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Abstract

Fix an integer s ≥ 2. Let P be a set of n points and let L be a set of lines in a

linear space such that no line in L contains more than (n − 1)/(s − 1) points of P.

Suppose that for every s-set S in P, there is a pair of points in S that lies in a line

from L. We prove that |L| ≥ (n− 1)/(s− 1)+ s− 1 for n large, and this is sharp when

n− 1 is a multiple of s− 1. This generalizes the de Bruijn-Erdős theorem which is the

case s = 2. Our result is proved in the more general setting of linear hypergraphs.

1 Introduction

A finite linear space over a set X is a family L of its subsets, called lines, such that every

line contains at least two points, and any two points are on exactly one line. A fundamental

theorem proved by de Bruijn and Erdős [5] states that if L is a finite linear space over a set

X with X /∈ L, then |L| ≥ |X| and equality holds if and only if L is either a near pencil

or a projective plane. This is often viewed as a statement in incidence geometry, in which

case it states that the number of lines determined by n points in a projective plane is at

least n. The result also has the following graph theoretic formulation: the minimum number

of proper complete subgraphs of the complete graph Kn that are needed to partition its

edge set is n (see [1] for an extension of this formulation to hypergraphs). Various other

extensions have been studied. For instance, [4] considered the problem of determining the

minimum number of lines determined by n points in general metric spaces and [6] defined

a notion of de Bruijn-Erdős sets in measure spaces and bounded the Hausdorff dimension
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and Hausdorff measure of such sets. The de Bruijn-Erdős theorem is also a basic result in

extremal set theory and design theory that has many extensions and generalizations. The

most notable of these are due to Fisher [7], Bose [3], and Ray-Chaudhuri-Wilson [8].

Here we consider another natural generalization of the de Bruijn-Erdős theorem. We relax

the condition that every pair of points lies in a line as follows. An s-set is a set of size s.

Definition 1. A collection of subsets (lines) L of a set X is an s-cover if every two lines in

L have at most one point in common and for every s-set S ⊂ X, some pair of points from

S lies in a line in L.

Note that when s = 2, this is the definition of a linear space (excluding trivial requirements).

We can view this definition through the lens of graph theory as follows. Consider the graph

G = (X,E) where E is the set of pairs not contained in any line in L. Then G isKs-free when

L is an s-cover. Hence, the s-cover condition can be thought of as a Turán-type property.

As s becomes larger, the requirement for a family to be an s-cover becomes weaker, and

hence the number of lines needed for an s-cover decreases. So a natural question is to ask for

the size of a smallest s-cover. In order to make this problem nontrivial, we need to impose

an upper bound on the size of subsets in L. For example, if we allow sets of size |X|, then
just one set suffices to cover every pair. Morever, if sets in L are allowed to be of size greater

than (n− 1)/(s− 1), then we can take a collection of s− 1 pairwise disjoint sets that cover

all the points. This is an s-cover, as any s points will contain two points in one of the sets

and will be covered. As n → ∞ this is has constant size. Hence the natural condition to

obtain a nontrivial result as n → ∞ is that all sets in L have size at most t = (n−1)/(s−1).

Under this condition, a straightforward construction reminiscient of the construction for

Turán’s graph theorem is the following. Assume that t = (n− 1)/(s− 1) is an integer. The

underlying set is a t×(s−1) grid with an additional new vertex z, and the line set comprises

all columns as well as all rows where we append z to each row (see Figure 1). Formally,

X = ([t]× [s− 1]) ∪ {z}, and

L = {ci : 1 ≤ i ≤ s− 1} ∪ {rj ∪ {z} : 1 ≤ j ≤ t},

where the ith column is ci := [t]× {i} and the jth row is rj := {j} × [s− 1]. This yields an

s-cover with |L| = s− 1 + t.

In this paper, we show that the above construction is tight. Our main result is the following

theorem.

Theorem 1. Fix s ≥ 2. Let L be an s-cover over a set of size n. Suppose that each set in

L has size at most (n− 1)/(s− 1). Then |L| ≥ (n− 1)/(s− 1) + s− 1 for n large and this

is tight if (s− 1) | (n− 1). If (s− 1) ∤ (n− 1), then the bound (n− 1)/(s− 1)+ s− 1 is tight

asymptotically as n → ∞.

The general framework of Theorem 1 specializes to give appealing geometric statements as

given in the abstract or the more special form below.
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Figure 1: The construction of L when t = 5 and s = 4.

Corollary 1. Fix an integer s ≥ 2. Let P be a set of n points and let L be a set of m lines

in the plane such that no line in L contains more than (n− 1)/(s− 1) points of P. Suppose

that for every s-set S of points from P, there is a pair of points in S lies in some line from

L. Then m ≥ (n− 1)/(s− 1) + s− 1 for n large and if n− 1 is a multiple of s− 1, this is

tight.

We remark that equality can hold above as some of the hypergraphs we construct to prove

tightness for Theorem 1 can be realized as lines in the plane.

Our proof requires n to be large in terms of s and it remains an open problem to prove the

result for small n.

2 Proof of Theorem 1

We will prove Theorem 1 by induction on s. However, in order to facilitate the induction

argument, we need to prove a slightly stronger statement for s ≥ 3 as shown below.

Theorem 2. The statement of Theorem 1 holds with the following strengthening. If s ≥ 3

and each set in L has size at most (n− 1)/(s− 1)− 1, then |L| > (n− 1)/(s− 1) + s− 1.

Notation and Lemmas. Let L = {A1, A2, . . . , Am} be an s-cover on X := [n]. Assume

|Ai| = ai and (n−1)/(s−1) ≥ |A1| ≥ |A2| ≥ · · · ≥ |Am|. For x ∈ X, the degree of x, written

d(x), is the number of Ai that contain x and the neighborhood of x, written N(x), is the

collection of Ai’s that contain x. Let d = minw∈A1 d(w) and suppose that d(v) = d where

v ∈ A1. Let {Ai1 , . . . , Aid} be the neighborhood of v where i1 = 1 and let Q := [n]\
⋃d

j=1 Aij

and P :=
⋃d

j=1Aij . Set p := |P | (see Figure 2). Throughout the proof, we say a subset

J ⊂ [n] is covered if there exists some Ai containing J .
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Figure 2: Setup for Lemma 1.

We first prove a lemma giving various bounds on m depending on d, the ai’s, and |Q|. We

will assume below that Theorem 2 holds for all s′ ≤ s − 1 by induction on s and that n is

sufficiently large in terms of s to apply induction and any further inequalities that require

this. More explicitly, we will show that if n ≥ n0(s) where n0(s) is large enough for the

inequalities we use in the proof to hold, then |L| ≥ (n− 1)/(s− 1) + s− 1.

