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Abstract

We show that there is an absolute constant c > 0 such that the following holds. For every

n > 1, there is a 5-uniform hypergraph on at least 22
cn1/4

vertices with independence number at
most n, where every set of 6 vertices induces at most 3 edges. The double exponential growth
rate for the number of vertices is sharp. By applying a stepping-up lemma established by the
first two authors, analogous sharp results are proved for k-uniform hypergraphs. This answers
the penultimate open case of a conjecture in Ramsey theory posed by Erdős and Hajnal in 1972.

1 Introduction

The Ramsey number rk(s, n) is the minimum integer N such that for any red/blue coloring of the k-
tuples of [N ] = {1, 2, . . . , N}, there is either a set of s integers with all of its k-tuples colored red, or
a set of n integers with all of its k-tuples colored blue. Estimating rk(s, n) is a fundamental problem
in combinatorics and has been extensively studied since 1935. For graphs, classical results of Erdős
[7] and Erdős and Szekeres [12] imply that 2n/2 < r2(n, n) < 22n. While small improvements have
been made in both the upper and lower bounds for r2(n, n) (see [4, 15]), the constant factors in the
exponents have not changed over the last 75 years.

Unfortunately for 3-uniform hypergraphs, there is an exponential gap between the best known
upper and lower bounds for r3(n, n). Namely, Erdős, Hajnal, and Rado [10, 11] showed that

2cn
2
< r3(n, n) < 22c

′n
,

where c and c′ are absolute constants. For k ≥ 4, their results also imply an exponential gap
between the lower and upper bounds for rk(n, n),

twrk−1(cn2) < rk(n, n) < twrk(c
′n),
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where the tower function is defined recursively as twr1(x) = x and twri+1 = 2twri(x). Determining
the tower growth rate of rk(n, n) is one of the most central problems in extremal combinatorics.
Erdős, Hajnal, and Rado conjectured that the upper bound is closer to the truth, namely rk(n, n) =
twrk(Θ(n)), and Erdős offered a $500 reward for a proof (see [5]).

Off-diagonal Ramsey numbers rk(s, n) have also been extensively studied. Here, k and s are fixed
constants and n tends to infinity. It follows from well-known results that r2(s, n) = nΘ(1) (see

[1, 2, 3, 11] for the best known bounds), and for 3-uniform hypergraphs, r3(s, n) = 2n
Θ(1)

(see [6]
for the best known bounds).

For k > 3, Erdős, Hajnal, and Rado showed that rk(s, n) ≤ twrk−1(nc) where c = c(k, s), and
Erdős and Hajnal conjectured that this bound is the correct tower growth rate. In [13], the first
two authors verified the conjecture for s ≥ k+ 2, and for the last case s = k+ 1, they showed that
rk(k + 1, n) ≥ twrk−2(nc logn). Hence, there remains an exponential gap between the best known
lower and upper bounds for rk(k + 1, n) for k ≥ 4.

Due to our lack of understanding of rk(k + 1, n), Erdős and Hajnal in [9] introduced the following
more general function (their notation was different).

Definition 1.1. For integers 2 ≤ k < n and 2 ≤ t ≤ k + 1, let rk(k + 1, t;n) be the minimum N
such that for every red/blue coloring of the k-tuples of [N ], there is a set of k + 1 integers with at
least t of its k-tuples colored red, or a set of n integers with all of its k-tuples colored blue.

Clearly rk(k+ 1, 1;n) = n and rk(k+ 1, k+ 1;n) = rk(k+ 1, n). For each t ∈ {2, . . . , k}, Erdős and
Hajnal [9] showed that rk(k + 1, t;n) < twrt−1(nΘ(1)) and conjectured that

rk(k + 1, t;n) = twrt−1(nΘ(1)). (1)

This is known to be true for k ≤ 3 and for t ≤ 3 [9]. When k ≥ 5, the first two authors [14] verified
(1) for all 3 ≤ t ≤ k − 2. Our main result verifies (1) for t = k − 1, which is one of the last two
remaining cases.

Theorem 1.2. For k ≥ 4, we have rk(k + 1, k − 1;n) = twrk−2(nΘ(1)).

