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Abstract

Fix integers t ≥ r ≥ 2 and an r-uniform hypergraph F . We prove that the maximum
number of edges in a t-partite r-uniform hypergraph on n vertices that contains no copy
of F is ct,F

(
n
r

)
+ o(nr), where ct,F can be determined by a finite computation.

We explicitly define a sequence F1, F2, . . . of r-uniform hypergraphs, and prove that
the maximum number of edges in a t-chromatic r-uniform hypergraph on n vertices
containing no copy of Fi is αt,r,i

(
n
r

)
+ o(nr), where αt,r,i can be determined by a finite

computation for each i ≥ 1. In several cases, αt,r,i is irrational. The main tool used in
the proofs is the Lagrangian of a hypergraph.

1 Introduction

An r-uniform hypergraph or r-graph is a pair G = (V, E) of vertices, V , and edges E ⊆
(

V
r

)
,

in particular a 2-graph is a graph. We denote an edge {v1, v2, . . . , vr} by v1v2 · · · vr. Given

r-graphs F and G we say that G is F -free if G does not contain a copy of F . The maximum

number of edges in an F -free r-graph of order n is ex(n, F ). For r = 2 and F = Ks (s ≥ 3)
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this number was determined by Turán [T41] (earlier Mantel [M07] found ex(n, K3)). However

in general (even for r = 2) the problem of determining the exact value of ex(n, F ) is beyond

current methods. The corresponding asymptotic problem is to determine the Turán density

of F , defined by π(F ) = limn→∞
ex(n,F )

(n
r)

(this always exists by a simple averaging argument

due Katona et al. [KNS64]). For 2-graphs the Turán density is determined by the chromatic

number of the forbidden subgraph F . The explicit relationship is given by the following

fundamental result.

Theorem 1 (Erdős–Stone–Simonovits [ES46],[ES66]). If F is a 2-graph then π(F ) = 1 −
1

χ(F )−1
.

When r ≥ 3, determining the Turán density is difficult, and there are only a few exact results.

Here we consider some closely related hypergraph extremal problems. Call a hypergraph H

t-partite if its vertex set can be partitioned into t classes, such that every edge has at most

one vertex in each class. Call H t-colorable, if its vertex set can be partitioned into t classes

so that no edge is entirely contained within a class.

Definition 2. Fix t, r ≥ 2 and an r-graph F . Let ex∗t (n, F ) (ext(n, F )) denote the maximum

number of edges in a t-partite (t-colorable) r-graph on n vertices that contains no copy of

F . The t-partite Turán density of F is π∗t (F ) = limn→∞ex∗t (n, F )/
(

n
r

)
and the t-chromatic

Turán density of F is πt(F ) = limn→∞ext(n, F )/
(

n
r

)
.

Note that it is easy to show that these limits exist. In this paper, we determine π∗t (F ) for all

r-graphs F and determine πt(F ) for an infinite family of r-graphs (previously no nontrivial

value of πt(F ) was known). In many cases our examples yield irrational values of πt(F ). For

the usual Turán density, π(F ) has not been proved to be irrational for any F , although there

are several conjectures stating irrational values.

In order to describe our results, we need the concept of G-colourings which we introduce

now. If F and G are hypergraphs (not necessarily uniform) then F is G-colourable if there

exists c : V (F ) → V (G) such that c(e) ∈ E(G) whenever e ∈ E(F ). In other words, F is

G-colourable if there is a homomorphism from F to G.

Let K
(r)
t denote the complete r-graph of order t. Then an r-graph F is t-partite if F is

K
(r)
t -colourable, and F is t-colourable if it is H

(r)
t -colourable where H

(r)
t is the (in general

non-uniform) hypergraph consisting of all subsets A ⊆ {1, 2, . . . , t} satisfying 2 ≤ |A| ≤ r).

The chromatic number of F is χ(F ) = min{t ≥ 1 : F is t-colourable}. Note that while a
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2-graph is t-colourable iff it is t-partite this is no longer true for r ≥ 3, for example K
(3)
4 is

2-colourable but not 2-partite or 3-partite.

Let G(r)
t denote the collection of all t-vertex r-graphs. A tool which has proved very useful

in extremal graph theory and which we will use later is the Lagrangian of an r-graph. Let

St = {~x ∈ Rt :
t∑

i=1

xi = 1, xi ≥ 0 for 1 ≤ i ≤ t}.