The base case s = 2 of the induction follows from the de Bruijn-Erdős theorem, so we assume

s > 2. We note that the stronger statement of Theorem 2 holds only for s ≥ 3, and we will

take care of the specific case s = 3 during the proof.

Let δ, δ1, δ2, δ3, δ4 > 0 be constants that follow the hierarchy

1

C
1/10
1

≪ δ2 ≪ δ1 ≪ δ ≪ δ4 ≪ δ3 ≪
1

s2

where ξ ≪ η simply means that ξ is a sufficiently small function of η that is needed to satisfy

some inequality in the proof. In particular, set

δ3 = δ1/4 and δ4 = δ1/2.

We will repeatedly use the fact that if β > 1/10 and 0 < α < 8β,

sα

nβ
≤ sα

(C1s8)β
≤ sα−8β

Cβ
1

≤ 1

Cβ
1

≪ δ2. (1)

Lemma 1. The following bounds hold for n ≥ n0(s).

1. m ≥ a1(d− 1) + 1

4



2. If |Q| > n(s− 2)/(s− 1), then

m ≥ |Q| − 1

s− 2
+ s− 2 + d.

3. For distinct i1, i2, ..., is, let A
′
ik
⊂ Aik be pairwise disjoint subsets, a′ik = |A′

ik
|. Then,

m ≥
a′i1a

′
i2
a′i3 ...a

′
is

es−2(a′i1 , a
′
i2
, a′i3 , . . . , a

′
is
)

where ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n xi1 · · ·xik is the k-th elementary symmetric poly-

nomial.

4.
∑m

i=1

(
ai
2

)
≥ n2

2(s−1)
− n

2
.

5. Suppose a1 ≥ (1− δ) ·
√
n. Write n− 1 + (s− 1)(s− 2) = (s− 1)a1q + r for integers

q, r with 0 ≤ r < (s− 1)a1. If d /∈ {q, q + 1}, then m > n−1
s−1

+ s− 1.

Proof. We prove each statement of the lemma.

1. The number of sets containing a vertex in A1 is at least a1(d − 1) + 1 as d is minimum

degree of vertices in A1.

2. Observe that
|Q| − 1

s− 2
>

n(s−2)
s−1

− 1

s− 2
=

n

s− 1
− 1

s− 2

This implies (|Q| − 1)(s− 1) ≥ n(s− 2)− (s− 1) + 1 = (n− 1)(s− 2). Rearranging, we get

(n− 1)/(s− 1) ≤ (|Q| − 1)/(s− 2). This shows the size of all sets not in N(v) is less than

(|Q| − 1)/(s− 2). Also,

|Q| > s− 2

s− 1
n ≥ s− 2

s− 1
n0(s) ≥ n0(s− 1).

For any s−1 distinct vertices x1, . . . , xs−1 ∈ Q, there must be a set At containing a pair from

x1, . . . , xs−1 as the s-set {x1, . . . , xs−1, v} must be covered and x1, . . . , xs−1 /∈ P . Therefore

the collection of sets Ai \P that have at least one point in Q is an (s−1)-cover of Q. By the

induction hypothesis, the number of these sets is at least (|Q| − 1)/(s − 2) + s − 2. Hence

m ≥ (|Q| − 1)/(s− 2) + s− 2 + d as there are d sets containing v in addition to these Ai.

3. Consider the collection of s-sets B = {{x1, . . . , xs} : xj ∈ A′
ij
, j = 1, . . . , s}. A particular

At covers at most es−2(a
′
i1
, . . . , a′is) such s-sets as it has at most one point in each of Ai1 ,. . . ,

Ais . The number of s-sets in B is a′i1 · · · a
′
is . It follows that

m ≥
a′i1 · · · a

′
is

es−2(a′i1 , . . . , a
′
is
)
.

4. Let G = ([n], E) be the graph where E is the set of pairs not contained in any Ai. Then

G is Ks-free. Since every pair in [n] is either in some Ai or in E, we have(
n

2

)
=

m∑
i=1

(
ai
2

)
+ |E|

5



Since |E| ≤ n2/2 · (1− 1/(s− 1)) by Turán’s theorem,

m∑
i=1

(
ai
2

)
≥
(
n

2

)
− n2

2

(
1− 1

s− 1

)
=

n2

2(s− 1)
− n

2
.

5. We have n− 1 + (s− 1)(s− 2) = (s− 1)a1q + r for integers q, r with 0 ≤ r < (s− 1)a1.

If d ≥ q + 2, then part 1 implies

m ≥ a1(q + 1) + 1

=
n− 1 + (s− 1)(s− 2)− r

s− 1
+ a1 + 1

=
n− 1

s− 1
+ s− 1 + a1 −

r

s− 1

>
n− 1

s− 1
+ s− 1.

If d ≤ q − 1, then

|Q| ≥ n− d(a1 − 1)− 1

≥ n− (q − 1)(a1 − 1)− 1

= n− qa1 + q + a1 − 1− 1

= n− n− 1 + (s− 1)(s− 2)− r

s− 1
+ q + a1 − 2

>
s− 2

s− 1
n− (s− 2) + q + a1 − 2

=
s− 2

s− 1
n+ q + a1 − s.

Note that

a1 − s ≥ (1− δ)
√

n0(s)− s > s.

It follows that q + a1 − s ≥ s, so |Q| > n(s− 2)/(s− 1) + s. By part 2

m ≥ |Q| − 1

s− 2
+ s− 2 ≥

s−2
s−1

n+ s

s− 2
+ s− 2 >

n− 1

s− 1
+ s− 1.

Proof of Lower Bound for Theorem 1.

We prove Theorem 1 by considering different ranges for a1. Let n ≥ n0(s) and set ε = 1/10s2.

Case 1: a1 < (1− δ)
√
n.

From Lemma 1.4, we have
∑m

i=1

(
ai
2

)
≥ n2/2(s − 1) − n/2. Since

∑m
i=1

(
ai
2

)
≤ ma21/2 <

m(1− δ)2n/2, we have
(1− δ)2

2
nm ≥ n2

2(s− 1)
− n

2
.
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This implies

m ≥
n2

2(s−1)
− n

2

(1−δ)2

2
n

=
1

(1− δ)2

(
n

s− 1
− 1

)
.

For n ≥ n0(s), this is greater than (n− 1)/(s− 1) + s− 1.