This significantly improves the previous best known lower bound for rk(k + 1, k − 1;n), which was
one exponential less than above (see [14]). This also immediately implies the following new lower
bound for rk(k+1, k;n), which is now one exponential off from the upper bound obtained by Erdős
and Hajnal.

Corollary 1.3. For k ≥ 4, we have rk(k + 1, k;n) > twrk−2(nΘ(1)).

Finally, let us point out that Erdős and Hajnal conjectured that the tower growth rate for both
rk(k + 1, k;n) and the classical Ramsey number rk(k + 1, n) are the same. Thus, verifying (1) for
rk(k + 1, k;n) would determine the tower height for rk(k + 1, n).

We develop several crucial new ingredients to the stepping up method in our construction, for
example, part (1) of Lemma 2.3, and on page 8, analyzing sequences of local maxima. It is plausible
that these new ideas can be further enhanced to determine the tower height of rk(k + 1, n).
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2 Proof of Theorem 1.2

In [13], the first two authors proved the following.

Theorem 2.1 (Theorem 7 in [13]). For k ≥ 6 and t ≥ 5, we have rk(k+1, t; 2kn) > 2rk−1(k,t−1;n)−1.

In what follows, we will prove the following theorem. Together with Theorem 2.1, Theorem 1.2
quickly follows.

Theorem 2.2. There is an absolute constant c > 0 such that r5(6, 4;n) > 22cn
1/4

.

2.1 A double exponential lower bound for r5(6, 4;n)

In this section, we begin with a graph coloring with certain properties which we will later use to
define a two-coloring of the edges of a 5-uniform hypergraph.

Lemma 2.3. For n ≥ 6, there is an absolute constant c > 0 such that the following holds. There
exists a red/blue coloring φ of the pairs of {0, 1, . . . , b2cnc − 1} such that:

1. There are no 3 disjoint n-sets A,B,C ⊂ {0, 1, . . . , b2cnc − 1} with the property that there
is a bijection f : B → C such that for any a ∈ A, b ∈ B, at least one of φ(a, b) = red or
φ(a, f(b)) = blue occurs.

2. There is no n-set A ⊂ {0, 1, . . . , b2cnc − 1} such that every 4-tuple ai, aj , ak, a` ∈ A with
ai < aj < ak < a` avoids the pattern:

φ(ai, aj) = φ(aj , ak) = φ(aj , a`) = red, φ(ai, ak) = φ(ai, a`) = φ(ak, a`) = blue

Proof. SetD = b2cnc, where c is a sufficiently small constant that will be determined later. Consider
a random 2-coloring of the unordered pairs of {0, 1, . . . , D − 1} where each pair is assigned red or
blue with equal probability independent of all other pairs. Then, the expected number of A,B,C
as in part 1 is at most (

D

n

)3

n!

(
3

4

)n2

<
1

3
,

where the inequality holds by taking c sufficiently small. This is since we pick each of the n-sets,
one of n! possible bijections from B to C, and then there is a 3

4 probability that we have the desired
color pattern for each pair of a ∈ A, b ∈ B.

We call a 4-tuple ai, aj , ak, a` ∈ {0, 1, . . . , D − 1} with ai < aj < ak < a` bad if

φ(ai, aj) = φ(aj , ak) = φ(aj , a`) = red, φ(ai, ak) = φ(ai, a`) = φ(ak, a`) = blue

and good otherwise. The probability that such a fixed 4-tuple is bad is 1
26 = 1

64 and thus the
probability that such a fixed 4-tuple is good is 63

64 . Now consider some fixed n-set A ⊂ {0, 1, . . . , D−
1}. We estimate the probability that A contains no bad 4-tuple. Note that there exists a partial
Steiner (n, 4, 2)-system S on A, i.e. a 4-uniform hypergraph on the n-vertex set A with the property
that every pair of vertices is contained in at most one 4-tuple, with at least c′n2 edges where c′ > 0
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is some constant (e.g. see [8]). Then, the probability that a 4-tuple in A is good is at most the
probability that every 4-tuple in S is good. Since 4-tuples in S are independent as no two 4-tuples
have more than one vertex is common, the probability that every 4-tuple in S is a good 4-tuple is

at most
(

63
64

)c′n2

. Therefore, the expected number of n-sets A with only good 4-tuples is at most(
D

n

)(
63

64

)c′n2

<
1

3
,

again where we take c sufficiently small. Thus, by Markov’s inequality and the union bound, we
conclude that there is a 2-coloring φ with the desired properties.

