Extremal problems for t-partite and t-colorable hypergraphs

Dhruv Mubayi * John Talbot[†]

June 22, 2007

Abstract

Fix integers $t \ge r \ge 2$ and an r-uniform hypergraph F. We prove that the maximum number of edges in a t-partite r-uniform hypergraph on n vertices that contains no copy of F is $c_{t,F}\binom{n}{r} + o(n^r)$, where $c_{t,F}$ can be determined by a finite computation.

We explicitly define a sequence F_1, F_2, \ldots of r-uniform hypergraphs, and prove that the maximum number of edges in a t-chromatic r-uniform hypergraph on n vertices containing no copy of F_i is $\alpha_{t,r,i}\binom{n}{r} + o(n^r)$, where $\alpha_{t,r,i}$ can be determined by a finite computation for each $i \geq 1$. In several cases, $\alpha_{t,r,i}$ is irrational. The main tool used in the proofs is the Lagrangian of a hypergraph.

1 Introduction

An r-uniform hypergraph or r-graph is a pair G = (V, E) of vertices, V, and edges $E \subseteq {V \choose r}$, in particular a 2-graph is a graph. We denote an edge $\{v_1, v_2, \ldots, v_r\}$ by $v_1v_2 \cdots v_r$. Given r-graphs F and G we say that G is F-free if G does not contain a copy of F. The maximum number of edges in an F-free r-graph of order n is ex(n, F). For r = 2 and $F = K_s$ ($s \ge 3$)

^{*}Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607, and Department of Mathematical Sciences, Carnegie-Mellon University, Pittsburgh, PA 15213. Email: mubayi@math.uic.edu. Research supported in part by NSF grants DMS-0400812 and 0653946 and an Alfred P. Sloan Research Fellowship.

[†]Department of Mathematics, UCL, London, WC1E 6BT, UK. Email: talbot@math.ucl.ac.uk. This author is a Royal Society University Research Fellow.

this number was determined by Turán [T41] (earlier Mantel [M07] found $\operatorname{ex}(n, K_3)$). However in general (even for r=2) the problem of determining the exact value of $\operatorname{ex}(n, F)$ is beyond current methods. The corresponding asymptotic problem is to determine the $\operatorname{Tur\'{a}n}$ density of F, defined by $\pi(F) = \lim_{n\to\infty} \frac{\operatorname{ex}(n,F)}{\binom{n}{r}}$ (this always exists by a simple averaging argument due Katona et al. [KNS64]). For 2-graphs the Turán density is determined by the chromatic number of the forbidden subgraph F. The explicit relationship is given by the following fundamental result.

Theorem 1 (Erdős–Stone–Simonovits [ES46],[ES66]). If F is a 2-graph then $\pi(F)=1-\frac{1}{\chi(F)-1}$.

When $r \geq 3$, determining the Turán density is difficult, and there are only a few exact results. Here we consider some closely related hypergraph extremal problems. Call a hypergraph H t-partite if its vertex set can be partitioned into t classes, such that every edge has at most one vertex in each class. Call H t-colorable, if its vertex set can be partitioned into t classes so that no edge is entirely contained within a class.

Definition 2. Fix $t, r \geq 2$ and an r-graph F. Let $ex_t^*(n, F)$ ($ex_t(n, F)$) denote the maximum number of edges in a t-partite (t-colorable) r-graph on n vertices that contains no copy of F. The t-partite Turán density of F is $\pi_t^*(F) = \lim_{n \to \infty} ex_t^*(n, F) / \binom{n}{r}$ and the t-chromatic Turán density of F is $\pi_t(F) = \lim_{n \to \infty} ex_t(n, F) / \binom{n}{r}$.

Note that it is easy to show that these limits exist. In this paper, we determine $\pi_t^*(F)$ for all r-graphs F and determine $\pi_t(F)$ for an infinite family of r-graphs (previously no nontrivial value of $\pi_t(F)$ was known). In many cases our examples yield irrational values of $\pi_t(F)$. For the usual Turán density, $\pi(F)$ has not been proved to be irrational for any F, although there are several conjectures stating irrational values.