Case 2: (1− δ)
√
n ≤ a1 ≤ 10

√
sn.

By Lemma 1.5, we can assume d is either q or q+1. Suppose |Q| > n (1− 1/(s− 1)). Then

by Lemma 1.2

m ≥ |Q| − 1

s− 2
+ s− 2 + d >

n

s− 1
− 1

s− 2
+ s− 2 + d.

Since
n− 1

(s− 1)a1
<

n− 1

(s− 1)a1
+

s− 2

a1
= q +

r

(s− 1)a1
< q + 1,

we have

d ≥ q ≥ n− 1

a1(s− 1)
− 1 ≥ n− 1

10
√
s(s− 1)

√
n
− 1. (2)

Hence, for n ≥ n0(s)

m >
n

s− 1
− 1

s− 2
+ s− 2 + d >

n− 1

s− 1
+ s− 1.

Therefore |Q| ≤ n(1− 1/(s− 1)) and p := |P | = n− |Q| ≥ n/(s− 1). By Turan’s theorem,

at least p2/2(s − 1) − p/2 of the pairs in P must be covered. The number of pairs covered

by Ai1 , . . . , Aid is
d∑

j=1

(
aij
2

)
≤ d

(
a1
2

)
≤ a21d

2
.

Since a set Ai in L \N(v) has at most d points from P , it covers at most
(
d
2

)
pairs. So

m ≥
p2

2(s−1)
− p

2
−
∑d

j=1

(aij
2

)
d2

2

≥ p2

(s− 1)d2

(
1− s− 1

p
− a21d(s− 1)

p2

)
. (3)

Note that
a21d(s− 1)

p2
≤ 100snd(s− 1)

n2/(s− 1)2
=

100ds(s− 1)3

n
.

Observe that

d ≤ q + 1 ≤ n− 1

a1(s− 1)
+

s− 2

a1
+ 1 (4)

and

n− 1

a1(s− 1)
+

s− 2

a1
+ 1 ≤ n− 1

(1− δ)
√
n(s− 1)

+
s− 2

(1− δ)
√
n
+ 1

≤
√
n

(1− δ)(s− 1)
+ δ2 + 1.

(5)
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Consequently, by (4),

d(s− 1) ≤
√
n

1− δ
+ (s− 1)(1 + δ2).

This and (1) imply

100ds(s− 1)3

n
≤ 100s3

n
d(s− 1)

≤ 100s3

n

( √
n

1− δ
+ (s− 1)(1 + δ2)

)
=

100s3√
n(1− δ)

+
100s3(s− 1)(1 + δ2)

n

≤ δ2
2
.

It follows that a21d(s − 1)/p2 ≤ δ2/2. As p ≥ n/(s − 1), we have (s − 1)/p ≤ (s − 1)2/n ≤
s2/n ≤ δ2/2 by (1) and hence by (3)

m ≥ (1− δ2)
p2

(s− 1)d2
. (6)

We will now prove a lower bound for p2/(s− 1)d2. By (4),

d(s− 1) ≤ n− 1

a1
+

(s− 2)(s− 1)

a1
+ s− 1 <

n

a1
+

s2

a1
+ s,

and this, a1 ≤ 10
√
sn, and (1) yield

p2

(s− 1)d2
≥ (n/(s− 1))2

(s− 1)d2

=
n2

s− 1

1

d2(s− 1)2

≥ n2

s− 1

(
n

a1
+

s2

a1
+ s

)−2

=
a21

s− 1

(
1 +

s2

n
+

a1s

n

)−2

≥ a21
s− 1

(
1 +

s2

n
+

10s3/2√
n

)−2

≥ a21
s− 1

(1 + δ2)
−2.

(7)

Combining (7) and (6), we get

m ≥ 1− δ2
(1 + δ2)2

a21
s− 1

. (8)

Case 2.1: a1 ≥ (1 + δ1)
√
n.

By (8),

m ≥ (1 + δ1)
2 1− δ2
(1 + δ2)2

n

s− 1
.
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Since δ1 ≫ δ2, we have (1+δ1)
2(1−δ2)/(1+δ2)

2 > 1. It follows thatm > (n−1)/(s−1)+s−1

for n ≥ n0(s).

Case 2.2: a1 < (1 + δ1)
√
n.

We can assume that there are at most n/(s− 1) sets in L \N(v) as otherwise m ≥ n/(s−
1) + d > (n− 1)/(s− 1) + s− 1 by (2). Recall that δ3 = δ1/4 and δ4 = δ1/2.

Claim 2.2. At least (1−δ3)n/(s−1) sets in L\N(v) have at least (1/(s−1)−δ4)
√
n points

in P .

Proof. Assume this is not true. Since every A ∈ L \N(v) has at most one point in common

with every set in N(v), we conclude that |A∩P | ≤ d. Hence the number of covered pairs in

P is at most

(1− δ3)
n

s− 1

d2

2
+

δ3n

s− 1

(
1

s− 1
− δ4

)2
n

2
+

d∑
j=1

(
aij
2

)
. (9)

Recall that d ≤
√
n/((1− δ)(s− 1)) + 1 + δ2 by (5). By this bound and (1) we have

(1− δ3)
n

(s− 1)

d2

2
≤ (1− δ3)

n

2(s− 1)

( √
n

(1− δ)(s− 1)
+ δ2 + 1

)2

= (1− δ3)
n

2(s− 1)

n

(1− δ)2(s− 1)2

(
1 +

(δ2 + 1)(1− δ)(s− 1)√
n

)2

≤ 1− δ3
(1− δ)2

n2

2(s− 1)3
(1 + δ2)

2.

(10)

We also have
δ3n

s− 1

(
1

s− 1
− δ4

)2
n

2
=

δ3n
2

2(s− 1)3
(1− δ4(s− 1))2 . (11)

Since a1 < (1 + δ1)
√
n and d ≤ 2

√
n/((1− δ)(s− 1)) by (4), we have

d∑
j=1

(
aij
2

)
≤ a21

2
d

≤ (1 + δ1)
2n

2

2
√
n

(1− δ)(s− 1)

≤ n2

2(s− 1)3
2(s− 1)2(1 + δ1)

2

(1− δ)
√
n

≤ δ2
n2

2(s− 1)3
.

