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Abstract

Fix k ≥ 11 and a rainbow k-clique R. We prove that the inducibility of R is k!/(kk − k).
An extremal construction is a balanced recursive blow-up of R. This answers a question posed
by Huang, that is a generalization of an old problem of Erdős and Sós. It remains open to
determine the minimum k for which our result is true. More generally, we prove that there is
an absolute constant C > 0 such that every k-vertex connected rainbow graph with minimum
degree at least C log k has inducibility k!/(kk − k).

1 Introduction

Fix a graph F on k vertices and another graph G on n > k vertices. Write I(F,G) for the number
of k-subsets S ⊂ V (G) such that G[S] ∼= F and let

ϱ(F,G) :=
I(F,G)(

n
k

) .

Many foundational questions in extremal graph theory deal with estimating ϱ(F,G) for various
choices of F and G. One central question is to determine the minimum value when F is a clique
and G has a specified edge density [15, 13, 16], but there are also many fundamental questions
about the maximum value regardless of edge density. This is the direction we take here.

Let I(F, n) be the maximum of I(F,G) over all n vertex graphs G. A standard averaging argument
implies that

ind(F, n) :=
I(F, n)(

n
k

) ≤ I(F, n− 1)(
n−1
k

) = ind(F, n− 1).

Thus, ind(F, n) is a decreasing sequence bounded below by zero, so it has a limit. Define the
inducibility of F to be

ind(F ) := lim
n→∞

ind(F, n).
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The iterated balanced blow-up of a graph F is a family GF (n) of graphs on n vertices defined
inductively as follows. Label V (F ) with [k] := {1, . . . , k}. For n < k, the family GF (n) contains
only the empty graph on n vertices. For n ≥ k, for any G ∈ GF (n), we have a partition V (G) =
V1 ∪ · · · ∪ Vk with the following properties:

1. For all i, j ∈ [k],
∣∣|Vi| − |Vj |

∣∣ ≤ 1.

2. For all i ∈ [k], the induced subgraph G[Vi] ∈ GF (|Vi|).

3. For all v ∈ Vi, w ∈ Vj with i ̸= j, we have vw ∈ E(G) if and only if ij ∈ E(F ).

In many interesting cases, the construction above achieves the inducibility of F and we now define
this formally (our definition is slightly different than that in [11]).

Definition 1.1. A graph F is a fractalizer if

ind(F ) = lim
n→∞

max
G∈GF (n)

ϱ(F,G).

In other words, the iterated balanced blow-up of F achieves the inducibility.

The subgraph induced by every k-set comprising exactly one vertex in each Vi is isomorphic to F .
Consequently, for every G ∈ GF (n),

I(F,G) ≥
k∑

i=1

I(F,G[Vi]) +
k∏

i=1

|Vi|.

Together with a standard computation (see, e.g. [12]), this yields

ind(F ) ≥ lim
n→∞

max
G∈GF (n)

ϱ(F,G) ≥ k!

kk − k
. (1)

Hence, if F is a fractalizer, then ind(F ) ≥ k!/(kk − k). In most cases we consider, the fact that F
is a fractalizer will imply further that ind(F ) = k!/(kk − k).

The fundamental conjecture in this area, due to Pippenger and Golumbic [14], states that for k ≥ 5,
the cycle Ck is a fractalizer and satisfies ind(Ck) = k!/(kk − k). This conjecture has been resolved
for k = 5 by Balogh, Hu, Lidický, and Pfender [1] (see also [11]), but remains open for all k ≥ 6.
Král, Norin, and Volec [10] showed that I(Ck, n) ≤ 2nk/kk. More generally, Fox, Huang, and
Lee [6] and Yuster [17] independently proved that random graphs are fractalizers asymptotically
almost surely. Fox, Sauermann, and Wei [7] further proved that random Cayley graphs of abelian
groups with small number of vertices removed are almost surely fractalizers.

We now consider these notions on colored and directed structures. A tournament is an orientation
of a complete graph. An edge-coloring of a graph or tournament G is a function χ : E(G) → T
where T is a set of colors; we say that G is T -colored. A colored graph or tournament G is rainbow
if χ is injective. Two colored graphs (or tournaments) G and H are isomorphic, written G ∼= H,
if there exists a bijection φ : V (G) → V (H) such that the colors (and orientations) of all edges
are preserved under φ. If F is a colored tournament or colored complete graph, then ind(F ) is
defined identically as in the graph case, but with these altered definitions of graph isomorphism;
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naturally, the underlying graph G should have the colors or orientations corresponding to F . If F
is an arbitrary colored graph, then we can color all missing edges with a single new color and view
F as a colored complete graph. Consequently, we can define fractalizer for all these structures.

There are very few results on the inducibility of colored, oriented, or directed structures. The first
exact result which involved an iterated construction was due to Huang [8] who determined the
inducibility of the directed star. Later, in order to solve an old conjecture of Erdős and Hajnal [5]
in hypergraph Ramsey theory, the third author and Razborov [12] proved the following result for
k ≥ 4 (the case that k = 3 was proven earlier by Conlon, Fox, and Sudakov [3]).

Theorem 1.2 ([12]). All rainbow tournaments R on k ≥ 4 vertices are fractalizers. In particular,
ind(R) = k!/(kk − k).

In this paper, we consider the question addressed by Theorem 1.2 in the undirected setting. The
first conjecture in this setting is due to Erdős and Sós from the 1970s (see [5, Equation (20)]), and
implies, in particular, that a rainbow triangle is not a fractalizer. Their conjecture was proved by
Balogh et. al. [2], who showed that a blow-up of a properly 3-edge-colored K4 (instead of a rainbow
K3) achieves the inducibility of the rainbow triangle. See also [4] for similar computations, but in
terms of the number of edges of each color instead of the number of vertices.

Huang [9] asked whether Theorem 1.2 can be extended to the undirected setting for cliques of size
larger than three. This, in particular, would imply that the phenomenon conjectured by Erdős and
Sós and proved in [2] (that Kk is not a fractalizer for k = 3) fails to hold for larger k. Our first
result addresses Huang’s question and proves that rainbow Kk are fractalizers for k ≥ 11.

Theorem 1.3. All rainbow cliques R on k ≥ 11 vertices are fractalizers. In particular,

ind(R) =
k!

kk − k
.

We make the following observations regarding Theorem 1.3.

� Theorem 1.3 implies Theorem 1.2 for k ≥ 11, since any construction of a tournament inducing
ℓ rainbow copies of R yields a corresponding construction of a complete graph that induces
at least ℓ rainbow (undirected) copies of R by ignoring orientations.

� Similarly, if a graph G on k vertices is known to have inducibility k!/(kk − k), then the
rainbow k-clique is a fractalizer as well by the following argument. Let R be a rainbow k-
clique and let e1, e2, . . . , em ∈ E(R) such that (V (R), {e1, . . . , em}) is a rainbow copy of G.
Let c1, . . . , cm be the colors assigned to e1, . . . , em, respectively. Then any construction of an
edge-colored graph inducing ℓ rainbow copies of R induces at least ℓ copies of G by deleting
all edges except those colored by c1, . . . , cm and then ignoring the edge colors. It follows that
ind(R) ≤ ind(G) = k!/(kk − k), so R is a fractalizer. Thus, the result of [1] that C5 is a
fractalizer with ind(C5) = 5!/(55 − 5) implies that the rainbow 5-clique is a fractalizer, and
the result of [6] that random graphs are almost surely fractalizers implies that the rainbow
k-clique is a fractalizer for large k.

� We believe our proof of Theorem 1.3 has been optimized and requires k ≥ 11. As [1] showed
that rainbow 5-cliques are fractalizers, and [2] showed that rainbow 3-cliques are not frac-
talizers, it remains open to determine whether rainbow k0-cliques are fractalizers only for
k0 ∈ {4, 6, 7, 8, 9, 10}.
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Our proof of Theorem 1.3 follows the broad framework of the proof of Theorem 1.2 but there are
several nontrivial technical difficulties that need to be addressed in the undirected setting. The
difficulties arise due to the following reason: the role that each endpoint of an edge plays in a
rainbow copy of a tournament is determined by the color and orientation of the edge, but this is
no longer true in the undirected setting. We overcome these obstacles by adding some new ideas,
at the expense of requiring a slightly higher value of k. For example, our proof of Theorem 1.3
requires a bound on the color degree of a vertex and this was not needed in [12].

