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Abstract

Fix integers n, r ≥ 4 and let F denote a family of r-sets of an n-element set. Suppose that
for every four distinct A,B,C, D ∈ F with |A∪B ∪C ∪D| ≤ 2r, we have A∩B ∩C ∩D 6= ∅.
We prove that for n sufficiently large, |F| ≤

(
n−1
r−1

)
, with equality only if

⋂
F∈F F 6= ∅. This

is closely related to a problem of Katona and a result of Frankl and Füredi [10], who proved
a similar statement for three sets. It has been conjectured by the author [18] that the same
result holds for d sets (instead of just four), where d ≤ r, and for all n ≥ dr/(d− 1).

This exact result is obtained by first proving a stability result, namely that if |F| is close
to
(
n−1
r−1

)
then F is close to satisfying

⋂
F∈F F 6= ∅. The stability theorem is analogous to, and

motivated by the fundamental result of Erdős and Simonovits for graphs.

1 Introduction.

Throughout this paper, X is an n-element set. For any nonnegative integer r, we write
(
X
r

)
for

the family of all r-element subsets of X. In this paper we initiate a new approach to solving
classical intersection type problems in extremal set theory. The approach, which we call the
stability method, proves an exact extremal result by first proving an approximate result that
gives structural information on the near extremal families.

Questions about stability in extremal combinatorics grew from the seminal work of Erdős and
Simonovits [23] on graph stability in the 60’s. The notion of stability for properties of set systems
was explicitly formulated by the author recently [17]. Several motivations were provided: First,
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and perhaps the most obvious, is that proving a stability theorem tells us more about a problem
than just the extremal result. Second, stability results allow one to prove exact results for certain
extremal problems. This approach was first used by Simonovits [23] to determine the exact
extremal function for k-critical graphs, and more recently has found resurgence in solving several
hypergraph Turán problems (see [8, 9, 12, 15, 16, 21, 22]). Third, many proof techniques in
extremal set theory (Katona’s circle method, shifting, Linear Algebra methods) seem not to give
stability analogues, and therefore new methods need to be developed. Consequently, the search
for stability results can also yield new proof techniques in extremal set theory. Finally, stability
results can be used to accurately enumerate discrete structures. This was shown recently by
Balogh-Bollobás-Simonovits [1], who proved (among more general statements) that the number
of labeled n vertex graphs containing no copy of Kl+1 is 2(1−1/l)(n

2)+O(n2−γ), where γ > 0. This
improved previous results of Erdős-Kleitman-Rothschild [4] and others.

In the following definitions, we consider set-systems whose underlying set of elements are not
labeled, so technically speaking, a set-system refers to an isomorphism class of set-systems whose
underlying sets are labeled. A Property P (Pr) is an infinite family of set-systems (comprising
r-sets). The property P is monotone if whenever G ∈ P and G′ is obtained from G by deleting
vertices and edges, then G′ ∈ P. One can characterize monotone properties by properties not
containing forbidden subsystems. In fact, the forbidden family for P is the collection F of set-
systems not contained in any member of P. The property Pn (Pr

n) is the subfamily of P (Pr)
consisting of those set systems on n elements. The classical extremal problem in this regard is to
determine

ex(n,F) = max{|G| : G ∈ Pn}, or exr(n,F) = max{|G| : G ∈ Pr
n}

where F is the forbidden family for a monotone property P.

In what follows, we write Gn for a set system whose underlying set has size n. The formulation
below applies as well to Pr even though we write it only for P.

Definition. Let t > 0 be an integer, P be a monotone property of set systems, and F be a
forbidden family for P. The property P is t-stable if there exists m0 = m0(F) and set systems
H1

m, . . . ,Ht
m for every m > m0 such that the following holds: for every δ > 0, there exists ε > 0

and n0 = n0(ε) such that for all n > n0, if Gn ∈ Pn with

|Gn| > (1− ε)ex(n,F),

then Gn can be transformed to some Hi
n by adding and removing at most δ|Gn| sets. Say that P

is stable if it is 1-stable.

In [17] a stability theorem was proved for a nontrivial problem in extremal set theory, indeed
this was one of the first such results. Since we need this result in our proof, we describe it
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next. A triangle is a family of three sets A,B, C that have pairwise nonempty intersections, and
A∩B∩C = ∅. An old problem of Erdős was to determine the maximum size of a family F ⊂

(
X
r

)
that contains no triangle. Extending previous results of Chvátal, Frankl, and Füredi, the author
and Verstraëte [19] proved that this maximum is

(
n−1
r−1

)
for all n ≥ 3r/2 and r ≥ 3. Recently, this

was extended by the author [17] to prove a stability version.