(12)

Note that we used (1) in the last step. Combining (10), (11), and (12), we deduce that the

number of covered pairs in P is at most

n2

2(s− 1)3

(
(1 + δ2)

2(1− δ3)

(1− δ)2
+ δ3 (1− δ4(s− 1))2 + δ2

)
. (13)
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As δ ≫ δ2, we obtain

(1 + δ2)
2(1− δ3)

(1− δ)2
≤ (1 + 3δ2)(1 + 3δ)(1− δ3)

≤ (1 + 4δ)(1− δ3)

= 1− δ3(1 + 4δ − 4δ/δ3).

As δ3δ4 = δ1/4δ1/2 = δ3/4 ≫ δ, we have 4δ + δ4(s− 1)/2 > 4δ/δ3 and hence

1− δ3(1 + 4δ − 4δ/δ3) ≤ 1− δ3(1− δ4(s− 1)/2).

We also have δ3 (1− δ4(s− 1))2 ≤ δ3 (1− δ4(s− 1)). It follows that (13) is at most

n2

2(s− 1)3

(
1− δ3

(
1− δ4(s− 1)

2

)
+ δ3 (1− δ4(s− 1)) + δ2

)
≤ n2

2(s− 1)3

(
1− δ3δ4(s− 1)

2
+ δ2

)
.

Note that 1− δ3δ4(s− 1)/2+ δ2 < 1 as δ3δ4 ≫ δ ≫ δ2. Since p
2/2(s− 1) ≥ n2/2(s− 1)3, this

implies that for n ≥ n0(s) the number of covered pairs in P is less that p2/2(s − 1) − p/2.

This contradiction completes the proof of the claim.

Suppose A ∈ L \N(v). If A has at least (1/(s− 1)− δ4)
√
n points in P , then it has at most

(1+ δ1− 1/(s− 1)+ δ4)
√
n points in Q as a1 < (1+ δ1)

√
n. Hence, by Claim 2.2 the number

of covered pairs in Q is at most

(1− δ3)n

s− 1

(
(1 + δ1 − 1/(s− 1) + δ4)

√
n

2

)
+

δ3n

s− 1

(
(1 + δ1)

√
n

2

)

≤ 1

2

(
1 + δ1 + δ4 −

1

s− 1

)2
(1− δ3)n

2

s− 1
+

(1 + δ1)
2δ3n

2

2(s− 1)
. (14)

Note that by (4)

|Q| ≥ n− d(a1 − 1)− 1

≥ n− da1

≥ n−
(
n− 1

s− 1
+ s− 2 + a1

)
=

(
1− 1

s− 1

)
n+

1

s− 1
− s+ 2− a1.

(15)

Since every (s − 1)-set in Q is covered, at least |Q|2/2(s − 2) − |Q|/2 pairs in Q must be

covered. We now show that

1

2

(
1 + δ1 + δ4 −

1

s− 1

)2
(1− δ3)

s− 1
+

(1 + δ1)
2δ3

2(s− 1)
<

1

2(s− 2)

(
1− 1

s− 1

)2

. (16)
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To see this, first note that (1 + δ1)
2δ3/2(s− 1) ≤ 1/100s3 as δ3 ≪ 1/s2. Next

1

2

(
1 + δ1 + δ4 −

1

s− 1

)2
(1− δ3)

s− 1

≤ 1

2(s− 1)

((
1− 1

s− 1

)2

+ 3(δ1 + δ4)

)
(1− δ3)

≤ 1

2(s− 1)

(
1− 1

s− 1

)2

− δ3
2(s− 1)

(
1− 1

s− 1

)2

+ 3(δ1 + δ4)

≤ 1

2(s− 1)

(
1− 1

s− 1

)2

− δ3
3s

=
1

2(s− 2)

(
1− 1

s− 1

)2

− 1

2(s− 1)(s− 2)

(
1− 1

s− 1

)2

− δ3
3s

as δ3 ≫ δ4 ≫ δ1. Since [1/2(s − 2)(s − 1)] · (1 − 1/(s − 1))2 > 1/100s3, this proves

(16). This means the quadratic coefficient of the lower bound of |Q|2/2(s− 2)− |Q|/2 from

(15) is larger than the quadratic coefficient of the upper bound for the number of covered

pairs in Q from (14). It follows that for n ≥ n0(s), the number of covered pairs in Q is

less than |Q|2/2(s − 2) − |Q|/2. Hence we have a contradiction, so it is not possible that

(1− δ)
√
n ≤ a1 < (1 + δ2)

√
n.

Case 3: 10
√
sn ≤ a1 ≤

(
1

s−1
− ε
)
n, where ε = 1/10s2.

By Lemma 1.5, we can assume d ∈ {q, q + 1}. Suppose d = 1. Then, |Q| = n − a1 ≥
(1− 1/(s− 1) + ε)n, so by Lemma 1.2 for n ≥ n0(s)

m >
|Q| − 1

s− 2
+ s− 2 ≥ n

s− 1
+

εn

s− 2
+ s− 2− 1

s− 2
>

n− 1

s− 1
+ s− 1.

Hence, we can assume d ≥ 2. If |Q| > n (1− 1/(s− 1)), then for n ≥ n0(s)

m ≥ |Q| − 1

s− 2
+ s− 2 + d ≥ n

s− 1
+ s− 2− 1

s− 2
+ d >

n− 1

s− 1
+ s− 1. (17)

by Lemma 1.2. Hence, we can assume p ≥ n/(s − 1). We consider the cases d ≥ s + 2 and

d ≤ s+ 1 separately. Suppose d ≥ s+ 2. Observe that

d ≤ q + 1 ≤ n− 1

a1(s− 1)
+

s− 2

a1
+ 1

and
n

s− 1
≤ p ≤ a1d ≤ n− 1

s− 1
+ s− 2 + a1.

Suppose there are three sets in the neighborhood of v with size less than a1/2. Then,

p ≤ a1(d− 3) +
3a1
2

≤ n− 1

s− 1
+ s− 2− a1

2
.

Since a1 ≥ 10
√
sn, this upper bound for p is smaller than n/(s−1), so we have a contradiction.

Hence there are at most two sets in the neighborhood of v with size less that a1/2. As we are

11



assuming d ≥ s+ 2, there are at least s sets with size more than a1/2− 1 ≥ 4
√
sn. Taking

disjoint subsets of these s sets of size 4
√
sn and applying Lemma 1.3 we get

m ≥ (4
√
sn)s(

s
2

)
(4
√
sn)s−2

=
16sn(

s
2

) =
32n

s− 1
>

n− 1

s− 1
+ s− 1

for n ≥ n0(s).

We now consider the case in which d ≤ s+ 1. Since n/(s− 1) ≤ p ≤ a1d, we have

a1 ≥
n

d(s− 1)
≥ n

s2 − 1
.