We will use this lemma to produce a coloring of a 5-uniform hypergraph. Given some natural
number D, let V = {0, 1, . . . , 2D−1}. Then for v ∈ V , we write v =

∑D−1
i=0 v(i)2i where v(i) ∈ {0, 1}

for each i. For any u 6= v, we then let δ(u, v) denote the largest i ∈ {0, 1, . . . , D − 1} such that
u(i) 6= v(i). We then have the following properties.

Property I: For every triple u < v < w, δ(u, v) 6= δ(v, w).

Property II: For v1 < · · · < vr, δ(v1, vr) = max1≤j≤r−1 δ(vj , vj+1).

From Properties I and II, we also derive the following.

Property III: For every 4-tuple v1 < · · · < v4, if δ(v1, v2) > δ(v2, v3), then δ(v1, v2) 6= δ(v3, v4).
Note that if δ(v1, v2) < δ(v2, v3), it is possible that δ(v1, v2) = δ(v3, v4).

Property IV: For v1 < · · · < vr, set δj = δ(vj , vj+1) for j ∈ [r − 1] and suppose that δ1, . . . , δr−1

forms a monotone sequence. Then for every subset of k vertices vi1 , vi2 , . . . , vik where vi1 < · · · < vik ,
δ(vi1 , vi2), δ(vi2 , vi3), . . . , δ(vik−1

, vik) forms a monotone sequence. Moreover for every subset of k−1
such δj ’s, i.e. δj1 , δj2 , . . . , δjk−1

, there are k vertices vi1 , . . . , vik such that δ(vit , vit+1) = δjt .

We now turn to the coloring of a 5-uniform hypergraph. Let c > 0 be the constant given by
Lemma 2.3 and let U = {0, 1, . . . , b2cnc − 1} and φ :

(
U
2

)
→ {red, blue} be a 2-coloring of the pairs

of U satisfying the properties given in the lemma. Now let N = 2b2
cnc and let V = {0, 1, . . . , N−1}.

In the following, we will use the coloring φ to define a red/blue coloring χ :
(
V
5

)
→ {red, blue} of

the 5-tuples of V such that χ produces at most 3 red edges among any 6 vertices and χ does not

produce a blue copy of K
(5)
128n4 . This would imply that r5(6, 4;n) > 22c

′n1/4

for some constant c′ > 0.

For v1, . . . , v5 ∈ V with v1 < v2 < · · · < v5, let δi = δ(vi, vi+1). We set χ(v1, . . . , v5) = red if:

1. We have that δ1, δ2, δ3, δ4 are monotone and form a bad 4-tuple, that is, if δ1 < δ2 < δ3 < δ4

then:

φ(δ1, δ2) = φ(δ2, δ3) = φ(δ2, δ4) = red, φ(δ1, δ3) = φ(δ1, δ4) = φ(δ3, δ4) = blue,

and if δ1 > δ2 > δ3 > δ4 then:

φ(δ4, δ3) = φ(δ3, δ2) = φ(δ3, δ1) = red, φ(δ4, δ2) = φ(δ4, δ1) = φ(δ2, δ1) = blue.

2. We have that δ1 > δ2 < δ3 > δ4, where δ1, δ2, δ3, δ4 are all distinct with δ1 < δ3, δ2 > δ4 and
φ(δ1, δ4) = red, φ(δ2, δ4) = blue. The ordering can also be expressed as δ3 > δ1 > δ2 > δ4.
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δ4 δ3 δ2 δ1

v1: 0 0 0 0
v2: 0 0 0 1
v3: 0 0 1 1
v4: 0 1 1 1
v5: 1 1 1 1

δ1 δ2 δ3 δ4

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

(a) Monotone

δ3 δ1 δ2 δ4

0 0 0 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 0 1

(b) δ3 > δ1 > δ2 > δ4

δ2 δ4 δ3 δ1

0 0 0 0

0 0 0 1

1 0 0 0

1 0 1 0

1 1 0 0

(c) δ2 > δ4 > δ3 > δ1

δ2 δ1/δ4 δ3

0 0 0

0 1 0

1 0 0

1 0 1

1 1 0

(d) δ2 > δ1 = δ4 > δ3

Figure 1: Examples of v1 < v2 < v3 < v4 < v5 and δi = δ(vi, vi+1) for i ∈ [4] such that χ(v1, . . . , v5)
is red. Each vi is represented in binary with the left-most entry corresponding to the most significant
bit.