Theorem 1. ([17]) Fix r ≥ 3. For every δ > 0, there exist ε > 0 and n0 = n0(ε, r) such that
the following holds for all n > n0: if G ⊂

(
X
r

)
contains no triangle, |G| > (1− ε)

(
n−1
r−1

)
, then there

exists an S ⊂ X with |S| = n− 1 such that |G ∩
(
S
r

)
| ≤ δ

(
n−1
r−1

)
.

Here we continue this project, and prove a stability result for a generalization of a problem
of Katona and a theorem of Frankl and Füredi. Moreover, our approach then yields an exact
extremal result. Although the general technique of obtaining an exact result after obtaining
structural information is not new (for example, the delta system method initiated by M. Deza is
another example), to the authors knowledge, the stability approach in this paper has not been
previously used to prove intersection theorems in extremal set theory. In particular, sunflowers
are not employed in our proof. An earlier paper of Frankl and Füredi [11] also proves an exact
result for an intersection theorem in several steps (building on the Deza technique), one of which
obtains a structure theorem. The reader may wish to compare and contrast our approach to that
in [11].

A star is a family of sets for which there is an element that is contained in all the sets. The
seminal result of Erdős-Ko-Rado [5] states that an intersecting family F ⊂

(
X
r

)
of maximum size

is a star for n > 2r. Motivated by a possible generalization of the Erdős-Ko-Rado theorem to
more than two sets, Katona defined the following.

Definition. Let r ≤ s ≤ 3r. Then f(n, r, s) denotes the maximum size of a family F ⊂
(
[n]
r

)
so

that whenever A,B, C ∈ F satisfy |A ∪B ∪ C| ≤ s, we have A ∩B ∩ C 6= ∅.

Katona asked for the determination of f(n, r, s). Frankl and Füredi [10] proved that for every
2r ≤ s ≤ 3r, f(n, r, s) =

(
n−1
r−1

)
as long as n ≥ r2 + 3r, and observed that f(n, r, 2r − 1) = Ω(nr)

for fixed r. Note that the lower bound f(n, r, s) ≥
(
n−1
r−1

)
is valid for all s ∈ {2r, . . . , 3r} by simply

letting F be a maximum sized star. Moreover, by definition f(n, r, s+1) ≤ f(n, r, s), hence Frankl
and Füredi’s first result follows by proving the upper bound just for s = 2r. They conjectured
that f(n, r, 2r) =

(
n−1
r−1

)
for all r ≥ 3 and n ≥ 3r/2, with equality only for a star. The threshold

3r/2 follows from the fact that for smaller n, three sets A,B, C ∈ F whose intersection is empty
cannot exist (so in particular, we can have |F| =

(
n
r

)
).

Frankl and Füredi [10] proved their conjecture for r = 3, and commented (without proof) that
their approach also works for r = 4, 5 and more generally for r > k2/ log k. Recently the author
[18] gave a short proof of their conjecture using different arguments.
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Neither of the two approaches above provides a stability result for Katona’s problem, so we
provide a third approach. Although we couldn’t show that our method gives an exact result for
all n ≥ 3r/2, it proves a stability result for a more general situation which includes Katona’s
problem as a special case. More precisely, in Katona’s problem, the forbidden configuration is
a family of three sets with certain properties, while in our results it is a family of d sets with
similar properties. Then we prove an exact result (Theorem 3) using the stability theorem. For
convenience, we make the following

Definition. Fix r ≥ 2. A family G of r-sets is a K(d)-family if, whenever distinct sets
A1, . . . , Ad ∈ G satisfy |

⋃
i Ai| ≤ 2r, we have

⋂
i Ai 6= ∅.

A K(2)-family of r-sets is simply an intersecting family, and hence its maximum size is given by
the Erdős-Ko-Rado theorem. Also, f(n, r, 2r) is just the maximum size of a K(3)-family of r-sets
on X. Note that there exist families of size bn/rcr = Ω(nr) such that every d ≥ 3 sets have empty
intersection provided their union is at most 2r− 1 (simply partition [n] into r almost equal parts,
and take all r-sets with exactly one point in each part). This is the reason for the threshold 2r in
our definitions. As our theorems below will show, changing the threshold 2r to any other s ≥ 2r

will not alter our results, similar to the situation regarding f(n, r, s) described above (since the
lower bound

(
n−1
r−1

)
on the families we consider holds for all s ≥ 2r). The stability result below

shows that if F is a K(d)-family for some 2 ≤ d ≤ r, then F is stable.

