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Abstract

Fix an integer s > 2. Let P be a set of n points and let £ be a set of lines in a
linear space such that no line in £ contains more than (n — 1)/(s — 1) points of P.
Suppose that for every s-set S in P, there is a pair of points in S that lies in a line
from L. We prove that [£| > (n—1)/(s —1) +s— 1 for n large, and this is sharp when
n — 1 is a multiple of s — 1. This generalizes the de Bruijn-Erd6s theorem which is the
case s = 2. Our result is proved in the more general setting of linear hypergraphs.

1 Introduction

A finite linear space over a set X is a family £ of its subsets, called lines, such that every
line contains at least two points, and any two points are on exactly one line. A fundamental
theorem proved by de Bruijn and Erdds [5] states that if £ is a finite linear space over a set
X with X ¢ £, then |£| > |X| and equality holds if and only if £ is either a near pencil
or a projective plane. This is often viewed as a statement in incidence geometry, in which
case it states that the number of lines determined by n points in a projective plane is at
least n. The result also has the following graph theoretic formulation: the minimum number
of proper complete subgraphs of the complete graph K, that are needed to partition its
edge set is n (see [1] for an extension of this formulation to hypergraphs). Various other
extensions have been studied. For instance, [4] considered the problem of determining the
minimum number of lines determined by n points in general metric spaces and [6] defined
a notion of de Bruijn-Erdés sets in measure spaces and bounded the Hausdorff dimension
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and Hausdorff measure of such sets. The de Bruijn-Erdés theorem is also a basic result in
extremal set theory and design theory that has many extensions and generalizations. The
most notable of these are due to Fisher [7], Bose [3], and Ray-Chaudhuri-Wilson [8].

Here we consider another natural generalization of the de Bruijn-Erdds theorem. We relax
the condition that every pair of points lies in a line as follows. An s-set is a set of size s.

Definition 1. A collection of subsets (lines) L of a set X is an s-cover if every two lines in
L have at most one point in common and for every s-set S C X, some pair of points from
S lies in a line in L.

Note that when s = 2, this is the definition of a linear space (excluding trivial requirements).
We can view this definition through the lens of graph theory as follows. Consider the graph
G = (X, F) where F is the set of pairs not contained in any line in £. Then G is K,-free when
L is an s-cover. Hence, the s-cover condition can be thought of as a Turdn-type property.

As s becomes larger, the requirement for a family to be an s-cover becomes weaker, and
hence the number of lines needed for an s-cover decreases. So a natural question is to ask for
the size of a smallest s-cover. In order to make this problem nontrivial, we need to impose
an upper bound on the size of subsets in £. For example, if we allow sets of size | X|, then
just one set suffices to cover every pair. Morever, if sets in £ are allowed to be of size greater
than (n —1)/(s — 1), then we can take a collection of s — 1 pairwise disjoint sets that cover
all the points. This is an s-cover, as any s points will contain two points in one of the sets
and will be covered. As n — oo this is has constant size. Hence the natural condition to
obtain a nontrivial result as n — oo is that all sets in £ have size at most t = (n—1)/(s—1).

Under this condition, a straightforward construction reminiscient of the construction for
Turdn’s graph theorem is the following. Assume that t = (n — 1)/(s — 1) is an integer. The
underlying set is a t X (s —1) grid with an additional new vertex z, and the line set comprises
all columns as well as all rows where we append z to each row (see Figure 1). Formally,
X =([t] x [s—=1])U{z}, and

L={c:1<i<s—1}U{r;u{z}:1<j<t},
where the ith column is ¢; := [t] x {i¢} and the jth row is ; := {j} % [s — 1]. This yields an
s-cover with |£| = s —1+¢.

In this paper, we show that the above construction is tight. Our main result is the following
theorem.

Theorem 1. Fix s > 2. Let L be an s-cover over a set of size n. Suppose that each set in
L has size at most (n —1)/(s —1). Then |L] > (n —1)/(s — 1) + s — 1 for n large and this
is tight if (s—1) | (n—1). If (s—1) 1 (n—1), then the bound (n—1)/(s—1)+s—1 is tight
asymptotically as n — oo.

