Lemma

Given a vertex partition of $V(G)$, call an edge odd if it intersects either part in an odd number of vertices, and even otherwise. Let \mathcal{M} denote the set of quadruples intersecting either part in an odd number of points that are not in G. Let \mathcal{B} denote the set of even edges in G. Call a partition $V(G)=X \cup Y$ a maximum cut of G if it minimizes $|\mathcal{B}|$. Sometimes we denote a typical edge $\{w, x, y, z\}$ simply by $w x y z$. Let $a \pm b$ denote the interval $(a-b, a+b)$ of reals.

Lemma 3.1 Let n be sufficiently large and let G be an n-vertex 4-graph with independent neighborhoods and $d_{\min }(G) \geq\left(1 / 2-10^{-40}\right)\binom{n}{3}$. Let X, Y be a maximum cut of G, and suppose that $|X|$ and $|Y|$ are both in $\left(1 / 2 \pm 10^{-15}\right) n$. If $|\mathcal{M}| \leq n^{4} / 10^{40}$, then every vertex w of G satisfies $\operatorname{deg}_{\mathcal{B}}(w) \leq n^{3} / 10^{9}$.

Proof. Suppose, for a contradiction, that there is a vertex $w \in X$ with $\operatorname{deg}_{\mathcal{B}}(w)>n^{3} / 10^{9}$. Say that an edge is of the form $X^{i} Y^{j}$ if it has i points in X and j points in Y (for $i+j=4$). We partition the argument into two cases.
Case 1. At least $n^{3} /\left(2 \cdot 10^{9}\right)$ edges of \mathcal{B} containing w are of the form $X X X X$.
Now w is in at least as many odd edges as even edges, else we could move w from X to Y. So in particular, since $\operatorname{deg}_{G}(w) \geq d_{\min }(G)>2\binom{n}{3} / 5$, we conclude that w is in at least $\binom{n}{3} / 5$ odd edges. At least $\binom{n}{3} / 10$ of these are $X Y Y Y$ edges or at least $\binom{n}{3} / 10$ of these are $X X X Y$ edges. Depending on which choice occurs, call the resulting set of edges \mathcal{H}.

For every choice of $x, y, z \in X$, with $E=\{w, x, y, z\} \in \mathcal{B} \subset G$, and for every choice of $E^{\prime}=$ $\left\{v_{1}, v_{2}, v_{3}, w\right\} \in \mathcal{H} \subset G$ with $E \cap E^{\prime}=\{w\}$, consider the five quadruples

Regardless of whether E^{\prime} is of the form $X Y Y Y$ or $X X X Y$, the first four quadruples are odd. The first and fifth quadruple are both in G, so one of the middle three must be in \mathcal{M}. On the other hand, each such quadruple D is counted at most $3 n^{2}$ times (note that w is fixed, so in the case of $X Y Y Y$ edges we only have to choose the remaining two points in E; in the case of $X X X Y$ edges, we also may choose the unique point of $E \cap D$ thereby giving the additional factor of 3). Putting this together we have

$$
|\mathcal{M}| \geq \frac{n^{3}}{2 \cdot 10^{9}} \times \frac{\binom{n}{3} / 10-2 n^{2}}{3 n^{2}}>\frac{n^{4}}{10^{40}}
$$

which is a contradiction.
Case 2. At least $n^{3} /\left(2 \cdot 10^{9}\right)$ edges of \mathcal{B} containing w are of the form $X X Y Y$.
First suppose that at least $\binom{n}{3} / 10^{20}$ odd edges containing w are of the form $X Y Y Y$. For every choice of $x \in X, y, z \in Y$, with $E=\{w, x, y, z\} \in \mathcal{B} \subset G$, and for every choice of an odd edge $E^{\prime}=\left\{v_{1}, v_{2}, v_{3}, w\right\} \in G$ with $E \cap E^{\prime}=\{w\}$, consider the five quadruples