Theorem 2. (Stability) Fix 2 ≤ d ≤ r. For every δ > 0, there exists ε > 0 and n0 such that
the following holds for all n > n0: Suppose that G ⊂

(
X
r

)
is a K(d)-family. If |G| ≥ (1− ε)

(
n−1
r−1

)
,

then there exists an (n− 1)-set S ⊂ X with |G ∩
(
S
r

)
| < δ

(
n−1
r−1

)
. In particular, |G| < (1 + δ)

(
n−1
r−1

)
.

It is possible that Theorem 2 holds even when d > r. In fact, it is an interesting open problem to
determine the largest d = d(r) for which Theorem 2 holds.

Using Theorem 2, we prove a result similar to those of Frankl-Füredi [10] and the author [18] for
K(4)-families. As mentioned before, our proof technique for Theorem 3 is one of the main new
contributions in this work.

Theorem 3. Let r ≥ 4 and let n be sufficiently large. Suppose that G ⊂
(
[n]
r

)
is a K(4)-family.

Then |G| ≤
(
n−1
r−1

)
, with equality only if F is a star.

Theorem 3 is also related to the following old problem of Erdős. Let fr(n) be the maximum size
of a family of r-sets of an n element set containing no two pairs of disjoint r-sets with the same
union. Since all the forbidden configurations in this question are forbidden configurations in a
K(4)-family (the converse is not true), an upper bound for this problem yields an upper bound
for the K(4)-problem. Answering a question of Erdős, Füredi [7] proved that fr(n) ≤ 7

2

(
n

r−1

)
.
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The author and Verstraëte [20] slightly improved Füredi’s result by showing that fr(n) < 3
(

n
r−1

)
.

Füredi further conjectured that fr(n) =
(
n−1
r−1

)
+ bn−1

r c for all r ≥ 4 and sufficiently large n.
Theorem 3 can be viewed as a solution to a relaxation of this problem (ignoring the (n − 1)/r

term).

The following more general conjecture, posed in [18], remains open. While a complete proof may
be out of reach at present, we certainly believe that the stability approach with Theorem 2 should
yield a proof for large n.

Conjecture 4. ([18]) Let r ≥ d ≥ 3 and n ≥ dr/(d−1). Suppose that G ⊂
(
[n]
r

)
is a K(d)-family.

Then |G| ≤
(
n−1
r−1

)
, with equality only if G is a star.

It is possible that Conjecture 4 holds even for d > r. However, it cannot hold for d ≥ 2r, since in
this case we can take an r-partite r-graph G containing no copy of K(2, . . . , 2), the complete r-
partite r-graph with two points in each part. It is known that such G exists with |G| > Ω(nr−1+γ)
for γ = 1 − r/2r−1 > 0 (see [3, 6] and also [13] for slight improvements), and it is easy to verify
that G is a K(2r)-family. It would be interesting to determine the largest d = d(r) so that every
K(d)-family G ⊂

(
X
r

)
satisfies |G| = O(nr−1).

2 Notation

For A ⊂
(
X
r

)
, let V (A) =

⋃
A∈A A. For Y ⊂ X, we define A− Y = A ∩

(
X−Y

r

)
. When Y = {y},

we write A− y instead of A− {y}. The trace of Y ⊂ V (A) in A is defined by tr(Y ) = trA(Y ) =
{A ⊂ X−Y : A∪Y ∈ A}. The degree of Y ⊂ V (A) in A is deg(Y ) = degA(Y ) = |trA(Y )|. When
Y = {y}, we write tr(y) and deg(y). Let A ⊂

(
X
r

)
and x ∈ X. Then we define

Sx = {Y ∈ tr(x) : deg(Y ) = 1} and Lx = tr(x)− Sx.

The sum of families A1,A2, . . . ,At, denoted
∑

iAi, is the family of all sets in each Ai. Note
that

∑
Ai may have repeated sets, even if none of the Ai have repeated sets. The trace of A

is tr(A) =
∑

x∈X tr(x). Write S =
∑

x∈X Sx and L =
∑

x∈X Lx = tr(A) − S. Note that if
A ∈ Lx, then there exists y 6= x such that A ∈ Ly. The shadow ∂G of a set system G ⊂

(
X
r

)
is

∂G = {S ∈
(

X
r−1

)
: there exists T ∈ G with S ⊂ T}.

Throughout the paper, the Greek letters ε, δ etc. are real numbers and m,n, r, s, t etc. are integers.

3 Stability

In this section we prove the stability result for those set systems which are K(d)-families for some
2 ≤ d ≤ r.
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Proof of Theorem 2. Fix r ≥ 2. We proceed by induction on r, handling the cases r = 2 and
r = 3 separately. When r = 2, a K(2)-family is a graph containing no matching of size two, and
in this case it is trivial to observe that such a family with at least four edges must be a star. So
for any δ > 0 (even δ = 0), we can let, for example, ε = ε2 = 1/8 and n0 = 4. Indeed, then any
graph F on n > n0 vertices with at least d(1 − ε)

(
n−1
r−1

)
e = d(7/8)(n − 1)e ≥ 4 edges must be a

star.