The general framework of Theorem 1 specializes to give appealing geometric statements as
given in the abstract or the more special form below.
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Figure 1: The construction of £ when ¢t =5 and s = 4.

Corollary 1. Fiz an integer s > 2. Let P be a set of n points and let L be a set of m lines
in the plane such that no line in L contains more than (n —1)/(s — 1) points of P. Suppose
that for every s-set S of points from P, there is a pair of points in S lies in some line from
L. Thenm > (n—1)/(s —1)+s—1 forn large and if n — 1 is a multiple of s — 1, this is
tight.

We remark that equality can hold above as some of the hypergraphs we construct to prove
tightness for Theorem 1 can be realized as lines in the plane.

Our proof requires n to be large in terms of s and it remains an open problem to prove the
result for small n.

2 Proof of Theorem 1

We will prove Theorem 1 by induction on s. However, in order to facilitate the induction
argument, we need to prove a slightly stronger statement for s > 3 as shown below.

Theorem 2. The statement of Theorem 1 holds with the following strengthening. If s > 3
and each set in L has size at most (n —1)/(s —1) =1, then |£| > (n—1)/(s—1) +s— 1.

Notation and Lemmas. Let £ = {A;, As,..., A} be an s-cover on X := [n]. Assume
|A;| = a; and (n—1)/(s—1) > |A1] > |Ag| > -+ > |A,|. For z € X the degree of x, written
d(x), is the number of A; that contain z and the neighborhood of x, written N(z), is the
collection of A;’s that contain z. Let d = ming,ec, d(w) and suppose that d(v) = d where
v € Ay Let {A;,...,A;,} be the neighborhood of v where i; = 1 and let Q) := [n] \U?Zl Ay
and P := U?Zl Aj;. Set p := |P| (see Figure 2). Throughout the proof, we say a subset
J C [n] is covered if there exists some A; containing .J.
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Figure 2: Setup for Lemma 1.

We first prove a lemma giving various bounds on m depending on d, the a;’s, and |Q|. We
will assume below that Theorem 2 holds for all ' < s — 1 by induction on s and that n is
sufficiently large in terms of s to apply induction and any further inequalities that require
this. More explicitly, we will show that if n > ng(s) where ng(s) is large enough for the
inequalities we use in the proof to hold, then |£| > (n —1)/(s — 1) +s — 1.

The base case s = 2 of the induction follows from the de Bruijn-Erdds theorem, so we assume
s > 2. We note that the stronger statement of Theorem 2 holds only for s > 3, and we will
take care of the specific case s = 3 during the proof.

Let 6,01, 02, 03,04 > 0 be constants that follow the hierarchy

1 1
W<<(52<<(51<<5<<54<<(53<<—2
O S

where ¢ < 7 simply means that ¢ is a sufficiently small function of n that is needed to satisfy
some inequality in the proof. In particular, set

03 = o4 and 5y = 02,

We will repeatedly use the fact that if 5> 1/10 and 0 < o < 80,

il < il < s < ! <9 (1)
n® = (Cis8)8 — cof T o 2

Lemma 1. The following bounds hold for n > ny(s).

L. m>a(d—1)+1



2. If |Q| > n(s—2)/(s —1), then
Q-1

m >

+s—2+d.

3. For distinct iy, iy, ..., 1,, let A} C A;, be pairwise disjoint subsets, a; = |Aj |. Then,

/ / / /
a;, @, @, ...

m >
— / / / /
es—Q(Gilu ai27 ai37 R ais)
where ey (xq,...,2,) = Zl§i1<~--<ik§n xi, -+ xy, 1S the k-th elementary symmetric poly-

nomaial.
m a; n?
4 2is (2) = 2(s-1)
5. Suppose ay > (1 —98) - /n. Writen —1+ (s —1)(s —2) = (s — 1)a1q + r for integers

q,r with0<r < (s—1)ay. Ifd ¢ {q,q+ 1}, thenm>2%11+s—1.

|3

Proof. We prove each statement of the lemma.

