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Abstract

For a fixed graph H, we define the rainbow Turán number ex∗(n, H) to be the maximum number
of edges in a graph on n vertices that has a proper edge-colouring with no rainbow H. Recall that
the (ordinary) Turán number ex(n, H) is the maximum number of edges in a graph on n vertices that
does not contain a copy of H. For any non-bipartite H we show that ex∗(n, H) = (1+o(1))ex(n, H),
and if H is colour-critical we show that ex∗(n, H) = ex(n, H). When H is the complete bipartite
graph Ks,t with s ≤ t we show ex∗(n, Ks,t) = O(n2−1/s), which matches the known bounds for
ex(n, Ks,t) up to a constant. We also study the rainbow Turán problem for even cycles, and in
particular prove the bound ex∗(n, C6) = O(n4/3), which is of the correct order of magnitude.

1 Introduction

In this paper, we address the following question. For a fixed graph H, determine the maximum number
of edges in a properly edge-coloured graph on n vertices which does not contain a rainbow H, i.e. a
copy of H all of whose edges have different colours. This maximum is denoted ex∗(n, H), and we refer
to it as the rainbow Turán number of H.

There are two main motivations for our study of rainbow Turán numbers. One is the possibility
of applying purely combinatorial methods to certain extremal problems in additive number theory.
Call a subset A of an abelian group G a B∗

k-set if does not contain disjoint k-subsets B,C with the
same sum. Given a set A consider the following edge-coloured bipartite graph. The two parts X, Y

are both copies of G, we join x ∈ X to y ∈ Y if x− y ∈ A, and then the edge xy is assigned the colour
x− y. This is a properly coloured graph, and if A is a B∗

k-set then it does not contain a rainbow C2k,
the cycle of length 2k. A similar approach, involving properly coloured bipartite graphs, was taken by
Ruzsa and Szemerédi [29] to give a purely combinatorial proof of Roth’s Theorem [27] on three-term
arithmetic progressions.

Another motivation is that it seems to be a natural meeting point of two areas of extremal graph
theory. Firstly, there is the classical Turán problem, which has a rich history in combinatorics. This
asks for the maximum number of edges in a graph on n vertices that contains no copy of some fixed

∗Department of Mathematics, Caltech, Pasadena, CA 91125, USA. E-mail: keevash@caltech.edu.
†Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607. E-mail:

mubayi@math.uic.edu. Research supported in part by NSF grant DMS-0400812, and by an Alfred P. Sloan fellowship.
‡Department of Mathematics, Princeton University, Princeton, NJ 08544. E-mail: bsudakov@math.princeton.edu.

Research supported in part by NSF grant DMS-0355497, USA-Israeli BSF grant, and by an Alfred P. Sloan fellowship.
§Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario,

Canada, N2V2K7. E-mail: jverstraete@math.uwaterloo.ca

1



graph H. The maximum here is denoted ex(n, H), and is known as the Turán number for H. Next
there is the literature on extremal problems for edge-colourings (not necessarily proper). An example
is the Canonical Ramsey Theorem, proved by Erdős and Rado [12], a special case of which shows that
any proper colouring of Kn produces a rainbow Km, provided n is large relative to m. Motivated by
this and work in [10] and [19], Alon, Jiang, Miller and Pritikin [2] introduced the problem of finding
a rainbow copy of a graph H in a colouring of Kn in which each colour appears at most m times at
each vertex. The rainbow Turán problem is a natural Turán-type extension of this problem.

We will discuss these motivations in greater detail before the statement of our relevant results,
which we divide into subsections according to the nature of the forbidden fixed graph H.

1.1 Preliminary results

For the sake of completeness, we start by presenting some results that can be easily deduced from
the corresponding results for the ordinary Turán problem. For the reader’s convenience we first give
some background information on this (ordinary) problem. Its systematic study originated with Turán,
who considered forbidding Kr, the complete graph on r vertices. The Turán graph Tr−1(n) is the
complete (r − 1)-partite graph with part sizes as equal as possible; we write tr−1(n) for the number
of edges in Tr−1(n). Then Turán’s Theorem [32] states that ex(n, Kr) = tr−1(n), and Tr−1(n) is the
unique extremal Kr-free graph. Erdős and Stone [14] showed that the behaviour of the Turán number
of a general graph H is determined by its chromatic number. They proved that if χ(H) = r then
ex(n, H) = tr−1(n) + o(n2), which gives asymptotics except when H is bipartite.

Clearly the rainbow Turán number for any H satisfies ex∗(n, H) ≥ ex(n, H). Examples when
equality holds include the cases when H is a star or a triangle, as then any proper edge-colouring of H

is rainbow, and so ex∗(n, H) = ex(n, H). We can describe a general class of graphs in which equality
holds as follows. We say that H is colour-critical if it contains an edge e so that χ(H\e) = χ(H)− 1,
where χ(H) denotes the chromatic number of H. 1 If H is colour-critical and χ(H) = r then a result
of Simonovits [30] shows that ex(n, H) = tr−1(n) for sufficiently large n. Our first result determines
ex∗(n, H) asymptotically for any non-bipartite H and exactly for colour-critical graphs, a class that
includes for example all complete graphs and all cycles of odd length.

Proposition 1.1 The rainbow Turán number ex∗(n, H) satisfies ex(n, H) ≤ ex∗(n, H) ≤ ex(n, H) +
o(n2). Furthermore, if H is colour-critical then ex∗(n, H) = ex(n, H) for n sufficiently large.

The first statement of Proposition 1.1 can be generalized along the lines of [2]: any edge-coloured
graph G on n vertices, with ex(n, Kr) + εn2 edges, and o(n) edges of the same colour at each vertex,
contains a rainbow Kr. To see this, one first observes that G contains o(nr) non-rainbow copies of Kr.
On the other hand, it follows from an inequality of Moon and Moser [25] that G contains Ω(nr) copies
of Kr, and therefore some Kr ⊂ G must be rainbow. The following construction shows that the second
statement of Proposition 1.1 cannot be extended along these lines, even when H is a triangle: take a
balanced complete n by n bipartite graph with parts A and B and add a matching to A. Colour the
edges so that edges e1 and e2 have the same colour if and only if there is a vertex b ∈ B and an edge

1Note that our definition is non-standard; often the term means that deleting any edge reduces the chromatic number.
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a1a2 in A so that e1 = ba1 and e2 = ba2. This graph has no rainbow triangles, at most two colours at
each vertex, and has ex(2n, K3) + n edges.

