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Abstract

A k-uniform hypergraph with n vertices is an (n, k, £)-omitting system if it has no
two edges with intersection size £. If in addition it has no two edges with intersection
size greater than ¢, then it is an (n, k, £)-system. Rodl and Sinajové proved a sharp
lower bound for the independence number of (n, k, £)-systems. We consider the same
question for (n,k,£)-omitting systems. Our proofs use adaptations of the random
greedy independent set algorithm, and pseudorandom graphs. We also prove related
results where we forbid more than two edges with a prescribed common intersection
size leading to some applications in Ramsey theory. For example, we obtain good
bounds for the Ramsey number r(F,t), where F is the k-uniform Fan. The behavior
is quite different than the case k = 2 which is the classical Ramsey number 7(3,t).

1 Introduction

For a finite set V and k > 2 denote by (‘,2) the collection of all k-subsets of V. A k-uniform
hypergraph (k-graph) H is a family of k-subsets of finite set which is called the vertex
set of H and is denoted by V(#H). A set I C V(H) is independent in H if it contains no
edge of H. The independence number of H, denoted by a(#), is the maximum size of
an independent set in H. For every v € V(#) the degree dy(v) of v in H is the number
of edges in H that contain v. Denote by d(H) and A(#H) the average degree and the
maximum degree of H, respectively.

An old result of Turdn [25] implies that «(G) > n/(d+ 1) for every graph G on n vertices
with average degree d. Later, Spencer [23] extended Turén’s result and proved that for all
k > 3 every n-vertex k-graph H with average degree d satisfies

n
Oé(H) > Ckm (1)

for some constant c; > 0.

The bound for a(#H) can be improved if we forbid some family F of hypergraphs in H. For
¢ > 2 a (Berge) cycle of length ¢ in H is a collection of ¢ edges Ei, ..., Ey € H such that
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there exists ¢ distinct vertices vy, ...,v, with v; € E;NE;1; fori € [(—1] and v, € E,N E}.
A seminal result of Ajtai, Komlés, Pintz, Spencer, and Szemerédi [2] states that for every
n-vertex k-graph H with average degree d that contains no cycles of length 2,3, and 4,
there exists a constant ¢j > 0 such that

n _
a(H) = Ckm(log d)t/ =D, (2)
Moreover, this is tight apart from ¢} .

Spencer [20] conjectured and Duke, Lefmann, and R6dl [9] proved that the same conclusion
holds even if ‘H just contains no cycles of length 2. Their result was further extended by
Rodl and Sinajovéa [21] to the larger family of (n,k,¢)-systems defined in the following
section.

1.1 (n,k,{)-systems and (n, k, {)-omitting systems

Let k > ¢ > 1. An n-vertex k-graph H is an (n, k, £)-system if the intersection of every
pair of edges in H has size less than ¢, and H is an (n, k, £)-omitting system if it has no two
edges whose intersection has size exactly £. It is clear from the definition that an (n, k, £)-
system is an (n, k, £)-omitting system, but not vice versa, since an (n, k, £)-omitting system
may have pairwise intersection sizes greater than /.

Define

f(n,k,£) =min{a(H): H is an (n, k, {)-system}, and
g(n,k,0) = min{a(H) : H is an (n, k, £)-omitting system} .

We will use the standard asymptotic notations O, 2, ©,0 to simplify the formulas used
in the present paper. Recall that given two positive functions f(n) and g(n) we write
f(n) = O (g(n)), or equivalently, g(n) = Q (f(n)) if there exists a constant C' > 0 such that
f(n) < Cg(n) for all sufficiently large n, we write f(n) = o (g(n)) if lim,_~ f(n)/g(n) =0,
and we write f(n) = © (g(n)) if both f(n) = O (g(n)) and f(n) = Q(g(n)) hold.

The study of f(n,k,?) has a long history (e.g. [21, 16, 10, 24]) and, in particular, Rodl
and Sinajové [21] proved that

fn,k,0) =0 <n%(1og n)ﬁ) for all fixed k > £ > 2. (3)
It follows that
k—¢ 1
g(n.k, £) < f(n,k, ) = O (n+=1 (log n) 77 ). (4)

One important difference between (n, k, £)-systems and (n, k, £)-omitting systems is their
maximum sizes. By definition, every set of ¢ vertices in an (n, k, £)-system is contained in
at most one edge, thus every (n, k, £)-system has size at most (Tg)/(lz) =0 (ng). However,
this is not true for (n, k, £)-omitting systems. Indeed, the following result of Frankl and
Fiiredi [11] shows that the maximum size of an (n,k,¢)-omitting system can be much
larger than that of an (n, k, £)-system when k > 2/ + 1.

Let k> ¢ > 1 and A > 1 be integers. The k-graph S’j(ﬁ) consists of A edges E1,..., E)
such that E;NE; = S for 1 <i < j < X and some fixed set S (called the center) of size /.
When ¢ = 1 we just write S¥, and we will omit the superscript & in S’)f (¢) if it is obvious.
It is easy to see that an n-vertex k-graph is an (n, k, £)-omitting system iff it is Sa(¢)-free,
and is an (n, k, £)-system iff it is {S2(¢), ..., Sa2(k — 1)}-free.



Theorem 1.1 (Frankl-Fiiredi [11]). Let k > ¢ > 1 and A > 1 be fized integers and H be
an Sx({)-free k-graph on n vertices. Then |H| = O (nmax{e’k_g_l}). Moreover, the bound
is tight up to a constant multiplicative factor.

Theorem 1.1 together with (1) imply that for fixed k, ¢,

k—¢

Q(n=1) k<2041,

g(n, k,0) = : 5
( ) Q(nFT) k>20+1. (5)

Notice that for k£ < 2¢ + 1 the bounds given by (4) and (5) match except for a factor of
(logn)Y/ =1 but for k > 2¢ + 1, these two bounds have a gap in the exponent of n.

Our main goal in this paper is to extend the results of Rédl and Sinajové to the larger
class of (n, k, ¢)-omitting systems and improve the bounds given by (4) and (5). In other
words, the question we focus on is the following:

What is the value of g(n, k,£)?

Our results for (n, k, £)-omitting systems are divided into two parts. For k < 20 + 1, we
believe that the behavior is similar to that of (n, k, £)-systems and prove a nontrivial lower
bound for the first open case { = kK — 2. For k > 2¢ + 1 we give new lower and upper
bounds which show that the minimum independence number of (n, k, £)-omitting systems
has a very different behavior than for (n, k, £)-systems.

1.2 kE<20+1

As mentioned above, for this range of £ and k, the issue at hand is only the polylogarithmic
factor in g(n, k, ). It follows from the definition that an (n, k, k — 1)-omitting system is
also an (n, k, k — 1)-system, thus Rédl and Sinajova’s result (3) implies that

g(n b,k —1) = f(n b, k= 1) = © (nF7 (logn) 77 ).

So, the first open case in the range of k£ < 2¢ + 1 is £ = k — 2, and for this case we prove
the following nontrivial lower bound for g(n, k, k — 2), which improves (5).

Theorem 1.2. Suppose that k > 4. Then every (n,k,k — 2)-omitting system has an
independent set of size ) (nQ/(k_l) (log log n)l/(kfl)). In other words,

gn,k,k—2)=9Q (n% (loglogn)ﬁ) .

Unfortunately, our method for proving Theorem 1.2 cannot be extended to the entire
range of k < 2¢ + 1, but we make the following conjecture.

Conjecture 1.3. For all fixed integers k > £ > 2 that satisfy k < 20 + 1 there exists a
k—¢
function w(n) — 0o as n — oo such that g(n, k,l) = Q (nmw(n))

Theorem 1.2 shows that Conjecture 1.3 is true for £ = k — 2. The smallest open case is
k=>5and ¢ =2.



1.3 k>20+1

Recall that in the range of k > 2¢ 4+ 1 the bounds given by (4) and (5) leave a gap in the
exponent of n. The following result shows that for a wide range of k and ¢ neither of them
gives the correct order of magnitude.

