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Abstract

Let 3 ≤ k < n/2. We prove the analogue of the Erdős-Ko-Rado theorem
for the random k-uniform hypergraph Gk(n, p) when k < (n/2)1/3; that is, we
show that with probability tending to 1 as n → ∞, the maximum size of an
intersecting subfamily of Gk(n, p) is the size of a maximum trivial family. The
analogue of the Erdős-Ko-Rado theorem does not hold for all p when k À n1/3.

We give quite precise results for k < n1/2−ε. For larger k we show that the
random Erdős-Ko-Rado theorem holds as long as p is not too small and fails
to hold for a wide range of smaller values of p. Along the way, we prove that
every nontrivial intersecting k-uniform hypergraph can be covered by k2−k+1
pairs, which is sharp as evidenced by projective planes. This improves upon a
result of Sanders [7]. Several open questions remain.

1 Introduction

A k-graph with vertex set V is a collection of k-element subsets of V ; these subsets are

called edges. We say that a k-graph is intersecting if every two edges have nonempty
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intersection; it is trivial if there is a fixed element that lies in all edges. The Erdős-

Ko-Rado theorem [5] is one of the basic results in extremal set theory. It states that

every intersecting k-graph on n vertices, for n > 2k, has at most
(

n−1
k−1

)
edges, and

equality holds if and only if it is trivial. Our goal in this paper is to extend this

theorem to the random setting. Analogous investigations have been carried out for

Turán’s theorem, see for example [6, 8]. Intersecting hypergraphs generated by a

random greedy process were studied in [3, 4].

Let Gk(n, p) be the k-graph on vertex set [n] where each edge is included indepen-

dently with probability p. Technically, Gk(n, p) is of course a probability space whose

elements are k-graphs on [n], where a particular k-graph with e edges has probability

pe(1− p)(
n
k)−e. Throughout this paper, whenever we say that Gk(n, p) satisfies some

property S we mean that S holds with high probability (w.h.p.) in Gk(n, p), or more

precisely that

P(Gk(n, p) satisfies S) → 1 as n →∞.

With few exceptions, all asymptotic statements or limits are to be taken as n →∞,

and in particular, a(n) ¿ b(n) means that a(n)/b(n) → 0, and a(n) ∼ b(n) that

lim a(n)/b(n), lim b(n)/a(n) > 0. Please note that this is somewhat nonstandard use

of the notation ∼. For simplicity, we will write Gk
p for Gk(n, p).

Definition. Let H be a k-graph. Then i(H) is the maximum number of edges in

an intersecting subhypergraph of H. Say that H satisfies (strong) EKR if i(H) is

achieved only by a trivial subhypergraph. If i(H) is achieved by a trivial subhy-

pergraph and possibly by some nontrivial subhypergraphs as well, then say that H

satisfies weak EKR.

The motivation for this definition is that the Erdős-Ko-Rado theorem says that for

n > 2k, the complete k-graph satisfies EKR. In this paper we are interested in the

following question:

Given 2 ≤ k < n/2, for which functions p = p(n) ∈ [0, 1] does Gk
p satisfy EKR?

The case k = 2 is easy to solve by standard results for the random graph Gp = G2
p.

A graph is intersecting if and only if it is a triangle or a star. Now if p À 1/n5/4,

then Gp contains a vertex of degree at least 4 (see Bollobás [2] for example), on the

other hand, if p ¿ 1/n, then Gp has no triangle. So for k = 2 the strong EKR always

holds. We henceforth assume that k ≥ 3.
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A slightly weaker statement than saying that Gk
p satisfies EKR is the statement that

i(Gk
p) = (1 + o(1))p

(
n−1
k−1

)
. In this case we say that Gk

p satisfies EKR asymptotically.

Indeed, as long as p is not terribly small, we know that Gk
p has a trivial subhypergraph

of size (1 + o(1))p
(

n−1
k−1

)
, so we can conclude that i(Gk

p) ≥ (1 + o(1))p
(

n−1
k−1

)
. In certain

ranges of k and p, we will only prove this asymptotic statement. Our first result

essentially settles the case when k < n1/2−ε.

Theorem 1. Let p = p(n) ∈ [0, 1], ρ := p
(

n−1
k−1

)
and 0 < ε < 1/3 be a fixed constant.

We have the following results:

(i) If k ¿ n1/4 then Gk
p satisfies (strong) EKR.

(ii) If k ¿ n1/3 then Gk
p satisfies weak EKR. Furthermore, if n1/4 ¿ k ¿ n1/3 then

Gk
p satisfies strong EKR if ρ ¿ k−1 or n−1/4 ¿ ρ, and does not satisfy strong EKR

when k−1 ¿ ρ ¿ n−1/4.

(iii) In the range n1/3 ¿ k ≤ n1/2−ε we have the following negative result: For every

integer t ≥ 3 if n1/2−1/(2t) ¿ k, and

n(t−3)/2 · k2−t ¿ ρ ¿ n−1/t

then Gk
p does not satisfy EKR. If n(1/2)(1−(t−1)/(t+1)(t−2)) ¿ k and

n(t−3)/2 · k2−t ¿ ρ ¿ n−1/(t+1)

then Gk
p does not satisfy weak EKR.

(iv) If k ≤ n1/2−ε and ρ = Ω(1), then Gk
p satisfies EKR.

The main structural obstacles to the EKR property in Gk
p for k ≤ n1/2−ε are collections

F of t sets, where t is a constant, which have pairwise nonempty intersections but

X ∩ Y ∩ Z = ∅ for distinct X, Y, Z ∈ F . It turns that for n1/4 ¿ k ¿ n1/2−ε there

are ranges of p for which such structures appear before vertices of degree t + 1 or

even before vertices of degree t. This is the main observation in parts (ii) and (iii) of

Theorem 1. The proof of Theorem 1 can be found in Section 3. Part (i) is proved in

Sections 3.1, 3.3.2 and 3.3.5, part (ii) is proved in Sections 3.3.3 and 3.3.5, part (iii)

is proved in Section 3.3.4, part (iv) is proved in Sections 3.2 and 3.3.5.