1. The number of sets containing a vertex in A; is at least a;(d — 1) + 1 as d is minimum
degree of vertices in A;.

2. Observe that

Q-1 "1 1
s—2 s—2 s—1 s—2
This implies (|Q| —1)(s—1) > n(s—2) — (s —1)+ 1= (n—1)(s — 2). Rearranging, we get
(n—1)/(s—1) < (]Q] —1)/(s — 2). This shows the size of all sets not in N(v) is less than
(IQI =1)/(s — 2). Also,
s—2 s—2

> n > no(s) > ng(s — 1).

Q1> 220 = 2= Zng(s) 2 mo(s — 1)
For any s —1 distinct vertices x1,...,zs 1 € @), there must be a set A; containing a pair from
x1,...,Ts 1 as the s-set {z1,...,xs 1,0} must be covered and x1,..., 2,1 ¢ P. Therefore

the collection of sets A; \ P that have at least one point in @ is an (s — 1)-cover of Q). By the
induction hypothesis, the number of these sets is at least (|Q| —1)/(s — 2) + s — 2. Hence
m > (|Q] —1)/(s — 2) + s — 2 + d as there are d sets containing v in addition to these A;.

3. Consider the collection of s-sets B = {{z1,..., 25} : x; € A;j,j =1,...,s}. A particular
: a; ) such s-sets as it has at most one point in each of A;,,...,

il"”’ ,L'S

A; covers at most e;5_o(a
Aj,. The number of s-sets in B is a;, - - - a;_. It follows that

/ /
zl IR CLZS

/ / :
es—a(aj ..., a;)

a

m >

4. Let G = ([n], E) be the graph where F is the set of pairs not contained in any A;. Then
G is Ks-free. Since every pair in [n] is either in some A; or in F, we have

() =% (5) +1m
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Since |E| <n?/2-(1—1/(s —1)) by Turdn’s theorem,

S(3)2 () -5 (-5) -

5. We have n — 14 (s — 1)(s — 2) = (s — 1)ayq + r for integers ¢, with 0 < r < (s — 1)ay.
If d > q+ 2, then part 1 implies

m>a(g+1)+1
n—1+(s—1)(s—2)—r

s—1
n—l+ . r
s—1 o1
n—1
> +s—1.
s—1

If d <q—1, then

QI =n—da—1)—1
>n—(¢g—1)(ag —1)—1
=n—qu+qta—1-1

n—14+(s—-1)(s—2)—r

=n +qg+a—2
s—1
-2
> 2 1n—(s—2)+q+a1—2
S_

S
= n+CI+a1—s.
s—1

Note that
a; — s> (1—=0)y/no(s) —s>s.

It follows that ¢ +a; —s > s, s0 |Q| > n(s —2)/(s — 1) + s. By part 2

n-l. o
S — 1.
1

1 22n 45
m2&+3_22L+3_2>
s—2 s—2 s —

Proof of Lower Bound for Theorem 1.
We prove Theorem 1 by considering different ranges for a;. Let n > ng(s) and set £ = 1/10s%.
Case 1: a; < (1 —9)/n.

From Lemma 1.4, we have >.1" (%) > n?/2(s — 1) — n/2. Since Y /", (%) < mai/2 <
m(1 — §)*n/2, we have
(1—6)2 n?

n
nm> —— — —.
2 2s—1) 2
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This implies

2(271)_%_ 1 no
me Bt - ().

For n > ny(s), this is greater than (n —1)/(s — 1) + s — 1.
Case 2: (1 —10)y/n < a; < 10y/sn.

By Lemma 1.5, we can assume d is either g or ¢+ 1. Suppose |@Q| > n (1 —1/(s —1)). Then

by Lemma 1.2
-1 1
mZ|Q| +s—2+d> o +s—2+d.
s—2 s—1 s-—2
Since n—1 < n—1 +s—2_ n T ot
(s—1Da; (s—1)a a — 1 (s —1)ay 5
we have S n_1
d>qg> ——— —1> —1. (2)

== aj(s—1) ~ 10/s(s — 1)y/n

Hence, for n > ny(s)
n 1 n—1

—2+d — 1.
1 8_2—1—5 + >S_1—i-s

Therefore |Q] <n(l —1/(s—1)) and p := |P| =n —|Q] > n/(s — 1). By Turan’s theorem,
at least p?/2(s — 1) — p/2 of the pairs in P must be covered. The number of pairs covered

byAil,...,A
Xd: 0\ < g < 9
2 ) 2) - 2

J=1

ig 18

Since a set A; in £\ N(v) has at most d points from P, it covers at most (g) pairs. So