More generally, a K(2)-family is just an intersecting family. It is well-known (see, e.g., Theorem
2, page 48 of [2]) that an intersecting family of size Ω(nr−2) is already a star (indeed, this also
follows from the Hilton-Milner theorem on nontrivial intersecting families), so a K(2)-family is
certainly stable. Consequently, we may assume that 3 ≤ d ≤ r.

When r = 3, a K(3)-family contains no triangle, since a triangle A,B, C satisfies A ∩B ∩C = ∅,
and |A ∪B ∪C| ≤ |A|+ (|B| − 1) + (|C| − 2) = 6 = 2r. Hence Theorem 1 implies Theorem 2 for
r = 3. We may therefore assume that r ≥ 4.

Now suppose we are given δ = δr as in the theorem. First set

δr−1 = min

{
1
2

(
2
5
δr

)r−2

,
δr

72(r − 1)

}
. (1)

Now choose εr−1 and n0(εr−1, r − 1) that satisfy the conclusion of the theorem for r − 1. Such
choices exist by the induction hypothesis, and we may also assume that εr−1 < δr−1. Next let

εr =
εr−1

2
. (2)

Finally, choose n0 = n0(εr, r) > n0(εr−1, r − 1) + 1 so that for all n > n0,

r(1− εr)
(
n−1
r−1

)
−
(

n
r−1

)
n

> (1− 2εr)
(

n− 2
r − 2

)
, (3)

and (1
2δr(n− 2)

r − 2

)
>

(
2
5
δr

)r−2(n− 2
r − 2

)
. (4)

Note that a short calculation shows that for sufficiently large n, both (3) and (4) do indeed hold,
hence n0 is well-defined.

Having fixed all constants, we now begin the argument for the induction step. As argued above,
we may assume that d > 2, so fix 3 ≤ d ≤ r. Let G ⊂

(
X
r

)
be a K(d)-family with |X| = n > n0

and |G| > (1 − εr)
(
n−1
r−1

)
. Our strategy is to obtain the (n − 1)-set S in the conclusion of the

theorem in three steps:

1) Find a vertex w with |Lw| very large.
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2) Study the structure of |Lw|, in particular, show that it contains a large star with center x.

3) Set S = X − {x} and show that S satisfies the requirements of the theorem, because G is a
K(d)-family.

Step 1.

We begin with the following equation which is an easy double counting exercise.

r|G| =
∑
x∈X

deg(x) =
∑
x∈X

(|Sx|+ |Lx|) =
∑
x∈X

|Sx|+
∑
x∈X

|Lx|.

Since
∑

x |Sx| = |S| ≤
(

n
r−1

)
, there exists w ∈ X for which

|Lw| ≥
r|G| −

(
n

r−1

)
n

>
r(1− εr)

(
n−1
r−1

)
−
(

n
r−1

)
n

> (1− 2εr)
(

n− 2
r − 2

)
≥ (1− εr−1)

(
n− 2
r − 2

)
, (5)

where the inequalities follow from (3) and (2). This concludes Step 1.

Step 2

Now consider the family Lw ⊂
(
X−{w}

r−1

)
. We next show that Lw is a K(d − 1)-family. Suppose,

for a contradiction, that Lw is not a K(d − 1)-family of (r − 1)-sets. Then Lw contains distinct
sets A1, . . . , Ad−1 with |

⋃
i Ai| ≤ 2(r − 1) and

⋂
i Ai = ∅. By definition of Lw, there exists y 6= w

such that A1 ∪ {y} ∈ G. Now define Bi = Ai ∪ {w} for i = 1, . . . , d − 1 and Bd = A1 ∪ {y}.
Because |

⋃
i Ai| ≤ 2(r− 1), we have |

⋃d
i=1 Bi| = |

⋃d−1
i=1 Ai|+ |{y, w}| ≤ 2r. If there is an element

v ∈
⋂

i Bi, then v 6= w, since w 6∈ Bd, and v 6= y, since y 6∈ B1. Thus v ∈
⋂

i Ai = ∅ which is
impossible. Consequently,

⋂
i Bi = ∅, contradicting the fact that G is a K(d)-family. We conclude

that Lw is indeed a K(d− 1)-family.