Our next result applies for a much larger range of k, but our requirement on p is also

much stronger, i.e., p has to be much larger too.
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Theorem 2. Let ε = ε(n) > 0. If log n ¿ k < (1− ε)n/2 and p À (1/ε)
√

log n
k

, then

Gk
p satisfies EKR asymptotically, i.e.

i(Gk
p) ≤ (1 + o(1))p

(
n− 1

k − 1

)
.

The proof of Theorem 2 appears in Section 4. Note that the smallest useful value of

ε in Theorem 2 is roughly ε =
√

log n
n

, and this establishes asymptotic EKR for Gk
p

with p a constant for k ≤ n
2
− ω(

√
n log n). The fact that as k gets closer to n/2, the

requirement on p in order for Gk
p to satisfy EKR (or its other forms) becomes stronger

is no coincidence. Indeed, as the next result shows, if k is much larger than
√

n, then

Gk
p fails to even satisfy EKR asymptotically for a rather large range of p.

Theorem 3. Let
√

n log log n ¿ k < n/2 and

log n(
n−1

k

) ¿ p ¿ ek2/2n

(
n
k

) .

Then Gk
p is nontrivial and intersecting. In particular, i(Gk

p) = (1 + o(1))p
(

n
k

)
and Gk

p

does not satisfy EKR asymptotically.

The proof of Theorem 3 appears in Section 5.

For k À √
n there is a wide range of ‘intermediate’ values of p for which we have

not established any results. For these values Gk
p is not intersecting itself and there

could be large intersecting subfamilies that are not trivial. It would be interesting to

determine whether or not such structures persist over wide ranges of p. A specific

case of this general question is the following

Question 4. Let n/2 −√n < k < n/2 and p = 99
100

. Does Gk
p satisfy EKR or weak

EKR?

See Remark 3 in Section 5 below for further discussion of this question.

2 Concentration facts

Our main tools will be some variants of Chernoff’s inequality (see the Appendix of

[1] for more details).
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Theorem 5. Let X1, . . . , Xm be independent {0, 1} random variables with P (Xi =

1) = q for each i. Let X =
∑

i Xi. Then the following inequalities hold, where a > 0:

(1) P(X > EX + a) < exp(−2a2/m).

(2) Let r ≥ m. Then P(X > 3qr/2) < exp(−qr/16).

We can immediately conclude some properties of Gk
p. Recall that the degree of vertex

v in a hypergraph H is denoted dH(v). More generally, the degree of a set S of vertices

is the number of edges containing S and is denoted dH(S). We omit the standard

proof of the following Lemma.

Lemma 6. Let k = k(n) ≥ 3. The following hold in Gk
p:

(1) Let p À log n/
(

n−2
k−2

)
. Then dGk

p
(A) = (1 + o(1))p

(
n−2
k−2

)
for every A ∈ (

[n]
2

)
.

(2) Let p À log n/
(

n−3
k−3

)
. Then for every A,B ∈ (

[n]
2

)
, with A∩B = ∅, the number of

edges containing A and intersecting B is at most 3p
(

n−3
k−3

)
.

3 Small k

In this section we give the proof of Theorem 1. We partition the argument into

several cases, depending on the value of p and k. This does not correspond to a

proper partition of the collection of values of the parameters p, k as some possible

values of p, k are covered by more than one of the following subsections.

3.1 p À log n

k(n−2
k−2)

and k < (n/2)1/3

Our main tool for this range of p and k is a result about covering nontrivial intersecting

families by pairs. Actually, we could use a result due to Sanders [7] for our purposes,

but the improvement below is quite simple. Since it is also best possible, as evidenced

by projective planes, we believe it may be of independent interest. Recall that for a

hypergraph H and a subset of vertices A we let dH(A) := |{E ∈ H : A ⊂ E}|. We

say that H is covered by a graph G if for every hyperedge E of H there is an edge uv

of G such that {u, v} ⊂ E.

Lemma 7. For all n, k there is a collection of at most
(

n
k

)3
graphs on vertex set [n]

such that every graph G in this collection has |E(G)| ≤ k2− k +1 and ∆(G) ≤ k and

every nontrivial intersecting k-graph on vertex set [n] is covered by some graph G in

this collection.
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Proof. Let H be a nontrivial intersecting k-graph. Pick two edges A, B of H with

minimum intersection size, say a and let C := A ∩ B. First consider the case when

a > 1. Let G be the complete bipartite graph with parts A−C and B, together with

(any) one edge e within C. Then G has k(k − a) + 1 < k2 − k + 1 edges. Now let us

show that each edge D of H is covered by G. If D has a vertex in A−C, then, since

it intersects B, it must also have a point in B, so it is covered. Otherwise, by the

minimality of a, it must contain all of C and is covered by e. The maximum degree

of G is k.

Now suppose that |C| = a = 1. Put C = {c} and let E be an edge of H that misses

C. Note that E exists because H is nontrivial. Let G be the union of the complete

bipartite graph with parts A− c and B− c and the star with center c and leaves in E.

Then G has (k − 1)2 + k = k2 − k + 1 edges, and maximum degree k. Now pick any

D ∈ H and let us show that it is covered by G. If D does not contain c, then it has a

point in both A− c and B − c and is covered by the complete bipartite subgraph of

G. Otherwise, D contains c, and since H is intersecting, D must contain some point

of E, and so it is covered by the star in G.

The bound on the number of possible choices for G follows from the fact that G

is determined by choosing at most 2 hyperedges and a graph edge (A,B, e), or by

choosing 3 hyperedges.

Proof of Theorem 1 when p À log n/(k
(

n−2
k−2

)
).