In order to describe our results, we need the concept of G-colourings which we introduce now. If F and G are hypergraphs (not necessarily uniform) then F is G-colourable if there exists $c: V(F) \to V(G)$ such that $c(e) \in E(G)$ whenever $e \in E(F)$. In other words, F is G-colourable if there is a homomorphism from F to G.

Let $K_t^{(r)}$ denote the complete r-graph of order t. Then an r-graph F is t-partite if F is $K_t^{(r)}$ -colourable, and F is t-colourable if it is $H_t^{(r)}$ -colourable where $H_t^{(r)}$ is the (in general non-uniform) hypergraph consisting of all subsets $A \subseteq \{1, 2, ..., t\}$ satisfying $2 \le |A| \le r$). The chromatic number of F is $\chi(F) = \min\{t \ge 1 : F \text{ is t-colourable}\}$. Note that while a

2-graph is t-colourable iff it is t-partite this is no longer true for $r \geq 3$, for example $K_4^{(3)}$ is 2-colourable but not 2-partite or 3-partite.

Let $\mathcal{G}_t^{(r)}$ denote the collection of all t-vertex r-graphs. A tool which has proved very useful in extremal graph theory and which we will use later is the Lagrangian of an r-graph. Let

$$\mathbb{S}_t = \{ \vec{x} \in \mathbb{R}^t : \sum_{i=1}^t x_i = 1, x_i \ge 0 \text{ for } 1 \le i \le t \}.$$

If $G \in \mathcal{G}_t^{(r)}$ and $\vec{x} \in \mathbb{S}_t$ then we define

$$\lambda(G, \vec{x}) = \sum_{v_1 v_2 \cdots v_r \in E(G)} x_{v_1} x_{v_2} \cdots x_{v_t}.$$

The Lagrangian of G is $\max_{\vec{x} \in \mathbb{S}_t} \lambda(G, \vec{x})$. The first application of the Lagrangian to extremal graph theory was due to Motzkin and Strauss who gave a new proof of Turán's theorem. We are now ready to state our main result.

Theorem 3. If F is an r-graph and $t \ge r \ge 2$ then

$$\pi_t^*(F) = \max\{r! \lambda(G) : G \in \mathcal{G}_t^{(r)} \text{ and } F \text{ is not } G\text{-colourable}\}.$$

As an example of Theorem 3, suppose that t=4, r=3, and $F=K_4^{(3)}$. Let H denote the unique 3-graph with four vertices and three edges. Now F is F-colorable, but it is not H-colorable, and the lagrangian $\lambda(H)$ of H is 4/81, achieved by assigning the degree three vertex a weight of 1/3 and the other three vertices a weight of 2/9. Consequently, Theorem 3 says that the maximum number of edges in an n-vertex 4-partite 3-graph containing no copy of $K_4^{(3)}$ is $(8/27)\binom{n}{3} + o(n^3)$. This is clearly achievable, by the 4-partite 3-graph with part sizes n/3, 2n/9, 2n/9, 2n/9, with all possible triples between three parts that include the largest (of size n/3), and no triples between the three small parts.

Chromatic Turán densities were previously considered in [T07] where they were used to give an improved upper bound on $\pi(H)$, where H is defined in the previous paragraph. However no non-trivial chromatic Turán densities have previously been determined. For each $r \geq t \geq 2$ we are able to give an infinite sequence of r-graphs whose t-chromatic Turán densities are determined exactly.

For $l \geq t \geq 2$ and $r \geq 2$ define

$$\beta_{r,t,l} := \max\{\lambda(G) : G \text{ is a } t\text{-colorable } r\text{-graph on } l \text{ vertices}\}.$$

It seems obvious that $\beta_{r,t,l}$ is achieved by the t-chromatic r-graph of order l with all color classes of size $\lfloor l/t \rfloor$ or $\lceil l/t \rceil$ and all edges present except those within the classes. Note that if t|l then this would give

$$\beta_{r,t,l} = \left(\binom{l}{r} - t \binom{l/t}{r} \right) \frac{1}{l^r}.$$

However, we are only able to prove this for r = 2, 3. If the above statement is true, then $\beta_{r,t,l}$ can be computed by calculating the maximum of an explicit polynomial in one variable over the unit interval. In any case it can be obtained by a finite computation (for fixed r, t, l). Let $\alpha_{r,t,l} = r!\beta_{r,t,l}$.