If G ∈ G(r)
t and ~x ∈ St then we define

λ(G,~x) =
∑

v1v2···vr∈E(G)

xv1xv2 · · ·xvt .

The Lagrangian of G is max~x∈St λ(G,~x). The first application of the Lagrangian to extremal

graph theory was due to Motzkin and Strauss who gave a new proof of Turán’s theorem. We

are now ready to state our main result.

Theorem 3. If F is an r-graph and t ≥ r ≥ 2 then

π∗t (F ) = max{r!λ(G) : G ∈ G(r)
t and F is not G-colourable}.

As an example of Theorem 3, suppose that t = 4, r = 3, and F = K
(3)
4 . Let H denote

the unique 3-graph with four vertices and three edges. Now F is F -colorable, but it is not

H-colorable, and the lagrangian λ(H) of H is 4/81, achieved by assigning the degree three

vertex a weight of 1/3 and the other three vertices a weight of 2/9. Consequently, Theorem

3 says that the maximum number of edges in an n-vertex 4-partite 3-graph containing no

copy of K
(3)
4 is (8/27)

(
n
3

)
+ o(n3). This is clearly achievable, by the 4-partite 3-graph with

part sizes n/3, 2n/9, 2n/9, 2n/9, with all possible triples between three parts that include

the largest (of size n/3), and no triples between the three small parts.

Chromatic Turán densities were previously considered in [T07] where they were used to

give an improved upper bound on π(H), where H is defined in the previous paragraph.

However no non-trivial chromatic Turán densities have previously been determined. For

each r ≥ t ≥ 2 we are able to give an infinite sequence of r-graphs whose t-chromatic Turán

densities are determined exactly.

For l ≥ t ≥ 2 and r ≥ 2 define

βr,t,l := max{λ(G) : G is a t-colorable r-graph on l vertices}.
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It seems obvious that βr,t,l is achieved by the t-chromatic r-graph of order l with all color

classes of size bl/tc or dl/te and all edges present except those within the classes. Note that

if t|l then this would give

βr,t,l =

((
l

r

)
− t

(
l/t

r

))
1

lr
.

However, we are only able to prove this for r = 2, 3. If the above statement is true, then βr,t,l

can be computed by calculating the maximum of an explicit polynomial in one variable over

the unit interval. In any case it can be obtained by a finite computation (for fixed r, t, l).

Let αr,t,l = r!βr,t,l.

Theorem 4. Fix l ≥ r ≥ 2. Let L
(r)
l+1 be the r-graph obtained from the complete graph Kl+1

by enlarging each edge with a set of r − 2 new vertices. If t ≥ 2 then

πt(L
(r)
l+1) = αr,t,l

where αr,t,l is defined above.

The remainder of the paper is arranged as follows. In the next section we prove Theorem 3

and in the last section we prove Theorem 4 and the statements about computing βr,t,l, for

r = 2, 3.

2 Proof of Theorem 3

If G ∈ G(r)
t and ~x = (x1, . . . , xt) ∈ Zt

+ then the ~x-blow-up of G is the r-graph G(~x) constructed

from G by replacing each vertex v by a class of vertices of size xv and taking all edges between

any r classes corresponding to an edge of G. More precisely we have V (G(~x)) = X1∪̇ · · · ∪̇Xt,

|Xi| = xi and

E(G(~x)) = {{vi1vi2 · · · vir} : vij ∈ Xij , {i1i2 · · · ir} ∈ E(G)}.

If ~x = (s, s, . . . , s) and G = K
(r)
t then G(~x) is the complete t-partite r-graph with class size

s, denoted by K
(r)
t (s). Note that if F and G are both r-graphs then F is G-colourable iff

there exists ~x ∈ Zt
+ such that F ⊆ G(~x).

An r-graph G is said to be covering if each pair of vertices in V (G) is contained in a common

edge. If W ⊂ V and G is an r-graph with vertex V then G[W ] is the induced subgraph of

G formed by deleting all vertices not in W and removing all edges containing these vertices.
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Lemma 5 (Frankl and Rödl [FR84]). If G is an r-graph of order n then there exists ~y ∈ Sn

with λ(G) = λ(G, ~y), such that if P = {v ∈ V (G) : yv > 0} then G[P ] is covering.

