Coloring the cube with rainbow cycles

Dhruv Mubayi* Randall Stading ${ }^{\dagger}$

December 7, 2012

Abstract

For every even positive integer $k \geq 4$ let $f(n, k)$ denote the minimim number of colors required to color the edges of the n-dimensional cube Q_{n}, so that the edges of every copy of the k-cycle C_{k} receive k distinct colors. Faudree, Gyárfás, Lesniak and Schelp proved that $f(n, 4)=n$ for $n=4$ or $n>5$. We consider larger k and prove that if $k \equiv 0(\bmod 4)$, then there are positive constants c_{1}, c_{2} depending only on k such that $$
c_{1} n^{k / 4}<f(n, k)<c_{2} n^{k / 4} .
$$

Our upper bound uses an old construction of Bose and Chowla of generalized Sidon sets. For $k \equiv 2(\bmod 4)$, the situation seems more complicated. For the smallest case $k=6$ we show that $$
n \leq f(n, 6)<n^{1+o(1)} .
$$

The upper bound is obtained from Behrend's construction of a subset of the integers with no three term arithmetic progression.

1 Introduction

Given graphs G and H, and an integer $q \leq|E(H)|$, a (G, H, q)-coloring is an edge-coloring of G such that the edges of every copy of H in G receive at least q colors. Let $f(G, H, q)$ be the minimum number of colors in a (G, H, q)-coloring. This general problem is hopeless in most cases, for example, when G and H are cliques, and $q=2$, determining it is equivalent to determining the multicolor Ramsey number $R_{k}(p)$ which is a longstanding open problem. There has been more success in determining $f(G, H, q)$ when G and H are not cliques or when $q>2$ (or both). Many Ramsey problems have received considerable attention when studied on the n-dimensional cube. The papers [2,3] are examples where anti-Ramsey

[^0]problems for subcubes in cubes and problems about monochromatic cycles in cubes are investigated. In [12], Offner found the exact value for the maximum number of colors for which it is possible to edge color the hypercube so that all subcubes of dimension d contain all colors. Related Turán type problems for subcubes in cubes have been studied in [1].

Rainbow cycles have also been well studied as subgraphs of K_{n}. Erdős, Simonovits and Sós [13] introduced $A R(n, H)$, the maximum number of colors in an edge coloring of K_{n} such that it contains no rainbow copy of H, and provided a conjecture when H is a cycle and showed that their conjecture was true when $H=C_{3}$. Alon [14] proved their conjecture for cycles of length four and Montellano-Ballesteros and Neumann-Lara [11] proved the conjecture for all cycles in 2003. More recently, Choi [15] gave a shorter proof of the conjecture.

We continue this theme in the current note and let $G=Q_{n}$, the n-dimensional cube, and $H=C_{k}$, the cycle of length k. Our focus is on $q=|E(H)|$, in which case we will call a (G, H, q)-coloring an H-rainbow coloring, assuming that G is obvious from context (in this paper $G=Q_{n}$ always).

Definition 1 For $4 \leq k \leq 2^{n}$, let $f(n, k)=f\left(Q_{n}, C_{k}, k\right)$ be the minimum number of colors in a C_{k}-rainbow coloring of Q_{n}.

The smallest case $f(n, 4)$ was studied by Faudree, Gyárfás, Lesniak and Schelp [7] who proved that the trivial lower bound of n is tight by providing, for all $n \geq 6$, a C_{4}-rainbow coloring with n colors. We consider larger k. Our first result determines the order of magnitude of $f(n, k)$ for $k \equiv 0(\bmod 4)$.
Theorem 2 Fix a positive $k \equiv 0(\bmod 4)$. There are constants $c_{1}, c_{2}>0$ depending only on k such that

$$
c_{1} n^{k / 4}<f(n, k)<c_{2} n^{k / 4} .
$$

The case $k \equiv 2(\bmod 4)$ seems more complicated. Our results imply that for such fixed k there are positive constants $c_{1}^{\prime}, c_{2}^{\prime}$ with

$$
c_{1}^{\prime} n^{\lfloor k / 4\rfloor}<f(n, k)<c_{2}^{\prime} n^{\lceil k / 4\rceil} .
$$