Theorem 1.4. Let £ > 2 and k > 20 + 1 be fixed. Then

Q (max {n;;—ll ) n%}) =g(n,k,0) =0 (n%l (logn)%> .

Remark.

L1 . 3—v5
(a) The lower bound n3-1 can be improved to n~ 2 T2t ~ p0-38196+0c(1)  Qee the

remark in the end of Section 3 for details.

(b) It is clear that Theorem 1.4 improves the bound given by (5) for & > 3¢, and it also

improves the bound given by (4) for k > 2(+ 1 as % — @'—; = (EDR=2D) fop

1 20(k—1)
k>204+1.

It would be interesting to determine g(n, k,¢) for k > 2¢ + 1. Here, we are not able to
offer a conjecture for the exponent of n.

Problem 1.5. Determine the order of magnitude of g(n,k, ) for k > 2+ 1.

For the first open case (k, /) = (6,2) Theorem 1.4 gives (n3/5) =¢g(n,6,2) =0 (n3/4+0(1)).
Similar to Remark (a) above the lower bound for g(n,6,2) can be improved to (n2/3).
See the remark in the end of Section 3 for details.

1.4 (n,k, ¢, \)-systems and (n, k,/, \)-omitting systems

We consider the following generalization of (n, k, £)-omitting systems and (n, k, £)-systems
in this section.

An n-vertex k-graph H is an (n, k, ¢, \)-system if every set of ¢ vertices is contained in at
most A edges, and H is an (n, k, £, \)-omitting system if it does not contain Syy1(¢) as a
subgraph.

Define

f(n,k,0,\) = min{a(H) : H is an (n, k, £, \)-system}, and
g(n,k, 0, \) =min{a(H) : H is an (n, k, £, \)-omitting system} .

When A is a fixed constant, the value of f(n,k,¢,\) is essentially the same as f(n,k,?)
(e.g. see [21]), i.e. f(n,k,l,\) = ©(f(n,k,£)). Similarly, the same conclusions as in
Theorems 1.2 and 1.4 also hold for g(n, k, ¢, \), since Theorem 1.1 holds for all Sy(¢)-free
hypergraphs and using it one can easily extend the proof for the case A = 1 to the case
A > 1. For the sake of simplicity, we will prove Theorem 1.2 only for the case A = 1.

When A is not a constant, even the value of f(n,k, ¢, \) is not known in general. Here is
a summary of the known results.



e / =1: An (n,k,1, \)-system is just a k-graph with maximum degree A and here
complete k-graphs and (1) yield

Fn k1,0 = 6 (55705 -

On the other hand a result of Loh [17] implies

n

g(n7k7]">\): A+1

whenever A+1)(k—1)|n.

If the divisibility condition fails then we have a small error term above.

e ! =k — 1: Kostochka, Mubayi, and Verstraéte [16] proved that

1 1
n\ z—1 n\ t—1 n
ﬂ“hk—L”:@((ﬁ (tog5) ) for 1<A< qogmstne:

e 2 < /(¢ <k—2: Tian and Liu [24] proved that

1/¢ ok + 4 ok
f(n,k,f,A)zQ((ZlogZ) > for k> 5, k; <€§k—2,)\:o<n523k2f94).

They also gave a construction which implies that

k—¢

1
n k—1 n ﬁ
fnk 6N =0 ( (== (logx) for 2<l<k—1, logn < A< n.

Since for every A > 0 an (n, k, ¢, \)-system has size O ()\nf), it follows from (1) that

sk =a((55)7),

which, by Tian and Liu’s upper bound, is tight up to a factor of (log n)l/(k_l) when
logn < A < n.

Using a result of Duke, Lefmann, and R6dl [9] we are able to improve the lower bound for
f(n,k, 2, \) to match the upper bound obtained by Tian and Liu for a wide range of \.

Theorem 1.6. Let k > ¢ > 2 be fized. If there exists a constant § > 0 such that

1o
0<A<nk2"7 then
1
k—C\ %—1
fWh&M=Q<CA> @yw*)

Remark. It remains open to determine f(n,k, ¥, \) for Q (n%_o(l)) =A=0 (nk_é).

Since Theorem 1.1 does not hold when A is not a constant, our method of proving Theo-
rems 1.2 and 1.4 cannot be extended to this case.



1.5 Applications in Ramsey theory

For a k-graph F the Ramsey number ri(F,t) is the smallest integer n such that every
F-free k-graph on n vertices has an independent set of size at least t. Determining the
minimum independence number of an F-free k-graph on n vertices is essentially the same
as determining the value of ri(F,t). So, our results above can be applied to determine
the Ramsey number of some hypergraphs.

First, Theorem 1.2 and (4) imply the following corollary.

Corollary 1.7. Let k > 4 and A\ > 2 be fixed integers. Then
0 t(k=1)/2 (Sa(k—2.0)= 0 t(k=1)/2
— =T A - 7t = .
(logt)/2) — " (log log t)1/2

Similarly, Theorem 1.4 gives the following corollary.

Corollary 1.8. Let £ > 2, k > 20+ 1, and A > 2 be fized integers. Then

£20/(6+1) o
Q (lt)w =r(S\(0),t) = O (min {t Z A }) .
0g

34—1
Remark. According to Remark (a) after Theorem 1.4, the upper bound ¢ #+T above can

be improved to £ or(1) | 42.61803+o,(1)

The following result about 75, (S5, t) follows from a more general result of Loh [17].

Theorem 1.9 (Loh [17]). Lett > k > 2, t—1 = q(k — 1) + r for some ¢, € N with
0<r<k—2. Then for every A > 2

Ak —1) +7+1<rp(S5t) < Ag(k — 1) + M+ 1.

In particular, r(S¥,t) = A(t — 1) + 1 whenever (k—1) | (¢t — 1).

The k-Fan, denoted by F*, is the k-graph consisting of k+1 edges E1, . .., Ej, E such that
E,NEj=vforall 1 <i<j<k wherev ¢ FE, and |E; NE| =1 for 1 <i < k. In other
words, F* is obtained from S,’j by adding an edge omitting v that intersects each edge of
S’]kC . Tt is easy to see that F? is just the triangle K3. The k-graph F* was first introduced
by Mubayi and Pikhurko [19] in order to extend Mantel’s theorem to hypergraphs. Unlike
the case k = 2, where it is well known that ro(K3,t) = © (t*/logt) (e.g. see [3, 14]), the
following result shows that rj,(F*,t) = ©(¢?) for all k > 3.

Theorem 1.10. Suppose that t > k > 3. Then

BJ b(lfk_—lmJ <rp(Fh ) <t(t—1)+1.

As t — 00, it remains open to determine lim ry(F¥,t)/t2.

In Section 2, we prove Theorem 1.2. In Section 3, we prove Theorem 1.4. In Section 4,
we prove Theorem 1.6. In Section 5, we prove Theorem 1.10. Throughout the paper we
will omit floors and ceilings when they do not affect the proofs.



2 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Let us show some preliminary results first.

2.1 Preliminaries

For a k-graph H and i € [k — 1] the i-th shadow of H is

OiH = {A € (Z(H)> : 3F € H such that A C E}
—1

The shadow of H is OH = 01H. For a set S C V(H) the neighborhood of S in H is
Ny (S)={veV(H)\S:3IE € H such that SU{v} C E},
the link of S'in H is
Ly(S)={E\S:Ee€Hand SCE},
and dy (S) = |Ly(S)] is the degree of S in H. For i € [k — 1] the mazimum i-degree of H

IS w0 i 4 (TN,

7

and note that A(H) = A(H).

For a pair of distinct vertices u,v € V(#H) the (k — 1)-codegree of u and v is the number
of (k—1)-sets S C V(H) such that SU{u} € H and S U {v} € H. Denoted by I'(H) the
maximum (k — 1)-codegree of H.