Let A1 = {x1, . . . , xa1}. If there are at least 2n/s3 vertices in A1 with degree at least s2 + 1,

then m > 2n/s > (n − 1)/(s − 1) + s − 1, so we can assume that there are at most 2n/s3

vertices in A1 with degree at least s2+1. This implies that there are at least n/(s2−1)−2n/s3

vertices in A1 with degree at most s2. For 1 ≤ i ≤ a1, let

Ti =
∑

j:xi∈Aj ,j ̸=1

(
aj − 1

2

)
and let B = {i : d(xi) ≤ s2}. Then we have∑

i∈B

Ti < n2

as each pair is in at most one Ai. It follows that there is some ℓ ∈ B such that

Tℓ ≤
n2

|B|
≤ n2

n
s2−1

− 2n
s3

=
s3(s2 − 1)

s3 − 2s2 + 2
n ≤ 4s2n.

By Jensen’s inequality and the inequality
(
x
2

)
≥ x2/16,

Tℓ ≥ (d(xℓ)− 1)

( 1
d(xℓ)−1

∑
k:xℓ∈Ak,k ̸=1(ak − 1)

2

)
≥ 1

16(d(xℓ)− 1)

( ∑
k:xℓ∈Ak,k ̸=1

(ak − 1)

)2

.

Comparing the lower bound and upper bound for Tℓ yields∑
k:xℓ∈Ak,k ̸=1

(ak − 1) ≤ 4
√

d(xℓ)− 1 · 2s
√
n ≤ 8s2

√
n.

Let Q1 be the set of points outside of the neighborhood of xℓ. Then every (s − 1)-set in

[n] \Q1 is covered. Furthermore, since a1 ≤ (1/(s− 1)− ε)n and ε > δ2

|Q1| ≥ n− a1 − 8s2
√
n ≥

(
1− 1

s− 1
+ ε− 8s2√

n

)
n

≥
(
1− 1

s− 1
+ ε− δ2

)
n

>

(
1− 1

s− 1

)
n,

12



so by Lemma 1.2 with Q replaced with Q1 we get m > (n− 1)/(s− 1) + s− 1 by the same

computation as (17).

Case 4: (1/(s− 1)− ε)n < a1 < ⌊(n− 1)/(s− 1)⌋.

Suppose d = 1. Then |Q| = n − a1 > (s − 2)n/(s − 1) as a1 ≤ (n − 1)/(s − 1) − 1, so by

Lemma 1.2 we have

m ≥ n− a1 − 1

s− 2
+ s− 2 + 1 >

n− 1

s− 1
+ s− 1.

We can assume d = 2 as if d ≥ 3, then m > 2a1 > (2/(s−1)−2ε)n > (n−1)/(s−1)+s−1.

Furthermore, we can assume the number of vertices in A1 with degree greater than two is

at most (ε+ 1/s3)n as if not the number of sets that intersect A1 is at least(
1

s− 1
− ε

)
n+

(
ε+

1

s3

)
n =

(
1

s− 1
+

1

s3

)
n >

n− 1

s− 1
+ s− 1.

Suppose all the (s− 1)-sets in [n] \ A1 are covered. Observe that

|[n] \ A1| = n− a1 > n− n− 1

s− 1
>

s− 2

s− 1
n > n0(s− 1),

and a1 ≤ (|Q|−1)/(s−2) by the same inequality used in the proof of Lemma by 1.2. Define

L′ := {A ∩ ([n] \ A1) : A ∈ L, |A ∩ ([n] \ A1)| ≥ 2} .

By induction on s

|L′| ≥ n− a1 − 1

s− 2
+ s− 2 >

n− 1

s− 1
+ s− 2.

Since A1 ∩ ([n] \ A1) = ∅, we have

m >
n− 1

s− 1
+ s− 1.

Hence we can assume there is some (s− 1)-set x1, x2, . . . , xs−1 in [n] \A1 that is not covered.

For any p ∈ A1 the s-set {p, x1, x2, . . . , xs−1} is covered, so there is a set containing a pair

pxi for some i ∈ [s− 1]. Set

Bxi
= {p ∈ A1 : p, xi ∈ Aj for some j}

for 1 ≤ i ≤ s− 1. Without loss of generality, assume |Bx1| ≥ |Bx2| ≥ . . . ≥ |Bxs−1|. Then

|Bx1| ≥
a1

s− 1
>

(
1

(s− 1)2
− ε

s− 1

)
n.

Let B′
x1

⊂ Bx1 be the points in Bx1 that have degree two. Since the number of points in A1

with degree greater than two is at most (ε+ 1/s3)n, we have

|B′
x1
| ≥

(
1

(s− 1)2
− 1

s3
− ε

(
1 +

1

s− 1

))
n.

13



x1

A1

B′
x1

Q2

Figure 3: Q2 and B′
x1

Let Q2 = [n] \ (A1 ∪ {x1}) (see Figure 3). Suppose {u1, . . . , us−1} ⊂ Q2 is uncovered and let

p ∈ B′
x1
. Then the s-set {p, u1, u2, . . . , us−1} must be covered, so there a set Ai containing

p, ui for some i. Since |B′
x1
| > s− 1, there is p1, p2 ∈ B′

x1
and 1 ≤ j ≤ s− 1 so that the pairs

p1uj and p2uj are both covered. The sets containing these pairs are distinct as p1, p2 ∈ A1.

This is a contradiction as any set containing a point from Bx1 contains x1, so it implies that

pair ujx1 is in two distinct sets. Hence, all (s−1)-sets in Q2 are covered. Observe that since

a1 ≤ (n− 1)/(s− 1),

|Q2| = n− a1 − 1 ≥ n− n− 1

s− 1
− 1 =

s− 2

s− 1
n+

1

s− 1
− 1 ≥ n0(s− 1). (18)

Consider the collection of sets {Ai ∩Q2}. Since a1 ≤ (n− 1)/(s− 1)− 1 ≤ (n− 2)/(s− 1),

a1 ≤
n− a1 − 2

s− 2
=

|Q2| − 1

s− 2
,

so |Ai ∩ Q2| ≤ (|Q2| − 1)/(s − 2) for all i. Suppose a1 < (n − 1)/(s − 1) − 1. Then, by

induction on s, the number of sets in L in Q2 is at least

|Q2| − 1

s− 2
+ s− 2 =

n− a1 − 2

s− 2
+ s− 2 >

n− 1

s− 1
+ s− 2, (19)

Since A1 ∩Q2 = ∅, m > (n− 1)/(s− 1) + s− 1.