3. We have that δ1 < δ2 > δ3 < δ4, where δ1, δ2, δ3, δ4 are all distinct with δ1 < δ3, δ2 > δ4 and
φ(δ1, δ4) = red, φ(δ1, δ3) = blue. The ordering can also be expressed as δ2 > δ4 > δ3 > δ1.

4. We have that δ1 < δ2 > δ3 < δ4 and δ1 = δ4. In other words, δ2 > δ1 = δ4 > δ3.

Otherwise χ(v1, . . . , v5) = blue.

Assume for the sake of contradiction that there are at least 4 red edges among some 6 vertices. Let
these vertices be v1, . . . , v6 where v1 < v2 < · · · < v6 and let δi = δ(vi, vi+1). Let ei = {v1, . . . , v6} \
{vi}. Let δ(ei) be the resulting sequence of δ’s. In particular, for i = 1, δ(e1) = (δ2, δ3, δ4, δ5). For
2 ≤ i ≤ 5, δ(ei) = (δ1, . . . , δ(vi−1, vi+1), . . . , δ5). For i = 6, δ(e6) = (δ1, δ2, δ3, δ4). In the following
we will often use that if 2 ≤ i ≤ 5, then δ(vi−1, vi+1) = max(δi−1, δi) by Property II.

For convenience, if inequalities are known between consecutive δ’s, this will be indicated in the
sequence by replacing the comma with the respective sign. For instance, assume that δ1 < δ2 >
δ3 < δ4 > δ5. Then since δ(e1) = (δ2, δ3, δ4, δ5) has δ2 > δ3 < δ4 > δ5, we will write

δ(e1) = (δ2 > δ3 < δ4 > δ5).

Similarly, if not all inequalities are known, as in δ(e3), we write,

δ(e3) = (δ1 < δ2 , δ4 > δ5).

Now we will consider cases depending on the sequence of inequalities between δ1, . . . , δ5, and we
will further split into subcases by taking a sequence of inequalities and reversing it. There are 16
possible sequences so we will have 8 cases in what follows.

Case 1a: Suppose δ1 > δ2 < δ3 > δ4 < δ5. This implies that

δ(e1) = (δ2 < δ3 > δ4 < δ5),

δ(e2) = δ(e3) = (δ1 , δ3 > δ4 < δ5),

δ(e4) = δ(e5) = (δ1 > δ2 < δ3 , δ5),

δ(e6) = (δ1 > δ2 < δ3 > δ4).

In particular, note that at least one of e4, e5, e6 must be red so we must have that δ1 < δ3 and
δ2 > δ4. However, since δ1 > δ2 > δ4, note that e1 is only red if δ2 = δ5 and similarly e2, e3 are only
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red if δ1 = δ5. Since these cannot happen simultaneously, there is at least one blue edge among
these three edges. Thus, we must have that e4, e5 are also red to avoid having three blue edges,
making δ2 > δ5 (and δ3 > δ5). However, then δ1 > δ2 > δ5 so none of e1, e2, e3 are red and thus
there are at most 3 red edges.

Case 1b: Suppose δ1 < δ2 > δ3 < δ4 > δ5. This implies that

δ(e1) = δ(e2) = (δ2 > δ3 < δ4 > δ5),

δ(e3) = δ(e4) = (δ1 < δ2 , δ4 > δ5),

δ(e5) = δ(e6) = (δ1 < δ2 > δ3 < δ4).

Note that e3, e4 are blue so we must have that all of e1, e2, e5, e6 are red. If e5, e6 are red, then
regardless of which rule applies, δ2 > δ4 and thus e1, e2 are blue, so there are at most 2 red edges.