2

d a; .
> 2(5—1) _g_Zj:1<2]) N p? 1_8—1 _a%d(s—l) 3)
§ z ooE\' T T )
Note that
ald(s —1) < 100snd(s — 1)  100ds(s — 1)°
p? = n?/(s—1)2 n '
Observe that "1 59
< 1 1 4
d<a+ aj(s—1) a N 4)
and
n—1 +s—2+1< n—1 . s—2 1
ai(s=1) o T (=d)vn(s—1) (1-9vn (5)
N
< 1.
S (1—5)(5—1) + 09 +
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Consequently, by (4),

This and (1) imply
100ds(s — 1)3 - 100s®

p < — d(s—1)
< 1028 (1—\@ +(s— 1) +52))
~ 100s® N 100s3(s — 1)(1 + ds)
V(1 —-9) n
02
<2
-2

It follows that a?d(s — 1)/p* < §,/2. Asp>n/(s—1), we have (s —1)/p < (s — 1)*/n <
s?/m < 62/2 by (1) and hence by (3)
p?
>(1—09)———.
m > (1 —dy) GoDE (6)

We will now prove a lower bound for p?/(s — 1)d?. By (4),

—1 (s—2)(s—1 2
dis—1) <™ +(S (s )+s—1<£+s—+s,
ai aq ay ay
and this, a; < 104/sn, and (1) yield
P (/=1
(s—1)d?> = (s—1)d?
B n? 1
s —1d%(s—1)2
n* (n s -
s i\a Ta
- 1 1
a2 s2 aps\ )
=1 (1 —+ #)
s — noon
S a? 1 5_2 10532\
~s—1 n vn
> % (1+8)72
] 2
Combining (7) and (6), we get
1-— 52 a%
(8)

> .
M= Tt o)2s—1
Case 2.1: a; > (14 01)y/n.
By (8),
1 —52 n
(1 + 52)2 S — 1.

m > (14 6;)°



Since d; >> 0, we have (1401)%(1—02)/(1+0d2)? > 1. It follows that m > (n—1)/(s—1)+s—1
for n > ng(s).

Case 2.2: a; < (1 + 6;)y/n.

We can assume that there are at most n/(s — 1) sets in £\ N(v) as otherwise m > n/(s —
+d>(m-1)/(s—1)+s—1by (2). Recall that d3 = 6'/4 and §, = §/2.

Claim 2.2. At least (1—083)n/(s—1) sets in L\ N(v) have at least (1/(s—1) —d4)y/n points
mn P.

Proof. Assume this is not true. Since every A € £\ N(v) has at most one point in common
with every set in N(v), we conclude that |AN P| < d. Hence the number of covered pairs in

P is at most .

(RPN T BRSPS oY (7 )
512 "s—1\s—1 *) 9 2 )

Jj=1

Recall that d < /n/((1 —0)(s — 1)) + 1+ d2 by (5). By this bound and (1) we have

(1— 85)— d—2<(1—63) & <<1_\/ﬁ +52+1>2

(s—1)2 7 2(s — 1) 5)(s —1) 2
= (1= 05" 5)2”(3 7 (1 U Es ”(1“%5)(3 - 1>> (10)
: (1 - ((;;2 2(sn—2 1)3 (1+8)"
We also have
jin1 (;1 _54>Qg - 2(53—1”‘21)3(1—54(3—1))2. (11)

Since a; < (14 01)y/n and d < 2y/n/((1 —06)(s — 1)) by (4), we have

< (1 +51)2n 2\/5

T2 (1=9)(s-1) (12)
< n?  2(s—1)%(1+6,)?

T 2(s—1)P (1-0)vn

- 2(s—1)%
Note that we used (1) in the last step. Combining (10), (11), and (12), we deduce that the
number of covered pairs in P is at most
2

n (1 +02)%(1 — 03) e 1)
%s—wg( G—op o=l 1D‘+%)- (13)




As 6 > 9o, we obtain

(1+ 02)%(1 — 63)
(1-9)

< (14 302)(1436)(1 — d3)

< (1+40)(1 — b3)
— 1 — 83(1 + 46 — 45/35).

