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Abstract

A 4-graph is odd if its vertex set can be partitioned into two sets so that every edge
intersects both parts in an odd number of points. Let

b(n) = max
α

{
α

(
n− α

3

)
+ (n− α)

(
α

3

)}
=

(
1
2

+ o(1)
)(

n

4

)

denote the maximum number of edges in an n-vertex odd 4-graph. Let n be sufficiently large,
and let G be an n-vertex 4-graph such that for every triple xyz of vertices, the neighborhood
N(xyz) = {w : wxyz ∈ G} is independent. We prove that the number of edges of G is at most
b(n). Equality holds only if G is odd with the maximum number of edges. We also prove that
there is ε > 0 such that if a 4-graph G has minimum degree at least (1/2 − ε)

(
n
3

)
, then G is

2-colorable.
Our results can be considered as a generalization of Mantel’s theorem about triangle-free

graphs, and we pose a conjecture about k-graphs for larger k as well.

1 Introduction

Let G be a k-uniform hypergraph (k-graph for short). The neighborhood of a vertex subset
S ⊂ V (G) of size k − 1 is NG(S) = {v : S ∪ {v} ∈ G} (we associate G with its edge set, and
will often omit the subscript G). Suppose we impose the restriction that all neighborhoods of
G are independent sets (that is, span no edges), and G has n vertices. What is the maximum
number of edges that G can have? When k = 2, the answer is bn2/4c, achieved by the complete
bipartite graph Kbn/2c,dn/2e. This result, due originally to Mantel in 1907, was the first result of
extremal graph theory. Recently, the same question was answered for k = 3, where the unique
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extremal example (for n large) is obtained by partitioning the vertex set into two parts X, Y ,
where | |X| − 2n/3 | < 1, and taking all triples with two points in X. This was proved by Füredi,
Pikhurko, and Simonovits [3, 4], and settled a conjecture of Mubayi and Rödl [7].

In this paper, we settle the next case, namely k = 4. It is noteworthy that determining exact
results for extremal problems about k-graphs is in general a hard problem. Consequently, our
proof is by no means a straightforward generalization of the corresponding proofs for k = 2 and
3, and at present, we do not see how to generalize it to larger k.

Let F k be the k-graph with k + 1 edges, k of which share a common vertex set of size k − 1,
and the last edge contains the remaining vertex from each of the first k edges. Writing [a, b] =
{a, a + 1, . . . , b− 1, b} (with [a, b] = ∅ if a > b) and [n] = {1, . . . , n}, a formal description is

F k = {[k + i] \ [k, k + i− 1] : 0 ≤ i ≤ k − 1} ∪ ([2k − 1] \ [k − 1]).

Note that a k-graph contains no copy of F k (as a not necessarily induced subsystem) if and only
if each of its neighborhoods is independent.

Call a 4-graph odd if its vertex set can be partitioned into X ∪Y , such that every edge intersects
X in an odd number of points. Let B(n) be one of at most two odd 4-graphs on n vertices with
the maximum number of edges and let b(n) = |B(n)|. Note that the vertex partition of B(n) is
not into precisely equal parts, but they have sizes n/2− t and n/2 + t, where, as it follows from
routine calculations,

| t− 1
2
√

3n− 4 | < 1.

It is easy to check that an odd 4-graph has independent neighborhoods, and one might believe
that among all n-vertex 4-graphs with independent neighborhoods, the odd ones have the most
edges. Our first result confirms this for large n.

Theorem 1.1 (Exact Result) Let n be sufficiently large, and let G be an n-vertex 4-graph with
all neighborhoods being independent sets. Then |G| ≤ b(n), and if equality holds, then G = B(n).

We also prove an approximate structure theorem, which states that if G has close to b(n) edges,
then the structure of G is close to B(n).

Theorem 1.2 (Global Stability) For every δ > 0, there exists n0 such that the following
holds for all n > n0. Let G be an n-vertex 4-graph with independent neighborhoods, and |G| >

(1/2− ε)
(
n
4

)
, where ε = δ2/108. Then G can be made odd by removing at most δ

(
n
4

)
edges.

