Extremal problems for t-partite and t-colorable hypergraphs

Dhruv Mubayi * John Talbot ${ }^{\dagger}$

June 22, 2007

Abstract

Fix integers $t \geq r \geq 2$ and an r-uniform hypergraph F. We prove that the maximum number of edges in a t-partite r-uniform hypergraph on n vertices that contains no copy of F is $c_{t, F}\binom{n}{r}+o\left(n^{r}\right)$, where $c_{t, F}$ can be determined by a finite computation.

We explicitly define a sequence F_{1}, F_{2}, \ldots of r-uniform hypergraphs, and prove that the maximum number of edges in a t-chromatic r-uniform hypergraph on n vertices containing no copy of F_{i} is $\alpha_{t, r, i}\binom{n}{r}+o\left(n^{r}\right)$, where $\alpha_{t, r, i}$ can be determined by a finite computation for each $i \geq 1$. In several cases, $\alpha_{t, r, i}$ is irrational. The main tool used in the proofs is the Lagrangian of a hypergraph.

1 Introduction

An r-uniform hypergraph or r-graph is a pair $G=(V, E)$ of vertices, V, and edges $E \subseteq\binom{V}{r}$, in particular a 2 -graph is a graph. We denote an edge $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ by $v_{1} v_{2} \cdots v_{r}$. Given r-graphs F and G we say that G is F-free if G does not contain a copy of F. The maximum number of edges in an F-free r-graph of order n is $\operatorname{ex}(n, F)$. For $r=2$ and $F=K_{s}(s \geq 3)$

[^0]this number was determined by Turán [T41] (earlier Mantel [M07] found ex $\left(n, K_{3}\right)$). However in general (even for $r=2$) the problem of determining the exact value of $\operatorname{ex}(n, F)$ is beyond current methods. The corresponding asymptotic problem is to determine the Turán density of F, defined by $\pi(F)=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{r}}$ (this always exists by a simple averaging argument due Katona et al. [KNS64]). For 2-graphs the Turán density is determined by the chromatic number of the forbidden subgraph F. The explicit relationship is given by the following fundamental result.

Theorem 1 (Erdős-Stone-Simonovits [ES46],[ES66]). If F is a 2-graph then $\pi(F)=1$ -$\frac{1}{\chi(F)-1}$.

When $r \geq 3$, determining the Turán density is difficult, and there are only a few exact results. Here we consider some closely related hypergraph extremal problems. Call a hypergraph H t-partite if its vertex set can be partitioned into t classes, such that every edge has at most one vertex in each class. Call $H t$-colorable, if its vertex set can be partitioned into t classes so that no edge is entirely contained within a class.

Definition 2. Fix $t, r \geq 2$ and an r-graph F. Let $e x_{t}^{*}(n, F)\left(e x_{t}(n, F)\right)$ denote the maximum number of edges in a t-partite (t-colorable) r-graph on n vertices that contains no copy of F. The t-partite Turán density of F is $\pi_{t}^{*}(F)=\lim _{n \rightarrow \infty} e x_{t}^{*}(n, F) /\binom{n}{r}$ and the t-chromatic Turán density of F is $\pi_{t}(F)=\lim _{n \rightarrow \infty} e x_{t}(n, F) /\binom{n}{r}$.

Note that it is easy to show that these limits exist. In this paper, we determine $\pi_{t}^{*}(F)$ for all r-graphs F and determine $\pi_{t}(F)$ for an infinite family of r-graphs (previously no nontrivial value of $\pi_{t}(F)$ was known). In many cases our examples yield irrational values of $\pi_{t}(F)$. For the usual Turán density, $\pi(F)$ has not been proved to be irrational for any F, although there are several conjectures stating irrational values.

In order to describe our results, we need the concept of G-colourings which we introduce now. If F and G are hypergraphs (not necessarily uniform) then F is G-colourable if there exists $c: V(F) \rightarrow V(G)$ such that $c(e) \in E(G)$ whenever $e \in E(F)$. In other words, F is G-colourable if there is a homomorphism from F to G.