Theorem 4. Fix $l \ge r \ge 2$. Let $L_{l+1}^{(r)}$ be the r-graph obtained from the complete graph K_{l+1} by enlarging each edge with a set of r-2 new vertices. If $t \ge 2$ then

$$\pi_t(L_{l+1}^{(r)}) = \alpha_{r,t,l}$$

where $\alpha_{r,t,l}$ is defined above.

The remainder of the paper is arranged as follows. In the next section we prove Theorem 3 and in the last section we prove Theorem 4 and the statements about computing $\beta_{r,t,l}$, for r=2,3.

2 Proof of Theorem 3

If $G \in \mathcal{G}_t^{(r)}$ and $\vec{x} = (x_1, \dots, x_t) \in \mathbb{Z}_+^t$ then the \vec{x} -blow-up of G is the r-graph $G(\vec{x})$ constructed from G by replacing each vertex v by a class of vertices of size x_v and taking all edges between any r classes corresponding to an edge of G. More precisely we have $V(G(\vec{x})) = X_1 \dot{\cup} \cdots \dot{\cup} X_t$, $|X_i| = x_i$ and

$$E(G(\vec{x})) = \{ \{ v_{i_1} v_{i_2} \cdots v_{i_r} \} : v_{i_j} \in X_{i_j}, \{ i_1 i_2 \cdots i_r \} \in E(G) \}.$$

If $\vec{x} = (s, s, ..., s)$ and $G = K_t^{(r)}$ then $G(\vec{x})$ is the complete t-partite r-graph with class size s, denoted by $K_t^{(r)}(s)$. Note that if F and G are both r-graphs then F is G-colourable iff there exists $\vec{x} \in \mathbb{Z}_+^t$ such that $F \subseteq G(\vec{x})$.

An r-graph G is said to be covering if each pair of vertices in V(G) is contained in a common edge. If $W \subset V$ and G is an r-graph with vertex V then G[W] is the induced subgraph of G formed by deleting all vertices not in W and removing all edges containing these vertices.

Lemma 5 (Frankl and Rödl [FR84]). If G is an r-graph of order n then there exists $\vec{y} \in \mathbb{S}_n$ with $\lambda(G) = \lambda(G, \vec{y})$, such that if $P = \{v \in V(G) : y_v > 0\}$ then G[P] is covering.

Supersaturation for ordinary Turán densities was shown by Erdős [E71]. The proof for G-chromatic Turán densities is essentially identical but for completeness we give it. We require the following classical result.

Theorem 6 (Erdős [E64]). If $r \ge 2$ and $t \ge 1$ then $ex(n, K_r^{(r)}(t)) = O(n^{r-\lambda_{r,t}})$, with $\lambda_{r,t} > 0$.

Lemma 7 (Supersaturation). Fix $t \geq r \geq 2$. If G is an r-graph, \mathcal{H} is a finite family of r-graphs, $s \geq 1$ and $\vec{s} = (s, s, \ldots, s)$ then $\pi_t^*(\mathcal{H}(\vec{s})) = \pi_t^*(\mathcal{H})$ (where $\mathcal{H}(\vec{s}) = \{H(\vec{s}) : H \in \mathcal{H}\}$).

Proof: Let $p = \max\{|V(H)| : H \in \mathcal{H}\}$. By adding isolated vertices if necessary we may suppose that every $H \in \mathcal{H}$ has exactly p vertices.

First we claim that if F is an n-vertex r-graph with density at least $\alpha + 2\epsilon$, where $\alpha, \epsilon > 0$, and $r \leq m \leq n$ then at least $\epsilon \binom{n}{m}$ of the m-vertex induced subgraphs of F have density at least $\alpha + \epsilon$. To see this note that if it fails to hold then

$$\binom{n-r}{m-r}(\alpha+2\epsilon)\binom{n}{r} \leq \sum_{W \in \binom{V(F)}{m}} e(F[W]) < \epsilon \binom{n}{m} \binom{m}{r} + (1-\epsilon)\binom{n}{m}(\alpha+\epsilon)\binom{m}{r},$$

which is impossible.