One might suspect that Theorem 1.2 can be taken further, by showing that if G has minimum
degree at least (1/2 − γ)

(
n
3

)
for some γ > 0, then G is already odd. Such phenomena hold for

k = 2 and 3. For example, when k = 2, a special case of the theorem of Andrásfai, Erdős, and
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Sós [1] states that a triangle-free graph with minimum degree greater than 2n/5 is bipartite. For
k = 3, a similar result was proved in [4]. The analogous statement is not true for k = 4. Indeed,
one can add an edge E to B(n) that intersects each part in two vertices, and then delete all edges
of B(n) that intersect E in three vertices. The resulting 4-graph has independent neighborhoods,
and yet its minimum degree is (1/2)

(
n
3

) − O(n5/2). Nevertheless, a slightly weaker statement is
true. Let us call a k-graph 2-colorable if its vertex set can be partitioned into two independent
sets.

Theorem 1.3 Let G be an n-vertex 4-graph with independent neighborhoods. There exists ε > 0
such that if n is sufficiently large and G has minimum degree greater than (1/2 − ε)

(
n
3

)
, then G

is 2-colorable.

Call a k-graph odd if it has a vertex partition X ∪Y , and all edges intersect X in an odd number
of points less than k. Let Bk(n) be an odd k-graph with the maximum number of edges (this
may not be unique).

Conjecture 1.4 Let n be sufficiently large and let G be an n-vertex k-graph with independent
neighborhoods. Then |G| ≤ |Bk(n)|, and if equality holds, then G = Bk(n).

2 Asymptotic Result and Stability

In this section we prove Theorem 1.2. Before doing so we first prove an asymptotic result and a
stability result under the assumption of large minimum degree.

Let ex(n, F 4) denote the maximum number of edges in an n-vertex 4-graph containing no copy of
F 4. The results of Katona, Nemetz, and Simonovits [5] imply that limn→∞ ex(n, F 4)/

(
n
4

)
exists.

Let the Turán density π(F 4) be the value of the limit. We need the following standard lemma.

Lemma 2.1 (See Frankl and Füredi [2]) Let F be a k-graph with the property that every pair
of its vertices lies in an edge. Then

π(F )
(

n

k

)
≤ ex(n, F ) ≤ π(F )

nk

k!
.

Observe that F 4 satisfies the hypothesis of Lemma 2.1. Write dmin(G) for the minimum vertex
degree in G

Theorem 2.2 (Asymptotic Result and Minimum Degree Stability) For every δ > 0,
there exists n1 such that the following holds for all n > n1. Let G be an n-vertex 4-graph with
independent neighborhoods and dmin(G) > (π(F 4)−δ/24)

(
n
3

)
. Then G can be made odd by deleting

at most δ
(
n
4

)
edges. Also, π(F 4) = 1/2.
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Proof. Suppose δ > 0 is given, and set γ = δ/24 < 1/24. Let π = π(F 4). Note that B(n) shows
that π ≥ 1/2. Let A be a maximum size neighborhood in G. By hypothesis, A is an independent
set. Put B = V \ A, and µ = |A|. Since dmin(G) > (π − γ)

(
n
3

)
, we have |G| > (π − γ)

(
n
3

)
(n/4),

and therefore µ > (π − γ)n. Let Hi be the set of edges in G with precisely i vertices in B, and
hi = |Hi|. Observe that h0 = 0 since A is an independent set. Recalling that |G| ≤ πn4/24 by
Lemma 2.1, we have

4∑

i=1

i · hi =
∑

x∈B

deg(x) = 4|G| −
∑

x∈A

deg(x) < 3|G|+ π
n4

24
− µ(π − γ)

(
n

3

)
. (1)

Let
∑

AAB denote the summation of |NG(S)| over all sets S = {u, v, w}, with u, v ∈ A and w ∈ B.
By the definition of A, each of these terms is at most µ. Consequently,

3h1 + 2h2 =
∑

AAB

≤ µ(n− µ)
(

µ

2

)
. (2)

Now we add (1) and 2/3 times (2). Using |G| = ∑4
i=1 hi, we obtain

h2

3
+ h4 < γµ

n3

6
+

1
3
µ3(n− µ) +

π

24
(n− 4µ)n3 + O(n2).