Case 2a: Suppose δ1 > δ2 > δ3 < δ4 > δ5. This implies that

δ(e1) = (δ2 > δ3 < δ4 > δ5),

δ(e2) = (δ1 > δ3 < δ4 > δ5),

δ(e3) = δ(e4) = (δ1 > δ2 , δ4 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 > δ3 < δ4).

Note that e5, e6 are blue so that all of e1, . . . , e4 are red. Since e1 is red, we must have that δ2 < δ4,
so δ(ei) are ordered as in the second condition for red edges for all i ∈ [4]. Thus, e1 implies that
φ(δ2, δ5) = red while e3 implies that φ(δ2, δ5) = blue, a contradiction.

Case 2b: Suppose δ1 < δ2 < δ3 > δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 < δ3 > δ4 < δ5),

δ(e3) = (δ1 < δ3 > δ4 < δ5),

δ(e4) = δ(e5) = (δ1 < δ2 < δ3 , δ5),

δ(e6) = (δ1 < δ2 < δ3 > δ4).

Since e6 is blue, in order to have at least 4 red edges, we must have that e4, e5 are red. Thus
δ3 < δ5. However, then for e1, e2 to be red, we must have that δ2 = δ5, which is impossible since
δ2 < δ5. Thus, there are at most 3 red edges here.

Case 3a: Suppose δ1 > δ2 < δ3 > δ4 > δ5. This implies that

δ(e1) = (δ2 < δ3 > δ4 > δ5),

δ(e2) = δ(e3) = (δ1 , δ3 > δ4 > δ5),

δ(e4) = (δ1 > δ2 < δ3 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 < δ3 > δ4).

Since e1 is blue, we must have that e5, e6 are red and thus δ1 < δ3. However, we also must have
e2, e3 are red and thus δ1 > δ3, a contradiction.
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Case 3b: Suppose δ1 < δ2 > δ3 < δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 > δ3 < δ4 < δ5),

δ(e3) = δ(e4) = (δ1 < δ2 , δ4 < δ5),

δ(e5) = (δ1 < δ2 > δ3 < δ5),

δ(e6) = (δ1 < δ2 > δ3 < δ4).

Since e1, e2 are blue, we must have that the remaining edges are red. If δ2 < δ4, then e6 is blue.
Otherwise δ2 > δ4. First if δ1 = δ4 then e3, e4 are blue. Thus, for e6 to be red, we have that δ1 < δ3,
which implies that δ1 < δ4 < δ5. From e3 being red, we find that δ2 > δ5 as well. We then have
that φ(δ1, δ4) = red from e6 while φ(δ1, δ4) = blue from e3, a contradiction.

Case 4a: Suppose δ1 > δ2 < δ3 < δ4 > δ5. This implies that

δ(e1) = (δ2 < δ3 < δ4 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 < δ3 < δ4).

so we have at least 3 blue edges.

Case 4b: Suppose δ1 < δ2 > δ3 > δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 > δ3 > δ4 < δ5),

δ(e6) = (δ1 < δ2 > δ3 > δ4).

so we have at least 3 blue edges.

Case 5 : Suppose δ1 > δ2 < δ3 < δ4 < δ5 or δ1 < δ2 > δ3 > δ4 > δ5. In the first case, each of
δ(e4), δ(e5), δ(e6) is in the form δ1 > δ2 < δi < δj where i, j ∈ {3, 4, 5}, so these are blue. In the
second case, each of δ(e4), δ(e5), δ(e6) is in the form δ1 < δ2 > δi > δj where i, j ∈ {3, 4, 5}, so these
are blue.

Case 6 : Suppose δ1 > δ2 > δ3 < δ4 < δ5 or δ1 < δ2 < δ3 > δ4 > δ5. In the first case,

δ(e1) = (δ2 > δ3 < δ4 < δ5),

δ(e2) = (δ1 > δ3 < δ4 < δ5),

δ(e6) = (δ1 > δ2 > δ3 < δ4).

so there are at least 3 blue edges. In the second case, δ(e1), δ(e2) are both δ2 < δ3 > δ4 > δ5 and
thus blue. Similarly, δ(e6) = δ1 < δ2 < δ3 > δ4, so there are at least 3 blue edges.