For large values of k, we prove the following more general result which shows that the analog of
Theorem 1.3 holds for much sparser graphs. The proof requires several major new ideas.

Theorem 1.4. There exists an absolute constant C > 0 such that all connected rainbow graphs R
with k vertices and minimum degree at least C log k are fractalizers and satisfy

ind(R) =
k!

kk − k
.

We make the following observations regarding Theorem 1.4.

� Theorem 1.4 implies Theorem 1.3 for large k, since Rmay be viewed as a rainbow k-clique with
edges deleted. Let c1, c2, . . . , cm be the colors assigned to the deleted edges. Any construction
of a colored complete graph inducing ℓ rainbow copies of the rainbow k-clique yields at least
ℓ rainbow copies of R by deleting edges colored c1, . . . , cm.

� The requirement that R is connected in the statement of Theorem 1.4 is necessary, as discon-
nected rainbow graphs without isolated vertices are not fractalizers (see Section 4).

� We are not able to show that our requirement on minimum degree is tight, and this remains
open.

Theorem 1.3 is proven in Section 2 and Theorem 1.4 is proven in Section 3. In Section 4, we justify
the second observation above.

2 Proof of Theorem 1.3

We give the proof of Theorem 1.3 in the following subsections.

2.1 Setup

Fix k ≥ 11 and T =
(
[k]
2

)
. Let R be a T -colored rainbow k-clique with coloring function χR and for

concreteness, put V (R) := [k] and χR(ij) = {i, j} for all i, j ∈ [k].

Set

a :=
k!

kk − k
.

Our goal is to prove that ind(R) ≤ a. To this end, fix γ > 0 and assume for contradiction ind(R) =
a+ γ. Next choose 0 < ε < min{γ, ind(R)}/100. Let c0 be chosen so that ind(R,n) ≤ ind(R) + ε
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for all n > c0. Choose n0 ≥ ⌈2k!c0/ε⌉ such that

nk

(n)k
< 1 + ε (2)

and

a

(
nk−1

(k − 1)!
−
(
n− 1

k − 1

))
< γ

(
n− 1

k − 1

)
−
(
n− 2

k − 2

)
(3)

for all n > n0. This is possible since limn→∞ nk/(n)k = 1 and nk−1/(k − 1)! −
(
n−1
k−1

)
= O(nk−2),

while γ
(
n−1
k−1

)
−
(
n−2
k−2

)
= Ω

(
nk−1

)
as n → ∞. Suppose that n > n0 is given and H is a T -colored

n-vertex graph with coloring function χH achieving I(R,n). This implies

I(R,H) = I(R,n) = ind(R,n)

(
n

k

)
where a+ γ = ind(R) ≤ ind(R,n) ≤ ind(R) + ε = a+ γ + ε.

Definition 2.1. For q ≥ 0 and t > 0, let p(q, t) be the maximum of
∏

i qi where q1 + · · ·+ qt = q
and each qi ≥ 0 an integer.

The AMGM inequality yields p(q, t) ≤ (q/t)t and it is easy to see that

p(q, t)p(q′, t′) ≤ p(q + q′, t+ t′) (4)

for all q, q′ ≥ 0 and t, t′ > 0 (see Appendix).

For a vertex x in V (H) and i ∈ [k], write di(x) for the number of copies of R containing x where
x plays the role of vertex i in R. More formally, di(x) is the number of isomorphic embeddings
ϕ : R → H such that ϕ(i) = x. Let d(x) =

∑
i di(x) be the number of copies of R containing x.

We will refer to this as the degree of x in H. Similarly, let d(x, y) be the number of copies of R
containing both x and y. For i ∈ [k], let Ni(x) be the set of y ∈ V (H) \ {x} for which there is
a copy of R in H containing both x and y in which x plays the role of vertex i in R. Note that
we do not have Nj(x) ∩ Nj′(x) = ∅ for j ̸= j′, but all edges between Nj(x) ∩ Nj′(x) and x have

the same color. However, Ni(x) has a (unique) partition ∪j ̸=iN
j
i (x) where N j

i (x) comprises those
y such that x, y lie in a copy of R with x playing the role of i and y playing the role of j. Indeed,
the partition is obtained based on the color of a vertex to x. This gives

d(x) =

k∑
i=1

di(x) ≤
k∑

i=1

∏
j ̸=i

|N j
i (x)| ≤

k∑
i=1

p(|Ni(x)|, k − 1). (5)

We partition V (H) into V1 ∪ · · · ∪ Vk, where

Vi = {x ∈ V (H) : |Ni(x)| ≥ |Nj(x)| for all j ̸= i}.

If there is a tie, we break it arbitrarily. Set ni = |Vi| for all i ∈ [k].
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2.2 Minimum degree

Here we show that a standard technique in extremal graph theory can be used to prove that each
vertex of H lies in at least the average number of copies of R (apart from a small error term).

Lemma 2.2. d(x) ≥ ank−1/(k − 1)! for all x ∈ V (H).

Proof. We write d = b± c for the inequalities b− c ≤ d ≤ b+ c. Denote the average degree of H by

d(H) :=
k · I(R,H)

n
= ind(R,n)

(
n− 1

k − 1

)
.

We claim that for every x ∈ V (H)

d(x) = d(H)±
(
n− 2

k − 2

)
. (6)

This follows from a standard application of Zykov symmetrization. Indeed, if the degrees of two
vertices x and y differ by more than

(
n−2
k−2

)
, say d(x) > d(y) +

(
n−2
k−2

)
, then we can delete y and

duplicate x, meaning we add a new vertex x′ with χH(x′z) = χH(xz) for all other vertices z, and
χH(xx′) can be arbitrary. This transformation increases the number of copies of R by at least

d(x)− d(y)− d(x, y) ≥ d(x)− d(y)−
(
n− 2

k − 2

)
> 0,

contradicting the maximality I(R,H) = I(R,n). Hence all degrees lie in an interval of length at
most

(
n−2
k−2

)
and (6) follows, since this interval must contain d(H). In particular, the minimum

degree is at least

d(H)−
(
n− 2

k − 2

)
= ind(R,n)

(
n− 1

k − 1

)
−
(
n− 2

k − 2

)
≥ (a+ γ)

(
n− 1

k − 1

)
−
(
n− 2

k − 2

)
> a

nk−1

(k − 1)!

for n > n0. The last inequality follows from (3).

2.3 Maximum color degree

Let

α :=
maxx,i,j d{i,j}(x)

n

where the maximum is taken over all vertices x ∈ V (H) and all colors {i, j} ∈ T and d{i,j}(x) is
the number of edges in H incident with x in color {i, j}. We upper bound this value.

Lemma 2.3. α ≤ 0.4.

Proof. Let x, i, j achieve this maximum, so that d{i,j}(x) = αn. Then |N j
i (x)| ≤ αn and Ni(x) has

a partition N j
i (x)

⋃
∪ℓ ̸=jN

ℓ
i (x) where every copy of R containing x with x playing the role of i has

exactly one vertex in each N ℓ
i (x) for all ℓ ∈ [k] \ {i}. Further,∣∣∣∣∣∣

⋃
ℓ̸=j

N ℓ
i (x)

∣∣∣∣∣∣ ≤ n− d{i,j}(x)
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since a vertex incident to an edge colored {i, j} cannot play the role of ℓ ̸= i, j. Consequently,

di(x) ≤ |N j
i (x)| · p

(
n− d{i,j}(x), k − 2

)
≤ αn ·

(
(1− α)n

k − 2

)k−2

.

The same upper bound holds for dj(x). For ℓ ̸∈ {i, j}, we have Nℓ(x) ≤ n − d{i,j}(x) since x is
playing the role of ℓ, so we cannot include an edge incident to x of color {i, j} since the color must
include ℓ. Hence

dℓ(x) ≤ p
(
n− d{i,j}(x), k − 1

)
≤
(
(1− α)n

k − 1

)k−1

≤
(
(1− α)n

k − 2

)k−1

.

Altogether this yields

d(x) ≤ 2αn

(
(1− α)n

k − 2

)k−2

+ (k − 2)

(
(1− α)n

k − 2

)k−1

= (1 + α)

(
1− α

k − 2

)k−2

nk−1.