We will see later that for some bipartite graphs H there is a considerable gap between ex(n, H)
and ex∗(n, H). In general, even the order of magnitude of Turán numbers for bipartite graphs is
not well understood. In the case of complete bipartite graphs, Kővári, Sós and Turán [21] showed
ex(n, Ks,t) = O(n2−1/s), where the implied constant depends only on s and t. The best known bound
on the constant is due to Füredi [15]. For t > (s − 1)! there is a lower bound of the same order of
magnitude given by a construction of [4] (modifying that of [20]). Generalising the upper bound for
Ks,t, Alon, Krivelevich and Sudakov [3] showed ex(n, H) = O(n2−1/s) whenever H is a bipartite graph
in which the vertices of one part all have degree at most s. We note that one can easily deduce the
following rainbow version of this result.

Proposition 1.2 Let H be a bipartite graph in which the vertices of one part all have degree at most
s. Then ex∗(n, H) = O(n2−1/s).

It seems difficult to determine whether ex∗(n, Ks,t) ∼ ex(n, Ks,t), even in the simplest case s = t =
2. This leads us to our next topic - the rainbow Turán problem for even cycles.

1.2 Even cycles and Bk-sets

The case of even cycles is of particular interest, not only in the context of rainbow Turán numbers,
but in its relation to the problem of Bk-sets in combinatorial number theory. Here our lower bound
comes from a construction of Bose and Chowla [9], but to get a matching upper bound we need an
extra assumption.

Theorem 1.3 For all k ≥ 2, there exists an absolute constant c > 0 such that ex∗(n, C2k) ≥ cn1+1/k.
Furthermore, if G is a properly edge-coloured graph without any cycles of length less than 2k and
without any rainbow cycle of length 2k, then G has O(n1+1/k) edges.

An upper bound ex(n, C2k) < c(k)n1+1/k was obtained by Bondy and Simonovits [8]. The best
known bound on the constant c(k) is due to Verstraëte [33]. Based on the evidence of Theorem 1.3
we conjecture that ex∗(n, C2k) has the same order of magnitude.

Conjecture 1.4 For all k ≥ 2, ex∗(n, C2k) = O(n1+1/k).

Remarks.
(1) It is a little surprising that one can find a lower bound ex∗(n, C2k) ≥ cn1+1/k when all the

known constructions of C2k-free graphs have much fewer edges. Lower bounds on ex(n, C2k) of order
n1+1/k are only known for k equal to 2, 3 or 5.

(2) Rödl and Tuza [26] proved the existence of graphs of arbitrarily large girth for which any
proper edge-colouring produces a rainbow cycle. They show that random graphs have this property,
but it would be interesting to give explicit examples of such graphs. The second part of Theorem
1.3 would provide this if we could prove the existence of certain conjectured constructions of graphs
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without short (even) cycles. For example, there are constructions of bipartite graphs with no cycles
of length at most 10 with Ω(n6/5) edges, and our theorem implies that any proper edge-colouring of
such a graph produces a rainbow C12. The best known general constructions are given by Lazebnik,
Ustimenko and Woldar [22] who construct graphs with no cycle of length less than 2k with Ω(n1+1/`)
edges, where ` is approximately 3k/2.

Although we cannot prove Conjecture 1.4 in general, we prove it in the case k = 3. (The case
k = 2 is covered by Theorem 1.2, which gives the bound ex∗(n, K2,2) = O(n3/2).)

Theorem 1.5 There exists absolute constants c2 ≥ c1 > 1 such that

c1ex(n, C6) ≤ ex∗(n, C6) ≤ c2ex(n, C6).

In particular, ex∗(n, C6) = Θ(n4/3).

Note that this theorem demonstrates that ex∗(n, C6) is not asymptotically equal to ex(n, C6), in
contrast with the non-bipartite case.

A B∗
k-set in an abelian group G is a set A ⊂ G with the property that no pair of disjoint k-element

subsets of A have the same sum. Later we will describe a simple construction, for which applying
Theorem 1.5 implies |A| = O(|G|1/3). This gives the correct order of magnitude for the maximum size
of a B∗

3-set, although the constant that we obtain is weaker than that of previously known bounds.
The construction also gives an extra motivation for considering Conjecture 1.4, as it could potentially
give a purely combinatorial way to determine the correct order of magnitude for the maximum size of
a general B∗

k-set. We will give a more detailed discussion of this connection in Section 3.

1.3 Excluding all cycles

A graph on n vertices without any cycle at all has at most n − 1 edges, but how many edges can
there be in a properly coloured graph without a rainbow cycle? By contrast with the ordinary Turán
problem, we can give a construction with Ω(n log n) edges. On the other hand, we cannot improve the
upper bound of O(n4/3) given by Theorem 1.5.

Proposition 1.6 For any m there is a graph with 6m vertices and 6m ·3m/2 edges that can be properly
coloured with no rainbow cycle.

In fact we can construct graphs with Ω(n log n) edges with no cycle that uses more than half as
many colours as edges, so it is natural to relax our problem and ask how many edges are sufficient to
find such a cycle. An additional motivation is that it implies a bound for graphs in which each cycle
uses all of its colours at least twice; these are non-rainbow in a particularly strong way.

Theorem 1.7 Let G be a graph on n vertices so that for all k, any cycle of length 2k uses at most
k different colours. Then the number of edges of G satisfies e(G) < n log2(n + 3)− 2n. Furthermore,
when n is a power of 2 then there is an example of such a graph with 1

2n log2 n edges.
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The rest of this paper is organised as follows. In the next section we prove Propositions 1.1 and 1.2
by reductions to appropriate ordinary Turán problems. Section 3 contains the proofs of the theorems
on cycles and B∗

k-sets. In the last section of the paper we have some concluding remarks and open
problems.