Let 3 ≤ k ≤ (n/2)1/3 and let H ⊆ Gk
p be a nontrivial intersecting k-graph. For this

H there is a covering graph G by Lemma 7, where the number of choices for G is less

than
(

n
k

)3
. Fix such a graph G. Let m be the number of edges of

(
[n]
k

)
covered by

G, which is at most r := k2
(

n−2
k−2

)
. We apply Theorem 5 part (2), where q = p and

X1, . . . , Xm are the indicator random variables for the m covered hyperedges, and

X =
∑m

i=1 Xi is the number of these edges. We obtain

P (X > 3pr/2) < exp (−pr/16) . (1)

So if
(

n
k

)3 ¿ exp(pr/16), or log n/(k
(

n−2
k−2

)
) ¿ p, then by using the union bound,

we conclude that every nontrivial intersecting k-graph in Gk
p has size at most 1.5pr

w.h.p. Since k < (n/2)1/3, this is smaller than the size of a trivial k-graph in Gk
p:

1.5pk2

(
n− 2

k − 2

)
<

1.5pk3

n

(
n− 1

k − 1

)
< (1− o(1))p

(
n− 1

k − 1

)
.

We conclude that Gk
p satisfies EKR.
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3.2 p À k log n

(n−3
k−3)

and 1 ¿ k < n1/2−ε

In this section, we extend the proof in the previous section to k ¿ n1/2−ε. Our goal

is to prove the following result.

Theorem 8. Fix 0 < ε < 1/10 and f := d(1/2 + ε)/(2ε)e+ 1. Suppose that

f ¿ k < n1/2−ε and p À fk log n(
n−3
k−3

) .

Then Gk
p satisfies EKR.

Our first subsection contains some preparation for the proof.

3.2.1 Flowers

The common part of a collection of sets (or edges) F is ∪A,B∈FA ∩ B. We denote

this by C = C(F). Sometimes we will call F a flower and C its core. The edges of

a flower will be called petals. Call a flower degenerate if one of its petals is contained

in the core, and non-degenerate otherwise. Let us recall that any statements made

about parameters depending on Gk
p should be interpreted as statements that hold

w.h.p.

Lemma 9. Let n, k, p, f be parameters satisfying the conditions of Theorem 8. Then

Gk
p satisfies the following property: for every F ∈ (([n]

k )
f

)
, the number of edges in Gk

p

intersecting every edge of F and missing C(F) is o(p
(

n−1
k−1

)
).

Proof. For a fixed flower F with f petals and core C, let XF be number of edges of

Gk
p intersecting each member of F and avoiding C. As XF = 0 for degenerate F , we

shall assume from now that F is non-degenerate. Fix an arbitrarily small constant

γ > 0 and let r := γ
(

n−1
k−1

)
. Then

E(XF) ≤ pkf

(
n− f

k − f

)
≤ p

k2f−1

nf−1

(
n− 1

k − 1

)
≤ pr,

for n sufficiently large. By Theorem 5 part (2)

P(XF > 3pr/2) < exp(−pr/16).
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The number of choices for F is at most
(

n
k

)f ≤ (en/k)kf . So if (en/k)kf exp(−pr/16) =

o(1) then the probability that there exists a non-degenerate F such that the number

of edges in Gk
p intersecting every edge of F and missing C(F) is more than 3pr/2 is

o(1). However this condition holds if p À fk log n/
(

n−1
k−1

)
.

Lemma 10. Let n, k, p, f be parameters satisfying the conditions of Theorem 8. Then

every maximum intersecting family H ⊂ Gk
p with dH(v) = Ω

(
p
(

n−1
k−1

))
for some vertex

v is trivial.

Proof. Let H ⊆ Gk
p be an intersecting family of maximum size. Let F ⊂ H be a

maximum flower over all flowers with core {v}. Let q denote the number of its petals.

Note that it could be that F consists of only one hyperedge. The number of such

flowers is at most n
(

n−1
k−1

)q
.

Let us first suppose that q < f . First we will show the following fact: for every flower

with q < f petals and core consisting of v, the number of edges in Gk
p containing

v and hitting one of the petals outside v is o(p
(

n−1
k−1

)
). For a fixed such flower, the

expected number of edges in Gk
p satisfying the condition above is at most

pq(k − 1)

(
n− 2

k − 2

)
= pq

(k − 1)2

n− 1

(
n− 1

k − 1

)
= o

(
p

(
n− 1

k − 1

))
,

since k < n1/2−ε. Noting that we can apply Theorem 5 part (2) to each such flower and

that the number of such flowers is at most n
(

n−1
k−1

)f
, the fact follows by the choice of p.

Now since F is a maximum flower, every edge of H containing v must intersect one

of the petals outside v, and so dH(v) = o
(
p
(

n−1
k−1

))
. This contradicts the hypothesis.

We may therefore assume that q = f (if q ≥ f , simply delete some petals; we will

not be using maximality of F anymore). In order to prove that H is a trivial family,

we shall refine the computation from the proof of Lemma 9. The expected size of a

non-trivial intersecting family in Gk
p containing flower F and some edge E missing v

is

p

[
k

(
n− 2

k − 2

)
+ (k − 1)f

(
n− f

k − f

)]
+ f. (2)

Explanation: The first term upper estimates the number of edges containing v and

intersecting E, and the second term counts the number of edges not containing v but

intersecting each of the petals in a different vertex, the edges of F are not counted.

We may count nontrivial intersecting families for each vertex v and an edge E missing
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v. The number of ways to choose (v, E) and f petals is at most

n

(
n− 1

k

)(
n− 1

k − 1

)f

< n2

(
n− 1

k − 1

)f+1

.

We apply Theorem 5 part (2) with r = γ
(

n−1
k−1

)
, where γ > 0 is small. Noting that

k
(

n−2
k−2

)
+ (k− 1)f

(
n−f
k−f

)
= o(

(
n−1
k−1

)
), to prove that w.h.p. every non-trivial intersecting

hypergraph has at most 3r/2 hyperedges, it suffices to have p À fk log n/
(

n−1
k−1

)
, which

is guaranteed by the choice of p. We conclude that a maximum intersecting family is

trivial.