Suppose for contradiction that α > 0.4. Since k ≥ 3, (1 + α)(1− α)k−2 is a decreasing function of
α for α ∈ (0.4, 1], and d(x) ≥ ank−1/(k − 1)! by Lemma 2.2. Therefore

1

kk−1 − 1
=

a

(k − 1)!
≤ d(x)

nk−1
≤ 1.4

(
0.6

k − 2

)k−2

. (7)

However, this fails to hold for k ≥ 11 (see Appendix), and we conclude that α ≤ 0.4 as desired.

2.4 The second largest neighborhood

For a vertex x ∈ V (H), let Z(x) be the second largest set in {N1(x), . . . , Nk(x)} and define

z := zk,n = max
x∈V (H)

|Z(x)|
n

.

Lemma 2.4. z ≤ 0.5.

Proof. Let x be such that z = |Z(x)|/n. Let ai = |Ni(x)|/n and assume by relabeling that
a1 ≥ a2 = z ≥ a3 ≥ · · · ≥ ak. Since Nj(x) ∩ Nj′(x) ∩ Nj′′(x) = ∅ for any three distinct j, j′, j′′

we have
∑

ai ≤ 2. Let a3 + · · · + ak = s ≤ 2 − (a1 + z). Write s = qz + r where q ∈ Z≥0 and
0 ≤ r < z. If x ≤ y, then xk−1 + yk−1 < (x− ρ)k−1 +(y+ ρ)k−1 for 0 < ρ < x by convexity of xk−1

so successively increasing the largest ai to z and decreasing the smallest aj to 0 or r, we obtain

k∑
i=3

ak−1
i ≤ qzk−1 + rk−1 ≤ qzk−1 +

r

z
zk−1 =

s

z
zk−1 ≤ 2− (a1 + z)

z
zk−1.

Consequently,

k∑
i=1

ak−1
i = ak−1

1 + zk−1 +

k∑
i=3

ak−1
i ≤ ak−1

1 + zk−1 +
2− (a1 + z)

z
zk−1.
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Since a1 ≥ z, taking the derivative shows that for any z, this expression is increasing with a1. Using
Lemma 2.3, we note that a1 + z ≤ 1 + α < 1.4 since

|N1(x)|+ |Z(x)| = |N1(x) ∪ Z(x)|+ |N1(x) ∩ Z(x)| ≤ n+ d{1,2}(x) ≤ n+ αn < 1.4 · n.

Thus a1 < 1.4− z and a1 ≤ 1, so

k∑
i=1

ak−1
i ≤ ak−1

1 + zk−1 +
2− (a1 + z)

z
zk−1 ≤ (min{1.4− z, 1})k−1 + zk−1 +

0.6

z
zk−1.

Using (5) and Lemma 2.2 yields

1

kk−1 − 1
≤ d(x)

nk−1
≤

k∑
i=1

(
ai

k − 1

)k−1

≤ 1

(k − 1)k−1

(
(min{1.4− z, 1})k−1 + zk−1 +

0.6

z
zk−1

)
.

Multiplying by (k − 1)k−1 and using the fact that

(k − 1)k−1

kk−1 − 1
≥ (k − 1)k−1

kk−1
=

(
1− 1

k

)k−1

>
1

e
(8)

for k > 1, we obtain
1

e
< (min{1.4− z, 1})k−1 + zk−1 + 0.6 · zk−2.

As z ≤ a1 and z + a1 < 1.4, we have z < 0.7. Thus, the RHS is nonincreasing with k and we
may consider only the k = 11 case. Numerical calculations show that for z ∈ [0.5, 0.7], we have
(1.4− z)10 + z10 + 0.6z9 < 1/e, so we conclude that z < 0.5.

2.5 One large part

We now take care of the situation when one of the Vi’s is very large.

Lemma 2.5. |Vi| ≤ (1− 1/3k)n for all i ∈ [k].

Proof. By contradiction, WLOG suppose that |V1| > (1−1/3k)n. If x ∈ V1, then |N1(x)| ≥ |Ni(x)|
for all i > 1 so |N2(x)| ≤ |Z(x)| ≤ zn. Using (5) we have

a

(
n

k

)
≤ I(R,H) =

∑
x∈V (H)

d2(x) ≤ |V1|p(zn, k − 1) +
n

3k
p(n, k − 1) <

(
zk−1 +

1

3k

)
nk

(k − 1)k−1
.

Using our lower bound on n0 in (2), we get(
(k − 1)k−1

kk − k

)
< (1 + ε)

(
zk−1 +

1

3k

)
. (9)

This fails to hold for k ≥ 11 (see Appendix). We conclude that |Vi| ≤ (1−1/3k)n for all i ∈ [k].
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2.6 Counting the copies of R in H

Here we describe the broad framework we will use to count copies of R in H. This is the same as
in [12], though there are subtle differences which arise since we are in the undirected setting.

Call a copy f of R in H transversal if it includes exactly one vertex in Vi for all i ∈ [k]. We partition
the copies of R in H as Hm ∪ Hg ∪ Hb where Hm comprises those copies that lie entirely inside
some Vi, Hg comprises those copies that intersect every Vi whose edge coloring coincides with the
natural one given by the vertex partition (meaning the map from R to H takes vertex i to a vertex
in Vi), and Hb comprises all other copies of R (these include transversal copies, but some vertex in
any such copy will be in an inappropriate Vi). Let hm = |Hm|, hg = |Hg| and hb = |Hb| so that

I(R,H) = hm + hg + hb.

We will bound each of these three terms separately. First, note that

hm =
∑
j

I(R,H[Vj ]) ≤
∑
j

I(R,nj). (10)

Next we turn to hg. Let ∆ denote the number of k-sets that intersect each Vi but are not counted
by hg. So a k-set counted by ∆ either does not form a copy of R, or forms a copy of R but its edge
coloring does not coincide with the natural one given by the vertex partition V1 ∪ . . . ∪ Vk. Then

hg =
∏
i

ni −∆ (11)

and we need to bound ∆ from below.

Note that the color of some pair in every member of ∆ does not align with the implicit one given by
our partition. With this in mind, let Dij be the set of pairs of vertices {vi, vj} where vi ∈ Vi, vj ∈ Vj ,
i ̸= j such that χH(vivj) ̸= χR(ij) = {i, j}. Let δij = |Dij |/

(
n
2

)
, D = ∪ijDij and δ = |D|/

(
n
2

)
. Let

us lower bound ∆ by counting the misaligned pairs from D and then choosing the remaining k− 2
vertices, one from each of the remaining parts Vℓ. This gives, for each i < j,

∆ ≥ |Dij |
∏
ℓ ̸=i,j

nℓ = δij

(
n

2

) ∏
ℓ̸=i,j

nℓ = δij

(
n

2

)∏k
ℓ=1 nℓ

ninj
.

Since
∑

ij δij
(
n
2

)
=
∑

ij |Dij | = |D| = δ
(
n
2

)
, we obtain by summing over i, j,

∆

 ∑
1≤i<j≤k

ninj

 ≥ δ

(
n

2

) k∏
ℓ=1

nℓ.

This with along with (11) gives

hg ≤
k∏

ℓ=1

nℓ

(
1−

δ
(
n
2

)∑
1≤i<j≤k ninj

)
=

k∏
ℓ=1

nℓ

(
1−

δ
(
n
2

)(
n
2

)
−
∑

i

(
ni
2

)). (12)

Our next task is to upper bound hb. For a vertex x and j ∈ [k], recall that Nj(x) ⊂ V (H) is the
set of y such that x, y lie in a copy of R with x playing the role of vertex j in R. Let us enumerate
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the set J of tuples (v, w, f) where e = {v, w} ∈ D, f ∈ Hb, e ⊂ f , and v ∈ Vi, but i /∈ χH(vw).
This means that v must play the role of i′ in f for some i′ ̸= i, so the colors on all k− 1 pairs (v, x)
with x ∈ f contain i′; in particular v is incident to k − 2 pairs in f whose color does not contain
i. If v ∈ Vi and w ∈ Vj , then say that (v, w, f) is 1-sided if |χH(vw) ∩ {i, j}| = 1 and (v, w, f) is
2-sided if |χH(vw) ∩ {i, j}| = 0.

Let Ji be the set of i-sided tuples (i = 1, 2). We consider the weighted sum

S = 2|J1|+ |J2|.