2 Reductions to Turán problems

In this section we show how for certain graphs H the rainbow Turán problem for a graph H can be
reduced to the ordinary Turán problem for some larger graph H ′. We will use this method to prove
Propositions 1.1 and 1.2. The reductions are based on a simple greedy algorithm, which we formulate
as follows.

Lemma 2.1 Suppose G is a properly edge-coloured graph and X is a subset of its vertices for which
the induced graph GX is rainbow. If Y is any set of vertices disjoint from X with |Y | > (|X|−2)e(GX)
then there is a vertex y ∈ Y so that X ∪ {y} induces a rainbow subgraph of G.

Proof. Let C be the set of colours that appear on the edges of GX . By assumption |C| = e(GX).
For each x ∈ X let dx denote the degree of x in GX . There are at most |C| vertices y such that
xy has a colour in C, so at most |C| − dx such vertices in Y . Therefore the number of vertices in
Y that are joined to any vertex in X by an edge with a colour in C is at most

∑
x∈X(|C| − dx) =

|X||C| − 2e(GX) = (|X| − 2)e(GX). Since |Y | is larger than this we can choose y ∈ Y so that no
colour in C appears on the edges from y to X. Since G is properly edge-coloured these edges all have
different colours, so X ∪ {y} induces a rainbow subgraph. �

From this we deduce the following lemma, which provides the reduction for Proposition 1.1. First
we need some notation. We write Kr(t) for the complete r-partite graph with t vertices in each class
and Kr(t)+ for the graph obtained from Kr(t) by adding an edge to one of the classes.

Lemma 2.2
(1) Any proper colouring of Kr(r3t3) contains a rainbow Kr(t) and
(2) Any proper colouring of Kr(r3t3)+ contains a rainbow Kr(t)+.

Proof. It suffices to prove the second statement. For then given any properly coloured Kr(r3t3), we
can add an edge inside a class with some new colour and find a rainbow Kr(t)+. This must use the
added edge, which we delete to get a rainbow Kr(t) in the original graph. Consider then a properly
coloured Kr(r3t3)+ with parts X1, · · · , Xr in which the extra edge joins a and b in X1. We need to
find Y1, · · · , Yr spanning a rainbow subgraph, where Yi ⊂ Xi has size t for each i and {a, b} ⊂ Y1.
This can be achieved by selecting each Yi in turn by the greedy algorithm, starting with Y1 which can
be any t vertices of X1 including a and b. At any stage we have selected at most tr vertices and they
span at most t2

(
r
2

)
edges. We need to choose the next vertex to belong to some Xi and not be one

of the previously chosen vertices, so that the subgraph spanned is again rainbow. This is possible by
Lemma 2.1 as |Xi| = r3t3 > tr + (tr − 2)t2

(
r
2

)
. �
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Proof of Proposition 1.1. Suppose H is a graph on t vertices with chromatic number r. Then H is a
subgraph of Kr(t). By the Erdős-Stone Theorem [14], any graph G on n vertices with ex(n, Kr)+o(n2)
edges will contain a copy of Kr(r3t3). Then a proper colouring of G will yield a rainbow Kr(t) by
Lemma 2.2, which contains a rainbow H. Therefore ex∗(n, H) < ex(n, Kr)+o(n2) = ex(n, H)+o(n2).

Now suppose in addition that H is colour-critical. Then H is a subgraph of Kr−1(t)+. Note that
Kr−1((r − 1)3t3)+ is colour-critical. Then by the result of Simonovits mentioned earlier any graph G

on n vertices with more than ex(n, Kr) edges will contain a copy of Kr−1((r−1)3t3)+, for n sufficiently
large. A proper colouring of G will yield a rainbow Kr−1(t)+ by Lemma 2.2, which contains a rainbow
H. Therefore ex∗(n, H) = ex(n, H) = ex(n, Kr). �

Example. We remark that ex∗(n, H) is not equal to ex(n, H) for a general non-bipartite graph.
Consider for example a graph H that consists of t triangles that all share exactly one common vertex
(a ‘t-fan’). Erdős, Füredi, Gould and Gunderson [11] showed that ex(n, H) is equal to bn2/4c+ t2 − t

for t odd and bn2/4c+ t2 − 3t/2 for t even, when n ≥ 50t2. On the other hand, we have ex∗(n, H) ≥
bn2/4c+ (t− 1)bn/2c, as shown by the following construction. Start with any proper colouring of the
Turán graph T2(n). Now add t − 1 new matchings to the graph, each with its own new colour. Any
rainbow subgraph of this construction uses at most t − 1 edges that did not come from the Turán
graph. On the other hand it is impossible to obtain a bipartite graph by deleting t − 1 edges from
a t-fan, so the construction does not have a rainbow t-fan. Therefore for any constant C there is a
non-bipartite graph H with ex∗(n, H)− ex(n, H) > Cn for large n.

Next we prove Proposition 1.2, which states that if H = (X, Y ) is any bipartite graph in which the
vertices of X all have degree at most s, then ex∗(n, H) = O(n2−1/s). Given a graph G, call a subset
A of vertices (s, b)-common if every s vertices in A have at least b common neighbours. We use the
following consequence of Lemma 2.1 of Alon, Krivelevich and Sudakov [3]: for any a, b, s there is a
constant c such that any graph on n vertices with at least cn2−1/s edges contains an (s, b)-common
set of size a. When H has h vertices we choose a = h and b = h3.

Proof of Proposition 1.2. Let H = (X, Y ) and h, c be as defined in the previous paragraph. Suppose
G is a properly coloured graph on n vertices with at least cn2−1/s edges. By definition there is an
(s, h3)-common set A of size h. Choose any set Y ′ of |Y | vertices in A to represent the part Y of H.
We select vertices of G to represent X by a greedy algorithm. Suppose we have come to some x in X.
Let Yx ⊂ Y be its neighbours in H and let Y ′

x be their representatives in Y ′. We have already chosen
less than h vertices, so there are less than

(
h
2

)
forbidden colours, and so less than h

(
h
2

)
< h3 vertices

that cannot be used as representative for x. By definition |Y ′
x| ≤ s so there are at least h3 common

neighbours of Y ′
x in G. We can choose any of these that is not forbidden as a representative of x. �

There are certain complete bipartite graphs for which the Turán numbers are known asymptotically,
not just to order of magnitude. Füredi showed in [15] that ex(n, K3,3) = (1 + o(1))1

2n5/3 and in [16]
that ex(n, K2,t) = (1 + o(1))1

2

√
t− 1 n3/2. In the following lemma we analyse our greedy procedure

more carefully to get the best constants achievable by our reduction method.