3.2.2 Proof of Theorem 8

In this subsection, we will complete the proof of Theorem 8. We will use a classical

result in graph theory due to Vizing. It states that every graph with maximum degree

∆ has a proper edge-coloring with ∆ + 1 colors. Taking a color class of largest size,

we also deduce that there is a matching of size at least e/(∆ + 1), where e is the

number of edges of the graph.

Proof of Theorem 8. Let H ⊆ Gk
p be a non-trivial intersecting k-graph. Note that

we may assume (by Lemma 10) that for every vertex v we have dH(v) = o
(
p
(

n−1
k−1

))
.

We prove that under this assumption |H| is smaller than the size of a trivial inter-

secting k-subhypergraph of Gk
p, therefore H cannot have maximum size.

Using Lemma 7 we can construct a graph G = (V, E) with vertex set V ⊂ [n] such

that ∆(G) ≤ k, |E| ≤ k2 and for every X ∈ H there is an e ∈ E such that e ⊂ X.

Set D := 10fp
(

n−3
k−3

)
. Define

E1 := {e ∈ E : dH(e) ≤ D} and E2 := E \ E1.

Case 1. There exists a matching M ⊆ E2 such that |M | ≥ f .

Let e1, . . . , ef ∈ E2 form a matching. Our aim is to find for every i ∈ [f ] an edge

Ai ∈ H such that

• ei ⊂ Ai, for all i,

• Ai ∩ ej = ∅ for all i < j,

• |Aj ∩ Ai| < f for i 6= j.
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For every i, since dH(ei) > D, for a fixed j > i by Lemma 6 part (2) there are at

most 3p
(

n−3
k−3

)
edges A ∈ H with ei ⊂ A and ej ∩ A 6= ∅. So by the choice of D, for

every i at least half of the edges containing ei are disjoint for every j > i from ej. In

particular, we can choose A1 with the property that

A1 ∩ ej = ∅ for j = 2, . . . , f.

Assuming that we have constructed edges A1, . . . , Ai−1, we consider the at least D/2

edges that contain ei and are disjoint from ej for j > i. To satisfy our third condition,

observe that for a given j < i the number of k-sets in
(
[n]
k

)
intersecting Aj in at least

f vertices and containing ei is at most

kf

(
n− f − 2

k − f − 2

)
<

k2f−1

nf−1

(
n− 3

k − 3

)
= o

((
n− 3

k − 3

))
.

Now suppose δ > 0 is an arbitrarily small constant. Theorem 5 part (2) implies that

the probability that there are more than (3p/2)δ
(

n−3
k−3

)
of these k-sets in Gk

p is at most

exp[−pδ
(

n−3
k−3

)
/16]. As the number of ways A1, . . . , Af can be chosen is at most

(
n
k

)f
,

we have the third condition w.h.p. if
(

n
k

)f
exp[−pδ

(
n−3
k−3

)
/16] = o(1) which is satisfied

with our choice of parameters.

We conclude that the number of such edges is smaller than D/2f , implying that there

is an Ai satisfying our requirements.

The edges A1, . . . , Af form a flower with core C where

|C| ≤
(

f

2

)
f.

As we assumed that for every vertex v we have dH(v) = o(p
(

n−1
p−1

)
), applying Lemma 9

we have

|H| ≤
∑
v∈C

dH(v) + o

(
p

(
n− 1

k − 1

))
= o

(
p

(
n− 1

k − 1

))
.

Case 2. Every matching M ⊆ E2 satisfies |M | < f .

It follows from Vizing’s Theorem that we have |E2| < (k + 1)f . Therefore, using

Lemma 6 part (1)

|H| ≤
∑
e∈E1

dH(e) +
∑
e∈E2

dH(e)

≤ k210fp

(
n− 3

k − 3

)
+ |E2|p

(
n− 2

k − 2

)
(1 + o(1))

≤ p

4

(
n− 1

k − 1

)
+

p

4

(
n− 1

k − 1

)
.
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Since this is much smaller than the size of the trivial intersecting families, the proof

is complete.

3.3 Small p

We now focus on the cases of small p. Throughout this section we will assume that

0 < ε < 1/3 and 3 ≤ k < n1/2−ε.

We define ρ by

p =
ρ(

n−1
k−1

) .

In other words ρ is the expected number of edges that contain a particular vertex.

We are interested in the case where ρ is relatively small. In the previous sections we

assumed p À log n/(k
(

n−2
k−2

)
) and p À fk log n

(n−3
k−3)

so in this section we will assume that

p ¿ k log2 n/

(
n− 3

k − 3

)
.

This covers all p ∈ [0, 1] for n sufficiently large. We may therefore assume that

ρ ≤ n2 log2 n

k
. (3)

We shall use the following identity several times:

p

(
n− 2

k − 2

)
= ρ

k − 1

n− 1
.

Before we begin our arguments, we will need various facts about random hypergraphs.

These are collected and proved in the next subsection.

3.3.1 More concentration facts

In order to estimate certain probabilities in the proof, we will use the Janson inequal-

ities which we now describe.

Setup. Let Ω be a finite universal set. Let R be a random subset of Ω with P(r ∈
R) = pr and these events are mutually independent over r ∈ Ω (usually R = Gk

p). For
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a finite index set I and i ∈ I, let Ai ⊂ Ω and Bi be the event Ai ⊂ R. For i, j ∈ I,

write i ∼ j if i 6= j and Ai ∩ Aj 6= ∅. Define

∆ =
∑
i∼j

P(Bi ∧Bj),

where the sum is over all ordered pairs. Put

M =
∏
i∈I

P(Bi) and µ =
∑
i∈I

P(Bi).

Theorem 11. Let Bi, I, ∆,M be as in the setup above and assume that P(Bi) ≤ ε

for every i ∈ I. Then

M ≤ P
(∧

i∈I

Bi

)
≤ exp

{
−µ +

∆

2(1− ε)

}
.

If in addition we have ∆ ≥ µ(1− ε), then

P

(∧
i∈I

Bi

)
≤ exp

{−µ2(1− ε)

2∆

}
.