The random greedy independent set algorithm. We begin with H(0) = #,V(0) =
V(M) and I(0) = (. Given independent set I(i) and hypergraph H (i) on vertex set V (i),
a vertex v € V(i) is chosen uniformly at random and added to I(7) to form I(i + 1). The
vertex set V(i + 1) is set equal to V(i) less v and all vertices u such that {u,v} is an edge
in H(i). The hypergraph H(i + 1) is formed form H; by

1. removing v from all edges of size at least three in #(7) that contain v, and

2. removing every edge that contains a vertex u such that the pair {u,v} is an edge of
The process terminates when V(i) = (). At this point I(7) is a maximal independent set
in H. Let 4% denote the step where the algorithm terminates.

In [5], Bennett and Bohman analyzed the random greedy independent set algorithm using
the differential equation method, and they proved that if a k-graph satisfies certain degree
and codegree conditions, then the random greedy independent set algorithm produces a
large independent set with high probability.

Theorem 2.1 (Bennett-Bohman [5]). Let k and € > 0 be fized. Let H be a D-regular
k-graph on n vertices such that D > n°. If

Ai(H) < DFET° for 2<i<k—1, and T(H)< D',
then the random greedy independent set algorithm produces an independent set I in H of

size €1 ((log n)l/(k_l) : n/Dl/(k_l)) with probability 1 — o(1).

7



The lower bound on independence number in Theorem 2.1 can easily be proved by applying
a theorem of Duke-Lefmann-R46dl [9] (see Theorem 2.3), so the main novelty of Theorem 2.1
is the fact that the random greedy independent set algorithm produces an independent
set of this size with high probability.

Let S C V(H) be a set of bounded size s such that S contains no edge in H. A nice
property of the random greedy independent set algorithm is that S is contained in the set
I(i) with probability (1+o0(1)) (i/n)®, which is almost the probability that S is contained
in a random ¢-subset of V(H).

Using this property we can easily control the size of the induced subgraph of G on I(i),
where G is a hypergraph that has the same vertex set with H.

Proposition 2.2 (Bennett—-Bohman [5]). Let H be a hypergraph that satisfies the condi-
tions in Theorem 2.1 and G be a k'-graph on V(H) (i.e. G and H are on the same vertex
set). If i < imax 1S fized, then the expected number of edges of G contained in I(i) is at

most (1 + o(1)) (i/n)* - |G|.

For 2 < j <k —1 and two edges E, E' in a k-graph H we say {E, E'} is a (2, j)-cycle if
|[ENE'| = j. Denote by Cy(2,j) the number of (2, j)-cycles in H. Duke, Lefmann, and
Rodl [9] proved the following result for hypergraphs with few (2, j)-cycles.

Theorem 2.3 (Duke-Lefmann—Ro6dl [9]). Let H be a k-graph on n wvertices satisfying
A(H) < tF=1 where t > k. If Cy(2,5) < nt?*=I=17¢ for 2 < j < k—1 and some constant
e >0, then a(H) > c(k, ) (log ) *~V . n/t.

Recall that a hypergraph is linear if every pair of edges has at most one vertex in common.
It is easy to see that H is linear iff Cy(2,7) = 0 for 2 < j < k — 1. The following easy
corollary of Theorem 2.3 will be handy for proofs in the next section.

Corollary 2.4 (see e.g. [13]). Suppose that H is a linear k-graph with n vertices and
average degree d. Then a(H) = Q ((log d)l/(k_l) -n/dl/(k_1)>.

For a (not necessarily uniform) hypergraph H on n vertices (assuming that V(H) = [n])
and a family F = {Gy,...,G,} of m-vertex k-graphs with V(G;) = --- = V(G,) = Vr the
Cartesian product of H and F, denoted by HOF, is a hypergraph on V(#H) x Vr and

HOF ={(E,v): E€HandveVr}U{(F):i€[n]and F € G;}.

Since the hypergraphs we considered here are not necessarily regular, Theorem 2.1 cannot
be applied directly to our situations. To overcome this issue we use an adaption of a trick
used by Shearer in [22], that is, for every nonregular hypergraph H we take the Cartesian
product of H and a family of linear hypergraphs to get a new hypergraph H that is regular.
Then we apply Theorem 2.1 to H to get a large independent set, and by the Pigeonhole
principle, this ensures that H has a large independent set.

First, we need the following theorem to show the existence of sparse regular linear hyper-
graphs.

Given two k-graphs H; and Hsy with the same number of vertices a packing of H, and Ho
is a bijection ¢ : V(H1) — V(H2) such that ¢(F) & Ho for all E € H;.



Theorem 2.5 (Lu-Székely [18]). Let Hi and Ha be two k-graphs on n vertices. If

1 /n
A(Hq)|Ha| + A(H2)|H1| < ek(k)’

then there is a packing of H1 and Hs.

Theorem 2.5 enables us to construct sparse regular linear hypergraphs inductively.

Lemma 2.6. For every positive integer n that satisfies k | n and every positive integer d
that satisfies

m—k+2)(n—k+1)
@< ek?(k —1)2n

+1,
there exists a d-reqular linear k-graph with n vertices.

Proof of Lemma 2.6. We proceed by induction on d and note that the case d = 1 is trivial
since a perfect matching on n vertices is a l-regular linear k-graph. Now suppose that
d > 2. By the induction hypothesis, there exists a (d — 1)-regular linear k-graph on n
vertices, and let Hy_1 be such a k-graph. Let H; be a perfect matching on n vertices.
Define the extended k-graph ”;Ql of Hq as

T {{u,v} UA:{uv} € 9p_oHy and A € (V(H;ﬁ)_\ ;“’”}) } .

It is clear from the definition that Hq C Hq, [H1| < %(g) (,",), and H, is regular. So,

o kM| Eknf(k\( n \ _[(k\( n
A(Hl)n<nk<2><k—2)<2)<k—2>'
By assumption

sl ansal < @i (), 5) 5 () (i)

st ()2 < )

Therefore, by Theorem 2.5, there exist a bijection ¢ : V(H4-1) — V(H1) such that
|p(E)NE'| <k—1forall E € Hyq_1 and all E € Hy, and this implies that |¢p(F)NE"| <1
for all E € Hy_1 and all E” € H;. Therefore, Hq U ¢ (Hq4—1) is a d-regular linear k-graph
on n vertices. |

2.2 Proofs
First we use Theorem 2.1 and Proposition 2.2 to prove a result about the common inde-
pendent set of two hypergraphs on the same vertex set.

Theorem 2.7. Let ky, ko > 2 be integers, € > 0, n,D € N, and d > 0. Suppose that

(a) H is an n-vertex ki-graph, G is an n-vertex ko-graph, and V(H) =V (G) =V,

ko—1

(b) D >n and d(logn/D)FT > 1,



(c) H satisfies that A(H) < D,

kq—i

Aj(H) < Dm=1"° for 2<i<k —1, and I'(H)< D'

(d) G satisfies that d(G) < d and

2kg—i—1

Cg(2,i) <n(D/logn) #1-1  for 2<i<ky—1.

Then, a(HUG) = Q (w - n/dY®2=1) " where
kp—1 1/(k2—1)
w=w(n,D,d ki, ko) = <log ((log n/D)kFi-1 d>> .

Remarks.

e Although Theorem 2.7 imposes no condition on ki and ko, we will only apply the
result in the case ko = k1 + 1.

e Spencer’s bound (1) implies that a(G) = Q (n/dl/(kQ_l)). Theorem 2.7 improves it in
two ways: first it improves the bound by a factor of w, second it is a lower bound for
the independence number of G U H. Ajtai, Komlds, Pintz, Spencer, and Szemerédi’s
result (2) implies that the upper bound for w is (logn)'/(*2=1)_ However, we are not
able to show that w = Q ((log n)l/ (k2_1)) in general, and it would be interesting to
determine the optimal value of w.

o If 1 and G satisfy conditions (a) and (¢) in Theorem 2.7 and also satisfy

ko—1
(') D > n¢ and d (logn/D)"T < 1,
then o (H U G) = Q ((log n)l/ (k=1 n/DY*1=D) Moreover, if G = (), then a(H) =
Q ((log n)t/ (k1=1) ~n/D1/(k1’1)) which is the bound in Theorem 2.1. The proof is
similar to the proof of Theorem 2.7.