$$
x y z w, x y z v_{1}, x y z v_{2}, x y z v_{3}, w v_{1} v_{2} v_{3} .
$$

One of the three middle quadruples must be in \mathcal{M} and each such quadruple is counted at most $3 n^{2}$ times (note that w is fixed, so we only have to choose the remaining two points in E^{\prime} and the two points of $E \cap\left\{y, z, v_{i}\right\}$). Putting this together we have

$$
|\mathcal{M}| \geq \frac{n^{3}}{2 \cdot 10^{9}} \times \frac{\binom{n}{3} / 10^{20}-2 n^{2}}{3 n^{2}}>\frac{n^{4}}{10^{40}}
$$

which is a contradiction. Consequently, we may assume that
(i) the number of $X Y Y Y$ edges containing w is at most $\binom{n}{3} / 10^{20}$, and
(ii) the number of $X X X X$ edges containing w is at most $n^{3} /\left(2 \cdot 10^{9}\right)$ (otherwise we use Case 1).

Statements (i) and (ii) imply that the edges of G containing w are essentially of two types: $X X X Y$, and $X X Y Y$. Define the 3-graph $L(w)=\{\{a, b, c\}:\{w, a, b, c\} \in G\}$. By hypothesis

$$
|L(w)|=\operatorname{deg}_{G}(w) \geq\left(\frac{1}{2}-\frac{1}{10^{40}}\right)\binom{n}{3}
$$

Partition $L(w)$ as

$$
L_{X X X} \cup L_{X X Y} \cup L_{X Y Y} \cup L_{Y Y Y},
$$

where $L_{X^{i} Y^{j}}$ is the set of edges of L with i points in X and j points in $Y(i+j=3)$. Again, (i) and (ii) imply that $\left|L_{X X X}\right|+\left|L_{Y Y Y}\right|<\binom{n}{3} / 10^{5}$, so

$$
\left|L_{X X Y}\right|+\left|L_{X Y Y}\right|>\left(\frac{1}{2}-\frac{1}{10^{4}}\right)\binom{n}{3} .
$$

For every pair $a \in X, b \in Y$, let $d(a, b)$ denote the number of triples $\{a, b, c\} \in L(w)$. Then

$$
\sum_{a \in X, b \in Y} d(a, b)=2\left(\left|L_{X X Y}\right|+\left|L_{X Y Y}\right|\right)>\left(1-\frac{2}{10^{4}}\right)\binom{n}{3} .
$$

Consequently, recalling that $|X|$ and $|Y|$ are both in $\left(1 / 2 \pm 10^{-15}\right) n$, there exist $a_{0} \in X$ and $b_{0} \in Y$, for which

$$
d\left(a_{0}, b_{0}\right)>\frac{1-2 \cdot 10^{-4}}{|X||Y|}\binom{n}{3}>\frac{1-2 \cdot 10^{-4}}{\left(1 / 4+2 \cdot 10^{-15}\right) n^{2}}\binom{n}{3}>\left(\frac{2}{3}-\frac{1}{10^{3}}\right) n .
$$

We conclude that there exist $S \subset X$ and $T \subset Y$, each of size at least $\left(2 / 3-1 / 2-10^{-2}\right) n=$ $\left(1 / 6-10^{-2}\right) n$ such that $\left\{w, a_{0}, b_{0}, s\right\},\left\{w, a_{0}, b_{0}, t\right\} \in G$ for every $s \in S$ and $t \in T$.
For every choice of distinct $s, s^{\prime}, s^{\prime \prime} \in S$, and $t \in T$, consider the five quadruples

$$
w a_{0} b_{0} s, w a_{0} b_{0} s^{\prime}, w a_{0} b_{0} s^{\prime \prime}, w a_{0} b_{0} t, s s^{\prime} s^{\prime \prime} t
$$

Since the first four are in G, we must have $\left\{s, s^{\prime}, s^{\prime \prime}, t\right\} \in \mathcal{M}$. Consequently,

$$
|\mathcal{M}| \geq\binom{|S|}{3}|T|>\binom{\left(1 / 6-10^{-2}\right) n}{3}\left(1 / 6-10^{-2}\right) n>\frac{n^{4}}{10^{40}} .
$$

This contradiction completes the proof of the lemma.