Supersaturation for ordinary Turán densities was shown by Erdős [E71]. The proof for G-

chromatic Turán densities is essentially identical but for completeness we give it. We require

the following classical result.

Theorem 6 (Erdős [E64]). If r ≥ 2 and t ≥ 1 then ex(n, K
(r)
r (t)) = O(nr−λr,t), with λr,t > 0.

Lemma 7 (Supersaturation). Fix t ≥ r ≥ 2. If G is an r-graph, H is a finite family of r-

graphs, s ≥ 1 and ~s = (s, s, . . . , s) then π∗t (H(~s)) = π∗t (H) (where H(~s) = {H(~s) : H ∈ H}).

Proof: Let p = max{|V (H)| : H ∈ H}. By adding isolated vertices if necessary we may

suppose that every H ∈ H has exactly p vertices.

First we claim that if F is an n-vertex r-graph with density at least α + 2ε, where α, ε > 0,

and r ≤ m ≤ n then at least ε
(

n
m

)
of the m-vertex induced subgraphs of F have density at

least α + ε. To see this note that if it fails to hold then(
n− r

m− r

)
(α + 2ε)

(
n

r

)
≤

∑
W∈(V (F )

m )

e(F [W ]) < ε

(
n

m

)(
m

r

)
+ (1− ε)

(
n

m

)
(α + ε)

(
m

r

)
,

which is impossible.

Let ε > 0 and suppose that F is an n-vertex r-graph with density at least π∗t (H) + 2ε. We

need to show that if n sufficiently large then F contains a copy of H(~s). Let m ≥ m(ε) be

sufficiently large that any t-partite m-vertex r-graph with density at least π∗t (H)+ε contains

a copy of some H ∈ H. We say that W ∈
(

V (F )
m

)
is good if F [W ] contains a copy of some

H ∈ H. By the claim at least ε
(

n
m

)
m-sets are good, so if δ = ε/|H| then at least δ

(
n
m

)
m-sets

contain a fixed H∗ ∈ H.

Thus the number of p-sets U ⊂ V (F ) such that F [U ] ' H∗ is at least

δ
(

n
m

)(
n−p
m−p

) =
δ
(

n
p

)(
m
p

) . (1)

Let J be the p-graph with vertex set V (F ) and edge set consisting of those p-sets U ⊂ V (F )

such that F [U ] ' H∗. Now, by Theorem 6, ex∗t (n, K
(r)
r (t)) ≤ ex(n, K

(r)
r (t)) = O(nr−λr,t),

where λr,t > 0. Hence (1) implies that for any t ≥ r if n is sufficiently large then K
(p)
p (t) ⊂ J .
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Finally consider a colouring of the edges of K
(p)
p (t) with p! different colours, where the colour

of the edge is given by the order in which the vertices of H∗ are embedded in it. By Ramsey’s

theorem if t is sufficiently large then there is a copy of K
(p)
p (s) with all edges the same colour.

This yields a copy of H∗(~s) in F as required.

Proof of Theorem 3. Let αr,t = max{r!λ(G) : G ∈ G(r)
t and F is not G-colourable}. (This

is well-defined since |G(r)
t | ≤

(
t
r

)
is finite.)

If G ∈ G(r)
t and F is not G-colourable then for any ~x ∈ Zt

+ we have F 6⊆ G(~x). Let ~y ∈ St

satisfy λ(G, ~y) = λ(G). For n ≥ 1 let ~xn = (by1nc, . . . , bytnc) ∈ Zt
+. If Gn = G(~xn) then

lim
n→∞

e(Gn)(
n
r

) = r!λ(G).

Moreover since each Gn is F -free, t-partite and of order at most n we have π∗t (F ) ≥ r!λ(G).

Hence π∗t (F ) ≥ αr,t.

Let H(F ) = {H ∈ G(r)
t : F is H-colourable}.

It is sufficient to show that

π∗t (H(F )) ≤ αr,t. (2)

Indeed, if we assume that (2) holds, then let s ≥ 1 be minimal such that every H ∈ H(F )

satisfies F ⊆ H(~s), where ~s = (s, s, . . . , s). (Note that s exists since F is H-colourable for

every H ∈ H(F )). Now by supersaturation (Lemma 7) if ε > 0, then any t-partite r-graph

Gn with n ≥ n0(s, ε) vertices and density at least αr,t + ε will contain a copy of H(~s) for

some H ∈ H(F ). In particular Gn contains F and so π∗t (F ) ≤ αr,t.