Let $K_{t}^{(r)}$ denote the complete r-graph of order t. Then an r-graph F is t-partite if F is $K_{t}^{(r)}$-colourable, and F is t-colourable if it is $H_{t}^{(r)}$-colourable where $H_{t}^{(r)}$ is the (in general non-uniform) hypergraph consisting of all subsets $A \subseteq\{1,2, \ldots, t\}$ satisfying $2 \leq|A| \leq r)$. The chromatic number of F is $\chi(F)=\min \{t \geq 1: F$ is t-colourable $\}$. Note that while a

2 -graph is t-colourable iff it is t-partite this is no longer true for $r \geq 3$, for example $K_{4}^{(3)}$ is 2-colourable but not 2-partite or 3 -partite.

Let $\mathcal{G}_{t}^{(r)}$ denote the collection of all t-vertex r-graphs. A tool which has proved very useful in extremal graph theory and which we will use later is the Lagrangian of an r-graph. Let

$$
\mathbb{S}_{t}=\left\{\vec{x} \in \mathbb{R}^{t}: \sum_{i=1}^{t} x_{i}=1, x_{i} \geq 0 \text { for } 1 \leq i \leq t\right\}
$$

If $G \in \mathcal{G}_{t}^{(r)}$ and $\vec{x} \in \mathbb{S}_{t}$ then we define

$$
\lambda(G, \vec{x})=\sum_{v_{1} v_{2} \cdots v_{r} \in E(G)} x_{v_{1}} x_{v_{2}} \cdots x_{v_{t}} .
$$

The Lagrangian of G is $\max _{\vec{x} \in \mathbb{S}_{t}} \lambda(G, \vec{x})$. The first application of the Lagrangian to extremal graph theory was due to Motzkin and Strauss who gave a new proof of Turán's theorem. We are now ready to state our main result.

Theorem 3. If F is an r-graph and $t \geq r \geq 2$ then

$$
\pi_{t}^{*}(F)=\max \left\{r!\lambda(G): G \in \mathcal{G}_{t}^{(r)} \text { and } F \text { is not } G \text {-colourable }\right\}
$$

As an example of Theorem 3, suppose that $t=4, r=3$, and $F=K_{4}^{(3)}$. Let H denote the unique 3 -graph with four vertices and three edges. Now F is F-colorable, but it is not H-colorable, and the lagrangian $\lambda(H)$ of H is $4 / 81$, achieved by assigning the degree three vertex a weight of $1 / 3$ and the other three vertices a weight of $2 / 9$. Consequently, Theorem 3 says that the maximum number of edges in an n-vertex 4 -partite 3 -graph containing no copy of $K_{4}^{(3)}$ is $(8 / 27)\binom{n}{3}+o\left(n^{3}\right)$. This is clearly achievable, by the 4-partite 3 -graph with part sizes $n / 3,2 n / 9,2 n / 9,2 n / 9$, with all possible triples between three parts that include the largest (of size $n / 3$), and no triples between the three small parts.

Chromatic Turán densities were previously considered in [T07] where they were used to give an improved upper bound on $\pi(H)$, where H is defined in the previous paragraph. However no non-trivial chromatic Turán densities have previously been determined. For each $r \geq t \geq 2$ we are able to give an infinite sequence of r-graphs whose t-chromatic Turán densities are determined exactly.

For $l \geq t \geq 2$ and $r \geq 2$ define

$$
\beta_{r, t, l}:=\max \{\lambda(G): G \text { is a } t \text {-colorable } r \text {-graph on } l \text { vertices }\} .
$$

It seems obvious that $\beta_{r, t, l}$ is achieved by the t-chromatic r-graph of order l with all color classes of size $\lfloor l / t\rfloor$ or $\lceil l / t\rceil$ and all edges present except those within the classes. Note that if $t \mid l$ then this would give

$$
\beta_{r, t, l}=\left(\binom{l}{r}-t\binom{l / t}{r}\right) \frac{1}{l^{r}} .
$$

However, we are only able to prove this for $r=2,3$. If the above statement is true, then $\beta_{r, t, l}$ can be computed by calculating the maximum of an explicit polynomial in one variable over the unit interval. In any case it can be obtained by a finite computation (for fixed r, t, l). Let $\alpha_{r, t, l}=r!\beta_{r, t, l}$.