4 The Exact Result

Proof of Theorem 1.1. Let G be an n-vertex 4 -graph with independent neighborhoods and $|G|=b(n)$. Since $B(n)$ is maximal with respect to the property of being F^{4}-free, it suffices to show that $G=B(n)$.
We claim that we may also assume that $d_{\min }(G) \geq b(n)-b(n-1)$. Indeed, otherwise, assuming we have proved the result under this assumption for $n>n_{0}$, we can successively remove vertices of small degree to obtain a contradiction. (Note that each removal strictly increases the difference $|G|-b(n)$, where n is the number of vertices in G.) We refer the Reader to Keevash and Sudakov [6, Theorem 2.2] for the details. Also in [6] we have the calculations showing that

$$
d_{\min }(G) \geq b(n)-b(n-1)>\frac{1}{12} n^{3}-\frac{1}{2} n^{2}>\left(\frac{1}{2}-\frac{1}{10^{40}}\right)\binom{n}{3} .
$$

Choose a maximum cut $X \cup Y$ of G. By Theorem 1.2, we may assume that the number of even edges is less than $n^{4} / 10^{40}$ (choose n sufficiently large to guarantee this). It also follows that, for example, $|X|$ and $|Y|$ both lie in $\left(1 / 2 \pm 10^{-15}\right) n$ for otherwise a short calculation shows that $|G|<b(n)$. These bounds will be used throughout.
Define \mathcal{M} and \mathcal{B} as in Section 3. Call quadruples in \mathcal{M} missing and those in \mathcal{B} bad. Since $(G \cup \mathcal{M}) \backslash \mathcal{B}$ is odd and $|G|=|B(n)|$, we conclude that

$$
\begin{equation*}
|B(n)|+|\mathcal{M}|-|\mathcal{B}|=|G|+|\mathcal{M}|-|\mathcal{B}| \leq|B(n)| \tag{3}
\end{equation*}
$$

and therefore $|\mathcal{B}| \geq|\mathcal{M}|$. In particular, this implies that $|\mathcal{M}|<n^{4} / 10^{40}$. If $\mathcal{B}=\emptyset$, then G is odd, so $G=B(n)$ and we are done. Hence assume that $\mathcal{B} \neq \emptyset$. In the remainder of the proof, we will obtain a contradiction to $|\mathcal{M}|<n^{4} / 10^{40}$, or to the choice of the partition of $V(G)$.

Our strategy is to show that each even edge yields many potential copies of F^{4}, and hence many missing quadruples. Define

$$
A=\left\{z \in V(G): \operatorname{deg}_{\mathcal{M}}(z)>n^{3} / 10^{7}\right\} .
$$

Our first goal is to prove that $A \neq \emptyset$. In fact, we actually will need the following stronger statement:

Claim. There exists $\mathcal{B}^{\prime} \subset \mathcal{B}$ such that $\left|\mathcal{B}^{\prime}\right|>|\mathcal{B}| / 20$ and

$$
\begin{equation*}
\forall E \in \mathcal{B}^{\prime}, \quad|E \cap A| \geq 1 \tag{4}
\end{equation*}
$$