Proof of Theorem 2.7. For 2 <1 < kg — 1 define

Gl = {S € <2k2 B z) : G[S] contains a (2,2)—cycle} .

Fix m € N such that D < m = O(n*1), and k; | m. Notice that D has a trivial upper
bound n*1 71, so such an integer m exists. For every v € V let D, = D — dy(v). Since
m > D and k; | m, by Lemma 2.6, there exists a D,-regular linear ki-graph F(v) on [m]
for every v € V. Let

H=nugu| |J G|, F={F):veV}, and H =HOF.

2<i<ko—1

Note that ' is consisting of

1. the ki-graph H = HOF,

2. the ko-graph G that is the union of m pairwise vertex-disjoint copies of G, and

10



3. the (2ky —i)-graph G that is the union of m pairwise vertex-disjoint copies of G for
2<i<ky—1.

~

For every v € V(H) we have dg(v) = dy(v) + D, = D. Moreover,

~ k=i

AI(H) = Az(,H) < DF1-1 ‘< for 2 <i<ki—1, and F(’/:Z) = F(H) < Dl_e,

Applying the random greedy independent set algorithm and Theorem 2.1 to H , we obtain
an independent set I of size at least ¢ (log nm)l/(krl) -nm/DY#*1=1) for some constant
¢ > 0 with probability 1 — o(1). Let p = ¢ ((log nm)/D)l/(kl_l) and we may assume that
|f | = pnm since otherwise we can take the set of the first pnm vertices generated by the
random greedy independent set algorithm instead.

Applying Proposition 2.2 to G,G2,... ,§k2_1 and by assumption (d) we obtain
E[|G11)]] < (14 o(1)p*1G] < 2dnmp',
and for 2 <3< ky—1

E|

G| = (1+o(1))p?*~" - m - Cg(2,4) = o(prm).
So, by Markov’s inequality and the union bound, with probability at least 1/2 both

‘G\[f] < 10dnmp™  and

é\z[f]‘ =o(pnm) V2<i<ky—1
hold.

Fix a set I such that |I| = pnm and the events above hold. Then by removing o(pnm)
vertices we obtain a subset I’ C I such that

gAi[f]‘zo for 2<i<hky—1.

In other words, the ko-graph G[I'] is lincar. Since

ko - 10dnmp*?
(1= o())prm

by Corollary 2.4, it has an independent set I’ of size at least

< 20kqgdp*2 1,

d (é[i’]) <

. 1
pnm ko—1\k2—1 1\ L ko—1 *o—1
¢ <(20k2dpk2_1)1/(’“2‘1) <10g 20dp™ ) > =9 (mdl/(/@—l) <logp : d> )

= (m

n
dl/(krn“) '
Here we used assumption (b) to ensure that 20kedp*2—1 > 1.

By the Pigeonhole principle, there exists j € [m] such that I = I'N (V' x {j}) has size at
least |I|/m = Q (w-n/d"/*2=1)) and it is clear that I is an independent set in both H
and G. |

Next we use Theorem 2.7 to prove Theorem 1.2. The idea is to first decompose an
(n, k, k — 2)-omitting system H into two parts: Hp_1 C OH and Hj C H, and then apply
Theorem 2.7 to Hp_1 and Hj to find a large set I C V that is independent in both of
them. It will be easy to see that the set I is independent in H.

11



Proof of Theorem 1.2. Let H be an (n, k, k — 2)-omitting system and let V = V(H). By
Theorem 1.1, there exists a constant Cy such that [H| < C1n*~2. Let 8 = B(k) > 0 be a

constant such that ﬁ < B < 1, for example, take = 4/5. Define

k-3
nk-1

E
HklZ{AE(?H:dH(A>ZW} and Hk:{EGHi (k_1>ﬁ7'[k1:®}-

Let kiy=k—1, ko =k, D= nk_4+2/(k_1)(log n)?, d = C1n*=3, and € be a constant such
that 0 < e < 1/(k—1). Then D > n and

kg1 k—1

1 o1 1 k=2 _
d < Og”) " = oynks ogn = O (logn) iz > 1.
D n* 5 (log n)#

Therefore, condition (b) in Theorem 2.7 is satisfied. Next we show that Hy_; and Hy
satisfy (¢) and (d) in Theorem 2.7 with our choice of k1, k2, D, d, €.

Claim 2.8. The (k — 1)-graph Hi—1 is an (n,k — 1,k — 2)-system with Ag_3(Hp—1) <
n?/ =1 (logn)?.

Proof of Claim 2.8. First we prove that Hy_1 is an (n, k—1, k—2)-system. Indeed, suppose
to the contrary that there exist e;,es € Hp_1 such that S = e; N es has size k — 2.
By the definition of Hy_1, |Ny(e;)| > n%/(logn)ﬁ > 2k for ¢ = 1,2. So there exist
vi,v2 € V' \ (e1 Uea) such that E; = e; U {v;} € H for i = 1,2. However, E1 N Ey = S
has size k — 2, contradicting the assumption that H is an (n,k, k — 2)-omitting system.
Therefore, Hy_1 is an (n,k — 1,k — 2)-system.

Now suppose to the contrary that there exists a set A C V of size k — 3 with dy, ,(4) =
m > n? =N (logn)?. Since Hj_; is an (n,k — 1,k — 2)-system, Ly, ,(A) is a matching
consisting of m edges. Suppose that Ly, (A) = {e1,...,emn}, and let B; = AU e; for
1 < i < m. Since B; € Hp_1, by definition, there exists a set N; C V of size at least

n%/(log n)? such that B; U {u} € H for all u € N;.

Suppose that there exists v € N; N N; for some distinct 7,5 € [m]. Then the two sets
AUe; U{v} and AUe; U{v} are edges in 1 and have an intersection of size k — 2, a
contradiction. Therefore, N; N N; = () for all distinct ¢, j € [m]. It follows that

n=|V|> Z |N;| > mn%/(logn)ﬁ > n%(logn)ﬁn%/(logn)ﬁ > n,
i€[m]

a contradiction. Therefore, Aj_g(Hp—1) < n?* =D (logn)?. |

Since Ag_3(Hi_1) < n**#=D(logn)?, for every set S C V of size i with i € [k —4] the link
Ly, ,(S)isan (n,k —1—i,k — 3 —i,n? =V (logn)?)-system. Therefore, for i € [k — 4]

2 n k—1—1 2
) < = B k—3—i+= B‘
Ai(Hi—1) <n*1(logn) (k:—?)—i)/<k—3—i> <n #~1 (logn)

Since

2 kE—1—1i . 2 2(i—1)
_4 _— —_ —_ =
(k +k—1> - (k 3 Z—i—k_l) P > e,
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we obtain
k—1—1

Ai(Hi—1) < nk_3_i+%(log n)? < D¥=117¢ for 2<i<k-—3.

—1—(k—2)

k
On the other hand, since H is an (n,k — 1,k —2)-system, Ap_o(Hy_1) <1< D *1-T ¢
and T'(Hi_1) = 0 < D'7¢. Therefore, H;,_; satisfies condition (c) in Theorem 2.7.

Claim 2.9. The k-graph H;, satisfies d(Hy) < C1kn*=2,

O, (2,i) = O (n%—‘*—i) for 2<i<k-3,

O, (2,k —2) =0, and Cy, (2,k —1) = O (M‘H%/(log n)ﬂ>.

Proof of Claim 2.9. First, it is clear that Cy, (2, k —2) = 0 since there is no pair of edges
in H;, with an intersection of size k — 2.

Let 2 < i< k—3and S CV be a set of size i. Since Hy is an (n,k, k — 2)-omitting
system, the link Ly, (S) is an (n,k — i,k — 2 — i)-omitting system. So, by Theorem 1.1,
|L3, (S)| = O (nF=27%), which implies that

Cy, (2,1) < |Hgl - (]:> -0 (nk_Q_i) =0 <n2k_4_i> for 2<:<k-3.