Theorem 4. Fix $l \geq r \geq 2$. Let $L_{l+1}^{(r)}$ be the r-graph obtained from the complete graph K_{l+1} by enlarging each edge with a set of $r-2$ new vertices. If $t \geq 2$ then

$$
\pi_{t}\left(L_{l+1}^{(r)}\right)=\alpha_{r, t, l}
$$

where $\alpha_{r, t, l}$ is defined above.

The remainder of the paper is arranged as follows. In the next section we prove Theorem 3 and in the last section we prove Theorem 4 and the statements about computing $\beta_{r, t, l}$, for $r=2,3$.

2 Proof of Theorem 3

If $G \in \mathcal{G}_{t}^{(r)}$ and $\vec{x}=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{Z}_{+}^{t}$ then the \vec{x}-blow-up of G is the r-graph $G(\vec{x})$ constructed from G by replacing each vertex v by a class of vertices of size x_{v} and taking all edges between any r classes corresponding to an edge of G. More precisely we have $V(G(\vec{x}))=X_{1} \dot{\cup} \cdots \dot{U} X_{t}$, $\left|X_{i}\right|=x_{i}$ and

$$
E(G(\vec{x}))=\left\{\left\{v_{i_{1}} v_{i_{2}} \cdots v_{i_{r}}\right\}: v_{i_{j}} \in X_{i_{j}},\left\{i_{1} i_{2} \cdots i_{r}\right\} \in E(G)\right\} .
$$

If $\vec{x}=(s, s, \ldots, s)$ and $G=K_{t}^{(r)}$ then $G(\vec{x})$ is the complete t-partite r-graph with class size s, denoted by $K_{t}^{(r)}(s)$. Note that if F and G are both r-graphs then F is G-colourable iff there exists $\vec{x} \in \mathbb{Z}_{+}^{t}$ such that $F \subseteq G(\vec{x})$.

An r-graph G is said to be covering if each pair of vertices in $V(G)$ is contained in a common edge. If $W \subset V$ and G is an r-graph with vertex V then $G[W]$ is the induced subgraph of G formed by deleting all vertices not in W and removing all edges containing these vertices.

Lemma 5 (Frankl and Rödl [FR84]). If G is an r-graph of order n then there exists $\vec{y} \in \mathbb{S}_{n}$ with $\lambda(G)=\lambda(G, \vec{y})$, such that if $P=\left\{v \in V(G): y_{v}>0\right\}$ then $G[P]$ is covering.

Supersaturation for ordinary Turán densities was shown by Erdős [E71]. The proof for G chromatic Turán densities is essentially identical but for completeness we give it. We require the following classical result.

Theorem 6 (Erdős [E64]). If $r \geq 2$ and $t \geq 1$ then ex $\left(n, K_{r}^{(r)}(t)\right)=O\left(n^{r-\lambda_{r, t}}\right)$, with $\lambda_{r, t}>0$.
Lemma 7 (Supersaturation). Fix $t \geq r \geq 2$. If G is an r-graph, \mathcal{H} is a finite family of r graphs, $s \geq 1$ and $\vec{s}=(s, s, \ldots, s)$ then $\pi_{t}^{*}(\mathcal{H}(\vec{s}))=\pi_{t}^{*}(\mathcal{H})$ (where $\mathcal{H}(\vec{s})=\{H(\vec{s}): H \in \mathcal{H}\}$).

Proof: Let $p=\max \{|V(H)|: H \in \mathcal{H}\}$. By adding isolated vertices if necessary we may suppose that every $H \in \mathcal{H}$ has exactly p vertices.