Proof of Claim. Write $\mathcal{B}=\mathcal{B}_{X X X X} \cup \mathcal{B}_{Y Y Y Y} \cup \mathcal{B}_{X X Y Y}$ (with the obvious meaning).
Case 1. $\left|\mathcal{B}_{X X X X}\right|+\left|\mathcal{B}_{Y Y Y Y}\right| \geq|\mathcal{B}| / 10$.
Pick $E=\{w, x, y, z\} \in \mathcal{B}_{X X X X} \cup \mathcal{B}_{Y Y Y Y}$. Assume without loss of generality that $\{w, x, y, z\} \in$ $\mathcal{B}_{X X X X}$. For every choice of $v_{1}, v_{2}, v_{3} \in Y$ the five quadruples

$$
\begin{equation*}
v_{1} v_{2} v_{3} w, v_{1} v_{2} v_{3} x, v_{1} v_{2} v_{3} y, v_{1} v_{2} v_{3} z, w x y z \tag{5}
\end{equation*}
$$

form a potential copy of F^{4}, so one of the first four must be in \mathcal{M}. This gives $|\mathcal{M}| \geq\binom{|Y|}{3}$, and so at least $\binom{|Y|}{3} / 4>n^{3} / 10^{7}$ of these quadruples of \mathcal{M} contain the same vertex of E, say w. Thus $\operatorname{deg}_{\mathcal{M}}(w)>n^{3} / 10^{7}$. Now let $\mathcal{B}^{\prime}=\mathcal{B}_{X X X X} \cup \mathcal{B}_{Y Y Y Y}$. Then $\left|\mathcal{B}^{\prime}\right| \geq|\mathcal{B}| / 10>|\mathcal{B}| / 20$ as claimed.

Case 2. $\left|\mathcal{B}_{X X Y Y}\right|>9|\mathcal{B}| / 10$.
Let $\mathcal{B}^{\prime}=\{E \in \mathcal{B}:|E \cap A| \geq 1\}$. If $\left|\mathcal{B}^{\prime}\right| \geq\left|\mathcal{B}_{X X Y Y}\right| / 10$, then

$$
\left|\mathcal{B}^{\prime}\right| \geq \frac{\left|\mathcal{B}_{X X Y Y}\right|}{10}>\frac{1}{10} \times \frac{9}{10}|\mathcal{B}|>\frac{|\mathcal{B}|}{20}
$$

and we are done. Hence we may assume that $\left|\mathcal{B}^{\prime}\right|<\left|\mathcal{B}_{X X Y Y}\right| / 10$. Let $\mathcal{B}^{\prime \prime}=\mathcal{B}_{X X Y Y} \backslash \mathcal{B}^{\prime}$. Thus $\left|\mathcal{B}^{\prime \prime}\right|>9\left|\mathcal{B}_{X X Y Y}\right| / 10$. Given a set S of vertices, write $\operatorname{deg}_{\mathcal{M}}(S)$ for the number of edges of \mathcal{M} containing S.

Subclaim. For every $E \in \mathcal{B}^{\prime \prime}$, and for every $S \in\binom{E}{3}$, we have $\operatorname{deg}_{\mathcal{M}}(S) \geq\left(1 / 2-10^{-2}\right) n$.
Proof of Subclaim. Suppose to the contrary that there exists $E \in \mathcal{B}^{\prime \prime}$ and $S \in\binom{E}{3}$ with $\operatorname{deg}_{\mathcal{M}}(S)<\left(1 / 2-10^{-2}\right) n$. Assume that $E=\{w, x, y, z\}$ with $w, x \in X$ and $y, z \in Y$ and $S=\{x, y, z\}$. Let $Y^{\prime}=\{v \in Y:\{x, y, z, v\} \in G\}$. Then

$$
\left|Y^{\prime}\right| \geq|Y|-\operatorname{deg}_{\mathcal{M}}(S)-2>\left(\frac{1}{2}-\frac{1}{10^{14}}-\frac{1}{2}+\frac{1}{10^{2}}\right) n=\left(\frac{1}{10^{2}}-\frac{1}{10^{14}}\right) n .
$$