By (5), we have |Lw| > (1−εr−1)
((n−1)−1
(r−1)−1

)
. Because n0 > n0(εr−1, r−1)+1, and 2 ≤ d−1 ≤ r−1,

the induction hypothesis applied to Lw provides a vertex x ∈ X−{w} so that |Lw ∩
(
X−{w,x}

r−1

)
| <

δr−1

(
n−2
r−2

)
. Since εr−1 < δr−1, we conclude that

degLw
(x) > (1− εr−1 − δr−1)

(
n− 2
r − 2

)
> (1− 2δr−1)

(
n− 2
r − 2

)
. (6)

This concludes Step 2.

Step 3

The rest of the proof is devoted to proving that G − x = G ∩
(
X−{x}

r

)
satisfies

|G − x| ≤ δr

(
n− 1
r − 1

)
. (7)
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Partition G − x into G1 ∪ G2, where

G1 = {S ∈ G − x : w ∈ S} and G2 = {S ∈ G − x : w 6∈ S}.

We will separately bound the size of each of these families. Let Gw = trG1(w). In other words,

Gw =
{

S ∈
(

X − {w, x}
r − 1

)
: S ∪ {w} ∈ G

}
.

Note also that degG1(w) = |G1|.

Claim 1. |G1| ≤ δr
2

(
n−1
r−1

)
.

Proof. Suppose, for a contradiction, that |G1| > δr
2

(
n−1
r−1

)
. Then

∑
T∈(X−{w,x}

r−2 )

degGw
(T ) = |G1|

(
r − 1
r − 2

)
>

δr

2
(r − 1)

(
n− 1
r − 1

)
.

Consequently, there exists T0 ∈
(
X−{w,x}

r−2

)
for which

degGw
(T0) >

δr
2 (r − 1)

(
n−1
r−1

)(
n−2
r−2

) =
δr

2
(n− 1) >

δr

2
(n− 2).

We will now obtain a contradiction to (6). First we show that there is no E ∈ Lw satisfying x ∈ E

and E−{x} ⊂ trGw(T0). Suppose to the contrary that such an E exists, say E = {x1, . . . , xr−2, x}.
Since E ∈ Lw, there exists y 6∈ {x,w} such that E ∪ {y} ∈ G. Because δr(n− 2) > 2r, there is an
element z ∈ trGw(T0)− E. In particular, T0 ∪ {w, z} ∈ G. Consider the d sets

E ∪ {w}, E ∪ {y}, T0 ∪ {w, z}, T0 ∪ {w, x1}, . . . , T0 ∪ {w, xd−3}.

All these sets are in G, and if d = 3, we consider only the first three. Because T0 ∩ E = ∅, these
three sets have empty intersection. On the other hand, the union of these d sets is at most

|E|+ |T0|+ 3 = (r − 1) + (r − 2) + 3 = 2r.

This contradicts the fact that G is a K(d)-family.

From the above argument, we conclude that no E ∈ Lw with x ∈ E satisfies E ⊂ trGw(T0).
Consequently,

degLw
(x) ≤

(
n− 2
r − 2

)
−
(

degGw
(T0)

r − 2

)
<

(
n− 2
r − 2

)
−
(1

2δr(n− 2)
r − 2

)
<

(
1−

(
2
5
δr

)r−2
)(

n− 2
r − 2

)
,

where the last inequality follows from (4). By the choice of δr−1 from (1), this is upper bounded
by (1− 2δr−1)

(
n−2
r−2

)
, a contradiction to (6).
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Before turning our attention to G2, we need the following definition and result. Let

Gw,x = trG({w, x}) =
{

E ∈
(

X − {w, x}
r − 2

)
: E ∪ {w, x} ∈ G

}
.

Claim 2. There are disjoint (r − 3)-sets S1, S2 ⊂ V (Lw) such that for each i ∈ {1, 2},

|{y ∈ V (Lw)− {x} : Si ∪ {w, x, y} ∈ G}| ≥ (1− 4δr−1)(n− r + 1).

Proof. Let t be the number of (r − 3)-sets T ⊂ V (Lw)− {x} satisfying

trGw,x(T ) = |{y ∈ V (Lw)− {x} : T ∪ {w, x, y} ∈ G}| ≥ (1− 4δr−1)(n− r + 1).

Since each set of trLw(x) contributes to trGw,x(T ), when we sum we obtain

(r − 2)degLw
(x) =

(
r − 2
r − 3

)
degLw

(x) ≤
∑

T ′∈(V (Lw)−{x}
r−3 )

degGw,x
(T ′)

≤ t(n− r + 1) +
[(

n− 2
r − 3

)
− t

]
(1− 4δr−1)(n− r + 1).

This implies that

t ≥
(r − 2)degLw

(x)−
(
n−2
r−3

)
(1− 4δr−1)(n− r + 1)

4δr−1(n− r + 1)
.