We now consider the case a1 = (n−1)/(s−1)−1. Note that (s−1) | (n−1) in this case. By

the inequality in (19), we have m ≥ (n− 1)/(s− 1) + s− 1. As stipulated by the induction

statement, we are required to show that this inequality is strict.

Claim 2.3. If a1 ≤ (n− 1)/(s− 1)− 1, then m > (n− 1)/(s− 1) + s− 1.

14



Proof. If a1 < (1/(s − 1) − ε)n, then the claim follows by the arguments in Cases 1-3. If

(1/(s− 1)− ε)n ≤ a1 < (n− 1)/(s− 1)− 1, then (19) shows m > (n− 1)/(s− 1) + s− 1, so

we can assume a1 = (n− 1)/(s− 1)− 1. Define

L2 := {A ∩Q2 : A ∈ L, |A ∩Q2| ≥ 2} .

We first consider the case s = 3. Then a1 = (n − 1)/2 − 1, |Q2| = n − (n − 1)/(s − 2) +

1 − 1 = (n − 1)/2 + 1, and every pair in Q2 is covered. By the de Bruijn Erdős theorem,

|L2| ≥ (n − 1)/2 + 1. If |L2| > (n − 1)/2 + 1, then m > (n − 1)/2 + 2 as A1 ∩ Q2 = ∅.
Hence we can assume |L2| = (n− 1)/2 + 1. By the de Bruijn Erdős theorem, L2 is either a

near pencil or projective plane. If L2 is a near pencil then, there is a set of size (n − 1)/2

in L2. This is a contradiction as the largest set in L has size a1 = (n − 1)/2 − 1. Suppose

now that L2 is a projective plane, so |L2| = |Q2| = (n− 1)/2. Recall that x1 has degree at

least |Bx1| ≥ a1/(s− 1) = a1/2 ≥ 3. If N(x1) contains Ai, Aj such that neither Ai ∩Q2 nor

Aj ∩Q2 is in L2, then m ≥ |L2|+3 > (n−1)/2+2. So N(x1) contains Ai, Aj such that both

Ai∩Q2 and Aj ∩Q2 are in L2. But L2 is a projective plane hence (Ai∩Q2)∩ (Aj ∩Q2) ̸= ∅,
which means that |Ai ∩ Aj| ≥ 2, a contradiction.

Now, suppose s ≥ 4. Suppose a1 = (n − 1)/(s − 1) − 1. Then every (s − 1)-set in Q2 is

covered. We also have
|Q2| − 1

s− 2
=

n− a1 − 2

s− 2
=

n− 1

s− 1
,

so a1 ≤ (|Q2| − 1)/(s− 2)− 1. This shows |A| ≤ (|Q2| − 1)/(s− 2)− 1 for all A ∈ L2. Since

|Q2| ≥ n0(s− 1) by (18), the inductive hypothesis implies

|L2| >
|Q2| − 1

s− 2
+ s− 2 =

n− 1

s− 1
+ s− 2

As A1 ̸∈ L2, it follows that m > (n− 1)/(s− 1) + s− 1 and this concludes the proof of the

claim and Case 4.

Case 5: a1 = ⌊(n− 1)/(s− 1)⌋.

We note that for x > 1, we have ⌊x⌋ > x− 1 so in this case a1 > (n− 1)/(s− 1)− 1 and we

only need to prove that m ≥ (n− 1)/(s− 1) + s− 1.

Suppose all the (s− 1)-sets in [n] \A1 are covered. Observe that n− a1 ≥ n0(s− 1) by (18)

and a1 ≤ (n− a1 − 1)/(s− 2) as a1 ≤ (n− 1)/(s− 1). Define

L′ := {A ∩ ([n] \ A1) : A ∈ L, |A ∩ ([n] \ A1)| ≥ 2} .

By induction on s,

|L′| ≥ n− a1 − 1

s− 2
+ s− 2 ≥ n− 1

s− 1
+ s− 2.

Since A1 ∩ ([n] \ A1) = ∅, we have m ≥ (n− 1)/(s− 1) + s− 1.

Now, we consider the case in which there is an (s − 1)-set {x1, . . . , xs−1} in [n] \ A1 that is

uncovered. Note that we can assume d := minw∈A1 d(w) = 2 in this case as if d = 1, then all
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the (s− 1)-sets in [n] \A1 are covered and if d ≥ 3, then m ≥ 2a1 > (n− 1)/(s− 1) + s− 1.

Furthermore, we may assume that the number of points with degree at least 3 in A1 is at

most s− 1, as if there are at least s points with degree at least 3, we have m ≥ 1+ a1 + s ≥
(n − 1)/(s − 1) + s − 1. For any p ∈ A1 the s-set {p, x1, x2, . . . , xs−1} is covered, so {p, xi}
is covered for some i ∈ [s− 1]. For 1 ≤ i ≤ s− 1, set

Bxi
= {p ∈ A1 : {p, xi} ⊂ Aj for some j} .

Without loss of generality, assume |Bx1| ≥ |Bx2| ≥ · · · ≥ |Bxs−1|. Then

|Bx1| ≥
a1

s− 1
.

Let B′
x1

⊂ Bx1 be the set of points in Bx1 that have degree two. Since the number of points

in A1 with degree greater than two is at most s− 1, we have

|B′
x1
| ≥ a1

s− 1
− s+ 1. (20)

Let Q2 = [n]\ (A1∪{x1}). Suppose {u1, . . . , us−1} ⊂ Q2 is uncovered and let p ∈ B′
x1
. Then

the s-set {p, u1, u2, . . . , us−1} must be covered, so there a set Aij containing p and uj for

some j. Since |B′
x1
| > s− 1, there are p1, p2 ∈ B′

x1
and 1 ≤ j ≤ s− 1 so that the pairs p1uj

and p2uj are both covered. The sets containing these pairs are distinct as p1, p2 ∈ A1. This

is a contradiction as any set containing a point from Bx1 contains x1, so it implies that the

pair uj, x1 is in two distinct sets.

Hence all (s− 1)-sets in Q2 are covered. (21)

Define

L2 := {A ∩Q2 : A ∈ L, |A ∩Q2| ≥ 2} .

We first consider the case s = 3. Suppose first that n is odd, say n = 2k+1 for some integer k.

Then, a1 = k and |Q2| = k. Then either Q2 ∈ L or by the de Bruijn-Erdős theorem |L2| ≥ k.