Now let S C V be a set of size k — 1. By the definition of Hy, dyy, (S) < n** =1 /(logn)?.
Therefore,

k —: _:
Cu2k=1) < 1l (") 0B fomn)? = 0 (1245 o)),

1

Since

2\ 2%k—1—i 2(i — 1)
1 .y
# (k-1 2)

by Claim 2.9,
O3, (2,9) = O (n%*‘H‘) —0 (n (D/log n)iik—_li—_ll) for 2<i<k-—3.

2k—(k—2)—1

Moreover, Cy, (2,k —2) =0 < n(D/logn)” *1=1 , and

2k—(k—1)—1

k—2+5=3 k—2445=3
n k—1 n k—1 D k—1-1
Cu,(2,k—1)=0 < = ,
sl ) ( (logn)? ) (logn)(l_ﬁ)% " <logn>

where the inequality follows from the assumption that g > ﬁ Therefore, H;, satisfies
condition (d) in Theorem 2.7.

So, by Theorem 2.7, there exists a set I C V of size Q) (w . n/n%> = (n2/(k_1)w) such
that [ is independent in both Hz_1 and H;. Here

CERANNA i\ 1/(k=1)
o= (1og ((@ogm/D)F ) ) T = (log tog )0V

=0 <(log log n)l/(k_l)) .
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3 Proof of Theorem 1.4

3.1 Lower bound

We prove the lower bound in Theorem 1.4 in this section. The proof idea is similar to that
used in the proof of Theorem 1.2, that is, we decompose an (n, k, £)-omitting system into
many different hypergraphs so that each hypergraph contains the information of a certain
subset of edges in the original hypergraph. Then we use a probabilistic argument to show
that there exists a large common independent set of these hypergraphs.

Recall that an n-vertex k-graph H is an (n,k,¢, \)-omitting system iff it is Syi1(¢)-
free. While Theorem 1.4 as stated provides a lower bound on the independence number
of (n,k,¢)-omitting systems, the result holds in the more general setting of (n,k, ¢, \)-
omitting systems. We present the proof in this more general setting.

Let £ > ko > ¢ > 1, A > 2, and ‘H be an S)(¢)-free k-graph. We say H is (ko, \)-
indecomposable if

o k =k, or

o k> koand His {Sy (k—1),..., 5, (ko)}-free, where \; = (k:/\)ZF1 for i € [k—ko.

Otherwise, we say H is (ko, \)-decomposable.

Call a family F of hypergraphs (kg, A)-indecomposable if every member in it is (kg, A)-
indecomposable. Otherwise, we say F is (ko, A)-decomposable.

The decomposition algorithm.

Input: An S)(¢)-free k-graph H and a threshold ko with k > ko > £.

Output: A family F of Sy (¢)-free (kg, \)-indecomposable hypergraphs.

Operation: We start with the family F = {#}. If F is (ko, A)-indecomposable, then we
terminate this algorithm. Otherwise, let G € F be a (kg, A\)-decomposable hypergraph and
let k' denote the size of each edge in G. Let g € {1,...,k" — ko} be the smallest integer

such that G contains a copy of Sy, (k" — o), where \;, = (k)\)2i071. Define

G/ —iy = {A € <V(H)> cdg(A) > )"io} and G = {B €g: < B . ) NGrr—iy = (D}.
k’—’Lo k’—’Lo

Update F by removing G and adding G—;, and Gi. Repeat this operation until F is
(ko, A)-indecomposable.

We need the following lemmas to show that the algorithm defined above always terminates.
Write v(H) for the size of a maximum matching in H.

Lemma 3.1. Let H be an {S/\l(kz —1),..., SAk_l(l)}—free k-graph with m edges. Then

m

v(H) 2 =
[T G+ DX

Proof of Lemma 3.1. For j € [k — 1] let A; = {:1(2' + 1)A;. We prove this lemma by

induction on k. Suppose that k& = 2. Since H is Sy, (1)-free, dy(v) < Ay — 1 for all

v € V(H). Therefore, by greedily choosing an edge e and removing all edges that have

nonempty intersection with e, we obtain at least m/(2\;) pairwise disjoint edges in H.

14



Now suppose that £ > 3. We claim that dy(v) < (Ag—1 —1)Ag_o for all v € V(H). Indeed,
suppose to the contrary that there exists vg € V(H) with dy(vg) > (Ag—1 — 1)Ag_o2 + 1.
Since H is { S, (k—1),..., 5, ,(2)}-free, the link Ly (vo) is {Sx, (k —2),..., 5, ,(1)}-
free. By the induction hypothesis,

(Me—1 — DAg_2+1

v(Ly(vo)) > v

> Ak*l - 17

but this contradicts the assumption that H is Sy,_, (1)-free. Therefore, dy(v) < (Ag—1 —
1)Ag_o for all v € V(H). Then, similar to the case of k = 2, by greedily choosing an edge
e and removing all edges that have nonempty intersection with e, we obtain

m m

>
E(Ak—1 — D)Ag—2+1 Ap_q

v(H) >
completing the proof. ]

Let ‘H be an Sy (¢)-free k-graph. Define

= {ae (T i )

If H is {S,\/l(k -1),.. .,S)\;c_k/_l(k’ + 1),S>\(€)}—free for some ¢ < k' < k — 2, then also
define

k—k'—1
Hyy = {Ae <Z> cdy(A) >k [ (i+1)A;}.

=1

Lemma 3.2. The hypergraphs Hys and Hyp—1 defined above are Sy(¢)-free.

Proof of Lemma 3.2. We may only prove that Hy is Sy (¢)-free, since the proof for Hy_1 is
basically the same. Suppose to the contrary that there exists {Aj,..., Ay} C Hy forming
a copy of Sx(¢). Since H is {Sy (k — 1)""’5/\24@/71(]{;, + 1) }-free, the link Ly (A;) is
{Sy (k=K =1),..., Sy (1)}-free for i € [N Let A =TI (i + 1)A;. Tt follows
from the definition of Hys that |Ly(A;)| > kAA’ for @ € [A\]. So, by Lemma 3.1, there
are at least kAA'/A’ > k) pairwise disjoint edges in Ly(A;) for i € [A\. Therefore,
there exist A pairwise disjoint (k — k’)-sets By, ..., By such that B; C V'\ <U;‘:1 Ai> and
E; = A;UB; € H for i € [A]. Tt is clear that {FE1,...,E\} is a copy of S\(¢) in H, a
contradiction. [

Recall that in the decomposition algorithm we defined

gk/,io = {A & (V(H)> :dg(A) Z )‘io}v and gk/ = {B c gl < B . ) ﬂgklfio = @},
k/—lo k/—lo

where ig € {1,...,k —ko} is the smallest integer such that G contains a copy of S Mg (k' —1ig)

and \;, = (k)\)%il. It is clear from the definition that Gy is Sy, (K’ —io)-free. On the
other hand, Lemma 3.2 implies that both Gy and Gp/_;, are Sy({)-free. Therefore, the
new hypergraphs Gy, and Gy we added into F either have a smaller edge size (the case
G —i,) or forbid one more hypergraph (the case Gy/). So the algorithm must terminate
after finite many steps, and it is easy to see that the outputted family F has size at most
2k=ko Indeed, the latter statement can be proved by associating a binary tree T to the
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algorithm: the vertex set of T} is the collection of all hypergraphs (including H) generated
in each operation of the algorithm, the root of T is H, and the children of a vertex G
are Gp/—;, and Gy (if they are defined). It is easy to see that the height of T3 is at most
k — ko and the outputted family F is the collection of hypergraphs that are leaf vertices
of Ty. Therefore, |F| < 2Fko,

The following lemma shows that in order to find a large independent set in H it suffices
to find a large common independent set of all hypergraphs in F.

Lemma 3.3. Let H be an Sy({)-free k-graph and F be the outputted family after applying
the decomposition algorithm to H. Then

a(H)Za(U g).

GeF

Proof of Lemma 3.3. Suppose that F = {Hi,...,Hn} and I C V(H) is independent in
H; for i € [m]. It is clear from the definition that for every E € H there is a subset £/ C F
such that E’ € H; for some i € [m]. Since I is independent H;, E' ¢ I and it follows that
E ¢ I. Therefore, I is independent in H. |

We also need the following lemma which gives an upper bound for the size of an indecom-
posable hypergraph.