As 636, = /4512 = 6%/% > §, we have 46 + §,(s — 1)/2 > 45/93 and hence

We also have 85 (1 — 6,(s — 1))* < 85 (1 — d4(s — 1)). It follows that (13) is at most

2(8”—_21)3 (1_53 (1—@) +53(1—(54(s—1))+(52)
n? . <1_ 5504(s — 1) +52>.

<
~ (s —1 2

Note that 1—d30,(s —1)/2+ 82 < 1 as d304 > § > d. Since p?/2(s —1) > n?/2(s—1)3, this
implies that for n > ng(s) the number of covered pairs in P is less that p?/2(s — 1) — p/2.
This contradiction completes the proof of the claim. O

Suppose A € L\ N(v). If A has at least (1/(s — 1) — d4)/n points in P, then it has at most
(1461 —1/(s—1)+d4)y/n points in Q as a; < (1+91)y/n. Hence, by Claim 2.2 the number
of covered pairs in () is at most

(1—d)n ((1 Yo —1/(s—1)+ 64)\/ﬁ> L dan ((1 + (51)\/5)

s—1 2 s—1 2
1 1 \*(1=85)n2 (14 6,)%03n>
<146 +04— . 14
—2< ot s—1> =1 T G- (14)
Note that by (4)
Ql =n—d(a—1) -1
>n —day
—1
2n—<n +s—2—i—a1) (15)
s—1

Y RN P +2
N s—1)" T 517 ¢ -

Since every (s — 1)-set in @ is covered, at least |Q[?/2(s — 2) — |Q|/2 pairs in Q must be
covered. We now show that

1 1\ (1—65) (14 6,)%5 1 1\’
§O+&+&_S—J s—1+_my4)<2@—m(k_ )' (16)
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To see this, first note that (1 4 d1)%03/2(s — 1) < 1/100s% as §3 < 1/s. Next

2
1(ywﬁ+&— : )(1_%)

2 s—1 s—1

S§G%75((1—§%7)2+3®y+@0(1—@)

<3 (1) e (1) e
“mow i)

:m;J)O_SiJ _%&4;&4)O_§éa _%

as 03 > 04 > 0;. Since [1/2(s — 2)(s — 1)] - (1 — 1/(s — 1))®> > 1/100s3, this proves
(16). This means the quadratic coefficient of the lower bound of |Q]?/2(s — 2) — |Q|/2 from
(15) is larger than the quadratic coefficient of the upper bound for the number of covered

pairs in @ from (14). It follows that for n > ng(s), the number of covered pairs in @ is
less than |Q[*/2(s — 2) — |Q|/2. Hence we have a contradiction, so it is not possible that

(1—=0)v/n <a; < (1+d)\/n.
Case 3: 10y/sn < a; < (ﬁ — 5) n, where € = 1/10s>.

By Lemma 1.5, we can assume d € {q,q+ 1}. Suppose d = 1. Then, |Q| = n —a; >
(1—-1/(s—1) 4+ ¢e)n, so by Lemma 1.2 for n > ny(s)
-1 1 —1
. Q| n en n

—2> -2 — >
s — 2 ts _3—1+s—2+$ s—2 s—1

+s—1.

Hence, we can assume d > 2. If |Q] > n (1 —1/(s — 1)), then for n > ng(s)

Q

-1 1 -1
| +s—24+d> n z
s—2

-2 - — 1. 1
8_1—1—3 5_2+d>8_1—|—s (17)

m >

by Lemma 1.2. Hence, we can assume p > n/(s — 1). We consider the cases d > s+ 2 and
d < s+ 1 separately. Suppose d > s + 2. Observe that

-1 -2
d<qt+1<—2 +2 24
aj(s —1) a
and
n—1
<plad< ——+s5—2+a.
s—1 s—1
Suppose there are three sets in the neighborhood of v with size less than a; /2. Then,
3a; _n-—1 ay
<a(d-3)+ — < —— —-2—-—.
p < ay )—|—2 _S_1+s 5