The right hand side simplifies to

γµ
n3

6
+

1
48

(2µ + n)(n− 2µ)3 +
π − 1/2

24
(n− 4µ)n3 + O(n2).

Since 2n > 2µ > 2(π − γ)n ≥ (1 − 2γ)n, the second summand above is at most (γ3/2)n4. If
π ≥ 1/2 + 3γ, then µ > n/2 and

γµ
n3

6
+

π − 1/2
24

(n− 4µ)n3 ≤ − γ

24
n4.

This implies that h2/3 + h4 is negative, which is a contradiction. Consequently, π < 1/2 + 3γ,
and since γ can be arbitrarily close to 0, we conclude that π = 1/2 .

Using π = 1/2 and n > n1 now yields h2/3 + h4 < (γ/6 + γ3/2)n4 < 8γ
(
n
4

)
. Therefore h2 + h4 <

24γ
(
n
4

)
= δ

(
n
4

)
. Since we have already argued that h0 = 0, the vertex partition A,B satisfies the

requirements of the theorem, and the proof is complete. ¤

Proof of Theorem 1.2. The proof is a standard reduction to Theorem 2.2. Let δ > 0 be given.
We can assume that δ < 1. Suppose that n1 is the output of Theorem 2.2 with input δ/2. Set
γ = δ/48, and let n > n1/(1− δ) be sufficiently large. Let Gn = G be the given 4-graph G with
the properties in Theorem 1.2.

If the current 4-graph Gi with i vertices has a vertex x of degree at most (1/2−γ)
(

i
3

)
, then remove

x obtaining the new 4-graph Gi−1, and repeat; otherwise we terminate the procedure. Let Gm be
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the final graph. By Lemma 2.1,

m4

48
≥ |Gm| ≥

(
1
2
− ε

)(
n

4

)
−

(
1
2
− γ

) n∑

i=m+1

(
i

3

)

= (γ − ε)
n4

24
+ (1− 2γ)

m4

48
+ O(n3).

It follows that
m/n ≥ (1− ε/γ)1/4 + o(1) > 1− ε/4γ = 1− δ/9

and m > n1. Applying Theorem 2.2 to the 4-graph Gm of minimum degree at least (1/2− γ)
(
m
3

)
,

we obtain a partition X ∪ Y of V (G1) with all but (δ/2)
(
m
4

)
edges having even intersection with

the parts. We removed at most δn/9 vertices (and thus at most (δ/2)
(
n
4

)
edges) from G to form

Gm. Therefore, we can remove at most δ
(
n
4

)
edges from G to make it odd. ¤

3 A Magnification Lemma

Given a vertex partition of V (G), call an edge odd if it intersects either part in an odd number of
vertices, and even otherwise. Let M denote the set of quadruples intersecting either part in an
odd number of points that are not in G. Let B denote the set of even edges in G. Call a partition
V (G) = X ∪ Y a maximum cut of G if it minimizes |B|. Sometimes we denote a typical edge
{w, x, y, z} simply by wxyz. Let a± b denote the interval (a− b, a + b) of reals.

Lemma 3.1 Let n be sufficiently large and let G be an n-vertex 4-graph with independent neigh-
borhoods and dmin(G) ≥ (1/2 − 10−40)

(
n
3

)
. Let X,Y be a maximum cut of G, and suppose that

|X| and |Y | are both in (1/2 ± 10−15)n. If |M| ≤ n4/1040, then every vertex w of G satisfies
degB(w) ≤ n3/109.

Proof. Suppose, for a contradiction, that there is a vertex w ∈ X with degB(w) > n3/109. Say
that an edge is of the form XiY j if it has i points in X and j points in Y (for i + j = 4). We
partition the argument into two cases.

Case 1. At least n3/(2 · 109) edges of B containing w are of the form XXXX.

Now w is in at least as many odd edges as even edges, else we could move w from X to Y . So
in particular, since degG(w) ≥ dmin(G) > 2

(
n
3

)
/5, we conclude that w is in at least

(
n
3

)
/5 odd

edges. At least
(
n
3

)
/10 of these are XY Y Y edges or at least

(
n
3

)
/10 of these are XXXY edges.