Lemma 2.3 Suppose s, t > 1 and t′ > (s(s − 1) + 1)(t − 1). Then any proper colouring of Ks,t′

contains a rainbow Ks,t.
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Proof. Let Ks,t′ be properly coloured, and denote the parts by A,B where |A| = s, |B| = t′. Suppose
we have chosen v1, · · · , vp in B so that A ∪ {v1, · · · , vp} spans a rainbow subgraph H, for some p < t.
Let C be the colours appearing on edges of H, so that |C| = ps. For each a in A there are at
most p(s − 1) vertices b in B\{v1, · · · , vp} for which ab has a colour in C. Then there are at most
p + |A| · p(s− 1) = p(1 + s(s− 1)) < t′ unavailable vertices in B, so we can choose vp+1. �

Remark. We can give a construction that shows that the bound for t′ in Lemma 2.3 cannot be
improved in general, which suggests that an improvement in the constant for ex∗(n, Ks,t) will not
come from a reduction to an ordinary Turán problem. It is based on the well-known result of Singer
[31] that when q is a prime power there is a (v, q +1, 1) difference set D in Z/vZ, where v = q2 + q +1.
(For definitions and a proof see [23] chapter 27.) Our construction is to take a complete bipartite
graph with parts D and Z/vZ×{1, · · · , t− 1}, where for d ∈ D, x ∈ Z/vZ and 1 ≤ i ≤ t− 1 we colour
the edge joining d to (x, i) with the pair (d + x, i). We leave the interested reader to verify that when
s = q + 1 we have a proper colouring of Ks,(s(s−1)+1)(t−1) with no rainbow Ks,t.

It follows from this lemma and the result of Füredi previously mentioned that ex∗(n, K2,t) <

(1 + o(1))1
2

√
3(t− 1)n3/2. It is natural to ask whether this constant may be improved. For instance,

in the simplest case of quadrilaterals (C4 = K2,2) we only know that the inferior and superior limits
of ex∗(n, C4)/n3/2 lie between 1/2 and

√
3/2.

Problem 2.4 Determine the asymptotic behaviour of ex∗(n, C4) – that is, prove that the limit

lim
n→∞

ex∗(n, C4)
n3/2

exists and determine its value.

Example. For bipartite graphs H, it is not necessarily the case that ex∗(n, H) is asymptotically equal
to ex(n, H). The path with t edges Pt is a counterexample whenever t is of the form 2k − 1 for an
integer k ≥ 2. It is well-known and easy to show that ex(n, Pt) ≤ (t − 1)n/2. (Equality can hold for
a graph that is a disjoint union of copies of Kt.) On the other hand, Maamoun and Meyniel [24] give
an example of a proper colouring of K2k containing no rainbow path with 2k − 1 edges. (The vertices
are identified with the vectors Fk

2 and an edge is coloured by the difference of its vertices.) Taking a
disjoint union of such K2k ’s we obtain ex∗(n, P2k−1) ≥

(
2k

2

)
bn/2kc = (1 + o(1))2k−1

2k−2
ex(n, P2k−1).

In general, it seems an interesting problem to determine the asymptotics of ex∗(n, Pt). We remark
that it is not hard to show that for the simplest case P3 the above construction is essentially tight, in
that ex∗(n, P3) ≤ 3n/2. (The key observation is that if G has no rainbow P3 and d(x) ≥ 4 then there
are no edges incident to the neighbours of x other than those incident to x.) A natural conjecture is
that the optimal construction should be a disjoint union of cliques of size c(t), where c(t) is chosen as
large as possible so that the cliques can be properly coloured with no rainbow Pt. It is not hard to
see that t ≤ c(t) ≤ 2(t− 1), where the upper bound is our usual greedy argument. Even the problem
of determining c(t) exactly may be difficult.

Problem 2.5 Determine the asymptotic behaviour of ex∗(n, Pt).
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3 Even cycles and B∗
k-sets

For a subset A of an abelian group G, we define the coloured bipartite Cayley graph as follows. The
two parts X, Y are both copies of G, we join x ∈ X to y ∈ Y if y − x ∈ A, and then the edge xy is
assigned the colour y− x. Note that this is a properly coloured graph. Suppose that x1y1 · · ·xkyk is a
rainbow cycle of length 2k. Let B = {y1−x1, · · · , yk −xk} and C = {y1−x2, · · · , yk−1−xk, yk −x1}.
Then B,C are disjoint k-subsets of A with the same sum. We say A is a B∗

k-set if no such subsets
exist. Thus a bound on the number edges in a graph with no rainbow C2k gives a bound on the size
of a B∗

k-set.

A related and more commonly studied condition is the following. We call A a Bk-set if any element
g ∈ G has at most one representation of the form g = a1 + · · ·+ak with ai ∈ A for 1 ≤ i ≤ k, where we
do not count permutations of the summands as being a different representation. There are

(|A|+k−1
k

)
different representations, so if |G| = n we have |A| < (k!n)1/k. When G = Z/nZ Bose and Chowla [9]
constructed Bk sets of size (1 + o(1))n1/k, showing that n1/k is the correct order of magnitude. Note
that a Bk-set is in particular a B∗

k-set, so there are B∗
k-sets in Z/nZ of size (1 + o(1))n1/k. An upper

bound of the same order of magnitude was obtained by Ruzsa [28], who showed that a B∗
k-set in the

integers {1, · · · , n} has at most (1 + o(1))k2−1/kn1/k elements. One of the outstanding problems in
combinatorial number theory is to close the gap between the upper and lower bounds for such sets.