For every choice of $v_{1}, v_{2}, v_{3} \in Y^{\prime}$ the five quadruples

$$
x y z v_{1}, x y z v_{2}, x y z v_{3}, x y z w, v_{1} v_{2} v_{3} w .
$$

form a potential copy of F^{4}, so the last one must be in \mathcal{M}. This gives

$$
\operatorname{deg}_{\mathcal{M}}(w)>\binom{\left|Y^{\prime}\right|}{3} \geq\binom{\left(10^{-2}-10^{-14}\right) n}{3}>\frac{n^{3}}{10^{7}}
$$

Consequently, $E \in \mathcal{B}^{\prime}$ which contradicts the fact that $\mathcal{B}^{\prime} \cap \mathcal{B}^{\prime \prime}=\emptyset$.
Counting edges of \mathcal{M} from subsets of edges of $\mathcal{B}^{\prime \prime}$ yields

$$
\binom{3}{2} \cdot \max \{|X|,|Y|\} \cdot|\mathcal{M}| \geq \sum_{E \in \mathcal{B}^{\prime \prime}} \sum_{S \in\binom{E}{3}} \operatorname{deg}_{\mathcal{M}}(S)
$$

since the right hand side counts an edge of \mathcal{M} at most $3 \max \{|X|,|Y|\}$ times. For example, an edge $\{a, b, c, d\} \in \mathcal{M}$ with $a \in X$ and $b, c, d \in Y$ is counted on the right-hand side by choosing $E \in \mathcal{B}^{\prime \prime}$ where $|E \cap\{b, c, d\}|=2$ and $a \in E$. Using $\left|\mathcal{B}^{\prime \prime}\right| \geq(0.9)\left|\mathcal{B}_{X X Y Y}\right|>(0.9)^{2}|\mathcal{B}| \geq(0.9)^{2}|\mathcal{M}|$, and the Subclaim, we get

$$
|\mathcal{M}| \geq \frac{(0.9)^{2} \cdot 4\left(1 / 2-10^{-2}\right) n}{3 \cdot\left(1 / 2+10^{-15}\right) n}|\mathcal{M}|=1.08\left(\frac{1 / 2-10^{-2}}{1 / 2+10^{-15}}\right)|\mathcal{M}|>|\mathcal{M}| .
$$

This contradiction concludes the proof of Case 2 and of the Claim.
Counting missing edges from vertices of A, we have

$$
4|\mathcal{M}| \geq \sum_{x \in A} \operatorname{deg}_{\mathcal{M}}(x)>\frac{|A| n^{3}}{10^{7}}
$$

Recalling that $\left|\mathcal{B}^{\prime}\right|>|\mathcal{B}| / 20$ and $|\mathcal{B}| \geq|\mathcal{M}|$, we obtain

$$
\left|\mathcal{B}^{\prime}\right|>\frac{|\mathcal{M}|}{20}>\frac{|A|}{80} \frac{n^{3}}{10^{7}} .
$$

Now the Claim (see (4)) implies that

$$
\sum_{x \in A} \operatorname{deg}_{\mathcal{B}^{\prime}}(x) \geq\left|\mathcal{B}^{\prime}\right|>\frac{|A|}{80} \frac{n^{3}}{10^{7}} .
$$

Consequently, there exists $w \in V(G)$ for which $\operatorname{deg}_{\mathcal{B}}(w) \geq \operatorname{deg}_{\mathcal{B}^{\prime}}(w)>n^{3} /\left(80 \cdot 10^{7}\right)>n^{3} / 10^{9}$. This contradicts Lemma 3.1 and completes the proof of the theorem.