Observe that each f ∈ Hb contains at least k − 2 pairs from D. Indeed, if f is transversal, then
it must contain a miscolored vertex which yields at least k − 2 pairs from D in f . If f is not
transversal, then take a largest color class C of f and observe that at least |C| − 1 of the vertices
in C are miscolored. Also, note that 2 ≤ |C| ≤ k − 1 since f is not contained in one color class and
we have assumed f is not transversal.

Let C be the color class corresponding to color j. If exactly |C| − 1 vertices in C are miscolored,
then every edge vw where v ∈ C is miscolored and w ∈ f \ C is in D. Since |f \ C| = k − |C|, this
yields at least (|C|−1)(k−|C|) ≥ k−2 pairs from D in f . On the other hand, if all |C| vertices in C
are miscolored, then there is a unique vertex u ∈ f \ C that plays the role of j in f . Every edge vw
where v ∈ C and w ∈ f \ (C ∪ u) is in D, so if |C| ≤ k− 2, this yields at least |C|(k−|C|− 1) ≥ k− 2
pairs from D in f . If |C| = k − 1, then f = C ∪ u where u plays vertex j in f but is in a different
color class, say the color class corresponding to color ℓ. There are k − 1 edges between C and u,
but only one can contain both k and ℓ, so at least k − 2 edges from D are in f .

We conclude that each f ∈ Hb contributes at least 2(k − 2) to S since f contains at least k − 2
pairs e = {v, w} ∈ D and if (v, w, f) is 1-sided it contributes 2 to S while if it is 2-sided then it
contributes 2 again since both (v, w, f) and (w, v, f) are counted with coefficient 1. This yields

S ≥ 2(k − 2)hb. (13)

On the other hand, we can bound S from above by first choosing e ∈ D and then f ∈ Hb as follows.
Call v ∈ e = {v, w} ∈ D correct in e if v ∈ Vi, and i ∈ χH(vw); if v is not correct in e then
i ̸∈ χH(vw) and say that v is wrong in e. The definition of D implies that every e ∈ D has at least
one wrong vertex in e (and possibly two wrong vertices). Let

Di = {{v, w} ∈ D : {v, w} contains exactly i wrong vertices} (i = 1, 2).

The crucial observation is that

(v, w, f) ∈ Ji =⇒ {v, w} ∈ Di (i = 1, 2). (14)

To bound S from above, we use (14) and consider first J1 and D1. We start by choosing vw in
D1 with wrong vertex v. Note that w is correct in vw since vw ∈ D1. Let v ∈ Vi, w ∈ Vj . Then
χH(vw) = {j, ℓ} for some ℓ ̸= i since v is wrong in e but w is correct in e. Thus for each triple
(v, w, f) ∈ J1, vertex v plays the role of j in f or v plays the role of ℓ in f ; thus the total number
of (v, w, f) ∈ J1 for some f is at most p(|Nj(v)| − 1, k − 2) + p(|Nℓ(v)| − 1, k − 2). Summing over
all vw ∈ D1, we get

|J1| ≤
∑

vw∈D1

p(|Nj(v)| − 1, k − 2) + p(|Nℓ(v)| − 1, k − 2) ≤ 2|D1|p(zn, k − 2).
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The bound for J2 is similar. Choose vw ∈ D2 with v ∈ Vi, w ∈ Vj . Let χH(vw) = {ℓ1, ℓ2} where
{ℓ1, ℓ2} ∩ {i, j} = ∅. Since vw is two-sided, we see that (v, w, f) ∈ J2 exactly when (w, v, f) ∈ J2.
Consequently,

|J2| ≤
∑

vw∈D2

p(|Nℓ1(v)| − 1, k − 2) + p(|Nℓ2(v)| − 1, k − 2)

+ p(|Nℓ1(w)| − 1, k − 2) + p(|Nℓ2(w)| − 1, k − 2)

≤ 4|D2|p(zn, k − 2).

This gives

S = 2|J1|+ |J2| ≤ 4 |D| p(zn, k − 2) ≤ 4 δ

(
n

2

)(
z

k − 2

)k−2

nk−2. (15)

Finally, (13) and (15) give

hb ≤
S

2(k − 2)
≤

2δ
(
n
2

)
k − 2

(
z

k − 2

)k−2

nk−2. (16)

Using (10), (12) and (16) we have that

I(R,n) ≤
∑
i

I(R,ni) +
∏
ℓ

nℓ

(
1−

δ
(
n
2

)(
n
2

)
−
∑

i

(
ni
2

))+
2δ
(
n
2

)
k − 2

(
z

k − 2

)k−2

nk−2. (17)

Our final task is to upper bound the RHS.

Since δ
(
n
2

)
≤
∑

i ̸=j ninj =
(
n
2

)
−
∑

i

(
ni
2

)
, we have δ ∈ I

def
=
[
0, 1−

∑
i

(
ni
2

)
/
(
n
2

)]
. Viewing (17) as a

linear function of δ, it suffices to check the endpoints of I.

2.7 The extremal case

Claim 2.6. If δ = 0, then ind(R) ≤ a.

Proof. If δ = 0, then (17) implies that

I(R,n) ≤
k∑

i=1

I(R,ni) +
k∏

i=1

ni. (18)

Let pi := ni/n. Using maxi pi ≤ 1− 1/3k by Lemma 2.5, convexity of xk, and k ≥ 11 we obtain

k∑
i=1

pki ≤
(
1− 1

3k

)k

+

(
1

3k

)k

≤ e−1/3 + 33−11 < 0.72. (19)

We begin by bounding the summation in (18). By relabeling if necessary, let n1 ≤ · · · ≤ nℓ ≤ c0 <
nℓ+1 ≤ · · · ≤ nk where ℓ ≥ 0. We have that

k∑
i=1

I(R,ni) ≤ ℓ

(
c0
k

)
+

k∑
i=ℓ+1

I(R,ni) ≤ ℓ

(
c0
k

)
+ (ind(R) + ε)

k∑
i=ℓ+1

(
ni

k

)
. (20)
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Observe that
(
ni
k

)
=
(
pin
k

)
< pki

(
n
k

)
since pi < 1. Dividing (20) by

(
n
k

)
yields

1(
n
k

) k∑
i=1

I(R,ni) ≤ ℓ

(
c0
k

)(
n
k

) + (ind(R) + ε)
k∑

i=ℓ+1

pki . (21)

Suppose ℓ ≥ 1. Using our bounds on ε and n0 and (19), we can further bound

1(
n
k

) k∑
i=1

I(R,ni) ≤ ℓ

(
c0
k

)(
n
k

) + (ind(R) + ε)

k∑
i=ℓ+1

pki < 0.74 ind(R) (22)

and bound the product term

1(
n
k

) k∏
i=1

ni ≤
1(
n
k

)c0nk−1 <
2k!c0
n

< ε.

This yields ind(R,n) ≤ 0.74 ind(R) + ε < ind(R), a contradiction. Thus ℓ = 0, so using (21) we
may rewrite (18) as

ind(R,n) ≤ (ind(R) + ε)
k∑

i=1

pki +
1(
n
k

) k∏
i=1

ni. (23)

Isolating the product term and recalling the definition of a, as well as our lower bound on n0,

1(
n
k

) k∏
i=1

ni =
nk(
n
k

) k∏
i=1

pi ≤ (a+ ε)(kk − k)
k∏

i=1

pi.

Plugging this into (23) and recalling ind(R) = a+ γ,

ind(R,n) ≤ (a+ ε)

(
k∑

i=1

pki + (kk − k)
k∏

i=1

pi

)
+ γ

k∑
i=1

pki ≤ (a+ ε) + 0.72γ.

The first bound
∑

pki +(kk−k)
∏

pi ≤ 1 is well-known (see, e.g. (17) in [12]) and the second bound
comes from (19). This gives the contradiction

a+ γ = ind(R) ≤ ind(R,n) ≤ a+ 0.72γ + ε

since ε < γ/100.

2.8 The absurd case

Now, we consider the other endpoint of I.

Claim 2.7. If δ = 1−
∑

i

(
ni
2

)
/
(
n
2

)
, then ind(R) ≤ a.
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Proof. If δ = 1−
∑

i

(
ni
2

)
/
(
n
2

)
, then (17) implies that

I(R,n) ≤
k∑

i=1

I(R,ni) +
2
∑

i ̸=j ninj

k − 2

(
z

k − 2

)k−2

nk−2. (24)

We first bound the second term. Dividing by
(
n
k

)
and again letting pi := ni/n, we reorganize

2(
n
k

) · ∑ninj

k − 2

(
z

k − 2

)k−2

nk−2 = 2 · kk − k

(k − 2)k−1
· nk

(n)k
·

∑
i ̸=j

pipj

zk−2a.