First we claim that if F is an n-vertex r-graph with density at least $\alpha+2 \epsilon$, where $\alpha, \epsilon>0$, and $r \leq m \leq n$ then at least $\epsilon\binom{n}{m}$ of the m-vertex induced subgraphs of F have density at least $\alpha+\epsilon$. To see this note that if it fails to hold then

$$
\binom{n-r}{m-r}(\alpha+2 \epsilon)\binom{n}{r} \leq \sum_{W \in\binom{V(F)}{m}} e(F[W])<\epsilon\binom{n}{m}\binom{m}{r}+(1-\epsilon)\binom{n}{m}(\alpha+\epsilon)\binom{m}{r},
$$

which is impossible.
Let $\epsilon>0$ and suppose that F is an n-vertex r-graph with density at least $\pi_{t}^{*}(\mathcal{H})+2 \epsilon$. We need to show that if n sufficiently large then F contains a copy of $\mathcal{H}(\vec{s})$. Let $m \geq m(\epsilon)$ be sufficiently large that any t-partite m-vertex r-graph with density at least $\pi_{t}^{*}(\mathcal{H})+\epsilon$ contains a copy of some $H \in \mathcal{H}$. We say that $W \in\binom{V(F)}{m}$ is good if $F[W]$ contains a copy of some $H \in \mathcal{H}$. By the claim at least $\epsilon\binom{n}{m} m$-sets are good, so if $\delta=\epsilon /|\mathcal{H}|$ then at least $\delta\binom{n}{m} m$-sets contain a fixed $H^{*} \in \mathcal{H}$.

Thus the number of p-sets $U \subset V(F)$ such that $F[U] \simeq H^{*}$ is at least

$$
\begin{equation*}
\frac{\delta\binom{n}{m}}{\binom{n-p}{m-p}}=\frac{\delta\binom{n}{p}}{\binom{m}{p}} . \tag{1}
\end{equation*}
$$

Let J be the p-graph with vertex set $V(F)$ and edge set consisting of those p-sets $U \subset V(F)$ such that $F[U] \simeq H^{*}$. Now, by Theorem 6, $\operatorname{ex}_{t}^{*}\left(n, K_{r}^{(r)}(t)\right) \leq \operatorname{ex}\left(n, K_{r}^{(r)}(t)\right)=O\left(n^{r-\lambda_{r, t}}\right)$, where $\lambda_{r, t}>0$. Hence (1) implies that for any $t \geq r$ if n is sufficiently large then $K_{p}^{(p)}(t) \subset J$.

Finally consider a colouring of the edges of $K_{p}^{(p)}(t)$ with p ! different colours, where the colour of the edge is given by the order in which the vertices of H^{*} are embedded in it. By Ramsey's theorem if t is sufficiently large then there is a copy of $K_{p}^{(p)}(s)$ with all edges the same colour. This yields a copy of $H^{*}(\vec{s})$ in F as required.

Proof of Theorem 3. Let $\alpha_{r, t}=\max \left\{r!\lambda(G): G \in \mathcal{G}_{t}^{(r)}\right.$ and F is not G-colourable $\}$. (This is well-defined since $\left|\mathcal{G}_{t}^{(r)}\right| \leq\binom{ t}{r}$ is finite.)
If $G \in \mathcal{G}_{t}^{(r)}$ and F is not G-colourable then for any $\vec{x} \in \mathbb{Z}_{+}^{t}$ we have $F \nsubseteq G(\vec{x})$. Let $\vec{y} \in \mathbb{S}_{t}$ satisfy $\lambda(G, \vec{y})=\lambda(G)$. For $n \geq 1$ let $\vec{x}_{n}=\left(\left\lfloor y_{1} n\right\rfloor, \ldots,\left\lfloor y_{t} n\right\rfloor\right) \in \mathbb{Z}_{+}^{t}$. If $G_{n}=G\left(\vec{x}_{n}\right)$ then

$$
\lim _{n \rightarrow \infty} \frac{e\left(G_{n}\right)}{\binom{n}{r}}=r!\lambda(G)
$$