Depending on which choice occurs, call the resulting set of edges H.

For every choice of x, y, z ∈ X, with E = {w, x, y, z} ∈ B ⊂ G, and for every choice of E′ =
{v1, v2, v3, w} ∈ H ⊂ G with E ∩ E′ = {w}, consider the five quadruples

v1v2v3w, v1v2v3x, v1v2v3y, v1v2v3z, wxyz.
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Regardless of whether E′ is of the form XY Y Y or XXXY , the first four quadruples are odd. The
first and fifth quadruple are both in G, so one of the middle three must be in M. On the other
hand, each such quadruple D is counted at most 3n2 times (note that w is fixed, so in the case
of XY Y Y edges we only have to choose the remaining two points in E; in the case of XXXY

edges, we also may choose the unique point of E ∩D thereby giving the additional factor of 3).
Putting this together we have

|M| ≥ n3

2 · 109
×

(
n
3

)
/10− 2n2

3n2
>

n4

1040

which is a contradiction.

Case 2. At least n3/(2 · 109) edges of B containing w are of the form XXY Y .

First suppose that at least
(
n
3

)
/1020 odd edges containing w are of the form XY Y Y . For every

choice of x ∈ X, y, z ∈ Y , with E = {w, x, y, z} ∈ B ⊂ G, and for every choice of an odd edge
E′ = {v1, v2, v3, w} ∈ G with E ∩ E′ = {w}, consider the five quadruples

xyzw, xyzv1, xyzv2, xyzv3, wv1v2v3.

One of the three middle quadruples must be in M and each such quadruple is counted at most
3n2 times (note that w is fixed, so we only have to choose the remaining two points in E′ and the
two points of E ∩ {y, z, vi}). Putting this together we have

|M| ≥ n3

2 · 109
×

(
n
3

)
/1020 − 2n2

3n2
>

n4

1040

which is a contradiction. Consequently, we may assume that

(i) the number of XY Y Y edges containing w is at most
(
n
3

)
/1020, and

(ii) the number of XXXX edges containing w is at most n3/(2 · 109) (otherwise we use Case 1).

Statements (i) and (ii) imply that the edges of G containing w are essentially of two types:
XXXY , and XXY Y . Define the 3-graph L(w) = {{a, b, c} : {w, a, b, c} ∈ G}. By hypothesis

|L(w)| = degG(w) ≥
(

1
2
− 1

1040

)(
n

3

)
.

Partition L(w) as
LXXX ∪ LXXY ∪ LXY Y ∪ LY Y Y ,

where LXiY j is the set of edges of L with i points in X and j points in Y (i + j = 3). Again, (i)
and (ii) imply that |LXXX |+ |LY Y Y | <

(
n
3

)
/105, so

|LXXY |+ |LXY Y | >
(

1
2
− 1

104

)(
n

3

)
.

For every pair a ∈ X, b ∈ Y , let d(a, b) denote the number of triples {a, b, c} ∈ L(w). Then

∑

a∈X,b∈Y

d(a, b) = 2(|LXXY |+ |LXY Y |) >

(
1− 2

104

)(
n

3

)
.
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Consequently, recalling that |X| and |Y | are both in (1/2 ± 10−15)n, there exist a0 ∈ X and
b0 ∈ Y , for which

d(a0, b0) >
1− 2 · 10−4

|X||Y |
(

n

3

)
>

1− 2 · 10−4

(1/4 + 2 · 10−15)n2

(
n

3

)
>

(
2
3
− 1

103

)
n.

We conclude that there exist S ⊂ X and T ⊂ Y , each of size at least (2/3 − 1/2 − 10−2)n =
(1/6− 10−2)n such that {w, a0, b0, s}, {w, a0, b0, t} ∈ G for every s ∈ S and t ∈ T .

For every choice of distinct s, s′, s′′ ∈ S, and t ∈ T , consider the five quadruples

wa0b0s, wa0b0s
′, wa0b0s

′′, wa0b0t, ss
′s′′t.

Since the first four are in G, we must have {s, s′, s′′, t} ∈ M. Consequently,

|M| ≥
(|S|

3

)
|T | >

(
(1/6− 10−2)n

3

)
(1/6− 10−2)n >

n4

1040
.