3.1 Rainbow Turán for even cycles

In this subsection we prove Theorem 1.3, which concerns the rainbow Turán number ex∗(n, C2k). The
lower bound (1+o(1))(n/2)1+1/k follows from the bipartite Cayley graph construction described above,
applied to a Bose-Chowla Bk-set in Z/nZ. Now we will show a corresponding upper bound under the
additional assumption of there being no strictly shorter cycles in the underlying graph.

Proof of Theorem 1.3. Let G be a graph on n vertices with no cycle of length less than 2k. Suppose
G has a proper colouring with no rainbow C2k. Let d = 2e(G)/n be the average degree. We will show
that d < 2(k2n)1/k + 4k for large n. Note that we can assume that G has minimum degree at least
d/2, as deleting a vertex of degree less than d/2 does not decrease the average degree. We start by
showing that the number of rainbow paths of length k satisfies

Rk ≥ 2−k+1nd(d− 1)
k−2∏
i=1

(d− 4i). (1)

This follows by induction on k. First of all, by Cauchy-Schwartz there are at least n
(
d
2

)
(rainbow)

paths of length 2. For t ≥ 2 each rainbow path of length t + 1 contains 2 rainbow paths of length
t. Also, given a rainbow path of length t, each of its endpoints is incident to at least d/2 edges, of
which at most t− 1 have endpoints on the path and at most t− 1 others have a colour that appears
on the path, so it can be extended to a rainbow path of length t + 1 in at least 2(d/2− 2(t− 1)) ways.
Therefore Rt+1 ≥ (d/2− 2(t− 1))Rt, which proves the claim.

Given a pair of vertices a, b let pab denote the number of rainbow paths of length k with endpoints
a and b. Since G has girth at least 2k any two such paths ax1 · · ·xk−1b and ax′1 · · ·x′k−1b are internally
disjoint, i.e. ax1 · · ·xk−1bx

′
k−1 · · ·x′1 is a 2k-cycle. By assumption, there are two edges of the same
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colour on this cycle. Say that a path y1 · · · yt is special if there is some i > 1 such that y1y2 and
yiyi+1 have the same colour, and no other pair of edges have the same colour. We claim that the cycle
ax1 · · ·xk−1bx

′
k−1 · · ·x′1 contains a special path of length k + 1.

To see this, we start with the shortest path that contains two edges with the same colour. One of
each must appear on the two rainbow paths joining a and b, so suppose the path is xi · · ·x1ax′1 · · ·x′j
for some i, j. Here xi−1xi and x′j−1x

′
j have the same colour (using the shorthand x0 = x′0 = a) and

no other pair of edges have the same colour. The length of the path is i + j. Note that xi−1xi and
x′j−1x

′
j belong to the path xi−1 · · ·xk−1bx

′
k−1 · · ·x′j−1 of length 2(k + 1)− (i + j), and as we chose the

shortest path it has length i + j ≤ k + 1. Now consider the path xt · · ·x1ax′1 · · ·x′k+1−t where t ≥ 1 is
chosen as small as possible so that the colour of xt−1xt is repeated on the path. This path exists by
the preceding discussion, and there are no other repetitions of colours, as this would contradict the
minimality of t. Therefore we have found a special path of length k + 1.

Note that each special path of length k + 1 contains a rainbow path of length k (obtained by
deleting the end-edge whose colour is repeated) and each rainbow path of length k can be extended
to at most 2(k− 1) special paths of length k +1. This shows that there are at most 2(k− 1)Rk special
paths of length k + 1. Also, since G has girth at least 2k there is at most one path of length k − 1
between any two points, so each special path comes from at most one C2k. Each such C2k can be
written as the union of two rainbow paths of length k in at most k ways. We conclude that

1
k

∑
a,b

(
pab

2

)
≤ 2(k − 1)Rk = 2(k − 1)

∑
a,b

pab.

This can be rewritten as
∑

a,b p2
a,b ≤ (4k(k − 1) + 1)

∑
a,b pab. By the Cauchy-Schwartz inequality

∑
a,b

p2
ab ≥

(
n

2

)−1
∑

a,b

pab

2

and so we see that
∑

a,b pab ≤ (4k(k − 1) + 1)
(
n
2

)
. Now by equation (1) we have

2−k+1nd(d− 1)
k−2∏
i=1

(d− 4i) ≤ Rk =
∑
a,b

pab ≤ (4k(k − 1) + 1)
(

n

2

)
,

which implies d < 2(k2n)1/k + 4k. �

3.2 Rainbow Turán for C6

In this subsection we discuss the rainbow Turán problem for the six-cycle (or hexagon). For the
ordinary Turán problem the best known bounds are due to Füredi, Naor and Verstraëte [17]. They
show that (1 + o(1))αn4/3 ≤ ex(n, C6) ≤ (1 + o(1))βn4/3, where α = 3(

√
5 − 2)(

√
5 − 1)−4/3 ∼ 0.534

and β ∼ 0.627 is the real root of 16β3 − 4β2 + β − 3 = 0. We will prove Theorem 1.5, which states
that there are constants c2 ≥ c1 > 1 such that c1ex(n, C6) ≤ ex∗(n, C6) ≤ c2ex(n, C6). We will not
attempt to optimise these constants. First we need a lemma.