Suppose Q2 ∈ L. Since A1 has minimum degree 2, we have m ≥ k + 2 = (n − 1)/2 + 2 as

required. Now suppose Q2 /∈ L. By the de Bruijn-Erdős theorem, |L2| ≥ k. If |L2| ≥ k + 1,

we have m ≥ k + 2 as A1 ∩Q2 = ∅. If |L2| = k, then L2 is either a near pencil or projective

plane. In either case, any pair of sets in Q2 intersects in exactly one point. Supposem = k+1

for the sake of contradiction. Then since x1 has degree at least a1/(s−1) = a1/2, there must

be a matching of size a1/2 in Q2. This is a contradiction, so we have m ≥ k + 2.

Now, suppose n = 2k. Then, a1 = k − 1 and |Q2| = k. Since |Q2| > a1, by the de Bruijn-

Erdős theorem |L2| ≥ k. This implies m ≥ k+1. By the same argument as above using the

fact that x1 has degree at least a1/2, we have m ̸= k + 1, so m ≥ k + 2.

We now consider s ≥ 4. Write n − 1 = (s − 1)ℓ + r for integers ℓ, r with 0 ≤ r < s − 1 so

that a1 = ℓ. We will show that m ≥ ℓ+ s ≥ (n− 1)/(s− 1) + s− 1.

Case 5.1: r ≥ 2.
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Note that |Q2| = n− a1 − 1 = (s− 2)ℓ+ r and

|Q2| − 1

s− 2
= ℓ+

r − 1

s− 2
≥ ℓ.

For i > 1, |Ai∩Q2| ≤ a1 = ℓ ≤ (|Q2|− 1)/(s− 2). Since |Q2| ≥ n0(s− 1), by induction on s,

|L2| ≥
|Q2| − 1

s− 2
+ s− 2 = ℓ+

r − 1

s− 2
+ s− 2.

Since A1 ∩Q2 = ∅,
m ≥ ℓ+

r − 1

s− 2
+ s− 1.

This shows that m ≥ ℓ+ s as r ≥ 2.

Case 5.2: r ∈ {0, 1}.

Case 5.2.1: There is no B1 ∈ L of size ℓ such that B1 ⊂ Q2.

Suppose r = 1. Note that |Q2| = (s− 2)ℓ+ 1 and

|Q2| − 1

s− 2
= ℓ.

We also have |Ai ∩ Q2| ≤ ℓ − 1 for all i. Since |Q2| ≥ n0(s − 1), by induction we have the

strict inequality

|L2| >
|Q2| − 1

s− 2
+ s− 2 = ℓ+ s− 2.

Since A1 ∩Q2 = ∅, this implies m ≥ ℓ+ s.

Suppose r = 0. Note that ℓ = (n− 1)/(s− 1), |Q2| = (s− 2)ℓ and⌊
|Q2| − 1

s− 2

⌋
= ℓ− 1.

We also have |Ai ∩Q2| ≤ ℓ− 1 for all i and |Q2| ≥ n0(s− 1). By induction on s,

|L2| ≥
|Q2| − 1

s− 2
+ s− 2 = ℓ− 1

s− 2
+ s− 2.

Since A1 ∩Q2 = ∅, this implies

m ≥ ℓ− 1

s− 2
+ s− 1.

Since s ≥ 4, this shows m ≥ ℓ+ s− 1 = (n− 1)/(s− 1) + s− 1.

Case 5.2.2: There exists B1 ∈ L of size ℓ such that B1 ⊂ Q2.

We use an iterative argument for this case. Recall (21) that all (s−1)-sets in Q2 are covered.

Let 2 ≤ j ≤ s−2. Suppose all (s−j+1)-sets in Qj are covered and Bj−1 ⊂ Qj is an ℓ-set in L.
Let Qj+1 = Qj \Bj−1 so that A1, B1, . . . , Bj−1 is a matching. We can assume the minimum

degree among points in Bj−1 is 2 as we did with A1. Similarly we can also assume that the

17



number of points in Bj−1 with degree at least 3 is at most s − 1. We can also assume the

maximum degree of points in Bj−1 is at most s, as otherwise m ≥ 1+ ℓ+(s+1− 2) = ℓ+ s.

Recall that B′
x1

is the set of v ∈ A1 such that {v, x1} is covered and d(v) = 2. We first

construct a matching Mj−1 ⊂ B′
x1
×Bj−1 of covered pairs. For every v ∈ B′

x1
, let Xv ∈ L be

the set containing x1 and v. We will assume at most s− 1 of the sets {Xv}v∈B′
x1

are disjoint

from Bj−1 as otherwise we have m ≥ ℓ+s since points in Bj−1 have minimum degree 2. This

means that there are at least B′
x1

− s+ 1 covered pairs in B′
x1

× Bj−1. Since the maximum

degree of points in Bj−1 is at most s, there is a matching M ⊂ B′
x1

× Bj−1 of size at least

(|B′
x1
| − s + 1)/s. Let Mj−1 be the matching formed by deleting pairs (g, h) with d(h) ≥ 3

from M . Note that (20) implies

|Mj−1| ≥
|B′

x1
| − s+ 1

s
− s+ 1 > s− j.

We now claim that the (s − j)-sets in Qj+1 are covered. Suppose {h1, . . . , hs−j} is an

uncovered set in Qj+1. Since every (s − j + 1)-set in Qj is covered, for every p ∈ Bj−1,

the (s − 1)-set p, h1, . . . , hs−j is covered. It follows that the pair p, hi is covered for some

i ∈ [s− j]. Since |Mj−1| > s− j, there is hk and points x, y in the restriction of Mj−1 to Bj−1

so that the pairs x, hk and y, hk are both covered. This is a contradiction as d(x) = d(y) = 2,

so sets in L that contain x, hk and y, hk both contain x1. Hence the pair hk, x1 is in two sets

in L. Consequently, all (s− j)-sets in Qj+1 are covered. Define

Lj+1 := {A ∩Qj+1 : A ∈ L, |A ∩Qj+1| ≥ 2} .

Let us first suppose that r = 1. Assume j < s − 2. If |Ai ∩ Qj+1| ≤ ℓ − 1 for all i, then

|Ai ∩Qj+1| < ℓ = (|Qj+1| − 1)/(s− j − 1). Since

|Qj+1| = (s− j − 1)ℓ+ 1 = (s− j − 1)
n− 2

s− 1
≥ n0(s− j),

and by induction,

|Lj+1| >
|Qj+1| − 1

s− j − 1
+ s− j − 1 = ℓ+ s− j − 1.