The lower bound in Theorem 11 follows from the FKG inequality; for a proof of the

Janson Inequalities and further discussion see Alon and Spencer [1].

We begin with an easy (though tedious) consequence of the Janson Inequalities.

Lemma 12. Let d ≥ 3 be a constant. If ρ ¿ n−1/d then Gk
p does not have a vertex

of degree d and if ρ À n−1/d then Gk
p has a vertex of degree d.

Proof. We apply Theorem 11. LetA be the set of collection of ordered pairs consisting

of a vertex v ∈ [n] and a collection of d sets in
(
[n]
k

)
that contain v. For each Ai ∈ A

let Bi be the event Ai ⊆ Gk
p. Note that

P(Bi) =

[
ρ(

n−1
k−1

)
]d

so by the choice of ρ, we conclude that P(Bi) tends to 0 as n goes to ∞.

We have that the expected number of Bi’s

µ = n

((
n−1
k−1

)

d

) [
ρ(

n−1
k−1

)
]d

∼ n
ρd

d!
.

12



So, if ρ ¿ n−1/d then

P
(∧Bi

) ≥
∏

i


1−

[
ρ(

n−1
k−1

)
]d


 ∼ e−µ → 1

proving the first assertion of the theorem. For the second assertion, we estimate ∆.

∆ ≤ 2n
d−1∑
i=1

((
n−1
k−1

)

2d− i

)(
2d− i

d

)2
[

ρ(
n−1
k−1

)
]2d−i

+ n2

d−1∑
i=1

((
n−2
k−2

)

i

)((
n−1
k−1

)

d− i

)2
[

ρ(
n−1
k−1

)
]2d−i

∼ 2n

(
ρd

d!

)2
[

d−1∑
i=1

d!

ρi(2d− i) · · · (d + 1)

(
2d− i

d

)2
]

+

(
n

ρd

d!

)2
[

d−1∑
i=1

(d!)2

i![(d− i)!]2

(
k

ρn

)i
]

∼ 2µ2

[
d−1∑
i=1

d!

nρi(2d− i) · · · (d + 1)

(
2d− i

d

)2
]

+ µ2

[
d−1∑
i=1

(d!)2

i![(d− i)!]2

(
k

ρn

)i
]

.

Note that n−1/d ¿ ρ implies that µ → ∞. If ∆ < µ(1 − ε), then the first part of

Theorem 11 implies that

P
(∧Bi

) ≤ e−µ+ ∆
2(1−ε) → 0.

We may therefore suppose that ∆ ≥ µ(1−ε). Since d ≥ 3, we have n1−1/d ≥ n2/3 À k.

Therefore ρ À n−1/d À k/n and ρin À 1 for i ≤ d − 1. This immediately gives

∆ = o(µ2) and then we can apply the second part of Theorem 11:

P
(∧Bi

) ≤ e−
µ2(1−ε)

2∆ → 0.

This completes the proof of the claim.

A triplet of hyperedges (A,B, C) is a triangle if it is a pairwise intersecting system,

but A ∩ B ∩ C = ∅. Now we consider nontrivial intersecting families. For integers

1 < j < t define a (t, j)-simplex to be a collection A ⊂ (
[n]
k

)
such that

• |A| = t,

• the intersection of every j sets from A is nonempty,

• the intersection of every j + 1 sets from A is empty.

So, for example, a triangle is a (3, 2)-simplex.

We will employ the following observation several times in what follows. Let F be a

nontrivial intersecting family. Define sF to be the size of a minimal subfamily M of

F with empty intersection. Then clearly M is a (j + 1, j)-simplex for j = sF − 1.

13



Now let M′ be a maximal (t, j)-simplex in F with maximum possible t. Note that

M′ has the following property: Every set in F intersects one of the
(

t
j

)
intersections

of j sets from M′. Indeed, each set X ∈ F intersects every intersection of (j − 1)

sets from M for the choice of j ensures that every j members of F have nonempty

intersection. Consequently, if X ∈ F misses each of the
(

t
j

)
intersections of j sets

from M′, then we could add X to M′.

Our main observation about non-trivial intersecting families in Gk
p for p in this range

is a lower bound on the threshold function of the appearance of a (t, j)-simplex.

Lemma 13. Let 1 < j < t be fixed constants. If

ρ ¿ n(t−1
j−1)(1− 1

j )−1

k(t−1
j−1)−1

then Gk
p does not have a (t, j)-simplex.

Proof. We compute an upper bound on the expected number (t, j)-simplices. The(
t
j

)
non-empty intersections in a (t, j)-simplex determine

(
t
j

)
pairwise disjoint sets,

since if two of these sets intersect, then we obtain at least j +1 members of the (t, j)-

simplex with nonempty intersection. We begin our expected computation by picking

one point from each of these
(

t
j

)
sets. Note that this specifies exactly

(
t−1
j−1

)
elements

of each set in the simplex. We allow the remaining k − (
t−1
j−1

)
elements of each set in

the simplex to be chosen arbitrarily. Thus, the expected number of (t, j)-simplices is

at most

n(t
j)

(
n

k − (
t−1
j−1

)
)t

[
ρ(

n−1
k−1

)
]t

≤ n(t
j)

[
n

(n− k +
(

t−1
j−1

)
) · · · · · (n− k + 1)

· (k − 1)!(
k − (

t−1
k−1

))
!
· ρ

]t

≤ 2n(t
j)

[(
k

n

)(t−1
j−1)−1

ρ

]t

= o(1),

using n(t
j)/t ≤ n(t−1

j−1)/j.

Lemma 14. If ρ ¿ 1/k then Gk
p does not contain a triangle. If ρ À 1/k then G

contains a triangle.

14



Proof. We apply Theorem 11 again. The expected number of triangles, µ satisfies

(
n

3

)(
n− 3

k − 2

)(
n− 3− k

k − 2

)(
n− 3− 2k

k − 2

)
p3 ≤ µ ∼

(
n

3

)(
n− 3

k − 2

)3
[

ρ(
n−1
k−1

)
]3

∼ ρ3k3.