Let $\epsilon > 0$ and suppose that F is an n-vertex r-graph with density at least $\pi_t^*(\mathcal{H}) + 2\epsilon$. We need to show that if n sufficiently large then F contains a copy of $\mathcal{H}(\vec{s})$. Let $m \geq m(\epsilon)$ be sufficiently large that any t-partite m-vertex r-graph with density at least $\pi_t^*(\mathcal{H}) + \epsilon$ contains a copy of some $H \in \mathcal{H}$. We say that $W \in \binom{V(F)}{m}$ is good if F[W] contains a copy of some $H \in \mathcal{H}$. By the claim at least $\epsilon\binom{n}{m}$ m-sets are good, so if $\delta = \epsilon/|\mathcal{H}|$ then at least $\delta\binom{n}{m}$ m-sets contain a fixed $H^* \in \mathcal{H}$.

Thus the number of p-sets $U \subset V(F)$ such that $F[U] \simeq H^*$ is at least

$$\frac{\delta\binom{n}{m}}{\binom{n-p}{m-p}} = \frac{\delta\binom{n}{p}}{\binom{m}{p}}.$$
 (1)

Let J be the p-graph with vertex set V(F) and edge set consisting of those p-sets $U \subset V(F)$ such that $F[U] \simeq H^*$. Now, by Theorem 6, $\operatorname{ex}_t^*(n, K_r^{(r)}(t)) \leq \operatorname{ex}(n, K_r^{(r)}(t)) = O(n^{r-\lambda_{r,t}})$, where $\lambda_{r,t} > 0$. Hence (1) implies that for any $t \geq r$ if n is sufficiently large then $K_p^{(p)}(t) \subset J$.

Finally consider a colouring of the edges of $K_p^{(p)}(t)$ with p! different colours, where the colour of the edge is given by the order in which the vertices of H^* are embedded in it. By Ramsey's theorem if t is sufficiently large then there is a copy of $K_p^{(p)}(s)$ with all edges the same colour. This yields a copy of $H^*(\vec{s})$ in F as required.

Proof of Theorem 3. Let $\alpha_{r,t} = \max\{r!\lambda(G): G \in \mathcal{G}_t^{(r)} \text{ and } F \text{ is not } G\text{-colourable}\}$. (This is well-defined since $|\mathcal{G}_t^{(r)}| \leq {t \choose r}$ is finite.)

If $G \in \mathcal{G}_t^{(r)}$ and F is not G-colourable then for any $\vec{x} \in \mathbb{Z}_+^t$ we have $F \not\subseteq G(\vec{x})$. Let $\vec{y} \in \mathbb{S}_t$ satisfy $\lambda(G, \vec{y}) = \lambda(G)$. For $n \ge 1$ let $\vec{x}_n = (\lfloor y_1 n \rfloor, \ldots, \lfloor y_t n \rfloor) \in \mathbb{Z}_+^t$. If $G_n = G(\vec{x}_n)$ then

$$\lim_{n \to \infty} \frac{e(G_n)}{\binom{n}{r}} = r! \lambda(G).$$

Moreover since each G_n is F-free, t-partite and of order at most n we have $\pi_t^*(F) \ge r! \lambda(G)$. Hence $\pi_t^*(F) \ge \alpha_{r,t}$.

Let $\mathcal{H}(F) = \{ H \in \mathcal{G}_t^{(r)} : F \text{ is } H\text{-colourable} \}.$

It is sufficient to show that

$$\pi_t^*(\mathcal{H}(F)) \le \alpha_{r,t}. \tag{2}$$

Indeed, if we assume that (2) holds, then let $s \geq 1$ be minimal such that every $H \in \mathcal{H}(F)$ satisfies $F \subseteq H(\vec{s})$, where $\vec{s} = (s, s, \ldots, s)$. (Note that s exists since F is H-colourable for every $H \in \mathcal{H}(F)$). Now by supersaturation (Lemma 7) if $\epsilon > 0$, then any t-partite r-graph G_n with $n \geq n_0(s, \epsilon)$ vertices and density at least $\alpha_{r,t} + \epsilon$ will contain a copy of $H(\vec{s})$ for some $H \in \mathcal{H}(F)$. In particular G_n contains F and so $\pi_t^*(F) \leq \alpha_{r,t}$.