We believe that the lower bound is closer to the truth. As evidence for this, we tackle the smallest case in this range, $k=6$. As we will observe later, the lower bound $f(n, 6) \geq n$ is trivial for $n \geq 3$, and we obtain the following upper bound.
Theorem 3 For every $\epsilon>0$ there exists n_{0} such that for $n>n_{0}$ we have $f(n, 6) \leq n^{1+\epsilon}$.
It is rather easy to see that $f\left(Q_{n}, Q_{3}, 12\right)=f\left(Q_{n}, C_{6}, 3\right)$. Indeed, if Q_{n} is edge-colored so that every Q_{3} is rainbow, then every C_{6} is rainbow since each one is contained in a rainbow Q_{3} and so $f\left(Q_{n}, Q_{3}, 12\right) \geq f\left(Q_{n}, C_{6}, 3\right)$. On the other hand, it is easy to see that any two edges of a Q_{3} lie in some C_{6} and therefore if Q_{n} is edge-colored so that every C_{6} is rainbow then every Q_{3} must also be rainbow and so $f\left(Q_{n}, Q_{3}, 12\right) \leq f\left(Q_{n}, C_{6}, 3\right)$.

Since $C_{4}=Q_{2}$, the following corollary can also be considered an extension of the result [7] to subcubes.

Corollary 4 As $n \rightarrow \infty$, we have $f\left(Q_{n}, Q_{3}, 12\right)=n^{1+o(1)}$.
We will consider the vertices of Q_{n} as binary vectors of length n or as subsets of $[n]=$ $\{1, \ldots, n\}$, depending on the context (with the natural bijection $\vec{v} \leftrightarrow v$ where \vec{v} is the incidence vector for $v \subset[n]$, i.e. $\vec{v}_{i}=1$ iff $i \in v$). In particular, whenever we write $v-w$ we mean set theoretic difference, $v \cup w$ or $v \cap w$ we mean set union/intersection and when we write $\vec{v} \pm \vec{w}$ we mean vector addition/subtraction modulo 2 . We write e_{i} for the standard basis vector, so e_{i} is one in the i th coordinate and zero in all other coordinates. Given an edge $f=u v$ of Q_{n} where $\vec{v}=\vec{u}+e_{s}$ for some s, we say that v is the top vertex of f and u is the bottom vertex. We will say the an edge is on level i of Q_{n} if its bottom vertex corresponds to a vector with $i-1$ ones and the top vertex to a vector with i ones.

2 Proof of Theorem 2

The lower bound in Theorem 2 follows from the easy observation that in a C_{k}-rainbow coloring all edges at level $k / 4$ must receive distinct colors. Indeed, given any two such edges $f_{1}=v w$ and $f_{2}=x y$, where $\vec{w}=\vec{v}+e_{i}$ and $\vec{y}=\vec{x}+e_{j}$, it suffices to find a copy of C_{k} containing f_{1} and f_{2}. If f_{1} and f_{2} are incident then it is clear that we can find a C_{k} containing them as long as $n>k$ which we may clearly assume. The two cases are illustrated below where $r=k / 2-2$ and $s_{i} \notin w \cup y$ for all $i \in\{1, \ldots, r\}$.

Now, suppose f_{1} and f_{2} are not incident. We know that $|x \Delta v| \leq k / 2-2$ since x and v are each sets of size $k / 4-1$. By successively deleting elements of v and x in the appropriate order, we can obtain a v, x-path of length $k / 2-2$. Then, since w and y are sets of size $k / 4$, we may find a w, y-path of length $k / 2$ between them by successively adding the elements of y to w and vice versa along with extra elements as needed. The two paths along with
the edges $v w$ and $x y$ form a cycle of length k. This is shown in the following diagram. Let $y-w=\left\{y_{1}, \ldots, y_{m}\right\}, w-y=\left\{w_{1}, \ldots, w_{m}\right\}$ and $w \cap y=\left\{z_{1}, \ldots, z_{l}\right\}$ where $m+l=k / 4$. Let $\left\{s_{1}, \ldots, s_{r}\right\}$ again be a set such that $s_{i} \notin y \cup w$ with $r=k / 4-m$.

For the upper bound we need a classical construction of generalized Sidon sets by Bose and Chowla. A B_{t}-set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is a set of integers such that if $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{t} \leq n$ and $1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{t} \leq n$, then

$$
s_{i_{1}}+\cdots+s_{i_{t}} \neq s_{j_{1}}+\cdots+s_{j_{t}}
$$

unless $\left(i_{1}, \ldots, i_{t}\right)=\left(j_{1}, \ldots, j_{t}\right)$. A consequence of this is that if P, Q are nonempty disjoint subsets of $[n]$ with $|P|=|Q| \leq t$, then

$$
\begin{equation*}
\sum_{i \in P} s_{i} \neq \sum_{j \in Q} s_{j} . \tag{1}
\end{equation*}
$$

The result below is phrased in a form that is suitable for our use later.
Theorem 5 (Bose-Chowla [5]) For each fixed $t \geq 2$, there is a constant $A>1$ such that for all n, there is a B_{t}-set $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset\left\{1,2, \ldots,\left\lfloor A n^{t}\right\rfloor\right\}$.