Moreover since each G_{n} is F-free, t-partite and of order at most n we have $\pi_{t}^{*}(F) \geq r!\lambda(G)$. Hence $\pi_{t}^{*}(F) \geq \alpha_{r, t}$.
Let $\mathcal{H}(F)=\left\{H \in \mathcal{G}_{t}^{(r)}: F\right.$ is H-colourable $\}$.
It is sufficient to show that

$$
\begin{equation*}
\pi_{t}^{*}(\mathcal{H}(F)) \leq \alpha_{r, t} \tag{2}
\end{equation*}
$$

Indeed, if we assume that (2) holds, then let $s \geq 1$ be minimal such that every $H \in \mathcal{H}(F)$ satisfies $F \subseteq H(\vec{s})$, where $\vec{s}=(s, s, \ldots, s)$. (Note that s exists since F is H-colourable for every $H \in \mathcal{H}(F)$). Now by supersaturation (Lemma 7) if $\epsilon>0$, then any t-partite r-graph G_{n} with $n \geq n_{0}(s, \epsilon)$ vertices and density at least $\alpha_{r, t}+\epsilon$ will contain a copy of $H(\vec{s})$ for some $H \in \mathcal{H}(F)$. In particular G_{n} contains F and so $\pi_{t}^{*}(F) \leq \alpha_{r, t}$.
Let $\pi_{t}^{*}(\mathcal{H}(F))=\gamma$ and $\epsilon>0$. If n is sufficiently large there exists an $\mathcal{H}(F)$-free, t-partite r-graph G_{n} of order n satisfying

$$
\frac{r!e\left(G_{n}\right)}{n^{r}} \geq \gamma-\epsilon
$$

Taking $\vec{y}=(1 / n, 1 / n, \ldots, 1 / n) \in \mathbb{S}_{n}$ we have

$$
r!\lambda\left(G_{n}\right) \geq r!\lambda\left(G_{n}, \vec{y}\right)=\frac{r!e\left(G_{n}\right)}{n^{r}} \geq \gamma-\epsilon
$$

Now Lemma 5 implies that there exists $\vec{z} \in \mathbb{S}_{n}$ satisfying

- $\lambda\left(G_{n}\right)=\lambda\left(G_{n}, \vec{z}\right)$ and
- $G_{n}[P]$ is covering where $P=\left\{v \in V(G): z_{v}>0\right\}$.

Since G_{n} is t-partite, we conclude that $G_{n}[P]$ has at most t vertices. Moreover, G_{n} is $\mathcal{H}(F)-$ free and so $G_{n}[P] \notin \mathcal{H}(F)$. Thus F is not $G_{n}[P]$-colorable, and we have $\gamma-\epsilon \leq r!\lambda\left(G_{n}[P]\right) \leq$ $\alpha_{r, t}$. Thus $\pi_{t}^{*}(\mathcal{H}(F)) \leq \alpha_{r, t}+\epsilon$ for all $\epsilon>0$. Hence (2) holds and the proof is complete.

3 Infinitely many chromatic Turán densities

For $l, r \geq 2$ let $\mathcal{K}_{l}^{(r)}$ be the family of r-graphs with at most $\binom{l}{2}$ edges that contain a set S, called the core, of l vertices, with each pair of vertices from S contained in an edge. Note that $L_{l+1}^{(r)} \in \mathcal{K}_{l+1}^{(r)}$. We need the following Lemma that was proved in [M06]. For completeness, we repeat the proof below.