Observe that (kk−1−1)/(k−2)k−1 decreases to e2. In particular, for k ≥ 11, we have (kk−k)/(k−
2)k−1 ≤ 7.5k. For n > n0, we have n

k/(n)k < 1+ε. Finally,
∑

i ̸=j pipj = (1−
∑

p2i )/2 ≤ (1−1/k)/2

as
∑

p2i is minimized when pi = 1/k for all i. Thus

2(
n
k

) · ∑ninj

k − 2

(
z

k − 2

)k−2

nk−2 ≤ 7.5(1 + ε)(k − 1)zk−2a < 0.25a

for k ≥ 11 as (k − 1)zk−2 is decreasing in k and (11 − 1)z11−2 < 10 · 2−9 < 1/50. Using this and
(22) in (24), and a < ind(R) gives

ind(R,n) ≤ 0.74 ind(R) + 0.25a < 0.99 ind(R).

This contradiction completes the proof of the claim and the theorem.

3 Proof of Theorem 1.4

We give the proof of Theorem 1.4 in the following subsections.

3.1 Setup

Fix k and R = ([k], E) a rainbow colored graph with minimum degree at least η(k − 1) where
η > C log k/(k − 1). We may assume that k is sufficiently large by making C sufficiently large so
that the theorem is vacuous for small k. In particular, we will assume k ≥ 11 so that we may use
the same bounds as the previous section. It is notationally convenient to set T = E ∪{∅} and view
R as a T -colored complete graph ([k],

(
[k]
2

)
) with coloring function χR defined as follows:

χR(ij) =

{
{i, j} ij ∈ E

∅ ij ̸∈ E.

Our goal is to prove that ind(R) ≤ a. To this end, fix γ > 0 and assume for contradiction
ind(R) = a+ γ. Next choose ε, c0, n0 as in Section 2.1.
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Suppose that n > n0 is given and H is a T -colored n-vertex graph with coloring function χH

achieving I(R,n). This implies

I(R,H) = I(R,n) = ind(R,n)

(
n

k

)
where a+ γ = ind(R) ≤ ind(R,n) ≤ ind(R) + ε = a+ γ + ε.

Let di(x), d(x), d(x, y), d{i,j}(x), Ni(x), and N j
i (x) be defined as in Section 2. Note that we do not

have that all vertices in Nj(x) ∩ Nj′(x) for j ̸= j′ have the same color to x as it may be the case
that χH(xy) = ∅ and χH(xy′) = {j, j′} for distinct y, y′ ∈ Nj(x)∩Nj′(x). We also do not have that

∪j ̸=iN
j
i (x) is a partition of Ni(x) as it may be the case that y ∈ N j

i (x) ∩ N j′

i (x) for some j ̸= j′

satisfying χR(ij) = χR(ij
′) = ∅ and y ∈ V (H) satisfying χH(xy) = ∅. Thus we must develop new

techniques to prove a version of (5) from Section 2.1 to obtain bounds on di(x). This is the content
of Section 3.2.

As in Section 2.1, we partition V (H) into V1 ∪ · · · ∪ Vk, ni = |Vi|, where

Vi = {x ∈ V (H) : |Ni(x)| ≥ |Nj(x)| for all j ̸= i}.

If there is a tie, we break it arbitrarily.

3.2 Partitioning argument

Let the distance between two vertices v and w in a graph G, denoted distG(v, w), be the number
of edges in the shortest path between v and w in G. In our setting, a path cannot use an edge e
with χ(e) = ∅. Then, define

ϵG(v) := max
w∈V (G)

distG(v, w),

the eccentricity of v in G. Note that the diameter diam(G) = maxv∈V (G) ϵG(v). For convenience,
let ϵ(i) := ϵR(i) for all i ∈ [k].

Let B(x) be the set of neighbors of x in H. For r ∈ N, let kr(i) be the number of vertices in R at
distance r from i. Recall that d{i,j}(x) is the number of edges in H incident with x in color {i, j}

Lemma 3.1. Let i, j ∈ [k] with {i, j} ∈ T and x ∈ V (H). Then

(a) di(x) ≤
(
|B(x)|
k1(i)

)k1(i)( n− |B(x)|
k − k1(i)− 1

)k−k1(i)−1

(b) di(x) ≤
(
|Ni(x)|
k − 1

)k−1

(c) di(x) ≤ d{i,j}(x) ·
(
n− d{i,j}(x)

k − 2

)k−2

.

Further, the number of copies of R in H containing vertices x, y ∈ V (H) such that x ∈ V (H) plays
the role of vertex i ∈ [k] in R is at most (

|Ni(x)|
k − 2

)k−2

.
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Proof. We start by proving the three upper bounds on di(x). To count the number of copies of R
in H where x plays the role of i, we will recursively partition |Ni(x)|. First, we pick k1(i) vertices
from B(x) ∩ Ni(x) ⊂ V (H) to play the role of the vertices adjacent to i in R. Notice that we
may partition B(x) ∩ Ni(x) into k1(i) parts based on the color of each vertex to x as it uniquely
determines its possible role in a copy of R. Set B1 := B(x) ∩Ni(x). We now recursively define Br

for all r ∈ [ϵ(i)]. Let 2 ≤ r ≤ ϵ(i), let m := k1(i) + · · ·+ kr−1(i), and suppose that we have chosen
y1, y2, . . . , ym ∈ V (H) to play the roles of all vertices at distance r − 1 or less from i in R. Then

Br :=Br(x,B1, B2, . . . , Br−1, y1, . . . , ykr−1(i))

=Ni(x) ∩
(
B(y1) ∪ · · · ∪B(ykr−1(i))

)
\ (x ∪B1 ∪ · · · ∪Br−1).

Here, Br is the set of vertices in H that can play the role of vertices at distance r from i in R,
given that we have already selected all vertices at distance at most r − 1 from i.

Note that by definition, Br ∩ Bℓ = ∅ for all r, ℓ ∈ [ϵ(i)] and
⋃
Br ⊆ Ni(x). For the remainder of

the proof, we write kr := kr(i) for all r ∈ [ϵ(i)] for convenience.

Each vertex v ∈ Br has an edge to at least one of y1, . . . , ykr−1 . The color of this edge uniquely
determines the role that v may play in a copy of R, so this allows us to uniquely partition Br

into kr parts. We note that it may be the case that v cannot legally play any role, but that only
decreases the number of possible copies of R, so we may assume that this does not occur. Let
Pr := P (Br, kr) be the set of tuples y⃗ ∈ Bkr

r with one vertex from each part of Br, so

|Pr| ≤ p(|Br|, kr).

This gives

di(x) ≤
∑
y⃗1∈P1

· · ·
∑

y⃗ϵ(i)−1∈Pϵ(i)−1

p(|Bϵ(i)|, kϵ(i)) ≤
∑
y⃗1∈P1

· · ·
∑

y⃗ϵ(i)−1∈Pϵ(i)−1

p

|Ni(x)| −
ϵ(i)−1∑
r=1

|Br|, kϵ(i)

.

Using (4) from Section 2.1 we see that

∑
y⃗ϵ(i)−1∈Pϵ(i)−1

p

|Ni(x)| −
ϵ(i)−1∑
r=1

|Br|, kϵ(i)

 = p
(
|Bϵ(i)−1|, kϵ(i)−1

)
· p

|Ni(x)| −
ϵ(i)−1∑
r=1

|Br|, kϵ(i)


= p

|Ni(x)| −
ϵ(i)−2∑
r=1

|Br|, kϵ(i)−1(i) + kϵ(i)

.

Using
∑ϵ(i)

r=1 kr = k − 1, we obtain

di(x) ≤
∑
y⃗1∈P1

· · ·
∑

y⃗ϵ(i)−2∈Pϵ(i)−2

p

|Ni(x)| −
ϵ(i)−2∑
r=1

|Br|, kϵ(i)−1 + kϵ(i)


=
∑
y⃗1∈P1

· · ·
∑

y⃗ϵ(i)−2∈Pϵ(i)−2

p

|Ni(x)| −
ϵ(i)−2∑
r=1

|Br|, (k − 1)−
ϵ(i)−2∑
r=1

kr

.
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Continuing this process, we obtain, for each 1 ≤ ℓ ≤ ϵ(i)− 1,

di(x) ≤
∑
y⃗1∈P1

· · ·
∑
y⃗ℓ∈Pℓ

p

(
|Ni(x)| −

ℓ∑
r=1

|Br|, (k − 1)−
ℓ∑

r=1

kr

)
.