Now we provide the upper bound construction for Theorem 2.
Construction 1. Let $t=k / 4-1$ and $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset\left\{1,2, \ldots,\left\lfloor A n^{t}\right\rfloor\right\}$ be a B_{t}-set as above. For each $v \in V\left(Q_{n}\right)$, let

$$
a(v)=\sum_{i=1}^{n} \vec{v}_{i} s_{i}=\sum_{i: \vec{v}_{i}=1} s_{i} .
$$

Given $v w \in E\left(Q_{n}\right)$ with $\vec{w}=\vec{v}+e_{j}$, let $M=\left\lceil k A n^{t}\right\rceil$, and let

$$
d(v w)=a(v)+M j .
$$

Suppose further that $v w$ is at level p and p^{\prime} is the congruence class of p modulo $k / 2$. Then the color of the edge $v w$ is

$$
\chi(v w)=\left(d(v w), p^{\prime}\right) .
$$

Let us now argue that this construction yields the upper bound in Theorem 2. First, the number of colors is at most

$$
\max _{v w} d(v w) \times \frac{k}{2} \leq\left(n \cdot \max s_{i}+M n\right) \frac{k}{2} \leq \frac{n k}{2} A n^{t}+\frac{n k}{2} M<k^{2} A n^{t+1}=k^{2} A n^{k / 4}
$$

as desired. Now we show that this is a C_{k}-rainbow coloring. Suppose for contradiction that H is a copy of C_{k} in Q_{n} and $f_{1}=v w, f_{2}=x y$ are distinct edges of H with $\chi\left(f_{1}\right)=\chi\left(f_{2}\right)$. Since H spans at most $k / 2$ levels, f_{1} and f_{2} cannot lie in levels that differ by more than $k / 2$, so $\chi\left(f_{1}\right) \neq \chi\left(f_{2}\right)$ unless f_{1} and f_{2} are in the same level which we may henceforth assume. Let v, x be the bottom vertices of f_{1}, f_{2}, and $\vec{w}=\vec{v}+e_{i}, \vec{y}=\vec{x}+e_{j}$. Assume without loss of generality that $i \leq j$. If $v=x$, then

$$
a(v)+M i=d(v w)=d(x y)=a(x)+M j=a(v)+M j .
$$

This implies that $i=j$ and contradicts the fact that $f_{1} \neq f_{2}$. We may therefore assume that $v \neq x$. Similarly, if $w=y$, then $i<j$ and
$a(w)-s_{i}+M i=a(v)+M i=d(v w)=d(x y)=a(x)+M j=a(y)-s_{j}+M j=a(w)-s_{j}+M j$.
This implies the contradiction $s_{j}-s_{i}=M(j-i) \geq M>A n^{t}>s_{j}-s_{i}$. Consequently, we may assume that $v w$ and $x y$ share no vertex.

If $|v \triangle x|>k / 2$, then any v, x-path in Q_{n} has length more than $k / 2$ so there can be no cycle of length k containing both v and x, contradiction. So we may assume that $|v \triangle x| \leq k / 2$. Now $\chi(v w)=\chi(x y)$ implies that

$$
a(v)+M i=d(v w)=d(x y)=a(x)+M j
$$

and this yields

$$
M(j-i)=M j-M i=a(v)-a(x)=a(v-x)-a(x-v) \leq \frac{|v \triangle x|}{2} A n^{t} \leq \frac{k}{4} A n^{t}<M .
$$

Consequently, we may assume that $i=j, a(v)=a(x), a(v-x)=a(x-v)$ and $|v \triangle x|=$ $|w \triangle y|$. If $|v-x|=|x-v| \leq k / 4-1$, then

$$
a(v-x)=\sum_{i \in v-x} s_{i} \neq \sum_{j \in x-v} s_{j}=a(x-v)
$$

due to (1), the definition of S and $t=k / 4-1$. So we may assume that $|v-x|=|x-v|=k / 4$ and $|w \triangle y|=|v \triangle x|=k / 2$. This implies that $\operatorname{dist}_{Q_{n}}(w, y)=\operatorname{dist}_{Q_{n}}(v, x)=k / 2$. Together with edges f_{1}, f_{2}, we conclude that C must have at least $k+2$ edges, contradiction.