Theorem 3.4 (Deza—Erd6s—Frankl [8]). Letr > 1, t > 2 be integers and L = {{1,...,¢,}
be a set of integers with 0 < {1 < --- < £, < k. If an n-vertex k-graph H is S¢({)-free for
every £ € [k] \ L, then |H| = O(n"~) unless (ba — 1) | -+ | (b — brv) | (K — £;).

Lemma 3.5. Let k > ko > £ > 1, A\ > 2 be integers, k > 20+ 1, kg > £+ 3, and H be
a Sx(£)-free (ko, \)-indecomposable k-graph with n vertices. Then there exists a constant
Cre such that [H| < C’W,,\nmin{koflk*[*l}.

Proof of Lemma 3.5. Since H is S\(¢)-free and k > 2¢ + 1, by the results in [11], |H| =
O (n*~*=1). On the other hand, since H is {Sx, (k — 1),... s Sxi_, (K0), Sx(£) }-Iree, ap-
plying Theorem 3.4 to H with t = max{\,..., A\g—g,, A} and L = {0,1,....0 — 1,0 +
1,...,ko — 1} we obtain |H| = O (nk0=2). 1

Now we are ready to prove the lower bound in Theorem 1.4.

Proof of the lower bound in Theorem 1.4. We may assume that k& > 3¢ since otherwise by
(5) we are done. Let H be an S)({)-free k-graph on n vertices and V' = V(H). Apply
the decomposition algorithm to H with the threshold kg = 2¢ + 1, and let F denote the
outputted family. Suppose that F = {Hi,...,H,,} for some integer m. For i € [m)]
let k; denote the size of each edge in H; and note from the definition of the algorithm
that 20 +1 < k; < k. Let C = max{Cj, ¢ : 20 + 1 < k; < k}, where Cy, ¢ is the
constant given by Lemma 3.5. Choose a set I C V such that every vertex is included in [

20—2
independently with probability p = dn~ 3¢=1, where § > 0 is a small constant that satisfies
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Cmd3~2 < 1/4. Then by Lemma 3.5,

E 1] - ZIH E[l1]) - ZEH%[IH]

>pn_chk min{20—1,k;—¢—1}

—pn—C Z prin2-1 4 Z pripki—t-1

ie[m}:kiz?)e ie[m]lkiffw 1
> 5n3%11 — Cm53£n3%11 — Cm53£*1n3%11 > 5n%/2.
Eaa . .
Therefore, there exists a set I of size (2 (n%*l) such that H;[I] = () for i € [m], and it

follow from Lemma 3.3 that a(H) > |I| = Q (n%> |

£+1
Remark. The lower bound n3-T can be improved by optimizing the choice of ky. Indeed,

suppose that ¢ is sufficiently large. Let

1 VE-1,
ko:(\/g; +0z(1)>£’ 5:<\/5+3+04(1)>& and p=5n< 1”()),

2

where 0 > 0 is a sufficiently small constant. Repeating the argument above we obtain

E||I] - Zm ] RIHIESSRIEAU)
=pn— | Y E[H]+ D E[HI]+ D E[H[I
ki>s

204+1<k;<s ko<k;<2¢

By Lemma 3.5, we have

STE[H) < ¢ Y prato2,
ki>s

ki>s

By Theorem 1.1, we have

SOEmMI<e Y PR ad Y B[S0 Y gt

2+1<k;<s 2+1<k;<s ko<k;<2¢ ko<k;<2¢
Therefore,
m
kipko=2 4 ki, ki—l—1 ki, €
=S ]l Zpn—c [ gl e 3 ki 3 g
i=1 ki>s WA1<k;<s ko<k; <20

> pn — Cm (psnkoﬂ i psflnsf€f2 +pkone)

> 577/(%4-02(1)) /2

. . . . (3*V3+05(1)>
which implies that H contains an independent set I of size ) [ n\ 2 .

Similarly, the lower bound for g(n,6,2) can be improved from (n3/ 5) to Q (n2/ 3) by
letting kg = 4. Indeed, it is easy to see that when applying the decomposition algorithm
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to an n-vertex S)(2)-free 6-graph H with the threshold ky = 4, the outputted family F
consists of three hypergraphs: an S)(2)-free (4, \)-indecomposable 6-graph #H;, an S)(2)-
free (4, \)-indecomposable 5-graph Hs, and an S (2)-free 4-graph Hsz. By Theorem 1.1 (the
stronger version in [11]), |H2| = O (n?) and |Hs| = O (n?). By Theorem 3.4, H; = O (n?).
So, it follows from a similar probabilistic argument as above that a(H) > a(H1UHoUH3) =
Q (n%3).

3.2 Pseudorandom bipartite graphs

Our construction for the upper bound in Theorem 1.4 is related to some pseudorandom
bipartite graphs, so it will be convenient to introduce some definitions and results related
to pseudorandom bipartite graphs.

For a graph G on n vertices (assuming that V(G) = [n]) the adjacency matriz Ag of G is
an n X n matrix whose (7, j)-th entry is

o 1, if {i,j} € E(G),
Ag(i,j) = .
0, otherwise.
Denote by G(V1,V2) a bipartite graph with two parts Vi and Va, and that say G(V1, V2)
is (dy,d2)-regular if dg(v) = d; for all v € V; and i = 1, 2.

For a bipartite G = G(V1, V2) denote by A(G) the second largest eigenvalue of Ag. Suppose
that G is (dy, dz)-regular. Then we say G is pseudorandom if \(G) = O (max{/dy,/dz}).

The Zarankiewicz number z(m,n,s,t) is the maximum number of edges in a bipartite
graph G(V1, V) with |V1| = m, |Va| = n such that G contains no complete bipartite graph
with s vertices in V7 and t vertices in V5.

Our construction of (n,k,?)-systems is related to the lower bound (construction) for
z(m,n, s, t). More specifically, it is related to a construction defined by Alon, Mellinger,
Mubayi and Verstraéte in [4], which was used to show that z(nf/2 n,2,¢) = Q (n(”l)/Q).

Let g be a prime power and F = GF(q) be the finite field of size q. Denote by F[X] the
collection of all polynomials over F. The graph G (qe ,q%,2,0) is a bipartite graph with two
parts V; and Vs, where

Vi ={P(z): P(z) € F[X],deg(P(z)) <¢—1}, and Vo=TF xF,

and for every P(x) € Vi and every (z,y) € V3, the pair {P(z),(z,y)} is an edge in
G(d',¢% 2,0) iff y = P(x).

It is clear that G(¢f, ¢%,2,¢) does not contain a complete bipartite graph with two vertices
in Vi and £ vertices in V5 since two distinct polynomials of degree at most £ — 1 over F
can have the same value in at most £ — 1 points. It is also easy to see that G(¢’, ¢%,2, /)
is (¢, ¢ )-regular.

The proof of the following result concerning the eigenvalues of G(¢’, ¢%,2, ) can be found
in [10].

Lemma 3.6 ([10]). The eigenvalues of the adjacency matriz of G(q*,¢?,2,€) are

02 Q=0/2 D[22 D2 ),

qa’,4q {4

q%—q times q%—q times

In particular, G(q%, ¢%,2,¢) is pseudorandom.
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3.3 Upper bound

In this section we prove the existence of (n,k,{)-systems with independence number
@) (n%} (log nﬁ) Our construction is obtained from a random subgraph of the bipartite

graph G(q%, ¢%,2,¢) defined in the last section, and the method we used here is similar to
that used in [15, 10].

First let us summarize the constructions used in [15] and [10] into a more general form.

Since we cannot ensure the random subgraph chosen from G(q’, ¢%,2, ) is exactly (dy, d2)-
regular for some dy,ds € N, it will be useful to consider the following more general setting.

Let C,dy,ds > 1 be real numbers. A hypergraph H is

(a) (C,dy)-uniform if d1/C < |E| < Cd, for all E € H, and
(b) (C,dg)-regular if do/C < dy(v) < Cdy for all v € V(H).