Case 7 : Suppose δ1 > δ2 > δ3 > δ4 < δ5 or δ1 < δ2 < δ3 < δ4 > δ5. In the first case, each of
δ(e1), δ(e2), δ(e3) is in the form δi > δj > δ4 < δ5 for i, j ∈ [3] and thus blue. In the second case,
each of δ(e1), δ(e2), δ(e3) is in the form δi < δj < δ4 > δ5 for i, j ∈ [3] and thus blue.

Case 8a: Suppose δ1 > δ2 > δ3 > δ4 > δ5. This implies that

δ(e1) = (δ2 > δ3 > δ4 > δ5),

δ(e2) = (δ1 > δ3 > δ4 > δ5),

δ(e3) = (δ1 > δ2 > δ4 > δ5),

δ(e4) = (δ1 > δ2 > δ3 > δ5),

δ(e5) = δ(e6) = (δ1 > δ2 > δ3 > δ4).
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First if e5, e6 are red, then φ(δ4, δ1) = blue implies that e2, e3 are blue, and φ(δ4, δ2) = blue implies
that e1 is blue, a contradiction. Thus, e5, e6 are blue and e1 must be red but then φ(δ5, δ3) = blue
implies that e4 is blue, a contradiction.

Case 8b: Suppose δ1 < δ2 < δ3 < δ4 < δ5. This implies that

δ(e1) = δ(e2) = (δ2 < δ3 < δ4 < δ5),

δ(e3) = (δ1 < δ3 < δ4 < δ5),

δ(e4) = (δ1 < δ2 < δ4 < δ5),

δ(e5) = (δ1 < δ2 < δ3 < δ5),

δ(e6) = (δ1 < δ2 < δ3 < δ4).

If e1, e2 are red, then φ(δ2, δ5) = blue implies that e4, e5 are blue and φ(δ2, δ4) = blue implies that
e6 is blue, a contradiction. Thus, e1, e2 are blue and e6 must be red but then φ(δ1, δ3) = blue
implies that e3 is blue, a contradiction.

Thus, for every 6 vertices in V = {0, 1, . . . , 2b2cnc−1}, χ produces at most 3 red edges among them.

Now, we show that there is no blue K
(5)
128n4 in coloring χ. We first make the following definitions.

Given a sequence {ai}ri=1 ⊆ R and j ∈ {2, . . . , r − 1}, we say that aj is a local minimum if
aj−1 > aj < aj+1, a local maximum if aj−1 < aj > aj+1, and a local extremum if it is either a
local minimum or local maximum. In particular, when looking at some set of vertices {v1, . . . , vs}
where v1 < v2 < · · · < vs and considering the sequence {δ(vi, vi+1)}s−1

i=1 , by Property I, δ(vj , vj+1) 6=
δ(vj+1, vj+2) for every j, so every nonmonotone sequence will have local extrema.

Set m = 128n4 and consider vertices v1, . . . , vm ∈ V such that v1 < v2 < · · · < vm. Assume for the
sake of contradiction that these m vertices correspond to a blue clique in the coloring χ. Again, let
δi = δ(vi, vi+1). We first note the following lemma.

Lemma 2.4. There is no monotone subsequence {δk`}n`=1 ⊂ {δi}
m−1
i=1 such that for any a, b, c, d ∈

[n] with a < b < c < d, there exists u1, u2, u3, u4, u5 ⊂ {v1, . . . , vm} such that δ(u1, . . . , u5) =
{δka , δkb , δkc , δkd}.

Proof. Indeed, if such a monotone subsequence existed, then as χ(u1, . . . , u5) = blue, we have that
{δk`}n`=1 would form an n-set with no bad 4-tuple in the graph coloring φ, a contradiction.

From this, we note that there is no integer j ∈ [m − n + 1] such that the sequence {δi}j+n−1
i=j is

monotone. Otherwise, by Property IV, we have that for any length 4 subsequence {δi1 , δi2 , δi3 , δi4} ⊂
{δi}j+n−1

i=j , there is a 5-tuple e ⊂ {v1, . . . , vm} such that δ(e) corresponds to this monotone sequence.
From here, we apply Lemma 2.4 to get a contradiction. Thus, we can find a sequence of consecutive
local extrema and from this extract a sequence of local maxima δi1 , . . . , δi32n3 .