Let $\pi_t^*(\mathcal{H}(F)) = \gamma$ and $\epsilon > 0$. If n is sufficiently large there exists an $\mathcal{H}(F)$ -free, t-partite r-graph G_n of order n satisfying

$$\frac{r!e(G_n)}{n^r} \ge \gamma - \epsilon.$$

Taking $\vec{y} = (1/n, 1/n, \dots, 1/n) \in \mathbb{S}_n$ we have

$$r!\lambda(G_n) \ge r!\lambda(G_n, \vec{y}) = \frac{r!e(G_n)}{n^r} \ge \gamma - \epsilon.$$

Now Lemma 5 implies that there exists $\vec{z} \in \mathbb{S}_n$ satisfying

- $\lambda(G_n) = \lambda(G_n, \vec{z})$ and
- $G_n[P]$ is covering where $P = \{v \in V(G) : z_v > 0\}$.

Since G_n is t-partite, we conclude that $G_n[P]$ has at most t vertices. Moreover, G_n is $\mathcal{H}(F)$ -free and so $G_n[P] \notin \mathcal{H}(F)$. Thus F is not $G_n[P]$ -colorable, and we have $\gamma - \epsilon \leq r! \lambda(G_n[P]) \leq \alpha_{r,t}$. Thus $\pi_t^*(\mathcal{H}(F)) \leq \alpha_{r,t} + \epsilon$ for all $\epsilon > 0$. Hence (2) holds and the proof is complete. \square

3 Infinitely many chromatic Turán densities

For $l, r \geq 2$ let $\mathcal{K}_l^{(r)}$ be the family of r-graphs with at most $\binom{l}{2}$ edges that contain a set S, called the *core*, of l vertices, with each pair of vertices from S contained in an edge. Note that $L_{l+1}^{(r)} \in \mathcal{K}_{l+1}^{(r)}$. We need the following Lemma that was proved in [M06]. For completeness, we repeat the proof below.

Lemma 8. If
$$K \in \mathcal{K}_{l+1}^{(r)}$$
, $s = {l+1 \choose 2} + 1$ and $\vec{s} = (s, s, \dots, s)$ then $L_{l+1}^{(r)} \subseteq K(\vec{s})$.

Proof. We first show that $L_{l+1}^{(r)} \subset L(\binom{l+1}{2}+1)$ for every $L \in \mathcal{K}_{l+1}^{(r)}$. Pick $L \in \mathcal{K}_{l+1}^{(r)}$, and let $L' = L(\binom{l+1}{2}+1)$. For each vertex $v \in V(L)$, suppose that the clones of v are $v = v^1, v^2, \ldots, v^{\binom{l+1}{2}+1}$. In particular, identify the first clone of v with v.

Let $S = \{w_1, \ldots, w_{l+1}\} \subset V(L)$ be the core of L. For every $1 \leq i < j \leq l+1$, let $E_{ij} \in L$ with $E_{ij} \supset \{w_i, w_j\}$. Replace each vertex z of $E_{ij} - \{w_i, w_j\}$ by z^q where q > 1, to obtain an edge $E'_{ij} \in L'$. Continue this procedure for every i, j, making sure that whenever we encounter a new edge it intersects the previously encountered edges only in L. Since the number of clones is $\binom{l+1}{2} + 1$, this procedure can be carried out successfully and results in a copy of $L_{l+1}^{(r)}$ with core S. Therefore $L_{l+1}^{(r)} \subset L' = L(\binom{l+1}{2} + 1)$. Consequently, Lemma 7 implies that $\pi(L_{l+1}^{(r)}) \leq \pi(\mathcal{K}_{l+1}^{(r)})$.

Proof of Theorem 4. Let $l \ge r \ge 2$ and $t \ge 2$. We will prove that

$$\pi_t(\mathcal{K}_{l+1}^{(r)}) = \alpha_{r,t,l}.\tag{3}$$

The theorem will then follow immediately from Lemmas 7 and 8. Let

$$\mathcal{B}_{r,t,l} = \{G : G \text{ is a } t\text{-colourable } \mathcal{K}_{l+1}^{(r)}\text{-free } r\text{-graph}\}.$$

Claim. $\max\{\lambda(G): G \in \mathcal{B}_{r,t,l}\} = \beta_{r,t,l} = \alpha_{r,t,l}/r!$.