Lemma 8. If $K \in \mathcal{K}_{l+1}^{(r)}, s=\binom{l+1}{2}+1$ and $\vec{s}=(s, s, \ldots, s)$ then $L_{l+1}^{(r)} \subseteq K(\vec{s})$.
Proof. We first show that $L_{l+1}^{(r)} \subset L\left(\binom{l+1}{2}+1\right)$ for every $L \in \mathcal{K}_{l+1}^{(r)}$. Pick $L \in \mathcal{K}_{l+1}^{(r)}$, and let $L^{\prime}=L\left(\binom{l+1}{2}+1\right)$. For each vertex $v \in V(L)$, suppose that the clones of v are $v=$ $\left.v^{1}, v^{2}, \ldots, v^{\left({ }_{2}^{+1}\right.} 2^{2}\right)+1$. In particular, identify the first clone of v with v.

Let $S=\left\{w_{1}, \ldots, w_{l+1}\right\} \subset V(L)$ be the core of L. For every $1 \leq i<j \leq l+1$, let $E_{i j} \in L$ with $E_{i j} \supset\left\{w_{i}, w_{j}\right\}$. Replace each vertex z of $E_{i j}-\left\{w_{i}, w_{j}\right\}$ by z^{q} where $q>1$, to obtain an edge $E_{i j}^{\prime} \in L^{\prime}$. Continue this procedure for every i, j, making sure that whenever we encounter a new edge it intersects the previously encountered edges only in L. Since the number of clones is $\binom{l+1}{2}+1$, this procedure can be carried out successfully and results in a copy of $L_{l+1}^{(r)}$ with core S. Therefore $L_{l+1}^{(r)} \subset L^{\prime}=L\left(\binom{(+1}{2}+1\right)$. Consequently, Lemma 7 implies that $\pi\left(L_{l+1}^{(r)}\right) \leq \pi\left(\mathcal{K}_{l+1}^{(r)}\right)$.

Proof of Theorem 4. Let $l \geq r \geq 2$ and $t \geq 2$. We will prove that

$$
\begin{equation*}
\pi_{t}\left(\mathcal{K}_{l+1}^{(r)}\right)=\alpha_{r, t, l} . \tag{3}
\end{equation*}
$$

The theorem will then follow immediately from Lemmas 7 and 8. Let

$$
\mathcal{B}_{r, t, l}=\left\{G: G \text { is a } t \text {-colourable } \mathcal{K}_{l+1}^{(r)} \text {-free } r \text {-graph }\right\} .
$$

Claim. $\max \left\{\lambda(G): G \in \mathcal{B}_{r, t, l}\right\}=\beta_{r, t, l}=\alpha_{r, t, l} / r!$.
Proof of Claim. If $G \in \mathcal{B}_{r, t, l}$ has order n then Lemma 5 implies that there is $\vec{y} \in \mathbb{S}_{n}$ such that $\lambda(G)=\lambda(G, \vec{y})$ with $G[P]$ covering, where $P=\left\{v \in V(G): y_{v}>0\right\}$. Since G is
$\mathcal{K}_{l+1}^{(r)}$-free, we conclude that $|P|=p \leq l$. Hence there is $H \in \mathcal{B}_{r, t, l}$ such that $\lambda(H)=\lambda(G)$ and H has order at most l. Consequently, $\max \left\{\lambda(G): G \in \mathcal{B}_{r, t, l}\right\} \leq \beta_{r, t, l}$. For the other inequality, we just observe that an l vertex r-graph must be $\mathcal{K}_{l+1}^{(r)}$-free.

Now we can quickly complete the proof of the theorem by proving (3). For the upper bound, observe that if $G \in \mathcal{B}_{r, t, l}$ has order n then by the Claim

$$
\frac{e(G)}{n^{r}} \leq \lambda(G) \leq \frac{\alpha_{r, t, l}}{r!}
$$

and so $\pi_{t}\left(\mathcal{K}_{l+1}^{(r)}\right) \leq \alpha_{r, t, l}$. For the lower bound, suppose that $G \in \mathcal{B}_{r, t, l}$ has order p and satisfies $\lambda(G)=\beta_{r, t, l}$. Then there exists $\vec{y} \in \mathbb{S}_{p}$ such that $\lambda(G, \vec{y})=\lambda(G)=\beta_{r, t, l}$. For $n \geq p$ define $\vec{y}_{n}=\left(\left\lfloor y_{1} n\right\rfloor, \ldots,\left\lfloor y_{p} n\right\rfloor\right)$. Now $\left\{G\left(\vec{y}_{n}\right)\right\}_{n=p}^{\infty}$ is a sequence of t-colourable $\mathcal{K}_{l+1}^{(r)}$-free r-graphs and hence