We now restrict our attention to this sequence of local maxima (δi1 , . . . , δi32n3 ). Note that any two
local maxima are distinct: assume for the sake of contradiction that we have maxima δij = δik
where j < k. First consider if there is no δ` for ij < ` < ik such that δ` > δij = δik . Then,
δ(vij , vik) = δij = δik = δ(vik , vik+1), a contradiction of Property I. Otherwise, there exists ij < ` <
ik such that δ` > δij = δik . By letting ` correspond to the maximum δ` in this range, we have

δ(vij , vij+1, vik−1, vik , vik+1) = (δij < δ` > δik−1 < δik),
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which implies that χ(vij , vij+1, vik−1, vik , vik+1) = red as δij = δik , contradiction.

Moreover, there is no j ∈ [32n3− n+ 1] such that the sequence {δik}
j+n−1
k=j is monotone. If there is

such j and the sequence is increasing, for any a, b, c, d ∈ {j, j+ 1, . . . , j+n−1} with a < b < c < d,
then

δ(via , via+1, vib+1, vic+1, vid+1) = (δia < δib < δic < δid).

This follows by Property II; in particular, if there exists ` such that ia + 1 ≤ ` < ib + 1 and
δ` > δib , then there must exist some greater local maxima between δia and δib , a contradiction of

the monotonicity of {δik}
j+n−1
k=j , as these are consecutive local maxima. Thus, by Lemma 2.4, we

have a contradiction.

Similarly, if the sequence is decreasing, consider any a, b, c, d ∈ {j, j + 1, . . . , j + n − 1} with
a < b < c < d. Then

δ(via , vib , vic , vid , vid+1) = (δia > δib > δic > δid).

As with the above, we apply Lemma 2.4 to derive a contradiction.

Thus, within the sequence (δi1 , δi2 , . . . , δi32n3 ), we can find a subsequence of consecutive local ex-
trema δj1 , . . . , δj16n2 , where δj1 , δj3 , . . . , δj16n2−1

are local maxima and δj2 , δj4 , . . . , δj16n2 are local
minima (with respect to the sequence δi1 , δi2 , . . . , δi32n3 ).

We now claim that there exists k ∈ {4n+ 1, 4n+ 2, . . . , 16n2 − 4n} such that δj` < δjk if k − 4n ≤
` ≤ k + 4n and ` 6= k. Assume for the sake of contradiction that this is not the case. We then
recursively build the following sets Sr, Tr. Start with S0 = T0 = ∅, σ0 = 0, τ0 = 16n2 + 1. At each
step r,

1. σr = 0 if Sr is empty and σr = max(Sr) otherwise. Similarly, τr = 16n2 + 1 if Tr is empty
and τr = min(Tr) otherwise.

2. If s ∈ Sr and s < ` < τr, then δjs > δj` . Similarly if t ∈ Tr and σr < ` < t, then δjt > δj` .

3. |Sr|+ |Tr| = r and τr − σr ≥ 16n2 − 4nr.

Note that these properties hold for r = 0 by definition. Now assume that we have Sr, Tr, σr, τr
satisfying the desired properties for some r < 2n. Note that by the properties, we have that

τr − σr ≥ 16n2 − 4nr > 16n2 − 8n2 ≥ 8n2 > 0.

Consider σr < k < τr such that δjk = maxσr<`<τr δj` . If k−σr > 4n and τr− k > 4n, then k would
satisfy that δj` < δjk if k − 4n ≤ ` ≤ k + 4n and ` 6= k, a contradiction. Now if k − σr ≤ 4n, set

Sr+1 = Sr ∪ {k}, Tr+1 = Tr, σr+1 = k, τr+1 = τr.

Then, the first property holds by definition. The second property holds for every s ∈ Sr, t ∈ Tr
by assumption, and it holds for k ∈ Sr+1 since δjk = maxσr<`<τr δj` . The first part of the third
property clearly holds and

τr+1 − σr+1 = τr − k ≥ τr − σr − 4n ≥ 16n2 − 4n(r + 1).