Proof of Claim. If $G \in \mathcal{B}_{r,t,l}$ has order n then Lemma 5 implies that there is $\vec{y} \in \mathbb{S}_n$ such that $\lambda(G) = \lambda(G, \vec{y})$ with G[P] covering, where $P = \{v \in V(G) : y_v > 0\}$. Since G is

 $\mathcal{K}_{l+1}^{(r)}$ -free, we conclude that $|P| = p \leq l$. Hence there is $H \in \mathcal{B}_{r,t,l}$ such that $\lambda(H) = \lambda(G)$ and H has order at most l. Consequently, $\max\{\lambda(G): G \in \mathcal{B}_{r,t,l}\} \leq \beta_{r,t,l}$. For the other inequality, we just observe that an l vertex r-graph must be $\mathcal{K}_{l+1}^{(r)}$ -free.

Now we can quickly complete the proof of the theorem by proving (3). For the upper bound, observe that if $G \in \mathcal{B}_{r,t,l}$ has order n then by the Claim

$$\frac{e(G)}{n^r} \le \lambda(G) \le \frac{\alpha_{r,t,l}}{r!}$$

and so $\pi_t(\mathcal{K}_{l+1}^{(r)}) \leq \alpha_{r,t,l}$. For the lower bound, suppose that $G \in \mathcal{B}_{r,t,l}$ has order p and satisfies $\lambda(G) = \beta_{r,t,l}$. Then there exists $\vec{y} \in \mathbb{S}_p$ such that $\lambda(G, \vec{y}) = \lambda(G) = \beta_{r,t,l}$. For $n \geq p$ define $\vec{y}_n = (\lfloor y_1 n \rfloor, \ldots, \lfloor y_p n \rfloor)$. Now $\{G(\vec{y}_n)\}_{n=p}^{\infty}$ is a sequence of t-colourable $\mathcal{K}_{l+1}^{(r)}$ -free t-graphs and hence

$$\pi_t(\mathcal{K}_{l+1}^{(r)}) \ge \lim_{n \to \infty} \frac{e(G_n)}{\binom{n}{r}} = r! \lambda(G) = \alpha_{r,t,l}.$$

Now we prove that $\beta_{r,t,l}$ can be computed by only considering maximum t-colorable r-graphs with almost equal part sizes when r = 2, 3. The case r = 2 follows trivially from Lemma 5 so we consider the case r = 3.

Theorem 9. Fix $l \ge t \ge 2$. Then $\beta_{3,t,l}$ is achieved by the t-chromatic 3-graph of order l with all color classes of size $\lfloor l/t \rfloor$ or $\lceil l/t \rceil$ and all edges present except those within the classes.

Remark: Note that if t|l then this implies that $\beta_{3,t,l} = {l\choose 3} - {t\binom{l/t}{3}} \frac{1}{l^3}$.

Proof. Let G be a t-chromatic 3-graph of order l. We may suppose (by adding edges as required) that $V(G) = V_1 \cup V_2 \cup \cdots \cup V_t$ and that all edges not contained in any V_i are present. We may also suppose that $|V_1| \geq |V_2| \geq \cdots \geq |V_t|$. Let $\vec{x} \in \mathbb{S}_p$ satisfy $\lambda(G, \vec{x}) = \lambda(G)$.

If $v, w \in V_i$ and $x_v > x_w$ then for a suitable choice of $\delta > 0$ we can increase $\lambda(G, \vec{x})$ by increasing x_w by δ and decreasing x_v by δ . Hence we may suppose that there are x_1, \ldots, x_t such that all vertices in V_i receive weight x_i .