Since a; > 104/sn, this upper bound for p is smaller than n/(s—1), so we have a contradiction.
Hence there are at most two sets in the neighborhood of v with size less that a; /2. As we are

11



assuming d > s + 2, there are at least s sets with size more than a,/2 — 1 > 4/sn. Taking
disjoint subsets of these s sets of size 4/sn and applying Lemma 1.3 we get

4 s 16 32 -1

(4y/sn)* sn_ 32n _n te1

MEDavs T () s—1 s—1

for n > ng(s).
We now consider the case in which d < s+ 1. Since n/(s — 1) < p < a;d, we have

n___n
(s—1) =~ s2—1

Glzd

Let Ay = {x1,...,24,}. If there are at least 2n/s? vertices in A; with degree at least s + 1,
then m > 2n/s > (n —1)/(s — 1) + s — 1, so we can assume that there are at most 2n/s?
vertices in A; with degree at least s?+1. This implies that there are at least n/(s*—1)—2n/s®
vertices in A; with degree at most s2. For 1 <i < aq, let

a; —1
T, = J
- > ()
Jiwi€A;,5#1

and let B = {i : d(x;) < s°}. Then we have
Z T, < n?

as each pair is in at most one A;. It follows that there is some ¢ € B such that

T, < n? < n? $(s°—1)

< n < 4s°n.
| B

n__ 2n 3 _ 92 =
=73 S — 28742

By Jensen’s inequality and the inequality (g) > 12 /16,

Ty > (d(z) — 1) <d(xe)—1 Ek:xeezAk,k;él(ak — 1)) > m ( Z (ar — 1)) .

k:xp€Ag,k#1

Comparing the lower bound and upper bound for 7} yields

> (e —1) < 4y/d(x) — 1-25v/n < 85°V/n.

k:xy€Ag k#1

Let @1 be the set of points outside of the neighborhood of x,. Then every (s — 1)-set in
[n] \ @1 is covered. Furthermore, since a; < (1/(s — 1) —e)n and € > 0y

1 Rs2
Q1| >n —a; — 8s*y/n > (1—5_—14_5_%)”

1
2(1— +5—52)n
s—1
1
> (1—
(1=

12




so by Lemma 1.2 with @ replaced with Q; we get m > (n —1)/(s — 1) + s — 1 by the same
computation as (17).

Case 4: (1/(s—1)—¢)n<a; < |[(n—1)/(s—1)].
Suppose d = 1. Then [Q =n—a; > (s —2)n/(s—1) asa; < (n—1)/(s—1) — 1, so by
Lemma 1.2 we have

—a; —1 —1
m2&+8—2+1>n +s—1.
s—2 s—1

We can assume d = 2 as if d > 3, then m > 2a; > (2/(s—1)—2e)n > (n—1)/(s—1)+s—1.
Furthermore, we can assume the number of vertices in A; with degree greater than two is
at most (£ 4+ 1/s*)n as if not the number of sets that intersect A; is at least

1 n +1 1 _'_1 >n—1+ 1
—eln e+ —=|n= —|ln>—+s—1.
s—1 53 s—1 3 s—1

Suppose all the (s — 1)-sets in [n] \ A; are covered. Observe that

n—1>s—2
s—1 s—1

n]\ Ail=n—a; >n— n > ng(s —1),

and a; < (|Q|—1)/(s—2) by the same inequality used in the proof of Lemma by 1.2. Define
C={AN(n\ A A€ £, |AN (] \ A)] > 2}

By induction on s
a; — 1 n—1

n —
L)>———+s5—-2> +s5—2.
£ 2 §s—2 s—1
Since A; N ([n] \ A1) = 0, we have
n—1
m > +s—1
S —
Hence we can assume there is some (s — 1)-set 1, 29, ..., 251 in [n]\ A; that is not covered.
For any p € Ay the s-set {p,x1,xs,..., 251} is covered, so there is a set containing a pair

pz; for some i € [s — 1]. Set
B,, ={p € A :p,x; € A; for some j}
for 1 <i <s— 1. Without loss of generality, assume |B,,| > |B,,| > ... > |B.,_,|. Then
ay 1 g
B, | > > — .
| 1‘_3—1 <(S—1)2 s—l)n