When ℓ = 1 this becomes

di(x) ≤
∑
y⃗1∈P1

p(|Ni(x)| − |B1|, k − 1− k1) (25)

= p(|B(x)|, k1) · p(|Ni(x)| − |B(x)|, k − k1 − 1).

As |Ni(x)| ≤ n− 1 < n for all i ∈ [k],

p(|B(x)|, k1) · p(|Ni(x)| − |B(x)|, k − k1 − 1) ≤
(
|B(x)|
k1

)k1(n− |B(x)|
k − k1 − 1

)k−k1−1

,

so (a) holds. Alternatively, (4) also yields

p(|B(x)|, k1) · p(|Ni(x)| − |B(x)|, k − k1 − 1) ≤ p(|Ni(x)|, k − 1) ≤
(
|Ni(x)|
k − 1

)k−1

,

so (b) holds.

For (c), let j ∈ [k] such that ij ∈ E. We bound di(x) as before, but we choose the vertex y that
plays role j separately. We see that

|P1| ≤ d{i,j}(x) · p(|B1| − d{i,j}(x), k1 − 1).

This combined with (25) and (4) gives

di(x) ≤
∑
y⃗1∈P1

p(|Ni(x)| − |B1|, k − k1 − 1)

≤ d{i,j}(x) · p(|B1| − d{i,j}(x), k1 − 1) · p(|Ni(x)| − |B1|, k − k1 − 1)

≤ d{i,j}(x) · p(n− d{i,j}(x), k − 2)

≤ d{i,j}(x) ·
(
n− d{i,j}(x)

k − 2

)k−2

.

It remains to prove the last sentence of the lemma. We proceed as before except that, for ℓ ∈ [ϵ(i)]
such that y ∈ Bℓ, we require that y is chosen. This means that instead of choosing kℓ(i) vertices
from Bℓ, we only need to choose kℓ(i)− 1 vertices from Bℓ as we have already chosen y. Following
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the same procedure as before, we see that

di(x) ≤
∑
y⃗1∈P1

· · ·
∑
y⃗ℓ∈Pℓ

p(|Bℓ|, kℓ − 1) · p

(
|Ni(x)| −

ℓ+1∑
r=1

|Br|, (k − 1)−
ℓ+1∑
r=1

kr

)

≤
∑
y⃗1∈P1

· · ·
∑
y⃗ℓ∈Pℓ

p

(
|Ni(x)| −

ℓ∑
r=1

|Br|, (k − 2)−
ℓ∑

r=1

kr

)
...

≤
∑
y⃗1∈P1

p(|Ni(x)| − |B1|, k − 2− k1)

= p(|B(x)|, k1 · p(|Ni(x)| − |B(x)|, k − 2− k1)

≤ p(|Ni(x)|, k − 2)

≤
(
|Ni(x)|
k − 2

)k−2

.

This completes the proof.

3.3 Minimum degree

As in Section 2.2, we wish to show that each vertex of H lies in approximately the average number
of copies of R.

Lemma 3.2. d(x) ≥ ank−1/(k − 1)! for all x ∈ V (H).

This follows from an identical Zykov symmetrization argument as used in the proof of Lemma 2.2.
Note that we have assumed the same inequalities for n0 as we did in Section 2.1.

3.4 Maximum color and non-edge degrees

The following two claims are used in the proof of Lemma 3.5 to bound the size of the second largest
neighborhood.

Let

α :=
maxx,i,j d{i,j}(x)

n

where the maximum is taken over all vertices x ∈ V (H) and all colors {i, j} ∈ T . We upper bound
this value.

Claim 3.3. α < η/4.

Proof. Let x achieve this maximum, so that d{i,j}(x) = αn for some {i, j} ∈ T . By Lemma 3.1(c)
and α ≤ 1, we get

max{di(x), dj(x)} ≤ αn

(
(1− α)n

k − 2

)k−2

≤ nk−1

(
1− α

k − 2

)k−2

.
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For any other vertex ℓ ̸= i, j, we have |Nℓ(x)| ≤ (1 − α)n, since ℓ is adjacent to no edges of color
{i, j} in R. Thus by Lemma 3.1(b), we get

dℓ(x) ≤
(
|Nℓ(x)|
k − 1

)k−1

≤
(
(1− α)n

k − 1

)k−1

≤ nk−1

(
1− α

k − 2

)k−2

.

The last inequality comes as decreasing the denominator increases the fraction, and the base is less
than 1, so decreasing the exponent increases the result. Summing over all indices in [k] and using
Lemma 3.2, we get

1

kk−1 − 1
=

a

(k − 1)!
≤ d(x)

nk−1
≤ k

(
1− α

k − 2

)k−2

.

Rearranging yields
1

k
· (k − 2)k−2

kk−1 − 1
≤ (1− α)k−2.

We see that
(k − 2)k−2

kk−1 − 1
≥ (k − 2)k−2

kk−1
=

1

k

(
1− 2

k

)k−2

>
1

e2k
,

so
1

e2k2
< (1− α)k−2 ≤ exp(−(k − 2)α).

Assume for contradiction that α ≥ η/4 > C log k/(4(k − 1)). Then

1

e2k2
< k−C(1−1/(k−1))/4 < k−0.9C/4,

since k ≥ 11. For C > 10, this gives a contradiction for sufficiently large k.

Let

β :=
maxx d∅(x)

n

where the maximum is taken over all vertices x ∈ V (H) and d∅(x) is the number of edges in H
incident with x in color ∅ (non-edges). Note that we may assume that R has at least one non-edge,
since otherwise the proof from Section 2 suffices. Thus we may also assume that H has at least
one non-edge, so β > 0. We upper bound β.

Claim 3.4. β < 1− η/2.

Proof. Assume for contradiction that β ≥ 1−η/2. Let x achieve this maximum so that d∅(x) = βn.
This implies that B(x) = (1− β)n. For any i ∈ V (R), Lemma 3.1(a) gives

di(x) ≤
(
B(x)

k1(i)

)k1(i)( n−B(x)

k − k1(i)− 1

)k−k1(i)−1

=

(
(1− β)n

k1(i)

)k1(i)( βn

k − k1(i)− 1

)k−k1(i)−1

= nk−1 1

k1(i)k1(i)
(1− β)k1(i)βk−k1(i)−1

(
1

k − 1− k1(i)

)k−1−k1(i)

.
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For this section, we take the convention 00 = 1 to handle the case that k1(i) = k − 1.

Let q = k1(i)/(k − 1) ∈ (0, 1]. Then

di(x) ≤
(

n

k − 1

)k−1((1− β)qβ1−q

qq(1− q)1−q

)k−1

. (26)

We will first bound the term
(1− β)qβ1−q

qq(1− q)1−q
. (27)

Regarding (27) as a function of β, we see that the derivative

∂

∂β

(
(1− β)qβ1−q

qq(1− q)1−q

)
=

(1− β)q−1β−q

qq(1− q)1−q
((1− q)− β)

is negative for β > 1− q since the fraction is nonnegative. Recall that k1(i) = degR(i) ≥ η(k − 1)
by assumption, so q > η. We have also assumed for contradiction that β ≥ 1− η/2 > 1− η > 1− q.
Thus decreasing β to 1− η/2 will only increase (27), i.e.

(1− β)qβ1−q

qq(1− q)1−q
≤ (η/2)q(1− η/2)1−q

qq(1− q)1−q
. (28)

We now have a function purely of q. Taking the derivative, we get

∂

∂q

(
(η/2)q(1− η/2)1−q

qq(1− q)1−q

)
=

1

2
(1− q)q−1q−q(2− η)1−qηq log

(
η(1− q)

q(2− η)

)
where all terms are positive except the logarithm, which is negative for q > η/2. Thus (28) is
decreasing with q for q > η/2, so we may take the further upper bound

(1− β)qβ1−q

qq(1− q)1−q
≤ (η/2)η(1− η/2)1−η

ηη(1− η)1−η
= 2−η

(
1 +

η

2(1− η)

)1−η

≤ exp(−(log 2− 1/2)η). (29)

We now have an appropriate upper bound. Substituting into (26) and recalling that η > C log k/k,
we see that

di(x) ≤
(

n

k − 1

)k−1

exp(−(log 2− 1/2)(k − 1)η) <

(
n

k − 1

)k−1

k−C(log 2−1/2).