$$
\pi_{t}\left(\mathcal{K}_{l+1}^{(r)}\right) \geq \lim _{n \rightarrow \infty} \frac{e\left(G_{n}\right)}{\binom{n}{r}}=r!\lambda(G)=\alpha_{r, t, l} .
$$

Now we prove that $\beta_{r, t, l}$ can be computed by only considering maximum t-colorable r-graphs with almost equal part sizes when $r=2,3$. The case $r=2$ follows trivially from Lemma 5 so we consider the case $r=3$.

Theorem 9. Fix $l \geq t \geq 2$. Then $\beta_{3, t, l}$ is achieved by the t-chromatic 3 -graph of order l with all color classes of size $\lfloor l / t\rfloor$ or $\lceil l / t\rceil$ and all edges present except those within the classes.

Remark: Note that if $t \mid l$ then this implies that $\beta_{3, t, l}=\left(\binom{l}{3}-t\binom{l / t}{3}\right) \frac{1}{l^{3}}$.

Proof. Let G be a t-chromatic 3 -graph of order l. We may suppose (by adding edges as required) that $V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{t}$ and that all edges not contained in any V_{i} are present. We may also suppose that $\left|V_{1}\right| \geq\left|V_{2}\right| \geq \cdots \geq\left|V_{t}\right|$. Let $\vec{x} \in \mathbb{S}_{p}$ satisfy $\lambda(G, \vec{x})=\lambda(G)$.

If $v, w \in V_{i}$ and $x_{v}>x_{w}$ then for a suitable choice of $\delta>0$ we can increase $\lambda(G, \vec{x})$ by increasing x_{w} by δ and decreasing x_{v} by δ. Hence we may suppose that there are x_{1}, \ldots, x_{t} such that all vertices in V_{i} receive weight x_{i}.

Let $l=b t+c, 0 \leq c<t$. To complete the proof we need to show that all of the V_{i} have order b or $b+1$. Suppose, for a contradiction, that there exist V_{i} and V_{j} with $a_{i}=\left|V_{i}\right|$, $a_{j}=\left|V_{j}\right|$ and $a_{i} \geq a_{j}+2$. Moving a vertex v from V_{i} to V_{j} and inserting all new allowable edges (i.e. those which contain v and 2 vertices from $V_{i} \backslash\{v\}$) while deleting any edges which
now lie in V_{j} we cannot increase $\lambda(G, \vec{x})$. This implies that

$$
\begin{equation*}
\binom{a_{j}}{2} x_{i} x_{j}^{2} \geq\binom{ a_{i}-1}{2} x_{i}^{3}, \tag{4}
\end{equation*}
$$

and so in particular $x_{i}<x_{j}$. Let \tilde{G} denote this new t-colourable 3 -graph.
We give a new weighting \vec{y} for \tilde{G} by setting

$$
y_{v}= \begin{cases}a_{i} x_{i} /\left(a_{i}-1\right), & v \in V_{i}, \\ a_{j} x_{j} /\left(a_{j}+1\right), & v \in V_{j}, \\ x_{k}, & v \in V_{k} \text { and } k \neq i, j .\end{cases}
$$

