Erratum to Rainbow Turán Problems, by P. Keevash, D. Mubayi, B. Sudakov and J. Verstraëte

In the proof of the upper bound in Theorem 1.5 we consider a graph G on n vertices that is properly coloured with no rainbow C_{6}. We let G^{\prime} be a bipartite subgraph of G with $e\left(G^{\prime}\right) \geq e(G) / 2$. We say that a subgraph $K_{2, t}$ of G^{\prime} is maximal if it is not contained in any $K_{2, t^{\prime}}$ in G^{\prime} with $t^{\prime}>t$. Then we claim that if G^{\prime} contains a maximal $K_{2, s}$ and a maximal $K_{2, t}$ with $s, t \geq 9$ then they must be edge-disjoint. However, the argument that we give for this claim is incorrect.

We correct the proof as follows. Suppose that G^{\prime} has bipartition (A, B). We claim that one cannot find a maximal $K_{2, s}=\left(A_{1}, B_{1}\right)$ and a maximal $K_{2, t}=\left(A_{2}, B_{2}\right)$ sharing an edge, where $A_{1}, A_{2} \subset A$ have size $2, B_{1} \subset B$ has size $s \geq 9$ and $B_{2} \subset B$ has size $t \geq 9$. The proof of this claim is exactly that given for the first case ($x \in A_{1} \cap A_{2}$ and $y \in B_{1} \cap B_{2}$) in the paper: such a configuration leads a rainbow C_{6}, which is a contradiction. Now suppose that $\left(A^{\prime}, B^{\prime}\right)$ is a maximal $K_{2, t}$ with $A^{\prime}=\left\{a_{1}, a_{2}\right\} \subset A$ and $B^{\prime} \subset B$ of size $t \geq 9$. Delete from G^{\prime} all edges joining a_{1} to B^{\prime}. Repeat this process as long as there is any (maximal) $K_{2, t}$ with $t \geq 9$. Note that we have considered mutually disjoint sets of edges and deleted half of each, so we have deleted at most half of the edges of G^{\prime}. The remaining graph $G^{\prime \prime}$ contains no $K_{2,9}$ with 2 points in A and 9 points in B. Similarly, we can delete at most half of the edges of $G^{\prime \prime}$ to obtain a graph $G^{\prime \prime \prime}$ that contains no $K_{2,9}$ with 2 points in B and 9 points in A, and so no $K_{2,9}$ at all.

Now, as in the paper, we apply Lemma 3.1 to $G^{\prime \prime \prime}$ and deduce that it has average degree $d^{\prime \prime \prime}<$ $(1+o(1))(87 n)^{1 / 3}$. It follows that $e(G) \leq 2 e\left(G^{\prime}\right) \leq 4 e\left(G^{\prime \prime}\right) \leq 8 e\left(G^{\prime \prime \prime}\right)=4 d^{\prime \prime} n<18 n^{4 / 3}$ for large n. Therefore the upper bound in Theorem 1.5 still holds, with a larger value of the constant c_{2}.

We also need to increase the constant in remark (1) following the proof of Theorem 1.5. It follows that an edge-coloured bipartite graph on $2 n$ vertices with no rainbow C_{6} has at most $\frac{1}{2} 18(2 n)^{4 / 3}<$ $24 n^{4 / 3}$ edges (for large n). Applying this to a bipartite Cayley graph we see that in any abelian group of order n, a B_{3}^{*}-set can have at most $24 n^{1 / 3}$ elements.