This already proves the statement for ρ ¿ 1/k. For the other part, note that the

ratio of the lower and upper bound on µ tends to a constant. We also have

∆ ≤ n4

(
n− 2

k − 2

)3

k2

(
n− 3

k − 2

)2
[

ρ(
n−1
k−1

)
]5

+ n5

(
n− 3

k − 3

)2(
n− 2

k − 2

)2
[

ρ(
n−1
k−1

)
]4

= o(µ2).

The first term in our bound on ∆ comes from pairs of triangles that share 1 hyperedge

while the second term comes from pairs of triangles that share 2 hyperedges; note

that the first term dominates. By Theorem 11 we are done.

We will also need the following generalization of Lemma 14.

Lemma 15. Suppose t ≥ 4 is fixed and n1/2−1/(2t−4) ¿ k < n1/2−ε. If n(t−3)/2k2−t ¿
ρ = o(1), then Gk

p contains a (t, 2)-simplex.

Proof. Following the calculation in (4) we have

µ ∼ n(t
2)

[(
k

n

)t−2

ρ

]t

where µ is the expected number of (t, 2)-simplices. The remainder of the proof is very

similar to the proof of Lemma 14 and is therefore omitted.

3.3.2 ρ = o(1) and k ¿ n1/4

In this subsection we prove Theorem 1 in the range specified above. We define an

a-extended triangle to be a triangle B1, B2, B3 together with a sets B4, . . . , B3+a

such that B3+j intersects at least one of B1∩B2, B1∩B2, B2∩B3 and B3+j intersects

B1, B2, B3 for j = 1, . . . , a.

A careful calculation using Lemma 13 shows that in this case there is no (t, j)-simplex

for t ≥ 4 in Gk
p. Now any nontrivial intersecting subfamily of Gk

p contains a (t, j)-

simplex with t ≥ 3. We choose a (t, j)-simplex with t maximum possible, i.e, with

t = 3. Hence every nontrivial intersecting subfamily of Gk
p (of size at least three)
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contains a triangle with the property that every set in the family intersects one of the

three intersections determined by the triangle (else we would have a (4, j)-simplex for

some j).

We define three events and use the union bound to show that they are rare. Let A
be the event that there exist e, f ∈ Gk

p such that |e ∩ f | > 2.

P(A) ≤
(

n

3

)(
n− 3

k − 3

)2

p2 ≤ ρ2n3

3!

(
(k − 1)(k − 2)

(n− 1)(n− 2)

)2

≤ ρ2k4

n
= o(1).

Let Ba be the event that there is an a-extended triangle for a = 1, 2, 3. As we have

already shown that P(A) = o(1), we shall assume A. Then we obtain

P(Ba ∧ A) ≤
(

n

3

)(
n− 2

k − 2

)3

6aka

(
n− 2

k − 2

)a
[

ρ(
n−1
k−1

)
]3+a

∼ ρ3+ak3+2a

na
. (4)

Explanation: Once the hyperedges in the triangle are chosen, each additional hyper-

edge must contain one of the at most 6 vertices in the pairwise intersections of the

hyperedges in the triangle (note that we use here our assumption that A does not

hold). We have P(B2) = o(1) and if ρ ≤ n−1/16 then P(B1) = o(1).

Let us first assume that ρ ≤ n−1/16. We first argue that the cardinality of a nontrivial

intersecting family in Gk
p is at most three. Indeed, every such family contains a

(t, j)-simplex with t maximum, and the previous observations imply that t = 3.

Furthermore, if a nontrivial intersecting family with size at least four has a triangle

and no (4, j)-simplex, then it must contain a 1-extended triangle, and we have shown

that there are no 1-extended triangles. Therefore the largest nontrivial intersecting

subfamily of Gk
p has size three (i.e. is a triangle). By Lemmas 12, 14 and k ¿ n1/4,

a triangle does not appear until after a vertex of degree 4 as the threshold for the

appearance of a vertex of degree 4 is smaller, and so we conclude that Gp
k has the

EKR property when ρ ≤ n−1/16.

Now consider ρ > n−1/16. Since P(B2) = o(1), the cardinality of a nontrivial inter-

secting family in Gk
p is now at most four (achieved by a 1-extended triangle). By

Lemma 12 there is a vertex of degree at least 15 in this range hence we again have

the EKR property.

3.3.3 ρ = o(1) and n1/4 ¿ k ¿ n1/3

Here there is a small range where (strong) EKR does not hold but we will see be-

low that weak EKR does hold. Recall that weak EKR is the property that there
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exists a maximum intersecting family that is trivial, and so weak EKR allows for the

possibility that there is also a maximum intersecting family that is not trivial. So,

in this Section we continue to be very careful about the precise sizes of the various

intersecting families that might appear. It will be useful to think of ρ as an increas-

ing parameter, with more complicated structures emerging as ρ grows. Note that a

triangle appears at around ρ = k−1, a vertex of degree 3 appears at around ρ = n−1/3,

a vertex of degree 4 appears at around ρ = n−1/4 and we have n−1/3 ¿ k−1 ¿ n−1/4.

These observations alone show that there is an interval where EKR does not hold.

To complete the proof of the ρ = o(1) portion of part (ii) of Theorem 1, it remains to

show that nontrivial intersecting families on ` hyperedges with ` ≥ 4 do not appear

until after vertices of degree ` + 1.

Following the arguments in the previous subsection, pairwise intersections have cardi-

nality at most 3. Note that the only (t, j)-simplex that appears (other than a triangle)

is the (4, 2)-simplex that can appear at ρ = n1/2/k2 À n−1/6, but at that time there

is a vertex of degree at least 5. Also, w.h.p. no fifth hyperedge can be attached to a

(4, 2)-simplex, as the expected number of such structures is bounded by

(
n

6

)(
n− 3

k − 3

)4
[

ρ(
n−1
k−1

)
]4 {

18k2

(
n− 3

k − 3

)
ρ(

n−1
k−1

) + 18 · 3 ·
(

n− 2

k − 2

)
ρ(

n−1
k−1

)
}

= O

(
ρ5

(
k12

n4
+

k9

n3

))
.