Let π∗t (H(F )) = γ and ε > 0. If n is sufficiently large there exists an H(F )-free, t-partite

r-graph Gn of order n satisfying
r!e(Gn)

nr
≥ γ − ε.

Taking ~y = (1/n, 1/n, . . . , 1/n) ∈ Sn we have

r!λ(Gn) ≥ r!λ(Gn, ~y) =
r!e(Gn)

nr
≥ γ − ε.

Now Lemma 5 implies that there exists ~z ∈ Sn satisfying

• λ(Gn) = λ(Gn, ~z) and

• Gn[P ] is covering where P = {v ∈ V (G) : zv > 0}.
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Since Gn is t-partite, we conclude that Gn[P ] has at most t vertices. Moreover, Gn is H(F )-

free and so Gn[P ] 6∈ H(F ). Thus F is not Gn[P ]-colorable, and we have γ−ε ≤ r!λ(Gn[P ]) ≤
αr,t. Thus π∗t (H(F )) ≤ αr,t + ε for all ε > 0. Hence (2) holds and the proof is complete.

3 Infinitely many chromatic Turán densities

For l, r ≥ 2 let K(r)
l be the family of r-graphs with at most

(
l
2

)
edges that contain a set S,

called the core, of l vertices, with each pair of vertices from S contained in an edge. Note that

L
(r)
l+1 ∈ K(r)

l+1. We need the following Lemma that was proved in [M06]. For completeness, we

repeat the proof below.

Lemma 8. If K ∈ K(r)
l+1, s =

(
l+1
2

)
+ 1 and ~s = (s, s, . . . , s) then L

(r)
l+1 ⊆ K(~s).

Proof. We first show that L
(r)
l+1 ⊂ L(

(
l+1
2

)
+ 1) for every L ∈ K(r)

l+1. Pick L ∈ K(r)
l+1, and

let L′ = L(
(

l+1
2

)
+ 1). For each vertex v ∈ V (L), suppose that the clones of v are v =

v1, v2, . . . , v(l+1
2 )+1. In particular, identify the first clone of v with v.

Let S = {w1, . . . , wl+1} ⊂ V (L) be the core of L. For every 1 ≤ i < j ≤ l + 1, let Eij ∈ L

with Eij ⊃ {wi, wj}. Replace each vertex z of Eij − {wi, wj} by zq where q > 1, to obtain

an edge E ′
ij ∈ L′. Continue this procedure for every i, j, making sure that whenever we

encounter a new edge it intersects the previously encountered edges only in L. Since the

number of clones is
(

l+1
2

)
+ 1, this procedure can be carried out successfully and results in

a copy of L
(r)
l+1 with core S. Therefore L

(r)
l+1 ⊂ L′ = L(

(
l+1
2

)
+ 1). Consequently, Lemma 7

implies that π(L
(r)
l+1) ≤ π(K(r)

l+1).

Proof of Theorem 4. Let l ≥ r ≥ 2 and t ≥ 2. We will prove that

πt(K(r)
l+1) = αr,t,l. (3)

The theorem will then follow immediately from Lemmas 7 and 8. Let

Br,t,l = {G : G is a t-colourable K(r)
l+1-free r-graph}.

Claim. max{λ(G) : G ∈ Br,t,l} = βr,t,l = αr,t,l/r!.

Proof of Claim. If G ∈ Br,t,l has order n then Lemma 5 implies that there is ~y ∈ Sn

such that λ(G) = λ(G, ~y) with G[P ] covering, where P = {v ∈ V (G) : yv > 0}. Since G is
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K(r)
l+1-free, we conclude that |P | = p ≤ l. Hence there is H ∈ Br,t,l such that λ(H) = λ(G)

and H has order at most l. Consequently, max{λ(G) : G ∈ Br,t,l} ≤ βr,t,l. For the other

inequality, we just observe that an l vertex r-graph must be K(r)
l+1-free.