Let $l = bt + c, 0 \le c < t$. To complete the proof we need to show that all of the V_i have order b or b + 1. Suppose, for a contradiction, that there exist V_i and V_j with $a_i = |V_i|$, $a_j = |V_j|$ and $a_i \ge a_j + 2$. Moving a vertex v from V_i to V_j and inserting all new allowable edges (i.e. those which contain v and 2 vertices from $V_i \setminus \{v\}$) while deleting any edges which

now lie in V_j we cannot increase $\lambda(G, \vec{x})$. This implies that

$$\binom{a_j}{2} x_i x_j^2 \ge \binom{a_i - 1}{2} x_i^3,$$
 (4)

and so in particular $x_i < x_j$. Let \tilde{G} denote this new t-colourable 3-graph.

We give a new weighting \vec{y} for \tilde{G} by setting

$$y_{v} = \begin{cases} a_{i}x_{i}/(a_{i}-1), & v \in V_{i}, \\ a_{j}x_{j}/(a_{j}+1), & v \in V_{j}, \\ x_{k}, & v \in V_{k} \text{ and } k \neq i, j. \end{cases}$$

It is easy to check that $\vec{y} \in \mathbb{S}_l$ is a legal weighting for \tilde{G} . We will derive a contradiction by showing that $\lambda(\tilde{G}) \geq \lambda(\tilde{G}, \vec{y}) > \lambda(G, \vec{x}) = \lambda(G)$.

If
$$w = a_i x_i + a_j x_j = (a_i - 1)y_i + (a_j + 1)y_j$$
 then

$$\lambda(\tilde{G}, \vec{y}) - \lambda(G, \vec{x}) = (1 - w) \left(\binom{a_i - 1}{2} y_i^2 + \binom{a_j + 1}{2} y_j^2 + (a_i - 1)(a_j + 1) y_i y_j - \binom{a_i}{2} x_i^2 - \binom{a_j}{2} x_j^2 - a_i a_j x_i x_j \right) + \binom{a_i - 1}{2} (a_j + 1) y_i^2 y_j + \binom{a_j + 1}{2} (a_i - 1) y_i y_j^2 - \binom{a_i}{2} a_j x_i^2 x_j - \binom{a_j}{2} a_i x_i x_j^2 = \frac{(1 - w)}{2} \left(\frac{a_j x_j^2}{a_i + 1} - \frac{a_i x_i^2}{a_i - 1} \right) + \frac{a_i a_j x_i x_j}{2} \left(\frac{x_j}{a_i + 1} - \frac{x_i}{a_i - 1} \right).$$

Using (4) it is easy to check that this is strictly positive.

Corollary 10. The t-chromatic Turán density can take irrational values.

Proof. We consider $\beta_{3,2,2k}$ for $k \geq 3$. In fact, we focus of $\beta_{3,2,6}$, the maximum density of a 2-chromatic 3-graph that contains no copy of $\mathcal{K}_6^{(3)}$. By the previous Theorem, this is 6 times the lagrangian of the 3-graph with vertex set $\{a, a', a'', b, b'\}$ and all edges present except $\{a, a', a''\}$. Assigning weight x to the a's and weight y to the b's, we must maximize $6(6x^2y + 3xy^2)$ subject to 3x + 2y = 1 and $0 \leq x \leq 1/3$. A short calculation shows that the choice of x that maximizes this expression is $(\sqrt{13} - 2)/9$, and this results in an irrational value for the lagrangian. Similar computations hold for larger k as well.

References

- [E64] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.
- [E71] P. Erdős, On some extremal problems on r-graphs, Disc. Math. 1 (1971), 1–6.
- [ES66] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1 (1966), 51–57.
- [ES46] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52(1946), 1087–1091.
- [FR84] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984), 149–159.
- [KNS64] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turan in the theory of graphs (in Hungarian) Mat. Lapok 15 (1964), 228–238.
- [M07] W. Mantel, *Problem 28*, Wiskundige Opgaven, 10 (1907), 60-61.
- [MS65] T. Motzkin and E. Strauss. Maxima for graphs and a new proof of a theorem of Turan, Canadian Journal of Mathematics, 17:533–540, 1965.
- [M06] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory, Ser. B 96 (2006) 122–134.
- [T07] J. Talbot, Chromatic Turán problems and a new upper bound for the Turán density of \mathcal{K}_4^- . Europ. J. Comb. (to appear) (2007?)
- [T41] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941)