Since A1, B1, . . . , Bj−1 are disjoint from Qj+1, we get m ≥ ℓ + s. Otherwise, there is a set

Bj ⊂ Qj+1 with size ℓ in L and we continue the procedure. Now, suppose the procedure

terminates at j = s − 2. Then, we have ℓ-sets A1, B1, . . . , Bs−3 and all the pairs in Qs−1 =

[n] \ (A1 ∪ {x1} ∪B1 ∪ . . .∪Bs−3) are covered. Since |Qs−1| = ℓ+ 1, by the de Bruijn-Erdős

theorem, |Ls−1| ≥ ℓ+1. Since A1, B1, . . . , Bs−3 are disjoint from Qs−1, we have m ≥ ℓ+s−1.

We now show that m ≥ ℓ + s. Suppose m = ℓ + s − 1 for the sake of contradiction. Then,

Ls−1 is either a near pencil or projective plane. Since x1 has degree at least ℓ/(s − 1) and

m = ℓ+ s− 1, there must be a matching of size ℓ/(s− 1) in L2. Since B1, . . . , Bs−3 have size

ℓ, they cannot contain x1. It follows that there must be a matching of size ℓ/(s− 1) among

the elements of L that cover the pairs in Qs−1. This is a contradiction as any 2 sets in Ls−2

intersect in exactly one point. This shows m ≥ ℓ+ s.
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Figure 4: Iterative Procedure

Let us now suppose that r = 0. Assume j < s − 2. If |Ai ∩ Qj+1| ≤ ℓ − 1 for all i, then

|Ai ∩Qj+1| ≤ ⌊(|Qj+1 − 1)/(s− j − 1)⌋ due to

|Qj+1| − 1

s− j − 1
= ℓ− 1

s− j − 1
.

Since

|Qj+1| = (s− j − 1)ℓ = (s− j − 1) · n− 1

s− 1
≥ n0(s− j),

we may apply induction to obtain

|Lj+1| ≥
|Qj+1| − 1

s− j − 1
+ s− j − 1 = ℓ− 1

s− j − 1
+ s− j − 1.

Since A1, B1, . . . , Bj−1 are disjoint from Qj+1, we have m ≥ ℓ+s−1 = (n−1)/(s−1)+s−1

as s− j − 1 > 1. Otherwise, there is a set Bj ⊂ Qj+1 with size ℓ in L and we continue the

procedure.

Now, suppose the procedure goes up to j = s− 2. Then we have ℓ-sets A1, B1, . . . , Bs−3 and

all the pairs in Qs−1 = [n]\ (A1∪{x1}∪B1∪ . . .∪Bs−3) are covered. Since |Qs−1| = ℓ, either

Qs−1 ∈ L or by the de Bruijn-Erdős theorem, |Ls−1| ≥ ℓ. If Qs−1 ∈ L, then m ≥ ℓ + s − 1

as we have s− 1 sets of size ℓ and an additional ℓ sets from the fact that A1 has minimum

degree 2. If Qs−1 /∈ L, then |Ls−1| ≥ ℓ, so we have m ≥ ℓ + s − 2. Suppose m = ℓ + s − 2.

Since x1 has degree at least ℓ/(s − 1) and m = ℓ + s − 2, there must be a matching of

size ℓ/(s− 1) in L2. Since B1, . . . , Bs−3 have size ℓ, they cannot contain x1. It follows that

there must be a matching of size ℓ/(s− 1) in the elements of L that cover the pairs in Qs−1.

This is a contradiction as any two sets in Ls−1 intersect in exactly one point. This shows

m ≥ ℓ + s − 1 = (n − 1)/(s − 1) + s − 1. This concludes the proof of the lower bound in

Theorem 1.
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Proof of Tightness for Theorem 1. Suppose (s − 1) | (n − 1). We construct a family

of s covers Ln(s) on [n] with size (n − 1)/(s − 1) + s − 1. Recall that a near pencil on [n]

comprises n sets A,B1, . . . , Bn−1 where A = [n − 1] and Bi = {i, n}. By the de Bruijn-

Erdős theorem, Ln(2) consists of the near pencil or a finite projective plane. For s ≥ 3, and

t = (n − 1)/(s − 1), let Ln(s) consists of families obtained by taking the disjoint union of

some L ∈ Ln−t(s − 1) with a t-set T , and possibly enlarging each set in L by a point in T

while ensuring that no two sets in our family have more than one point in common. It clear

that members of Ln(s) are s-covers as any s-set contains either 2 points in T or s− 1 points

in the L ∈ Ln−t(s− 1). Moreover,

|L|+ 1 =
n− t− 1

s− 2
+ (s− 2) + 1 =

n− 1

s− 1
+ s− 1.

This shows Theorem 1 is tight if (s− 1) | (n− 1).

We now show Theorem 1 is tight asymptotically. Suppose (s−1) ∤ (n−1) and n is sufficiently

large in terms of s. We construct an s-cover of size n/(s− 1) · (1 + o(1)) as n → ∞. In [2],

Baker, Harman, and Pintz showed there is a prime number in the interval [x, x+ x0.525] for

x sufficiently large. Setting x =
√
n/(s− 1) implies that there is a prime q such that√

n

s− 1
≤ q ≤

√
n

s− 1
+

(
n

s− 1

)0.2625

. (22)

Let A1, A2, . . . , As−3 be pairwise disjoint sets of size ⌊(n− 1)/(s− 1)⌋. Let x = (s− 3)⌊(n−
1)/(s− 1)⌋ + (q2 + q + 1) and As−2 be a set of size n− x with no points from the previous

Ai’s. Let As−1, . . . , Am be a projective plane on the remaining q2 + q + 1 points. Let

L = {A1, . . . , Am}. Note that any s-set has either 2 points in some Ai where 1 ≤ i ≤ s− 2

or 2 points in the projective plane formed by As−1, . . . , Am, so all s-sets are covered. We

now show that |As−2| = n− x ≤ ⌊(n− 1)/(s− 1)⌋. This is equivalent to

n− (s− 2)

⌊
n− 1

s− 1

⌋
≤ q2 + q + 1.

This holds since

n− (s− 2)

⌊
n− 1

s− 1

⌋
≤ n− 1

s− 1
+ s− 1 <

n

s− 1
+

√
n

s− 1
+ 1 ≤ q2 + q + 1.

For s− 1 ≤ t ≤ m,

|At| = q + 1 ≤
√

n

s− 1
+

(
n

s− 1

)0.2625

+ 1 <
n− 1

s− 1
.

This shows L is an s-cover of size

q2 + q + 1 + s− 2 =
n

s− 1
(1 + o(1))

by (22).
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