The edge density of a k-graph H with n vertices is p(H) = |#|/(}). The bipartite incidence
graph G of H is a bipartite graph with two parts V3 = E(H) and Vo = V(H), and for
every E € E(H) and v € V(H) the pair {E, v} is an edge in Gy iff v € E. Denote by Ay
the adjacency matrix of Gy.

Let n = |V(H)|, m = |H| and labelling the edges in H with Ey,..., E, We say a family F
of hypergraphs fits H if F = {G,; : 1 <1i < m} and G, is a hypergraph with |V (G;)| = |E;]
for i € [m)].

Given a hypergraph H and a family F that fits H we let H(F) be the random hypergraph

obtained from H by taking independently for every i € [m] a bijection v¢; : E; — V(G;)
and letting a set S C E; be an edge in H(F) if ¢;(S) € G;.

Let 7 > 1 be an integer and denote by B;(G) the collection of 7-subsets of V(G) that are
not independent in G. Let b.(G) = |B(G)| and p,(G) = bT(g)/(”@). In other words,
p-(G) is the probability that a random 7-subset of V(G) is not independent in G. For a
family F of hypergraphs define

pr(F) =min{p,(G): G € F}.
We extend the definition of Cg(2, j) in Section 2 by letting Cg(2, j) denote the number of
pairs of edges {E, E'} in a k-graph G with [ENE/|=jforall0 <j <k —1.
The following lemma gives an upper bound for the independence number of H(F).

Lemma 3.7. Let C,dy,dy > 1 be real numbers and k > 2 be an integer. Suppose that
H is a hypergraph with n vertices, m edges, and is (C,dy)-uniform, (C,ds)-regular. Let
F ={G; : i € [m]} be a family of k-graphs that fits H. Suppose there exists A > 0 such
that the bipartite graph Gy satisfies

dq
ey (X, Y) = —|X[|Y]| < AVIX[]Y] (6)

forall X CV(H) and Y C E(H). Then, w.h.p. a(H(F)) < 27n/dy, if T satisfies

2 242
pr(F) > 8C*logn and 7> 8C*\ . 7)
T do dsy
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Proof of Lemma 3.7. Let T be a real number that satisfies (7), V =V (H), and I C V be
a set of size 2Tn/d;.

Let m = |H| and label the edges in H by {E1,..., En}. Let m; = |E;| for i € [m]. Since
H is (C,dy)-uniform and (C,dz)-regular, we obtain di|H|/C < Y i, dy(v) < Cdi|H],
and consequently,

md1/02 S ndg S szdl. (8)

Define
Si={FeH: |Enl|<7}, and & ={Ee€H:|ENI|>37}.

Claim 3.8. |&] < 2C?\2m/dyT < m/4 fori=1,2.

Proof of Claim 3.8. Tt follows from (6) that

S IENI] = ey (1, €) = dil]|Ex]/n — A(TIIE])Y?,
Fecé&

and by definition, ) pce [E N I| < 7|&1|. Therefore,
& | > di|I||E]/n — N (I]|E)2

Since |I| = 27n/d;, we obtain

2 2
&) < WIES A2 22
"US\dltn—7) " \alI2n) T rd
which together with (8) implies |€1] < 2C?A\?m/da7. Notice that (7) implies that C?\?/dat <
1/8, so |&1] < m/4.

Now consider &. Similarly, By (6),

ST IENTI] = ey (1,E) < dilI||E1]/n+ A (T2,
Ee&s

and by definition, » p g [E N I| > 37|&[. Therefore,

37IE2| < di|I|El/m + A (T]|E2)?,

Since |I| = 27n/d;, we obtain

2 2

& NHEE 22%n _ 2C%°X*m _m

&l < | ————— | = = < < —.
3T—d1’[’/n dl\I\/Zn Td1 Td2 4

For ¢ € [m] let I; = I N E;. By Claim 3.8 the number of set I; that satisfies 7 < |I;| < 37
(in fact, |I;| > 7 is sufficient for the proof) is at least m — 2m/4 = m/2. By the definition
of p(F), for every I; that satisfies 7 < |I;| < 37 we have

P (¥;(I;) is independent in G;) <1 — p.(F).
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Since, by definition, the bijections {1;: i € [m]} are mutually independent, the events
{1(1;) is independent in G;: i € [m]}

are mutually independent. Therefore,

P (I is independent in H(F)) < P /\ ¥i(I;) is independent in G;
1€[m)|
= [I P (vi(Z) is independent in G;) < (1 —p-(F))"/>.
1€[m)|

So the expected number of independent 2n7/d;-sets in H(G) is at most
2tn en
1—p (F)™2 (" —p(F)= 1
(1=pr(F)) <2n7’/d1> < exp( pr(F) 2 + dy ©8 2nT/dy

2 2
< exp (pT(f)m + Corm log n>
2 do

<exp<—p.r(]:)%>—>0 as  m — oo.

Therefore, a(H(F)) < 2rn/d; holds with high probability. |

The following corollary may be a simpler form to use Lemma 3.7.

Corollary 3.9. Let C,dy,do > 1 be real numbers and k > 2 be an integer. Suppose that
H is a hypergraph with n vertices, m edges, and is (C,dy)-uniform, (C,ds)-regular. Let
F ={G; :i € [m]} be a family of k-graphs that fits H. Suppose there exists A > 0 such that
the bipartite graph Gy satisfies (6) for all X C V(H) and Y C E(H). Suppose further
that

e there exists p > 0 such that p(G;) > p for i € [m], and
o \ < (do7/8C%)Y2, where T = 2 (16k!C? log n/pdg)l/(k_l) > 1, and

o Cg,(2,7) <1Gil (0(Gi)/37) 7 for0<j<k—1 andie [m).

Then, w.h.p. o (H(F)) < 27n/d;.

Proof of Corollary 3.9. Tt suffices to show that 7 = 2 (16]<:!C’2 log n/pdg)l/(k_l) satisfies
(7). First let us calculate p,(F). Fix i € [m] and for every edge set £ C G; let T¢ denote
the collection of 7-sets in V'(G;) containing the vertex set |Jpcs £. By the definition of
B;(G;), we have

B (G:) = | Tymy-

Eeg;

It follows from the Bonferroni inequalities [6] that

b-G) = Ty | 2 D 1Tyl = Y. I Tiepyl

Eecg; Ecg; {E,El}e(%i)
(G k) & o (v(G) =2k + ]
~16("9) )—;chz,ﬁ-( P
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Since Cg, (2,7) < |G| (v(Gi)/7)¥77 for 0 < j < k — 1, we obtain

jjéc@(z,j). (“f{;}fi jf) gk 1\gz|( ) < fi;ﬁjj)
"2 () e (V)
<

& ) ) (75
)

Therefore, b-(G;) > 3|Gi| ("7 (gl) ) Consequently,

v(G;)—k
po(G) = oG 5 LGP 1 1G] @ _ p(G9) (0 2
DTGy ST @) T2 @) R T 2 kT2
So we obtain
pr(F) p p /T\k-1 _ 8C?%logn
2oz g (5) 2 ds

On the other hand, our assumption on A clearly implies 7 > 8C?)/ds. Therefore, by
Lemma 3.7, w.h.p. a (H(F)) < 27n/d;. |

We will also need the following result in our proof.

Lemma 3.10 ([15]). Let H be a dy-uniform dg-regular hypergraph on n vertices. Then
for every V' C V(H) and £ C E(H),

d
S eV —El\v'||5| < MGu)VIV'|IE].

Ee&

We also need the following Chernoff’s inequality (e.g. see Theorem 22.6 in [12]).

Theorem 3.11 (Chernoft’s inequality). Suppose that S, = X1+---+X,, where0 < X; <1
fori € [n] are independent random variables. Let p = E[X1|+---+E[X,]. Then for every
0<t<p,

+2

P(IS0— 2 ) < e .
Now we are ready to prove the upper bound in Theorem 1.4.