Lemma 3.1 Let G be a bipartite graph on n vertices with average degree d = 2e(G)/n. Suppose G does
not contain K2,t and has a proper edge-colouring with no rainbow C6. Then d < ((11t− 12)n)1/3 + 4.
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Proof of Lemma 3.1. We can assume that G has minimum degree at least d/2, as deleting a vertex
of degree less than d/2 does not decrease the average degree. As in the proof of Theorem 1.3 we see
that the number of rainbow paths of length 3 satisfies

R3 ≥
1
4
nd(d− 1)(d− 4). (2)

Given a pair of vertices a, b we write pab for the number of rainbow paths of length 3 that have
endpoints a and b. We claim that there are at least

(
pab
2

)
−(5t−6)pab pairs of such paths (axyb, ax′y′b)

for which axyby′x′ is a 6-cycle and x′y′ has the same colour as xy. To see this, fix any rainbow path
axyb. Since G does not contain K2,t there are at most t− 2 other paths of the form axy′b and at most
t − 2 other paths of the form ax′yb. This shows that there are at most (t − 2)pab (unordered) pairs
(axyb, ax′y′b) for which axyby′x′ does not form a 6-cycle. Now consider ax′y′b for which axyby′x′ is
a 6-cycle. By assumption this is not rainbow so there are two edges with the same colour. There
are at most 2 vertices x′ 6= x such that ax′ has a colour from the path axyb, so at most 2(t − 1)
paths ax′y′b where ax′ has a colour from the path axyb. Similarly there are at most 2(t − 1) paths
ax′y′b where y′b has a colour from the path axyb. Therefore there are at most 4(t − 1)pab pairs
(axyb, ax′y′b) such that axyby′x′ is a 6-cycle and one of ax, yb has a colour from ax′y′b or one of
ax′, y′b has a colour from axyb. Since there is no rainbow C6, for any 6-cycle axyby′x′ not covered by
the above exceptions the edges xy and x′y′ have the same colour. It follows that there are at least(
pab
2

)
− (t− 2)pab − 4(t− 1)pab =

(
pab
2

)
− (5t− 6)pab pairs (axyb, ax′y′b) for which axyby′x′ is a 6-cycle

and x′y′ has the same colour as xy.

Call a path special if its first and last edges have the same colour and no other pair of edges have
the same colour. (Note that this is slightly different to the definition used in the proof of Theorem
1.3.) A special path of length k contains 2 rainbow paths of length k − 1, and each rainbow path of
length k − 1 is contained in at most 2 special paths of length k, so the number of rainbow paths of
length k− 1 is an upper bound on the number of special paths of length k. To each pair (axyb, ax′y′b)
for which axyby′x′ is a 6-cycle and x′y′ has the same colour as xy we can associate the two special
paths of length four xyby′x′ and yxax′y′. Also, each special path of length four belongs to at most
t− 1 6-cycles (as there is no K2,t), and it is counted by exactly one partition of any such 6-cycle into
two rainbow paths of length 3. It follows that there are at least 2

t−1

∑
a,b

((
pab
2

)
− (5t− 6)pab

)
special

paths of length 4. As noted above, the number of special paths of length 4 is at most the number of
rainbow paths of length 3, which equals

∑
a,b pab by definition. We conclude that

2
t− 1

∑
a,b

((
pab

2

)
− (5t− 6)pab

)
≤

∑
a,b

pab.

This may be re-written as
∑

a,b p2
ab ≤ (11t− 12)

∑
a,b pab. By the Cauchy-Schwartz inequality

∑
a,b

p2
ab ≥

(
n

2

)−1
∑

a,b

pab

2

and so we see that
∑

a,b pab ≤ (11t − 12)
(
n
2

)
. Recalling that R3 =

∑
a,b pab and equation (2) we get

1
2nd(d− 1)(d− 4) ≤ (11t− 12)

(
n
2

)
, which gives d < (1 + o(1))((11t− 12)n)1/3 + 4. This completes the

proof. �
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Proof of Theorem 1.5. We start with the upper bound. Let G be a graph on n vertices that is
properly coloured with no rainbow C6. It contains a bipartite subgraph G′ with e(G′) ≥ e(G)/2. We
say that a subgraph K2,t of G′ is maximal if it is not contained in K2,t′ for any t′ > 2. We claim that
if G′ contains a maximal K2,s and a maximal K2,t with s, t ≥ 9 then they must be edge-disjoint.

For suppose that (A1, B1) is a maximal K2,s with |A1| = 2, |B1| = s ≥ 9, (A2, B2) is a maximal
K2,t with |A2| = 2, |B2| = t ≥ 9, and xy is a common edge. Consider first the case when x ∈ A1 ∩A2

and y ∈ B1 ∩ B2. By maximality we have A1 = {x, z1} and A2 = {x, z2} with z1 6= z2. Let c1 be
the colour of yz1 and c2 of yz2. There are at most 4 vertices b1 in B1 such that xb1 or z1b1 has has
colour c1 or c2, so we can choose b1 ∈ B1 so that xb1 has colour c3, z1b1 has colour c4 and c1, · · · , c4

are all different. Now there are at most 8 vertices b2 in B2 so that xb2 or z2b2 has a colour among
c1, · · · , c4. Choosing any other b2 we obtain a rainbow 6-cycle xb1z1yz2b2. Now consider the case when
x ∈ A1 ∩ B2 and y ∈ B1 ∩ A2. Write A1 = {x, z1} and A2 = {y, z2}. Let c1 be the colour of yz1 and
c2 of xz2. There are at most 4 vertices b1 in B1 such that xb1 or z1b1 has has colour c1 or c2, so we
can choose b1 ∈ B1 so that xb1 has colour c3, z1b1 has colour c4 and c1, · · · , c4 are all different. Now
there are at most 8 vertices b2 in B2 so that yb2 or z2b2 has a colour among c1, · · · , c4. Choosing any
other b2 we obtain a rainbow 6-cycle xb1z1yb2z2. It follows that any edge of G′ belongs to at most one
maximal K2,t with t ≥ 9.

Suppose that (A,B) is a maximal K2,t with A = {a1, a2} and |B| = t ≥ 9. Delete from G′ all
edges joining a1 to B. Repeat this process as long as there is any (maximal) K2,t with t ≥ 9. Note
that we have considered mutually disjoint sets of edges and deleted half of each, so we have deleted at
most half of the edges of G′. The remaining graph G′′ contains no K2,9. By Lemma 3.1 it has average
degree d′′ < (1 + o(1))(87n)1/3. Therefore e(G) ≤ 2e(G′) ≤ 4e(G′′) = 2d′′n < 9n4/3 for large n.