3 Proof of Theorem 3

We will first show the lower bound $f(n, 6) \geq n$ for $n \geq 3$. It is immediate that no two edges incident with 0 receive the same color, for otherwise there would be two edges of the same color on level 1 of Q_{n} which we could easily extend to a non-rainbow C_{6}. Indeed, let i, j, k be distinct and consider the following C_{6} :

$$
0 \quad e_{i} \quad e_{i}+e_{k} \quad e_{k} \quad e_{j}+e_{k} \quad e_{j} \quad 0 .
$$

To obtain the upper bound, we will give an explicit coloring that makes use of a classical construction of Behrend on sets of integers with no arithmetic progression of size three. Let $r_{3}(N)$ denote the maximum size of a subset of $\{1, \ldots, N\}$ that contains no 3 -term arithmetic progression.

Theorem 6 (Behrend [4]) There is a $c>0$ such that if N is sufficiently large, then

$$
r_{3}(N)>N^{1-\frac{c}{\sqrt{\log N}}} .
$$

Theorem 6 clearly implies that for $\epsilon>0$ and sufficiently large N we have $r_{3}(N)>N^{1-\epsilon}$. The error term ϵ was improved recently by Elkin [6] (see [8] for a simpler proof) and using Elkin's result would give corresponding improvements in our result.

Construction 2. Let $\epsilon>0$ and n be sufficiently large. Put $N=\left\lceil n^{1+\epsilon}\right\rceil$ and let $S=$ $\left\{s_{1}, \ldots, s_{n}\right\} \subset\{1, \ldots, N\}$ contain no 3 -term arithmetic progression. Such a set exists by Theorem 6 since

$$
n>n^{1-\epsilon^{2}}=n^{(1-\epsilon)(1+\epsilon)}>N^{1-2 \epsilon} .
$$

Let

$$
a(v)=\sum_{i=1}^{n} \vec{v}_{i} s_{i} .
$$

Consider the edge $v w$, where $\vec{w}=\vec{v}+e_{k}$. Let

$$
d(v w)=a(v)+2 s_{k} \in Z_{2 N} .
$$

We emphasize here that we are computing $d(v w)$ modulo $2 N$. Suppose further that $v w$ is at level p and p^{\prime} is the congruence class of p modulo 3 . Then the color of the edge $v w$ is

$$
\chi(v w)=\left(d(v w), p^{\prime}\right) .
$$

The number of colors used is at most $6 N<n^{1+2 \epsilon}$ as required. We will now show that this is a C_{6}-rainbow coloring. Due to the second coordinate, it suffices to show that any two edges f_{1}, f_{2} of a C_{6} which are on the same of level of Q_{n} receive different colors. If f_{1} and f_{2} are incident, then they meet either at their top vertices or bottom vertices.

If incident at their bottom vertices, the edges are colored as follows and thus are distinctly colored:

If incident at their top vertices, the edges lie on a C_{4} and are therefore distinctly colored.

If f_{1} and f_{2} are not incident, then there must be a path of length two between their bottom vertices. For if not, then they could not lie on a C_{6} as the shortest path between their top vertices has length at least two. Moreover, the top vertices of f_{1} and f_{2} have symmetric difference precisely two since there is a path of length two between them. With these conditions, there are three ways the edges may be colored.

In the first coloring, $s_{i}+2 s_{j} \neq s_{k}+2 s_{j}$ holds due to i and k being distinct. In the second and third colorings, $s_{i}+2 s_{j} \neq s_{k}+2 s_{i}$ and $s_{i}+2 s_{j} \neq s_{j}+2 s_{k}$ hold due to our set S being free of three term arithmetic progressions.

4 Concluding Remark

Our results imply a tight connection between C_{k}-rainbow colorings in the cube and constructions of large generalized Sidon sets. When $k \equiv 0(\bmod 4)$ Construction 1 gives the correct order of magnitude, however for $k \equiv 2(\bmod 4)$ the same method does not work. In this case an approach similar to Construction 2 would work provided we can construct large sets that do not contains solutions to certain equations.