Using Lemma 3.2, we get

1

kk−1 − 1
=

a

(k − 1)!
≤ d(x)

nk−1
≤ k

(
1

k − 1

)k−1

k−C(log 2−1/2).

Rearranging terms and using the standard inequality (8) yields

1

ek
≤ k−C(log 2−1/2).

For C > 1/(log 2− 1/2) ≈ 5.18, this yields a contradiction for sufficiently large k.
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3.5 The second largest neighborhood

For a vertex x ∈ V (H), let Z(x) be the second largest set in {N1(x), . . . , Nk(x)} and define

z := zk,n = max
x∈V (H)

|Z(x)|
n

.

Lemma 3.5. z < 1− η/8.

Proof. Let x ∈ V (H) such that z = |Z(x)|/n. Suppose x ∈ Vi and Z(x) = Nj(x) for distinct
i, j ∈ [k]. Then we want to bound |Ni(x) ∩ Z(x)|. Suppose y ∈ Ni(x) ∩ Z(x). If xy ∈ E, then
i ∈ χH(xy) and j ∈ χH(xy), so χH(xy) = {i, j}. Thus |N1(x)∩Z(x)| ≤ d{i,j}(x)+d∅(x). It follows
that

|Ni(x)|+ |Z(x)| = |Ni(x) ∪ Z(x)|+ |Ni(x) ∩ Z(x)| ≤ n+ d{i,j}(x) + d∅(x) ≤ (1 + α+ β)n.

Thus |Ni(x)| + |Z(x)| < (2 − η/4)n by Claims 3.3 and 3.4. Since |Z(x)| ≤ |Ni(x)|, this gives
z < 1− η/8.

3.6 One large part

We now take care of the situation when one of the Vi’s is very large.

Lemma 3.6. |Vi| ≤ (1− 1/3k)n for all i ∈ [k].

Proof. By contradiction, WLOG suppose that |V1| > (1−1/3k)n. If x ∈ V1, then |N1(x)| ≥ |Ni(x)|
for all i > 1 so |N2(x)| ≤ |Z(x)| ≤ zn. Applying Lemma 3.1(b) to d2(x) gives

a

(
n

k

)
≤ I(R,H) =

∑
x∈V (H)

d2(x) ≤ |V1|
(

zn

k − 1

)k−1

+
n

3k

(
n

k − 1

)k−1

≤
(
zk−1 +

1

3k

)
nk

(k − 1)k−1
.

Rearranging and using nk
0/(n0)k < 1.01 as assumed in (2), we get

(k − 1)k−1

kk − k
≤ 1.01

(
zk−1 +

1

3k

)
.

Using the standard inequality (8) and then Lemma 3.5 gives(
1

1.01e
− 1

3

)
1

k
< zk−1 <

(
1− η

8

)k−1
≤ exp(−C log k/8) = k−C/8.

For any C > 8 this fails to hold for sufficiently large k.
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3.7 Counting the copies of R in H

The way we count copies of R in H is very similar to the previous section and to [12]. While we
do not have as much information in this case, without a focus on optimizing for small k, we allow
ourselves to be less strict with the counting arguments.

Call a copy f of R in H transversal if it includes exactly one vertex in Vi for all i ∈ [k]. We partition
the copies of R in H as Hm ∪ Hg ∪ Hb where Hm comprises those copies that lie entirely inside
some Vi, Hg comprises those copies that intersect every Vi whose edge coloring coincides with the
natural one given by the vertex partition (meaning the map from R to H takes vertex i to a vertex
in Vi), and Hb comprises all other copies of R (these include transversal copies, but some vertex in
any such copy will be in an inappropriate Vi). Thus a transversal copy f is in Hb if and only if the
unique map ϕ : [k] → f with ϕ(i) ∈ Vi for all i is not a graph isomorphism from R → H[f ]. Let
hm = |Hm|, hg = |Hg| and hb = |Hb| so that

I(R,H) = hm + hg + hb.

We will bound each of these three terms separately. As in Section 2.6, let D be the set of all pairs
{v, w} such that v ∈ Vi, w ∈ Vj , and χH(vw) ̸= χR(ij) where i ̸= j. Let δ := |D|/

(
n
2

)
. The identical

reasoning as in Section 2.6 gives the first two bounds

hm =
k∑

j=1

I(R,H[Vj ]) ≤
k∑

j=1

I(R,nj) (30)

and

hg ≤
k∏

ℓ=1

nℓ

(
1−

δ
(
n
2

)∑
1≤i<j≤k ninj

)
=

k∏
ℓ=1

nℓ

(
1−

δ
(
n
2

)(
n
2

)
−
∑

i

(
ni
2

)). (31)

Our next task is to upper bound hb. This argument must be carried out differently. For a vertex
x ∈ V (H) and j ∈ [k], recall that Nj(x) ⊂ V (H) is the set of y such that x, y lie in a copy of R
with x playing the role of vertex j in R. Let us enumerate the set J of ordered pairs (e, f) where
e ∈ D, f ∈ Hb, and e ⊂ f .

We must show that each f ∈ Hb contains an edge in D. If f is transversal, then as we have noted,
the natural map is not a graph isomorphism. Thus there is some incorrectly colored edge which
is in D. If f is not transversal, there is some i ∈ [k] such that |f ∩ Vi| ≥ 2. Note that f /∈ Hm,
so |f ∩ Vi| < k. As R is connected, there exist v ∈ Vi, u ∈ Vj for some j ̸= i such that vu is an
edge in f . Since |f ∩ Vi| ≥ 2, choose also w ∈ f ∩ Vi with w ̸= v. If χR(ij) = ∅ then vu ∈ D. If
χR(ij) = {i, j}, then as χH(vu) = χH(wu) = {i, j} would contradict that f is a copy of R in H,
we must have that uv or uw in D. This gives us that

hb ≤ |J |.

To bound |J | from above, we start by choosing some bad edge vw ∈ D. Let f ⊂ V (H) such that
(vw, f) ∈ J . Either v ∈ Vi does not play the role of i or w ∈ Vj does not play the role of j in f . Then
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f ⊂ Nℓ(v) ∪ {v} for some ℓ ̸= i or f ⊂ Nℓ(w) ∪ {w} for some ℓ ̸= j. We have |Nℓ(v)|, |Nℓ(w)| ≤ zn
by the definition of z and the partition V1∪· · ·∪Vk = V (H). By the final statement of Lemma 3.1,

|J | ≤
∑
vw∈D

∑
ℓ ̸=i

(
|Nℓ(v)|
k − 2

)k−2

+
∑
ℓ̸=j

(
|Nℓ(w)|
k − 2

)k−2
 ≤ 2|D|(k − 1)

(
zn

k − 2

)k−2

.

Thus, recalling that δ := |D|/
(
n
2

)
, we obtain

hb ≤ 2δ(k − 1)

(
n

2

)(
zn

k − 2

)k−2

. (32)

Using (30), (31), and (32) we obtain

I(R,n) ≤
∑
i

I(R,ni) +
∏
ℓ

nℓ

(
1−

δ
(
n
2

)(
n
2

)
−
∑

i

(
ni
2

))+ 2δ(k − 1)

(
n

2

)(
zn

k − 2

)k−2

. (33)

Our final task is to upper bound the RHS.

As in Section 3.7, we see that δ ∈ I
def
=
[
0, 1−

∑
i

(
ni
2

)
/
(
n
2

)]
. Viewing (33) as a linear function of δ,

it again suffices to check the endpoints of I.

3.8 The extremal case

Claim 3.7. If δ = 0, then ind(R) ≤ a.

Proof. If δ = 0, then (33) implies that

I(R,n) ≤
k∑

i=1

I(R,ni) +
k∏

i=1

ni.

This is the same equation as (18), and we have all the same assumptions. The same argument as
in Section 2.7 derives a contradiction.

3.9 The absurd case

Now, we consider the other endpoint of I.

Claim 3.8. If δ = 1−
∑

i

(
ni
2

)
/
(
n
2

)
, then ind(R) ≤ a.