5 The Sharp Structure

Proof of Theorem 1.3. Let $\delta=12 / 10^{40}$, and choose $\varepsilon<\delta / 12$ from Theorem 1.2. Now $|G|>(1 / 2-\varepsilon)\binom{n}{4}$, so by Theorem $1.2 G$ has a vertex partition $X \cup Y$ with the number of even edges less than $\delta\binom{n}{4}<n^{4} /\left(2 \cdot 10^{40}\right)$. Easy calculations show that $|X|$ and $|Y|$ are both in $\left(1 / 2 \pm 10^{-15}\right) n$. We may also assume that X, Y is a maximum cut. We will show that both X and Y are independent sets. As in (3), we have

$$
\left(\frac{1}{2}-\varepsilon\right)\binom{n}{4}+|\mathcal{M}|-|\mathcal{B}|<|G|+|\mathcal{M}|-|\mathcal{B}| \leq b(n)
$$

which implies that

$$
|\mathcal{M}| \leq|\mathcal{B}|+b(n)-\left(\frac{1}{2}-\varepsilon\right)\binom{n}{4} \leq \frac{n^{4}}{2 \cdot 10^{40}}+\varepsilon\binom{n}{4}+O\left(n^{3}\right)<\frac{n^{4}}{10^{40}}
$$

Suppose now that there is an edge E of G in $\binom{X}{4} \cup\binom{Y}{4}$. Assume by symmetry that $E \in\binom{X}{4}$. Then by the same argument as in (5), we obtain $\operatorname{deg}_{\mathcal{M}}(w)>\binom{|Y|}{3} / 4>n^{3} / 10^{5}$ for some $w \in E$. Now

$$
\left(\frac{1}{2}-\varepsilon\right)\binom{n}{3}<\operatorname{deg}_{G}(w)=\operatorname{deg}_{\mathcal{B}}(w)+\left(\binom{|Y|}{3}+\binom{|X|-1}{2}|Y|-\operatorname{deg}_{\mathcal{M}}(w)\right)
$$

As $\binom{|Y|}{3}+\binom{|X|-1}{2}|Y|<(1 / 2+\varepsilon)\binom{n}{3}$ we obtain $\operatorname{deg}_{\mathcal{B}}(w) \geq n^{3} / 10^{5}-2 \varepsilon\binom{n}{3}>n^{3} / 10^{9}$. This contradicts Lemma 3.1 and completes the proof.

References

[1] B. Andrásfai, P. Erdős, V.T. Sós, On the connection between chromatic number, maximal clique, and minimal degree in a graph, Discrete Math, 8 (1974) 205-218.
[2] P. Frankl, Z. Füredi, Extremal problems and the Lagrange function of hypergraphs, Bulletin of the Institute of Mathematics, Academia Sinica, 16, (1988) 305-313.
[3] Z. Füredi, O. Pikhurko, and M. Simonovits, The Turán density of the hypergraph \{abc, ade, $b d e, c d e\}$, Electronic J. Combinatorics 10 (2003), 8 pp.
[4] Z. Füredi, O. Pikhurko, and M. Simonovits, On triple systems with independent neighborhoods, Combinatorics, Probability \& Computing, 14 (2005) 795-813.
[5] G. O. H. Katona, T. Nemetz, and M. Simonovits, On a graph problem of Turán (In Hungarian), Mat. Fiz. Lapok 15 (1964), 228-238.
[6] P. Keevash, B. Sudakov, On a hypergraph Turán problem of Frankl, Combinatorica, 25 (2005) 673-706.
[7] D. Mubayi, V. Rödl, On the Turán number of triple systems, Journal of Combinatorial Theory, Series A, 100 (2002) 135-152.

[^0]: *Department of Mathematics, University of Illinois, Urbana, Illinois 61801, and Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary, E-mail: z-furedi@math.uiuc.edu, furedi@renyi.hu. Research supported in part by the Hungarian National Science Foundation under grants OTKA 062321, 060427 and by the National Science Foundation under grant NFS DMS 0600303. (Submitted: 02/15/2007)
 ${ }^{\dagger}$ Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607. Email: mubayi@math.uic.edu. Research supported in part by NSF grant DMS-0400812, and by an Alfred P. Sloan fellowship.
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, Web: http://www.math.cmu.edu/~pikhurko. Research supported in part by NSF grant DMS-0457512.