It is easy to check that $\vec{y} \in \mathbb{S}_{l}$ is a legal weighting for \tilde{G}. We will derive a contradiction by showing that $\lambda(\tilde{G}) \geq \lambda(\tilde{G}, \vec{y})>\lambda(G, \vec{x})=\lambda(G)$. If $w=a_{i} x_{i}+a_{j} x_{j}=\left(a_{i}-1\right) y_{i}+\left(a_{j}+1\right) y_{j}$ then

$$
\begin{aligned}
\lambda(\tilde{G}, \vec{y})-\lambda(G, \vec{x})= & (1-w)\left(\binom{a_{i}-1}{2} y_{i}^{2}+\binom{a_{j}+1}{2} y_{j}^{2}+\left(a_{i}-1\right)\left(a_{j}+1\right) y_{i} y_{j}\right. \\
& \left.-\binom{a_{i}}{2} x_{i}^{2}-\binom{a_{j}}{2} x_{j}^{2}-a_{i} a_{j} x_{i} x_{j}\right)+\binom{a_{i}-1}{2}\left(a_{j}+1\right) y_{i}^{2} y_{j}+ \\
& \binom{a_{j}+1}{2}\left(a_{i}-1\right) y_{i} y_{j}^{2}-\binom{a_{i}}{2} a_{j} x_{i}^{2} x_{j}-\binom{a_{j}}{2} a_{i} x_{i} x_{j}^{2} \\
= & \frac{(1-w)}{2}\left(\frac{a_{j} x_{j}^{2}}{a_{j}+1}-\frac{a_{i} x_{i}^{2}}{a_{i}-1}\right)+\frac{a_{i} a_{j} x_{i} x_{j}}{2}\left(\frac{x_{j}}{a_{j}+1}-\frac{x_{i}}{a_{i}-1}\right) .
\end{aligned}
$$

Using (4) it is easy to check that this is strictly positive.
Corollary 10. The t-chromatic Turán density can take irrational values.

Proof. We consider $\beta_{3,2,2 k}$ for $k \geq 3$. In fact, we focus of $\beta_{3,2,6}$, the maximum density of a 2-chromatic 3 -graph that contains no copy of $\mathcal{K}_{6}^{(3)}$. By the previous Theorem, this is 6 times the lagrangian of the 3-graph with vertex set $\left\{a, a^{\prime}, a^{\prime \prime}, b, b^{\prime}\right\}$ and all edges present except $\left\{a, a^{\prime}, a^{\prime \prime}\right\}$. Assigning weight x to the a 's and weight y to the b 's, we must maximize $6\left(6 x^{2} y+3 x y^{2}\right)$ subject to $3 x+2 y=1$ and $0 \leq x \leq 1 / 3$. A short calculation shows that the choice of x that maximizes this expression is $(\sqrt{13}-2) / 9$, and this results in an irrational value for the lagrangian. Similar computations hold for larger k as well.

References

[E64] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
[E71] P. Erdős, On some extremal problems on r-graphs, Disc. Math. 1 (1971), 1-6.
[ES66] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1 (1966), 51-57.
[ES46] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52(1946), 1087-1091.
[FR84] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984), 149-159.
[KNS64] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turan in the theory of graphs (in Hungarian) Mat. Lapok 15 (1964), 228-238.
[M07] W. Mantel, Problem 28, Wiskundige Opgaven, 10 (1907), 60-61.
[MS65] T. Motzkin and E. Strauss. Maxima for graphs and a new proof of a theorem of Turan, Canadian Journal of Mathematics, 17:533-540, 1965.
[M06] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory, Ser. B 96 (2006) 122-134.
[T07] J. Talbot, Chromatic Turán problems and a new upper bound for the Turán density of \mathcal{K}_{4}^{-}. Europ. J. Comb. (to appear) (2007?)
[T41] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941)

[^0]: *Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607, and Department of Mathematical Sciences, Carnegie-Mellon University, Pittsburgh, PA 15213. Email: mubayi@math.uic.edu. Research supported in part by NSF grants DMS-0400812 and 0653946 and an Alfred P. Sloan Research Fellowship.
 ${ }^{\dagger}$ Department of Mathematics, UCL, London, WC1E 6BT, UK. Email: talbot@math.ucl.ac.uk. This author is a Royal Society University Research Fellow.