There is a lower bound ex∗(n, C6) ≥ ex(n, C6) = Ω(n4/3), but here we will give a better construction
to show ex∗(n, C6) > c ex(n, C6) with c > 1. Suppose n is even and consider a graph G0 on n/2 vertices
with no cycle of length at most 6. Let G be the two-point blowup of G0, i.e. for each vertex v ∈ G0

there are two vertices v0, v1 in G, and for each edge uv ∈ G0 we have all four edges uivj , 0 ≤ i, j ≤ 1
in G. Choose an arbitrary proper edge-colouring c0 of G0. We define an edge-colouring c of G by the
rule c(uivj) = (c0(uv), i + j mod 2). By this we mean that the colour of an edge is an ordered pair:
the first element is the colour of the edge in G0 it came from, and the second element is chosen to be
0 or 1 in a way that ensures that the resulting edge-colouring is proper.

We claim that G has no rainbow C6. For suppose C = aαbβcγdδeεfζ is a 6-cycle in G. Then abcdef

is a closed walk in G0, which has no cycle of length at most 6, and it is easy to see that it must consist
of a path of length 3 traversed in both directions. Without loss of generality a and d are the endpoints
of this path. Then e = c and f = b, so ε = γ + 1 and ζ = β + 1, which gives ε + ζ = γ + β (mod 2).
Thus the edges bβcγ and eεfζ have the same colour, so C is not rainbow.

We can choose the graph G0 to have e(G0) = (n/4)4/3 + O(n) (see remark 3 following this proof.)
Then ex∗(n, C6) ≥ e(G) = 4e(G0) = 4−1/3n4/3 + O(n) ≥ (1 + λ + o(1))ex(n, C6), where using the
upper bound for ex(n, C6) quoted at the beginning of this subsection one may calculate that λ ≥
4−1/3β−1 − 1 > 1/250. This completes the proof of the theorem. �

Remarks.
(1) It follows from the proof that an edge-coloured bipartite graph on 2n vertices with no rainbow

C6 has at most 1
29(2n)4/3 < 12n4/3 edges (for large n). Applying this to a bipartite Cayley graph we
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see that in any abelian group of order n, a B∗
3-set can have at most 12n1/3 elements.

(2) We have made no attempt to optimise the constants in our arguments, but it seems interesting
that we have a purely combinatorial argument that gives the correct order of magnitude.

(3) The construction given in the above proof may be generalised as follows. Write z(n, H) for the
maximum number of edges in an H-free bipartite graph with n vertices in each part, and let z∗(n, H)
denote the rainbow analogue of this definition. Applying the construction when G0 is a bipartite graph
with no cycles of length at most 2k we see that z∗(2n, C2k) ≥ 4z(n, C4, · · · , C2k) for any k. It is shown
in [17] that z(n, C6) ≤ 21/3n4/3+O(n), and there is a lower bound z(n, C4, C6) ≥ n4/3+O(n) attributed
to Benson [6]. Therefore z∗(n, C6) ≥ 4z(n/2, C4, C6) ≥ 4(n/2)4/3 + O(n) ≥ (1 + o(1))21/3z(n, C6).

3.3 Excluding all cycles

Now we will consider the problem of excluding any rainbow cycle. Note that the ordinary Turán
problem is easy in this case: an acyclic graph on n vertices has at most n − 1 edges, with equality
for a tree. On the other hand, we can construct graphs with order n log n edges that can be properly
coloured with no rainbow cycle.

One construction is the m-cube, a bipartite graph in which the vertices are all subsets of {1, · · · ,m}
and for any A ⊂ {1, · · · ,m} and i ∈ A there is an edge between A and A\{i} of colour i. There are
no rainbow cycles in this graph, and in fact every cycle of length 2k uses at most k different colours.
Indeed, if a cycle contains an edge (A,A\{i}) of colour i then the path continuing along the cycle from
A\{i} must again use at least one edge of colour i in order to reach A, which contains the element i.
The m-cube has n = 2m vertices and m2m−1 = 1

2n log2 n edges.

An improvement in the constant can be obtained by using as a building block the bipartite graph
K3,3 with parts {x0, x1, x2} and {y0, y1, y2} in which the edge xiyj has colour i − j mod 3. Clearly
this contains no rainbow cycles.

Proof of Proposition 1.6. We construct a graph whose vertices are sequences of length m in which
each term is one of x0, x1, x2, y0, y1, y2 (notation as above). Two sequences z = (z1, · · · , zm) and
z′ = (z′1, · · · , z′m) are adjacent if there is some s such that zt = z′t for t 6= s and zsz

′
s is an edge of

the building block K3,3. We colour such an edge zz′ with the pair (s, c), where c is the colour of zsz
′
s.

Consider any cycle z1, · · · , zk. For any 1 ≤ s ≤ m the terms z1
s , · · · , zk

s , z1
s form a sequence of vertices

in K3,3 in which each term is either adjacent or equal to the one preceding it. There is at least one
s for which these terms are not all equal. Then there is a closed walk in K3,3 whose edges appear
as adjacent members of z1

s , · · · , zk
s , so some colour is repeated. It follows that there are no rainbow

cycles. This graph has n = 6m vertices and 6m · 3m/2 = 3
2 log2 6n log2 n > 0.58n log2 n edges. �

We do not have a good upper bound for the problem of finding a rainbow cycle, but we can
determine the order of magnitude for finding a cycle with more than half as many colours as edges.

Proof of Theorem 1.7. A construction with 1
2n log2 n edges when n is a power of 2 was described

above. For the upper bound let G be a graph on n vertices so that any cycle of length 2k uses at most
k different colours for any k. Let d = 2e(G)/n be the average degree. By deleting vertices of small
degree we can assume that the minimum degree is at least d/2. We claim that the number of rainbow
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paths of length k satisfies

Rk > 2n

k−1∏
i=0

(d/2− i). (3)

The proof is a slight improvement on that given for equation (1) in Theorem 1.3. As before we have
R2 ≥ n

(
d
2

)
which is larger than 2n(d/2)(d/2− 1). For t ≥ 2 each rainbow path of length t+1 contains

2 rainbow paths of length t. Also, given a rainbow path of length t, each of its endpoints is incident to
at least d/2 edges, of which only one has an endpoint on the path (otherwise there would be a rainbow
cycle) and at most t − 1 others have a colour that appears on the path, so it can be extended to a
rainbow path of length t + 1 in at least 2(d/2− t) ways. Therefore Rt+1 ≥ (d/2− t)Rt, which proves
the claim.