Proof of the upper bound in Theorem 1.4. Let ¢ be a prime power and G = G(q’, ¢,2,¢)
be the bipartite graph on ViUV, with |Vi| = ¢ and |Vz| = ¢?. Let G denote the hypergraph

on ¢2 vertices whose bipartite incident graph is G. Note that G is a ¢/~ !-regular ¢-graph,
and by Lemmas 3.6 and 3.10,

1 -
> IEAV| = Vjel < o2V 9)

Eeg
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holds for all V! C V(G) and € C G.

Let U C V(G) be a random set such that every vertex in V(G) is included in U inde-
2 20

pendently with probability p = ¢~ #1. Then E[|U|] = pg?> = ¢, and by the Chernoff

inequality,

P(’|U|—pq2‘>pq2/2)<67 = e P12 () g g — 0o.

£—1
q%+1, and by the Chernoff inequality,

For every E € G we have E[|ENU|] = pq

_ (pa/2)?

P(|[ENU|—pql >pg/2) <e v =e P12

Let B denote the collection of edges E € G such that ||ENU| — pq| > pg/2. Then
-1
E[|B|] < ¢‘e P12 = ¢ /12 50 as g — oo

0—

Therefore, w.h.p. the set U satisfies that qf%/2 <|U| < Sq%/2 and q’—’T}/Q <|ENU| <
-1

3q1/2 for all E € G.

Fix such a set U that satisfies the conclusion above, and let ¢ € [1/2,3/2] be the real

2¢ 20 -1
number such that |U| = ¢¢™i. Let n = |U| = ¢¢™1, m = |G| = ¢¢, di = ¢™, and
ds = ¢~ 1. Let H be the hypergraph on U with

H={ENU:E€Gg}.

Since dy/2 < |[ENU| < 3d;/2 for all E € G, the hypergraph H is a (2, d;)-uniform.
Moreover, for every pair of edges F, E' € G, since |ENE'| < { < dy/2, we have ENU #
E'NU. So, dy(u) = dg(u) = dg for all u € U. In addition, (9) also holds for all V' C U
and £ C G.

Label the edges in H with {Fi,...,Ey} and let m; = |E;| for i € [m]. Let F =
{S;:i € [m]}, where S; is the k-graph on [m;] whose edge set is the collection of all
k-subsets of [m;] that contain [¢ + 1]. Our construction of the (n, k, £)-omitting system is
simply H(k,?¢) = H(F), and indeed, one can easily check that |/ Ne'| # ¢ for all distinct
edges e, e’ € H(k,1).

Let 7 =100 (log n)l/g.

/+1
Claim 3.12. p,(F) > (305—/2) /2.

Proof of Claim 3.12. Fix ¢ € [m] and let I be a random 7-subset of [m;]. It is easy to see
that I is not independent in S; iff [¢ + 1] C I. Since

(755) _ -0

G <T;>m g % <3d:/2)€+1,

T

P(t+1clI)=

we obtain

pr(F) > % <3d:/2>m-
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Observe that 7 satisfies

T T T 2(3/2)H1dT T 2(3/2)H dy ds

Lo\
pr(F) S <3d1/2) /2 _ 100£10gn 100¢ logn - 32logn

(here we used the fact that dy = d{*') and

2
32 (¢q-1/2

T = 100(10gn)1/£ > (qﬁl)
We may therefore apply Lemma 3.7 with C' = 2 to obtain

a(H(k,0) <2mn/d; < 400n%@1(log n)M/¢.

4 Independent sets in (n,k, ¢, \)-systems

In this section we prove Theorem 1.6. Our proof is a direct application of Theorem 2.3.

Proof of Theorem 1.6. Fix § > 0, and let € > 0 be sufficiently small such that % —0<

((-1)(1—¢) N =9
“-o7c holds. Let t = Ai-ink=1 and H be a (n, k, ¢, \)-system, where 0 < A < nk=2"".

Let j € [¢ —1] and S C V(H) be a set of size j. Since H is an (n, k, £, \)-system, Ly(S)
is an (n,k — j, £ — j, \)-system. Therefore,

n k—1 b1
<
A(H)_)\<€_1>/<€_1><t , and
n k—7j i .
j < = J <j<e—1.
a00i<a(,")/(570) =0 o 2<i<in
It follows that
Cu(2,j) =0 ()\nf_j|7-[\) =0 </\2n2£_j) <nt?RiTlme for 2<j<i—1.

On the other hand, for £ < 7' < k —1 and a set S C V(H) of size j' the link Ly(S) has
size at most \. Therefore,

C(2,7) = O \H|) = O (vnf) <Rl for p<j <k 1.

Therefore, by Theorem 2.3, a(H) = Q ((log t)l/(k_l) n/t) =Q ()\_ﬁn% (log n)ﬁ> 1

5 The Ramsey number of the k-Fan

In this section we prove Theorem 1.10. The lower bound (construction) is given by the so
called L-constructions. These were introduced in [7], where they were used to answer an
old Ramsey-type question of Ajtai-Erdés—Komlés—Szemerédi [1].

Let m,n > 2 and let Ly, ,, be the k-graph with vertex set [m] x [n] and edge set

{1, m), (@1, y2), .-, (@p—1,92) } 21 < -+ < Zp—1,91 > Y2} -

24



Proposition 5.1. For every m,n > 2 the hypergraph L, , is FE_free.

Proof of Proposition 5.1. Suppose that L,,, contains a copy of F*¥ = {E,..., Ey, E}.
Let v = ﬂle E; and assume that v = (zo,y0), £ = {(z1,11), (z1,%2),. .., (Tx-1,y2)},
where £1 < -+ < xp_1 and y1 > yo.

By the definition of F*, for every vertex u € F, there exists an edge F; that contains
both w and v. It is easy to see that if 2} < 2, and y] < v, then there is no edge in L, p,
containing both (z/,y]) and (24, y}). Therefore, we must have (see Figure 1)

1) xo < 21 and yo > y1, or

2) zo > xp—1 and yo < yo, Or

3) g =1 and yo < yg < Y1, OF

(1)
(2)
(3)
(4) yo=y2 and 1 < xo < Tp—1.

If 29 < 21 and yo > y1, then by the definition of £, ,, there is a (k — 1)-set J C [k] such
that ﬂjeJ E; = (z0,y2), a contradiction. If g > x,_; and yo < y2, then by the definition
of Ly, n, there exist {i,j} C [k] such that E; N E; = (z1,0), a contradiction. Similarly, if

Case (3) or Case (4) happens, then there exist {i,j} C [k] such that F; N E; = (z1,42), a
contradiction. [

(#1,91)

(Tr—1,Yy2)

(z1,92) E

[m] T

Figure 1: Only vertices that lie in these two shaded areas and the L-shaped path that
connects these two areas can be adjacent to all vertices in F.

The following result gives an upper bound for the independence number of L, .

Proposition 5.2. The hypergraph Ly, satisfies a(Lypn) < m+ (k—2)n.

Proof of Proposition 5.2. Let I be an independent in £,,,,. Remove the topmost vertex
of each column and the k£ — 2 rightmost vertices of each row in I. It is easy to see that we
removed at most m + (k — 2)n vertices from I, and I has no vertex left since otherwise I
would contain an edge in L, ,,. Therefore, a(Ly, ) < m+ (k —2)n. 1

Now we finish the proof of Theorem 1.10.
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Proof of Theorem 1.10. First we prove the lower bound. Let m = [5] and n = Lﬁj
By Propositions 5.1 and 5.2, the k-graph L, , is F¥-free and a(Ly, ) < m+ (k—2)n < t.

So,
=]

To prove the upper bound, let us show that ry(F¥,t) < r(SF,t) first. Indeed, let H be
a k-graph on rk(Sf, t) vertices. We may assume that H does not contain an independent
set of size t. Then, there exist t distinct edges F1,..., F; and a vertex v in H such that
E;NE; ={v}for1<i<j<t LetS beasetthat contains exactly one vertex from each
E;\ {v} for i € [t]. Then S has size ¢t and hence contains an edge in A, and it implies that
H contains a copy of F¥. Therefore, ri(F¥,t) < r(SF,t), and it follows from Theorem 1.9
that r,(F*,t) <t(t—1) + 1. |
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