Proof. If δ = 1−
∑

i

(
ni
2

)
/
(
n
2

)
, then (33) implies that

I(R,n) ≤
k∑

i=1

I(R,ni) + 2(k − 1)
∑
i ̸=j

ninj

(
z

k − 2

)k−2

nk−2. (34)
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This is similar to (24) with an extra factor of approximately k2 in the second term. We can bound
the first sum using the same techniques as in Section 2.7, giving (22):

1(
n
k

) k∑
i=1

I(R,ni) ≤ ℓ

(
c0
k

)(
n
k

) + (ind(R) + ε)
k∑

i=ℓ+1

pki < 0.74 ind(R). (35)

We now bound the second term. Dividing by
(
n
k

)
, we reorganize

2(
n
k

)(k − 1)

∑
i ̸=j

ninj

( z

k − 2

)k−2

nk−2 = 2 · (k − 1)(kk − k)

(k − 2)k−2
· nk

(n)k
·

∑
i ̸=j

pipj

zk−2a.

We first relax (k − 1)(kk − k) < kk+1. Observe that kk−2/(k − 2)k−2 ≤ e2. Thus this first quotient
is at most e2k3. For n > n0, we have nk/(n)k < 1 + ε ≤ 1.01. Finally,

∑
i ̸=j pipj = (1−

∑
p2i )/2 ≤

(1− 1/k)/2 ≤ 1/2 as
∑

p2i is minimized when pi = 1/k for all i. Thus

2(
n
k

)(k − 1)

∑
i ̸=j

ninj

( z

k − 2

)k−2

nk−2 ≤ 2 · e2k3 · 1.01 · 1
2
· zk−2a = 1.01e2k3zk−2a.

By Lemma 3.5, we have

zk−2 ≤ (1− η/8)k−2 ≤ exp

(
−(k − 2)η

8

)
≤ exp

(
−C

8

(
1− 1

k − 1

)
log k

)
< k−0.9C/8.

We again used k ≥ 11 here. Thus for C > 24/0.9 ≈ 26.67, we have 1.01e2k3zk−2a < 0.25a for large
enough k. Recalling that a < ind(R), plugging this and (35) into (34) gives

ind(R,n) ≤ 0.74 ind(R) + 0.25 a < 0.99 ind(R).

This contradiction completes the proof of the claim and the theorem.

4 Disconnected rainbow graphs

In this section, we show that rainbow graphs with multiple connected components are not fractal-
izers.

Let R = (V,E) be a rainbow graph with k vertices and ℓ > 1 connected components. Let R =
R1 ∪ · · · ∪ Rℓ be the connected components of size c1, . . . , cℓ respectively. Assume also ci ≥ 2 for
all i (no isolated vertices). We will show that R is not a fractalizer.

We begin by upper bounding the number of copies I(R,Gn) for Gn ∈ GR(n) an iterated balanced
blowup. Then for any i ∈ [ℓ], by the same argument as for computing the inducibility of the iterated
balanced blowup (see e.g. [14]),

I(Ri, Gn) =
(n
k

)ci
+ k
( n

k2

)ci
+ k2

( n

k3

)ci
+ · · · = (1 + o(1))

nci

kci − k
.
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Any S ⊂ V (Gn) with Gn[S] ∼= R has a unique partition S = S1 ∪ · · · ∪Sℓ where Gn[Si] ∼= Ri. Thus
we can upper bound

I(R,Gn) ≤
ℓ∏

i=1

I(Ri, Gn) = (1 + o(1))nk
ℓ∏

i=1

1

kci − k
. (36)

However, consider instead the family of graphs H(n) consisting of separate iterated balanced
blowups of each part. Formally,H ∈ H(n) if |V (H)| = n and we have a partition V (H) = V1∪· · ·∪Vℓ

with the following properties:

1. For all i ∈ [ℓ],
∣∣|Vi| − ci

k n
∣∣ ≤ 1.

2. For all i ∈ [ℓ], the induced subgraph G[Vi] ∈ GRi(|Vi|).

3. For all v ∈ Vi, w ∈ Vj with i ̸= j, we have vw /∈ E(H).

In H(n), there are no edges between any copy of Ri and any copy of Rj for distinct i, j. Since R
is rainbow, copies of each component Ri exist only in Vi. Then for Hn ∈ H(n), we have

I(R,Hn) =

ℓ∏
i=1

I(Ri, Hn[Vi]) =

ℓ∏
i=1

(1+ o(1))
ci!

ccii − ci

( ci
k n

ci

)
= (1+ o(1))nk

ℓ∏
i=1

1

kci − k( k
ci
)ci−1

. (37)

Comparing (36) with (37), we subtract larger numbers in the denominator of (37), so the family of
graphs H(n) induces asymptotically more copies than the family GR(n). Thus R is not a fractalizer.
Since R was generic, disconnected rainbow graphs without isolated vertices are not fractalizers.
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5 Appendix

Proof of (4). Let q, q′ ≥ 0 and t, t′ > 0. Recall that p(q, t) is the maximum of
∏

i qi where q1+ · · ·+
qt = q and each qi ≥ 0 is an integer. Let q1, . . . qt integers such that p(q, t) =

∏t
i=1 qi and q′1, . . . q

′
t′

integers such that p(q′, t′) =
∏t′

i=1 q
′
i. Then,

q1 + · · ·+ qt + q′1 + · · ·+ q′t′ = q + q′.

Thus, the fact that p(q + q′, t+ t′) is a maximum gives that

p(q + q′, t+ t′) ≥
t∏

i=1

qi

t′∏
i=1

q′i = p(q, t)p(q′, t′)

as desired.

Proof of (7). We will show that

1

kk−1 − 1
> 1.4

(
0.6

k − 2

)k−2
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for all k ≥ 11. This is true for k = 11. By (8) and the fact that k ≥ 11,

1

kk−1 − 1
≥ 1

e(k − 1)k−1
.

We will prove that

1

e(k − 1)k−1
> 1.4

(
0.6

k − 2

)k−2

for k ≥ 12 by induction on k. For k = 12, plugging in certifies that this is true. By the inductive
hypothesis, assume that

1

e(k − 2)k−2
> 1.4

(
0.6

k − 3

)k−3

. (38)

We see that

(k − 2)k−2

(k − 1)k−1
>

0.6(k − 3)k−3

(k − 2)k−2
, or equivalently f(k) :=

(k − 2)2k−4

(k − 1)k−1(k − 3)k−3
> 0.6 (39)

since
f(11) ≈ 0.89 > 0.6

and

d

dk
f(k) = − (k − 2)2k−4

(k − 1)k−1(k − 3)k−3
· ln
(
(k − 1)(k − 3)

(k − 2)2

)
≥ 0

since (k − 2)2 > (k − 1)(k − 3). Then, by (38) and (39), we see that

1

e(k − 1)k−1
=

1

e(k − 2)k−2
· (k − 2)k−2

(k − 1)k−1

> 1.4

(
0.6

k − 3

)k−3

· 0.6(k − 3)k−3

(k − 2)k−2
= 1.4

(
0.6

k − 2

)k−2

.

Proof of (9). We will show that

1

1 + ε
· (k − 1)k−1

kk − k
− 1

3k
≥ zk−1

for all k ≥ 11. Recalling that ε < γ/100 and γ ≤ 1, we obtain

1

1 + ε
· (k − 1)k−1

kk − k
≥ 100

101
· (k − 1)k−1

kk − k
.

Plugging in k = 11, we see that

100

101
· (k − 1)k−1

kk − k
− 1

3k
≥ zk−1.
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By (8) and the fact that k ≥ 11,

100

101
· (k − 1)k−1

kk − k
≥ 100

101
· 1

ek
.

So, it suffices to show that
100

101
· 1

ek
− 1

3k
≥ zk−1

for all k ≥ 12. We do so by induction on k. For k = 12, it can be verified directly. For the induction
step, assume that k ≥ 13 and

100

101
· 1

e(k − 1)
− 1

3(k − 1)
≥ zk−2.

Using Lemma 2.4, we have (k − 1)/k ≥ 12/13 > 0.5 > z and this yields

100

101
· 1

ek
− 1

3k
=

(
100

101
· 1

e(k − 1)
− 1

3(k − 1)

)
k − 1

k
≥ zk−2 · z = zk−1,

completing the proof.
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