This contradiction completes the proof of the lemma. ¤

4 The Exact Result

Proof of Theorem 1.1. Let G be an n-vertex 4-graph with independent neighborhoods and
|G| = b(n). Since B(n) is maximal with respect to the property of being F 4-free, it suffices to
show that G = B(n).

We claim that we may also assume that dmin(G) ≥ b(n)− b(n− 1). Indeed, otherwise, assuming
we have proved the result under this assumption for n > n0, we can successively remove vertices
of small degree to obtain a contradiction. (Note that each removal strictly increases the difference
|G|−b(n), where n is the number of vertices in G.) We refer the Reader to Keevash and Sudakov [6,
Theorem 2.2] for the details. Also in [6] we have the calculations showing that

dmin(G) ≥ b(n)− b(n− 1) >
1
12

n3 − 1
2
n2 >

(
1
2
− 1

1040

)(
n

3

)
.

Choose a maximum cut X ∪ Y of G. By Theorem 1.2, we may assume that the number of even
edges is less than n4/1040 (choose n sufficiently large to guarantee this). It also follows that,
for example, |X| and |Y | both lie in (1/2± 10−15)n for otherwise a short calculation shows that
|G| < b(n). These bounds will be used throughout.

Define M and B as in Section 3. Call quadruples in M missing and those in B bad. Since
(G ∪M) \ B is odd and |G| = |B(n)|, we conclude that

|B(n)|+ |M| − |B| = |G|+ |M| − |B| ≤ |B(n)| (3)

and therefore |B| ≥ |M|. In particular, this implies that |M| < n4/1040. If B = ∅, then G is odd,
so G = B(n) and we are done. Hence assume that B 6= ∅. In the remainder of the proof, we will
obtain a contradiction to |M| < n4/1040, or to the choice of the partition of V (G).
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Our strategy is to show that each even edge yields many potential copies of F 4, and hence many
missing quadruples. Define

A = {z ∈ V (G) : degM(z) > n3/107}.

Our first goal is to prove that A 6= ∅. In fact, we actually will need the following stronger
statement:

Claim. There exists B′ ⊂ B such that |B′| > |B|/20 and

∀E ∈ B′, |E ∩A| ≥ 1. (4)

Proof of Claim. Write B = BXXXX ∪ BY Y Y Y ∪ BXXY Y (with the obvious meaning).

Case 1. |BXXXX |+ |BY Y Y Y | ≥ |B|/10.

Pick E = {w, x, y, z} ∈ BXXXX ∪ BY Y Y Y . Assume without loss of generality that {w, x, y, z} ∈
BXXXX . For every choice of v1, v2, v3 ∈ Y the five quadruples

v1v2v3w, v1v2v3x, v1v2v3y, v1v2v3z, wxyz (5)

form a potential copy of F 4, so one of the first four must be in M. This gives |M| ≥ (|Y |
3

)
, and

so at least
(|Y |

3

)
/4 > n3/107 of these quadruples of M contain the same vertex of E, say w. Thus

degM(w) > n3/107. Now let B′ = BXXXX ∪ BY Y Y Y . Then |B′| ≥ |B|/10 > |B|/20 as claimed.

Case 2. |BXXY Y | > 9|B|/10.

Let B′ = {E ∈ B : |E ∩A| ≥ 1}. If |B′| ≥ |BXXY Y |/10, then

|B′| ≥ |BXXY Y |
10

>
1
10
× 9

10
|B| > |B|

20

and we are done. Hence we may assume that |B′| < |BXXY Y |/10. Let B′′ = BXXY Y \ B′. Thus
|B′′| > 9|BXXY Y |/10. Given a set S of vertices, write degM(S) for the number of edges of M
containing S.

Subclaim. For every E ∈ B′′, and for every S ∈ (
E
3

)
, we have degM(S) ≥ (1/2− 10−2)n.