By (6), this is at least

(r − 2)(1− 2δr−1)
(
n−2
r−2

)
−
(
n−2
r−3

)
(1− 4δr−1)(n− r + 1)

4δr−1(n− r + 1)

=
1− 2δr−1

4δr−1

(
n− 2
r − 3

)
− 1− 4δr−1

4δr−1

(
n− 2
r − 3

)
=

1
2

(
n− 2
r − 3

)
>

(
n− 3
r − 4

)
=
(

(n− 2)− 1)
(r − 3)− 1

)
,

where the last inequality holds since n > n0 > 2r. Thus the Erdős-Ko-Rado theorem applies to
give the sets S1 and S2.

Define, for i ∈ {1, 2},
Ai = {y ∈ V (Lw)− {x} : Si ∪ {w, x, y} ∈ G},

and let
A = A1 ∩A2 = {y ∈ V (Lw) : Si ∪ {w, x, y} ∈ G for i = 1, 2}.
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Set
B = X −A− {w, x}.

Note that S1 ∪ S2 ⊂ B. By Claim 2, |Ai| ≥ (1− 4δr−1)(n− r + 1) for i = 1, 2. Therefore

|A| = |A1 ∩A2| ≥ 2(1− 4δr−1)(n− r + 1)− n.

It now follows that |B| ≤ n−|A| ≤ 2n− 2(1− 4δr−1)(n− r +1) ≤ 9δr−1n. By adding points from
A arbitrarily to B, we may assume that

|B| = b9δr−1nc.

Claim 3. |G2| ≤ 18δr−1n
(
n−1
r−2

)
.

Proof. Partition G2 into G21 ∪ G22, where

G21 = {E ∈ G2 : |E ∩B| ≤ 1} and G22 = {E ∈ G2 : |E ∩B| ≥ 2}.

Subclaim 3.1. |G22| < 2|B|
(
n−1
r−2

)
.

Proof. In what follows, the families Sy and Ly are taken with respect to G22. Since each set in
G22 contains at least two elements in B,

2|G22| ≤
∑
y∈B

degG22
(y) =

∑
y∈B

(|Sy|+ |Ly|) =
∑
y∈B

|Sy|+
∑
y∈B

|Ly|. (8)

Recall that SB =
∑

y∈B Sy ⊂ ∂G22. The definition of G22 implies that every E ∈ SB satisfies
|E ∩B| ≥ 1. Moreover, for every E ∈ SB, there is exactly one y for which E ∈ Sy. Therefore

SB ⊂
{

E ∈
(

X

r − 1

)
: |E ∩B| ≥ 1

}
,

and consequently ∑
y∈B

|Sy| = |SB| ≤ |B|
(

n− 1
r − 2

)
. (9)

Since G22 is a K(d)-family, the argument in Step 2 implies that Ly is a K(d− 1)-family for every
y ∈ B. Since n0 − 1 > n0(εr−1, r − 1), and 2 ≤ d− 1 ≤ r − 1, the induction hypothesis applies to
Ly and |Ly| ≤ (1 + δr−1)

(
n−2
r−2

)
< 2
(
n−2
r−2

)
for every y ∈ B. Therefore

∑
y∈B

|Ly| < 2|B|
(

n− 2
r − 2

)
. (10)

Now (8), (9) and (10) imply

2|G22| < 3|B|
(

n− 1
r − 2

)
.
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This gives the required bound (with room to spare) on |G22|.

Together with the fact that |B| = b9δr−1nc, Subclaim 3.1 implies that

|G22| < 18δr−1n

(
n− 1
r − 2

)
. (11)

Subclaim 3.2. G21 = ∅.

Proof. Suppose on the contrary that E ∈ G21. Since |E ∩ B| ≤ 1 and S1 ∪ S2 ⊂ B, we have
|E ∩ (S1 ∪ S2)| ≤ 1. Furthermore, by Claim 2, we know that S1 and S2 are disjoint. Therefore
E has empty intersection with at least one Si, say S1. Since d ≤ r, we may choose d− 1 distinct
elements y1, . . . , yd−1 ∈ A ∩ E. By the definition of A, we know that

Ai = S1 ∪ {w, x, yi} ∈ G for all i = 1, . . . , d− 1.

The d−1 sets above together with Ad = E yield d sets A1, . . . , Ad ∈ G. Because E∩(S1∪{w, x}) =
∅, it is easy to see that

⋂d
i=1 Ai = ∅. Also, |

⋃d
i=1 Ai| = |E|+|S1|+{w, x} = 2r−1. This contradicts

the fact that G is a K(d)-family.