Note that if a pair of vertices is joined by two rainbow paths then they have the same length. For
the symmetric difference of the paths is a disjoint union of cycles, and if one of them is longer then
it will contribute more than half of the edges of one of these cycles. Since the path is rainbow this
cycle will have more than half as many colours as edges, which is a contradiction. The same argument
shows that in fact the two paths use exactly the same set of colours.

For each k let Hk be the graph consisting of all pairs ab for which there is a rainbow path of
length k from a to b in G. Consider such a path using colours c1, · · · , ck. We showed above that
any other such path uses a permutation of these colours. Since G is properly coloured it is uniquely
determined by the permutation, so there are at most k! such paths. Therefore e(Hk) ≥ Rk/k!, which
gives

∑
k≥1 Rk/k! ≤

∑
k≥1 e(Hk) ≤

(
n
2

)
, since for k 6= k′ the graphs Hk and Hk′ are edge-disjoint.

Recalling that Rk > 2n
∏k−1

i=0 (d/2− i). we see that

2n(2d/2 − 1) = 2n
∑
k≥1

(
d/2
k

)
<

∑
k≥1

Rk/k! ≤
(

n

2

)
,

which gives d < 2 log2(n + 3)− 4, i.e. e(G) < n log2(n + 3)− 2n. �

Remark. A properly edge-coloured d-regular graph on n vertices has at least nd(d−1) · · · (d−k+1) =
nk!

(
d
k

)
rainbow walks of length k. It is natural to conjecture that a graph with average degree d should

have at least this many rainbow walks of length k. Under the assumptions of the above theorem all
rainbow walks are in fact paths, so if this conjecture is true we would have Rk ≥ 1

2nk!
(
d
k

)
and so(

n
2

)
≥

∑
k≥1 Rk/k! ≥ 1

2n
∑

k≥1

(
d
k

)
= n(2d − 1), i.e. d ≤ log2 n. This would show that the lower bound

is tight, not just asymptotically but exactly when n is a power of 2.

We conclude this subsection with an argument very similar to the previous proof that gives a girth
result for this weaker condition on cycle colourings, under a weaker assumption than the type used in
Theorem 1.3.

Theorem 3.2 Suppose k > 1 and let G be a graph on n vertices so that any cycle of length 2t uses
at most t different colours for any t ≤ k. Then e(G) < (1 + o(1))(k!)1/kn1+1/k.

Proof of Theorem 3.2. Let G be a graph on n vertices so that any cycle of length 2t uses at
most t different colours for any t ≤ k. Let d = 2e(G)/n be the average degree. By deleting vertices
of small degree we can assume that the minimum degree is at least d/2. As in the previous proof
we have Rk > 2n

∏k−1
i=0 (d/2 − i). Defining Hk as before we have Rk/k! ≤ e(Hk) ≤

(
n
2

)
. Therefore

d < (1 + o(1))2(k!n/4)1/k, so e(G) < (1 + o(1))k!1/kn1+1/k. �
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4 Concluding remarks and open problems

• There is a natural extension of our problem to hypergraphs: if F is a fixed r-uniform hypergraph
then ex(n,F) denotes the number of edges in the largest F-free r-uniform hypergraph on n

vertices, and ex∗(n,F) is the maximum number of edges in a properly edge-coloured r-uniform
hypergraph on n vertices with no rainbow F . We remark that the arguments of Proposition 1.1
can be extended to show that ex∗(n,F) ≤ ex(n,F) + o(nr). The details are very similar, and
instead of the Erdős-Stone theorem one uses Erdős-Simonovits supersaturation [13], which states
that ex(n,F(t)) ≤ ex(n,F) + o(nr). (Here F(t) denotes the t-point blowup of F .) Since even
the ordinary Turán theory of hypergraphs is poorly understood, we will not study this question
any further here.

• We have seen that for non-bipartite H the rainbow Turán number ex∗(n, H) is asymptotically
equal to the ordinary Turán number ex(n, H). For bipartite graphs we have seen some evidence
that these quantities may have the same order of magnitude. They are not asymptotically equal
in general, as we saw with the examples of a path of length 3 and a six-cycle. It seems plausible
that other bipartite graphs, such as even cycles and complete bipartite graphs, should also exhibit
this phenomenon. Perhaps it will be helpful for intuition in rainbow Turán problems to prove
some natural structural properties. For example, is it true that a properly edge-coloured graph
G with no rainbow H has a proper edge-colouring using the minimum possible number of colours
(i.e. χ′(G)) which also has no rainbow H?

• In Section 3.3, we observed that an n-vertex properly edge-coloured d-regular graph contains
nk!

(
d
k

)
walks of length k, and conjecture that this is a lower bound for the number of rainbow

walks of length k in any properly coloured n vertex graph of average degree d. For some intuition
as to why this conjecture might be true, we cite an inequality of Blakley and Roy [7] that implies
that a graph with average degree d has at least ndk walks of length k. Secondly, there is the
following result of Alon, Hoory and Linial that may be found within the proof in [1]. Consider a
walk of length k using the edges e1, · · · , ek in succession. It is a non-returning walk if we never
have ei = ei+1. It is shown in [1] that a graph with n vertices and average degree d has at least
nd(d − 1)k−1 non-returning walks of length k. A possible generalisation of these results is to
count walks of length k in which there are ai forbidden edges at the ith step (possibly depending
on the walk so far). One might think that a graph with n vertices and average degree d has at
least n

∏k
i=1(d−ai) such walks. This would include our conjecture on rainbow walks as a special

case.

• We have mentioned a number of open problems throughout the paper, but for the convenience
of the reader we conclude by repeating the two we consider most important.

1. How many edges can a properly edge-coloured graph on n vertices have if it contains no
rainbow cycles?

2. How many edges can a properly edge-coloured graph on n vertices have if it contains no
rainbow C2k?

Acknowledgment. We thank an anonymous referee for suggestions that improved the presentation of
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[13] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983),
181–192.
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