Proof of Subclaim. Suppose to the contrary that there exists E ∈ B′′ and S ∈ (
E
3

)
with

degM(S) < (1/2 − 10−2)n. Assume that E = {w, x, y, z} with w, x ∈ X and y, z ∈ Y and
S = {x, y, z}. Let Y ′ = {v ∈ Y : {x, y, z, v} ∈ G}. Then

|Y ′| ≥ |Y | − degM(S)− 2 >

(
1
2
− 1

1014
− 1

2
+

1
102

)
n =

(
1

102
− 1

1014

)
n.

For every choice of v1, v2, v3 ∈ Y ′ the five quadruples

xyzv1, xyzv2, xyzv3, xyzw, v1v2v3w.

form a potential copy of F 4, so the last one must be in M. This gives

degM(w) >

(|Y ′|
3

)
≥

(
(10−2 − 10−14)n

3

)
>

n3

107
.
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Consequently, E ∈ B′ which contradicts the fact that B′ ∩ B′′ = ∅. ¤

Counting edges of M from subsets of edges of B′′ yields
(

3
2

)
·max{|X|, |Y |} · |M| ≥

∑

E∈B′′

∑

S∈(E
3)

degM(S),

since the right hand side counts an edge of M at most 3 max{|X|, |Y |} times. For example, an
edge {a, b, c, d} ∈ M with a ∈ X and b, c, d ∈ Y is counted on the right-hand side by choosing
E ∈ B′′ where |E ∩ {b, c, d}| = 2 and a ∈ E. Using |B′′| ≥ (0.9)|BXXY Y | > (0.9)2|B| ≥ (0.9)2|M|,
and the Subclaim, we get

|M| ≥ (0.9)2 · 4(1/2− 10−2)n
3 · (1/2 + 10−15)n

|M| = 1.08
(

1/2− 10−2

1/2 + 10−15

)
|M| > |M|.

This contradiction concludes the proof of Case 2 and of the Claim. ¤

Counting missing edges from vertices of A, we have

4|M| ≥
∑

x∈A

degM(x) >
|A|n3

107
.

Recalling that |B′| > |B|/20 and |B| ≥ |M|, we obtain

|B′| > |M|
20

>
|A|
80

n3

107
.

Now the Claim (see (4)) implies that

∑

x∈A

degB′(x) ≥ |B′| > |A|
80

n3

107
.

Consequently, there exists w ∈ V (G) for which degB(w) ≥ degB′(w) > n3/(80 · 107) > n3/109.
This contradicts Lemma 3.1 and completes the proof of the theorem. ¤

5 The Sharp Structure

Proof of Theorem 1.3. Let δ = 12/1040, and choose ε < δ/12 from Theorem 1.2. Now
|G| > (1/2 − ε)

(
n
4

)
, so by Theorem 1.2 G has a vertex partition X ∪ Y with the number of

even edges less than δ
(
n
4

)
< n4/(2 · 1040). Easy calculations show that |X| and |Y | are both in

(1/2 ± 10−15)n. We may also assume that X, Y is a maximum cut. We will show that both X

and Y are independent sets. As in (3), we have
(

1
2
− ε

)(
n

4

)
+ |M| − |B| < |G|+ |M| − |B| ≤ b(n)

which implies that

|M| ≤ |B|+ b(n)−
(

1
2
− ε

)(
n

4

)
≤ n4

2 · 1040
+ ε

(
n

4

)
+ O(n3) <

n4

1040
.
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Suppose now that there is an edge E of G in
(
X
4

) ∪ (
Y
4

)
. Assume by symmetry that E ∈ (

X
4

)
.

Then by the same argument as in (5), we obtain degM(w) >
(|Y |

3

)
/4 > n3/105 for some w ∈ E.

Now
(

1
2
− ε

)(
n

3

)
< degG(w) = degB(w) +

((|Y |
3

)
+

(|X| − 1
2

)
|Y | − degM(w)

)
.

As
(|Y |

3

)
+

(|X|−1
2

)|Y | < (1/2 + ε)
(
n
3

)
we obtain degB(w) ≥ n3/105 − 2ε

(
n
3

)
> n3/109. This

contradicts Lemma 3.1 and completes the proof. ¤
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[7] D. Mubayi, V. Rödl, On the Turán number of triple systems, Journal of Combinatorial
Theory, Series A, 100 (2002) 135–152.

10