Subclaim 3.2 and (11) yield |G2| < 18δr−1n
(
n−1
r−2

)
, which finishes the proof of Claim 3.

Since n > 2r and δr−1 ≤ δr/[72(r − 1)] by (1),

18δr−1n

(
n− 1
r − 2

)
= 18δr−1n

r − 1
n− r + 1

(
n− 1
r − 1

)
< 36δr−1(r − 1)

(
n− 1
r − 1

)
<

δr

2

(
n− 1
r − 1

)
.

Consequently, Claims 1 and 3 give

|G − x| = |G1|+ |G2| ≤
δr

2

(
n− 1
r − 1

)
+

δr

2

(
n− 1
r − 1

)
= δr

(
n− 1
r − 1

)
,

and the proof of the theorem is complete.

4 From stability to an exact result

In this section we use the stability result proved in the last section to give the exact result in
Theorem 3 for large n.

Proof of Theorem 3. Let b0 = b0(r) be the threshold from Theorem 2 with d = 4 and δ = 1. In
other words, every K(4)-family on b ≥ b0 vertices has size at most 2

(
b−1
r−1

)
. We may also assume

that
b0 > 10r2. (12)
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Now select
δ =

(r − 1)!
r4r

. (13)

Let n0 be the output from Theorem 2 with d = 4 for this δ (Theorem 2 also outputs ε but this is
not relevant for us). Finally, choose N so that

N > max{2r3, n0} and
(

N − r − 1
r − 2

)
> 2br

0. (14)

Suppose that n > N and G ⊂
(
X
r

)
is a K(4)-family (|X| = n) with |G| =

(
n−1
r−1

)
. We will show

that G is a star. Since a star is a maximal K(4)-family, this proves the required bound on G, with
the characterization of equality as well. As n > N > n0, there exists x ∈ X such that

m := |G − x| < δ

(
n− 1
r − 1

)
. (15)

If m = 0, then G is a star and we are done, hence we may assume that m > 0.

Let
Gx = trG(x) =

{
E ∈

(
X

r − 1

)
: E ∪ {x} ∈ G

}
.

Since each set in Gx corresponds bijectively to an edge containing x,

|Gx| =
(

n− 1
r − 1

)
−m. (16)

Claim 1. There are pairwise disjoint (r − 2)-sets S1, S2, . . . , Sr ∈
(
X−{x}

r−2

)
such that

degGx
(Si) = |{y ∈ X : Si ∪ {x, y} ∈ G}| ≥ n− r + 1− 2rm(

n−1
r−2

) .
Proof. Let t be the number of (r − 2)-sets T ⊂ X − {x} satisfying

degGx
(T ) ≥ n− r + 1− 2rm(

n−1
r−2

) .
Then

(r − 1)|Gx| =
(

r − 1
r − 2

)
|Gx| =

∑
T ′∈(X−{x}

r−2 )

degGx
(T ′)

≤ t(n− r + 1) +
((

n− 1
r − 2

)
− t

)(
n− r + 1− 2rm(

n−1
r−2

)) .
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This implies that

t
2rm(
n−1
r−2

) ≥ (r − 1)|Gx| −
(

n− 1
r − 2

)(
n− r + 1− 2rm(

n−1
r−2

)) .

By (16), the RHS is

(r − 1)
((

n− 1
r − 1

)
−m

)
−
(

n− 1
r − 2

)(
n− r + 1− 2rm(

n−1
r−2

)) = −(r − 1)m + 2rm.

Hence
t ≥

(
1− r − 1

2r

)(
n− 1
r − 2

)
>

1
2

(
n− 1
r − 2

)
.

Now consider the family of all (r − 2)-sets described above, and let T1, . . . , Tl be a maximum
matching in this family. If l < r, then all other sets of this family have an element within ∪iTi,
which implies that t ≤ (r− 1)(r− 2)

(
n−1
r−3

)
< r2

(
n−1
r−3

)
<
(
n−1
r−2

)
/2, because n > 2r3 from (14). This

contradiction shows that l ≥ r and the claim is proved.

By Claim 1, for every 1 ≤ i ≤ r

|{y ∈ X : Si ∪ {x, y} 6∈ G}| < r +
2rm(
n−1
r−2

) .
Let

B = {y ∈ X : Si ∪ {x, y} 6∈ G for some i ∈ [r]}.

Then |B| < r2 + 2r2m/
(
n−1
r−2

)
. By adding points arbitrarily to B, we may assume that

|B| = r2 +

⌊
2r2m(
n−1
r−2

)⌋ . (17)

Now define, for each i ∈ {0, . . . , r},

Ti = {T ∈ G − x : |T ∩B| = i}.