Conjecture 7 Fix $4 \leq k \equiv 2(\bmod 4)$. Then $f(n, k)=n^{\lfloor k / 4\rfloor+o(1)}$.
For the first open case $k=10$, we can show that $f(n, 10)=n^{2+o(1)}$ provided one can construct a set $S \subset[N]$ with $|S|>N^{1 / 2-o(1)}$ that contains no nontrivial solution to any of the following equations:

$$
\begin{gathered}
x_{1}+x_{2}=x_{3}+x_{4} \\
x_{1}+x_{2}+x_{3}=x_{4}+2 x_{5} \\
x_{1}+2 x_{2}=x_{3}+2 x_{4} .
\end{gathered}
$$

Ruzsa $[9,10]$ defined the genus $g(E)$ of an equation

$$
E: \quad a_{1} x_{1}+\cdots+a_{k} x_{k}=0
$$

as the largest m such that there is a partition $S_{1} \cup \ldots \cup S_{m}$ of $[k]$ where the S_{i} are disjoint, non-empty and for all j,

$$
\begin{equation*}
\sum_{i \in S_{j}} a_{i}=0 . \tag{2}
\end{equation*}
$$

A solution $\left(x_{1}, \ldots, x_{k}\right)$ of E is trivial if there are l distinct numbers among $\left\{x_{1}, \ldots, x_{k}\right\}$ and (2) holds for a partition $S_{1} \cup \ldots \cup S_{l}$ of [k] into disjoint, non-empty parts such that $x_{i}=x_{j}$ if and only if $i, j \in S_{v}$ for some v.

Ruzsa showed that if $S \subset[n]$ has no nontrivial solutions to E then $|S| \leq O\left(n^{1 / g(E)}\right)$. The question of whether there exists S with $|S|=n^{1 / g(E)-o(1)}$ remains open for most equations E. The set of equations above has genus two so it is plausible that one can prove Conjecture 7 for $k=10$ using this approach.

For the general case, we can provide a rainbow coloring if our set S contains no nontrivial solutions to any of the three equations below with $m=\lfloor k / 4\rfloor$.

$$
\begin{gathered}
x_{1}+\cdots+x_{m}=x_{m+1}+\cdots+x_{2 m} \\
x_{1}+\cdots+x_{m}+x_{m+1}=x_{m+2}+\cdots+x_{2 m}+2 x_{2 m+1} \\
x_{1}+\cdots+x_{m-1}+2 x_{m}=x_{m+1}+\cdots+x_{2 m-1}+2 x_{2 m}
\end{gathered}
$$

The set of equations above has genus $m=\lfloor k / 4\rfloor$, so if Ruzsa's question has a positive answer, then we would be able to construct a set of the desired size.

References

[1] N. Alon, A. Krech, T. Szabó, Turán's theorem in the hypercube. SIAM J. Discrete Math. 21 (2007), no. 1, 6672.
[2] N. Alon, R. Radoičić, B. Sudakov and J. Vondrák, A Ramsey-type result for the hypercube. J. Graph Theory 53 (2006), no. 3, 196-208.
[3] M. Axenovich, H. Harborth, M. Möller and I. Schiermeyer, Rainbows in the hypercube. (English summary) Graphs Combin. 23 (2007), no. 2, 123-133.
[4] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. U.S.A. 32, (1946). 331-332.
[5] R. C. Bose, S. Chowla, Theorems in the additive theory of numbers. Comment. Math. Helv. 37 1962/1963 141-147.
[6] M. Elkin, An improved construction of progression-free sets. Israel J. Math. 184 (2011), 93-128.
[7] R. J. Faudree, A. Gyárfás, L. Lesniak and R.H. Schlep, Rainbow coloring the cube. J. Graph Theory 17 (1993), no. 5, 607-612.
[8] B. Green, J. Wolf, A note on Elkin's improvement of Behrend's construction, in Additive Number Theory (Festschrift in honour of Mel Nathanson), Springer 2010, 141-144.
[9] I. Z. Ruzsa, Solving a linear equation in a set of integers. I. Acta Arith. 65 (1993), no. 3, 259-282.
[10] I. Z. Ruzsa, Solving a linear equation in a set of integers. II. Acta Arith. 72 (1995), no. 4, 385-397.
[11] J. J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem on cycles. Graphs Combin. 22 (2005) no. 3, 343-354.
[12] D. Offner, Polychromatic colorings of subcubes of the hypercube. SIAM J. Discrete Math 22 (2008) no. 2, 450-454.
[13] P. Erdős, M. Simonovits, and V. T. Sós, Anti-Ramsey theorems. Infinite and finite sets. Colloq. Math. Soc. Janos Bolyai 10 (1975) 633-643.
[14] N. Alon, On a conjecture of Erdős, Simonovits, and Sós concerning anti-Ramsey theorems. J. Graph Theory 7 (1983) no. 1, 91-94.
[15] J. Choi, A short proof of anti-Ramsey number for cycles. preprint.

[^0]: *Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL 60607; email: mubayi@math.uic.edu; research supported in part by NSF grant DMS 0969092
 ${ }^{\dagger}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL 60607; email: rstadi1@uic.edu