Otherwise if τr − k ≤ 4n, set

Sr+1 = Sr, Tr+1 = Tr ∪ {k}, σr+1 = σr, τr+1 = k.
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By the same reasoning, the three properties hold as desired. Thus, we can construct these sets
while r ≤ 2n.

Now, consider S2n, T2n. Since |S2n| + |T2n| = 2n, at least one of these sets has size at least n. If
|S2n| ≥ n, consider {s1, . . . , sn} ⊆ S2n where i < j ⇒ si < sj . Then, since min(T2n) > max(S2n)
by Property 3 and 1, by Property 2 we have

δjs1
> δjs2

> · · · > δjsn .

In particular, Property 2 implies that for a, b, c, d ∈ [n] and a < b < c < d,

δ(vjsa , vjsb , vjsc , vjsd , vjsd+1) = (δjsa > δjsb > δjsc > δjsd ),

and thus, by Lemma 2.4, we have a contradiction. If instead |T2n| ≥ n, a similar argument shows
that we derive a contradiction. Thus, such a k exists and note that in particular k must be odd.

Order the set of local minima {δjk−4n+1
, δjk−4n+3

, . . . , δjk+4n−1
} in increasing order as γ1, . . . , γ4n.

Let
A′ = {δjk−4n+1

, δjk−4n+3
, . . . , δjk−1

} and B′ = {δjk+1
, δjk+3

, . . . , δjk+4n−1
}.

Note that since A′, B′ partition {δjk−4n+1
, δjk−4n+3

, . . . , δjk+4n−1
}, either |A′ ∩ {γ1, . . . , γ2n}| ≥ n or

|B′ ∩ {γ1, . . . , γ2n}| ≥ n. Without loss of generality, we assume that the former occurs since a
symmetric argument would follow otherwise. Then, we also have that |B′ ∩ {γ2n+1, . . . , γ4n}| ≥ n.
Set

A = A′ ∩ {γ1, . . . , γ2n} and B = B′ ∩ {γ2n+1, . . . , γ4n}.

Let a ∈ A and b ∈ B. By definition, δja < δjb , and note that b < k + 4n⇒ b+ 1 ≤ k + 4n, so

δ(vja , vja+1, vjb , vjb+1, vjb+1+1) = (δja < δjk > δjb < δjb+1
),

where δjk > δjb+1
by definition. Since

χ(vja , vja+1, vjb , vjb+1, vjb+1+1) = blue,

we cannot have both φ(δja , δjb+1
) = red and φ(δja , δjb) = blue. Finally, restricting to any n elements

of A,B and letting
C = {δjb+1

: δjb ∈ B},

and defining f : B → C via δjb 7→ δjb+1
, we obtain 3 disjoint n-sets with precisely the structure

avoided in the graph coloring φ, a contradiction.

Thus, χ does not produce a blue K
(5)
128n4 on V . �

3 Concluding remarks

We have determined the tower growth rate for rk(k+1, k−1;n). Thus, the only problem remaining
for the Erdős-Hajnal hypergraph Ramsey conjecture, is to determine the tower growth rate for
rk(k + 1, k;n).

Let us remark that similar arguments show that r5(6, 5; 4n2) > 2r4(5,4;n)−1. To define such a
coloring, let N = r4(5, 4;n) − 1 and let ϕ be a red/blue coloring of the 4-tuples of {0, . . . , N − 1}
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such that there are there are at most 3 red edges among every 5 vertices and there is no blue clique
of size n. We then color the 5-tuples of V = {0, 1, . . . , 2N − 1} so that χ produces at most 4 red
edges among any 6 vertices and χ does not produce a blue clique of size 4n2. For vertices v1, . . . , v5

with v1 < v2 < · · · < v5, let δi = δ(vi, vi+1). We set χ(v1, . . . , v5) = red if:

1. We have that δ1, δ2, δ3, δ4 are monotone and ϕ(δ1, δ2, δ3, δ4) = red.

2. We have that δ1 > δ2 < δ3 > δ4 and δ1 < δ3.

Together with Lemma 2.1, showing that r4(5, 4;n) grows double exponential in a power of n would
thus show that rk(k + 1, k;n) = twrk−1(nΘ(1)).

Acknowledgment. We thank a referee for helpful comments.
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