Note that T0 ∪ · · · ∪ Tr is a partition of G − x. In the remainder of the proof, we will show that
|G − x| = |

⋃r
i=0 Ti| < m, thereby contradicting (15). We first need two more Claims.

Claim 2. Tp = ∅ for 0 ≤ p < r − 1.

Proof. If T ∈ Tp, then write T = T1 ∪ T2, where T1 = T ∩ B (so |T1| = p) and T2 = T − T1.
Since |T1| < r − 1, and the sets S1, . . . , Sr are pairwise disjoint, we may assume that Si ∩ T1 = ∅
for some i (note also that each Sj ⊂ B). Since p ≤ r − 2, we have |T2| ≥ 2. Let y, z, w be three
elements outside B, at least two of which are in T2. Then Si ∪ {x, y}, Si ∪ {x, z}, Si ∪ {x,w} are

13



all sets in G. Together with T this yields four sets whose union is at most 2r and intersection is
empty. This contradicts the hypothesis that G is a K(4)-family.

Claim 2 implies that G − x = Tr ∪ Tr−1. We next estimate the size of Tr−1.

Claim 3. |Tr−1| ≤
( |B|
r−1

)
.

Proof. Suppose there exists an (r − 1)-set E ⊂ B and elements y, z 6∈ B such that E ∪ {y}, E ∪
{z} ∈ Tr−1. Since |E| = r − 1, as before we may assume that Si ∩ E = ∅ for some i. By
Claim 1, we have Si ∪ {x, y}, Si ∪ {x, z} ∈ G. Together with E ∪ {y} and E ∪ {z}, this yields
four sets in G whose union is 2r and intersection is empty. This contradicts the fact that G is a
K(4)-family. Consequently, we may count sets in Tr−1 by their intersection with B. This yields
|Tr−1| ≤

( |B|
r−1

)
.

We now consider two cases, depending on the size of B.

Case 1: |B| < b0. Clearly |Tr| and can be bounded by
(|B|

r

)
. Together with Claim 3, this gives

m = |G − x| = |Tr|+ |Tr−1| ≤
(
|B|
r

)
+
(
|B|

r − 1

)
< 2|B|r < 2br

0.

Call each r-set in G−x bad, and each r-set containing x that is absent from G missing. Thus both
the number of bad edges and missing edges is m. Now pick a bad edge S. Then for each (r−2)-set
E ⊂ X−{S∪{x}}, at least one of the r-sets E∪{x, v} for v ∈ S must be missing, since otherwise
three of these sets together with S would imply that G is not a K(4)-family. Consequently, to
each bad set we may associate

(
n−r−1

r−2

)
missing sets. By (14), this is already greater than 2br

0 > m,
and so we can have no bad sets at all. Thus in this case m = 0 which is a contradiction.

Case 2: |B| ≥ b0. In this case, the argument works because we can bound the size of Tr. Since
Tr is itself a K(4)-family, the choice of b0 implies that |Tr| ≤ 2

(|B|−1
r−1

)
. Recalling from (17) that

|B| = b2r2m/
(
n−1
r−2

)
c + r2, and using |B| ≥ b0 > 10r2 from (12), we obtain |B| < 3r2m/

(
n−1
r−2

)
.

Consequently,

m = |G − x| = |Tr|+ |Tr−1| < 2
(
|B| − 1
r − 1

)
+
(
|B|

r − 1

)
<

3|B|r−1

(r − 1)!
<

r2rmr−1(
n−1
r−2

)r−1 .

Simplifying,

mr−2 >

(
n− 1
r − 2

)r−1 1
r2r

>

(
n− 1
r − 2

)(r−2)(r−1) 1
r2r

>
(n− 1)(r−2)(r−1)

r(r−2)(r−1)+2r
.

This implies that

m >
(n− 1)r−1

rr−1+2r/(r−2)
>

(n− 1)r−1

r4r
.

On the other hand, by (15) we know that m < δ
(
n−1
r−1

)
< δ(n − 1)r−1/(r − 1)!. Putting these

together yields δ > (r − 1)!/r4r which contradicts (13) and completes the proof.

14



References

[1] J. Balogh, B. Bollobás, M. Simonovits, The number of graphs without forbidden subgraphs,
J. Combin. Theory, Ser. B, 91 (2004), no. 1, 1–24.

[2] B. Bollobás, Combinatorics, Cambridge University Press, 1986.
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[8] Z. Füredi, O. Pikhurko, M. Simonovits, On Triple Systems with Independent Neighborhoods,
Combin. Probab. Comput. 14 (2005) 795-813.
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[18] D. Mubayi, Erdős-Ko-Rado for three sets, J. Combin. Theory Ser. A, 113 (2006), no. 3,
547–550.
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