Now we can quickly complete the proof of the theorem by proving (3). For the upper bound,

observe that if G ∈ Br,t,l has order n then by the Claim

e(G)

nr
≤ λ(G) ≤ αr,t,l

r!

and so πt(K(r)
l+1) ≤ αr,t,l. For the lower bound, suppose that G ∈ Br,t,l has order p and satisfies

λ(G) = βr,t,l. Then there exists ~y ∈ Sp such that λ(G, ~y) = λ(G) = βr,t,l. For n ≥ p define

~yn = (by1nc, . . . , bypnc). Now {G(~yn)}∞n=p is a sequence of t-colourable K(r)
l+1-free r-graphs

and hence

πt(K(r)
l+1) ≥ lim

n→∞

e(Gn)(
n
r

) = r!λ(G) = αr,t,l.

Now we prove that βr,t,l can be computed by only considering maximum t-colorable r-graphs

with almost equal part sizes when r = 2, 3. The case r = 2 follows trivially from Lemma 5

so we consider the case r = 3.

Theorem 9. Fix l ≥ t ≥ 2. Then β3,t,l is achieved by the t-chromatic 3-graph of order l with

all color classes of size bl/tc or dl/te and all edges present except those within the classes.

Remark: Note that if t|l then this implies that β3,t,l = (
(

l
3

)
− t

(
l/t
3

)
) 1

l3
.

Proof. Let G be a t-chromatic 3-graph of order l. We may suppose (by adding edges as

required) that V (G) = V1∪V2∪· · ·∪Vt and that all edges not contained in any Vi are present.

We may also suppose that |V1| ≥ |V2| ≥ · · · ≥ |Vt|. Let ~x ∈ Sp satisfy λ(G,~x) = λ(G).

If v, w ∈ Vi and xv > xw then for a suitable choice of δ > 0 we can increase λ(G,~x) by

increasing xw by δ and decreasing xv by δ. Hence we may suppose that there are x1, . . . , xt

such that all vertices in Vi receive weight xi.

Let l = bt + c, 0 ≤ c < t. To complete the proof we need to show that all of the Vi have

order b or b + 1. Suppose, for a contradiction, that there exist Vi and Vj with ai = |Vi|,
aj = |Vj| and ai ≥ aj + 2. Moving a vertex v from Vi to Vj and inserting all new allowable

edges (i.e. those which contain v and 2 vertices from Vi\{v}) while deleting any edges which
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now lie in Vj we cannot increase λ(G,~x). This implies that(
aj

2

)
xix

2
j ≥

(
ai − 1

2

)
x3

i , (4)

and so in particular xi < xj. Let G̃ denote this new t-colourable 3-graph.

We give a new weighting ~y for G̃ by setting

yv =


aixi/(ai − 1), v ∈ Vi,

ajxj/(aj + 1), v ∈ Vj,

xk, v ∈ Vk and k 6= i, j.

It is easy to check that ~y ∈ Sl is a legal weighting for G̃. We will derive a contradiction by

showing that λ(G̃) ≥ λ(G̃, ~y) > λ(G,~x) = λ(G).

If w = aixi + ajxj = (ai − 1)yi + (aj + 1)yj then

λ(G̃, ~y)− λ(G,~x) = (1− w)

((
ai − 1

2

)
y2

i +

(
aj + 1

2

)
y2

j + (ai − 1)(aj + 1)yiyj

−
(

ai

2

)
x2

i −
(

aj

2

)
x2

j − aiajxixj

)
+

(
ai − 1

2

)
(aj + 1)y2

i yj +(
aj + 1

2

)
(ai − 1)yiy

2
j −

(
ai

2

)
ajx

2
i xj −

(
aj

2

)
aixix

2
j

=
(1− w)

2

(
ajx

2
j

aj + 1
− aix

2
i

ai − 1

)
+

aiajxixj

2

(
xj

aj + 1
− xi

ai − 1

)
.

Using (4) it is easy to check that this is strictly positive.

Corollary 10. The t-chromatic Turán density can take irrational values.

Proof. We consider β3,2,2k for k ≥ 3. In fact, we focus of β3,2,6, the maximum density of

a 2-chromatic 3-graph that contains no copy of K(3)
6 . By the previous Theorem, this is 6

times the lagrangian of the 3-graph with vertex set {a, a′, a′′, b, b′} and all edges present

except {a, a′, a′′}. Assigning weight x to the a’s and weight y to the b’s, we must maximize

6(6x2y + 3xy2) subject to 3x + 2y = 1 and 0 ≤ x ≤ 1/3. A short calculation shows that the

choice of x that maximizes this expression is (
√

13 − 2)/9, and this results in an irrational

value for the lagrangian. Similar computations hold for larger k as well.
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