(The second term in this expression is for the case of a fifth set that intersects two

of the pairwise intersections in such a way that inclusion of these two points achieves

intersection with all 4 sets in the (4, 2)-simplex.) Furthermore, by (4) event B1 does

not happen before ρ = n−1/6, B2 does not happen before ρ = n−1/15 and B3 does not

happen. So by the time an extended triangle with 4 edges appears there is a vertex

with degree at least 5, and when an extended triangle with 5 edges appears there is

a vertex with degree at least 14.

3.3.4 ρ = o(1) and n1/3 ¿ k ≤ n1/2−ε

From Lemmas 12 and 15 we know that a vertex of degree t appears at ρ À n−1/t, and

a (t, 2)-simplex at ρ À n(t−3)/2 · k2−t. Then we can conclude that for n1/2−1/(2t) ¿ k,

and for

n(t−3)/2 · k2−t ¿ ρ ¿ n−1/t
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EKR does not hold, as a (t, 2)-simplex appears earlier than a vertex of degree t. (We

needed the lower bound on k given in part (iii) of Theorem 1 to make sure that the

range of ρ is not empty.) Similar conclusion can be made regarding not having the

weak EKR property: a (t, 2)-simplex appears earlier than a vertex of degree t + 1 for

n(1/2)(1−(t−1)/(t+1)(t−2)) ¿ k and

n(t−3)/2 · k2−t ¿ ρ ¿ n−1/(t+1).

Note that we do not determine the likely size of the largest intersecting family in Gk
p

here as we did in Section 3.3.3. Of course, this simplification is reflected in the fact

that we make only negative assertions in part (iii) of Theorem 1 for this range of k

and ρ. For the values of k and ρ considered here there are many competing non-trivial

intersecting structures which appear earlier than a trivial intersecting family with the

same size. The number of such structures grows as k approaches n1/2. Even though

it seems that usually the (t, 2)-simplex is the earliest to show up when it counts,

verifying this using our methods would involve tedious calculations. So, for the sake

of brevity, we did not work out more details.

3.3.5 ρ = Ω(1)

In this subsection we show that the cardinality of a nontrivial intersecting family is

at most a constant if ρ is less than a large constant, and at most a small multiple of

ρ when ρ is larger than this constant. Let us recall that k < n1/2−ε.

We begin by noting that, by Lemma 13 and (3), there is no (t, j)-simplex in Gk
p

for j ≥ 6; j = 5 and t ≥ 7; j = 4 and t ≥ 6; j = 3 and t ≥ 7; or j = 2 and

t ≥ 3/ε > 2/ε + 3. Thus, we may restrict our attention to small (t, j)-simplices. We

define two events and use the union bound to show that they are rare. Let Ar be the

event that there exist e, f ∈ Gk
p such that |e ∩ f | ≥ r. Then

P(Ar) ≤
(

n

r

)(
n− r

k − r

)2

p2 ≤ ρ2nr

r!

(
(k − 1)r−1

(n− 1)r−1

)2

≤
(
2 log4 n

)
k2r−4

nr−6
= o(1),

when r > 3/ε, using k < n1/2−ε. Fix r = d3/εe, and write A = Ar. Now define

a =





5/ε if ρ ≤ 500ε−4

ρ ε3/100 if ρ > 500ε−4
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and consider the event B that there is a vertex x and a k-set A such that x 6∈ A and

A is in Gk
p and there are at least a sets in Gk

p that both contain x and intersect A.

P(B) ≤ np

(
n

k

)
ka

a!

(
n− 2

k − 2

)a

pa ≤ ρn2

k

[
ek2ρ

an

]a

= o(1).

Now suppose that we are in the event A ∨ B and consider a non-trivial intersecting

family F in Gk
p. Let M be a maximal (t, j)-simplex in F . We begin with the case

j = 2. The cardinality of the union of the pairwise intersections of the sets in the

system is at most
(

t
2

)
(r − 1) < (3/ε)3. Each of the sets in F contains one of these

points and intersects some other k-set (depending on the point). Since we have

assumed A ∨ B, this gives

|F| ≤




135/ε4 if ρ ≤ 500ε−4

(0.27)ρ if ρ > 500ε−4
. (5)

Note that if j ≥ 3 then more restrictive conditions apply to the hyperedges in F and

(5) still holds for ε sufficiently small. If Ω(1) = ρ ≤ 500ε−4 then there is a vertex

of unbounded degree (as n tends to infinity). If ρ > 500ε−4 then, by Lemma 12 for

ρ = Θ(1) and the Chernoff bound for ρ = ω(1), there is a vertex of degree at least

ρ/2, as the expected degree of a vertex is ρ. In both cases Gk
p has the EKR property.

4 Large k

In this section, we prove Theorem 2. We begin with the case log n ¿ k < n/3.

Lemma 16. Let 3k + 2 ≤ n. Write the numbers [n] in some cyclic order. Consider

the k-graph K of n edges which are formed by k consecutive elements in the cyclic

order. If H ⊂ K is intersecting, then there is a non-empty interval on the cycle which

is contained in each edge of H.

Proof. By relabeling if necessary, we may assume that the cyclic order is {1, 2, . . . , n}
and that [k] ∈ H. Each A ∈ H contains either 1 or k but not both, since k < n/3.

If 1 ∈ A, then label the largest element of A ∩ [k] with `(A). If k ∈ A, then label

the smallest element in A ∩ [k] with r(A). The easy observation is that for every

sets A,B ∈ H, if both r(A) and `(B) are defined then r(A) ≤ `(B), since otherwise

3k + 2 ≤ n implies that H is not intersecting. Now let I = [a, b] ⊂ [k], where a is the
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largest element assigned for some set A as r(A) and b is the smallest element assigned

as `(B) for some B. Clearly every edge of H contains an element of I.

Given a k-graph H with vertex set [n] and a cyclic permutation σ of [n], define

Hσ ⊂ H to be the k-graph whose edges occur as consecutive elements of σ.

Proof of Theorem 2 for log n ¿ k < n/3. We say that a cyclic permutation

σ of Sn is bad if |Hσ| > kp(1+ η) where η = (2/p)
√

log n
k

. By Lemma 16, there exists

some x ∈ [n] such that all edges of Hσ contain x. The expected number of edges in

Gk
p that are in Hσ and contain x is pk. Therefore, Theorem 5 part (1) and the union

bound gives

P (Hσ is bad) < n exp(−2η2p2k) <
1

n2
.

Let X be the number of bad permutations. We have E[X] ≤ (n−1)!
n2 . Markov’s

inequality then implies

P
(

X >
(n− 1)!

n

)
<

1

n
.

We may therefore assume that there are only few bad permutations. This implies

that

k!(n− k)!|H| =
∑

σ

|Hσ| ≤ (n− 1)! · kp(1 + η) +
(n− 1)!

n
· k.

Consequently,

|H| ≤
(

n− 1

k − 1

)
p

(
1 +

2

p

√
log n

k

)
+

(
n− 1

k − 1

)
1

n
= p

(
n− 1

k − 1

)
(1 + o(1))

and the proof is complete for the k ≤ n/3 case.

This proof can be extended to k ≤ (1−ε)n/2 by defining a collection A of intersecting

families in
(
[n]
k

)
σ

(the set of k-element subsets of [n] that occur as consecutive elements

σ) with the property that |A| is sufficiently small and every intersecting family is

contained in some family in A. That is, we need an extended version of Lemma 16.

Lemma 17. Let k < (1 − ε)n/2, where 0 < ε < 1/3. Then the number of maximal

intersecting k-uniform hypergraphs whose edges occur as consecutive elements of [n]

is at most (2n)2/ε.

Proof. A maximal intersecting hypergraph H can be characterized with a sequence

{`, r, 0}n, where the meaning of the i-th coordinate is the following: if it is ` then

[i−k +1, i] ∈ H, if it is r then [i+1, i+k] ∈ H, if it is 0 then none of them in H (the
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intervals are understood modulo n). Such a sequence has two important properties:

after an ` and before an r there must be at least εn 0 digits, otherwise H is not

intersecting, and between two `’s if there is a 0 then there must be at least εn of

them, otherwise H is not maximal. This implies that a sequence has the following

form: it has some `’s then at least εn 0’s, then either a run of `’s or r’s, and so on.

At each change we have at most 2 choices for the new digit, and n choices for the

length of the run, and the number of runs is at most 2/ε. Therefore the number of

such sequences is at most (2n)2/ε.

Now the proof of the theorem for the n/3 ≤ k < (1− ε)n/2 case is almost the same

as before. We note that every intersecting family in
(
[n]
k

)
σ

has at most k elements,

and we change the value of η to η = 2
εp

√
log n

k
.

5 When Gk
p fails EKR

In this section we show examples when Gk
p fails EKR, in particular we prove Theorem

3. Actually, the proof of this theorem is a very simple application of the probabilistic

method, and shows that Gk
p itself is a nontrivial intersecting family.

Proof of Theorem 3. The probability that there exist edges X, Y ∈ Gk
p such

that X ∩ Y = ∅ is bounded above by
(

n
k

)(
n−k

k

)
p2. Using the fact that (n − k)k ≤

(1− k/n)k(n)k, this is at most

p2(1− k/n)k (n)2
k

k!2
< p2e−k2/n

(
n

k

)2

. (6)

For each i ∈ [n], the probability that all edges of Gk
p contain i is at most (1− p)(

n−1
k ).

Consequently, the probability that Gk
p is trivial is bounded by

n(1− p)(
n−1

k ) < n exp

(
−p

(
n− 1

k

))
. (7)

By the choice of p, both (6) and (7) are o(1) and the proof is complete.

There are several ways one might hope to show that EKR fails for the range of k

considered here. We present some of these below.

Remark 1. One might think that the simple deletion method would provide a better

construction than the trivial hypergraph for some other p but unfortunately it is not
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the case: Consider Gk
p, and from each pair of disjoint edges remove one of them. The

resulting hypergraph will be intersecting, and the expected number of edges remaining

is at least(
n

k

)
p−

(
n

k

)(
n− k

k

)
p2 ≥ n

k

(
1− p exp(−k2/n)

(
n

k

))
p

(
n− 1

k − 1

)
.

This will be larger than the size of the trivial hypergraph but the range of p for which

this holds is essentially the same as in Theorem 3.

Remark 2. Construct a graph G whose vertices are the edges of Gk
p, and two vertices

(sets) are connected by an edge if they are disjoint. The expected number of vertices of

G is p
(

n
k

)
. The expected degree of a vertex is p

(
n−k

k

)
. Hence there is an independent

set of order
(

n
k

)
/
(

n−k
k

)
. Using (6), we can check that this is better than a trivial

intersecting hypergraph if p ¿ ek2/n/
(

n−1
k−1

)
(and p is not too small).

Remark 3. It is interesting to look at what the following simple minded method

gives. First keep all the edges of a maximum sized trivial subhypergraph of Gk
p. We

may assume that the common element was u. Then fix an arbitrary vertex v, and

include each set A from Gk
p which contains v and not u, if no u ∈ B ⊂ Ā is in Gk

p.

The expected number of sets chosen is

p

(
n− 1

k − 1

)
+ p(1− p)(

n−k−1
k−1 )

(
n− 2

k − 1

)
.

For arbitrary p this is somewhat larger than the number of edges of the trivial hyper-

graph only if n = 2k. Even for n = 2k + 1, a single edge is likely to be added only if

p < 3/4, and for n = 2k + 2 if p ¿ 1/k. This might suggest that for ‘large’ p, even

for large k < n/2, the random k-graph Gk
p satisfies EKR.
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secting Hypergraphs II, Random Structures and Algorithms 30, (2007) 17–34.
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