Let B, C B,, be the points in B,, that have degree two. Since the number of points in A,

with degree greater than two is at most (¢ + 1/s*)n, we have

1 1 1
Bl>(———— (14— ) )n
| ““-<@—1V 5 5( +3_1>)”
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Figure 3: Q2 and B,

Let Q2 = [n] \ (A1 U{z1}) (see Figure 3). Suppose {u,...,us_1} C Q2 is uncovered and let
p € B, . Then the s-set {p,ui,us,...,u,_1} must be covered, so there a set A; containing
p, u; for some . Since |BY, | > s — 1, there is p;,p, € B, and 1 < j < s — 1 so that the pairs
piu; and pou; are both covered. The sets containing these pairs are distinct as p1,ps € Aj.
This is a contradiction as any set containing a point from B,, contains x1, so it implies that
pair w;z; is in two distinct sets. Hence, all (s —1)-sets in ()3 are covered. Observe that since
ap < (n—1)/(s—1),
n—1 5—2 1

=n—a —1>n-— - 1= ol —1). 1
Q2] =n — a4 2N =" s—1n+3—1 > no(s —1) (18)

Consider the collection of sets {A4; N Q2}. Since a; < (n—1)/(s—1)—-1<(n—2)/(s—1),

a2 Q-1
- s—=2 5§—2

a1

so |A; N Qs < (|Qo] —1)/(s — 2) for all i. Suppose a; < (n —1)/(s —1) — 1. Then, by
induction on s, the number of sets in £ in (), is at least
Q2| — 1 n—a; —2 n—1

9T MTA L 9 1
p— + s " + s >S_1+S , (19)

Since AyNQa=0,m>n—-1)/(s—1)+s—1.

We now consider the case a; = (n—1)/(s—1) — 1. Note that (s—1) | (n— 1) in this case. By
the inequality in (19), we have m > (n —1)/(s — 1) + s — 1. As stipulated by the induction
statement, we are required to show that this inequality is strict.

Claim 2.3. Ifa; < (n—1)/(s—1)—1, thenm > (n—1)/(s—1)+s— 1.

14



Proof. 1f a1 < (1/(s — 1) — €)n, then the claim follows by the arguments in Cases 1-3. If
(1/(s=1)—en<a; < (n—1)/(s—1)—1, then (19) shows m > (n—1)/(s —1) +s—1, so
we can assume a; = (n — 1)/(s — 1) — 1. Define

,CQ :{AQQQAEE, ’AQQ2‘22}

We first consider the case s = 3. Thena; = (n—1)/2 -1, |Q2] =n—(n—-1)/(s —2) +
1—1=(n—-1)/2+ 1, and every pair in ()2 is covered. By the de Bruijn Erdds theorem,
1Ly > (n—1)/2+ 1. If |[L5] > (n—1)/2+ 1, then m > (n —1)/2+2 as Ay N Qs = .
Hence we can assume |£y| = (n —1)/2 + 1. By the de Bruijn Erdés theorem, L is either a
near pencil or projective plane. If £ is a near pencil then, there is a set of size (n —1)/2
in Lo. This is a contradiction as the largest set in £ has size a; = (n — 1)/2 — 1. Suppose
now that £, is a projective plane, so |Lo| = |Q2| = (n — 1)/2. Recall that x; has degree at
least |B,,| > a1/(s — 1) = ay/2 > 3. If N(z1) contains A;, A; such that neither A; N Q2 nor
A;NQqisin Ly, then m > |L3]4+3 > (n—1)/2+2. So N(z1) contains A;, A; such that both
A;N Q2 and A; N Q9 are in Lo. But L, is a projective plane hence (A4; NQ2) N (A;NQ2) # 0,
which means that |4; N A;| > 2, a contradiction.

Now, suppose s > 4. Suppose a; = (n —1)/(s — 1) — 1. Then every (s — 1)-set in @) is

covered. We also have
|Q2] — 1 n—a—2 n-1

s—2 s—2  s—1’
so a1 < (|Q2| —1)/(s —2) — 1. This shows |A| < (|Q2| —1)/(s—2) —1 for all A € L,. Since
|Q2| > no(s — 1) by (18), the inductive hypothesis implies

1 1
@l =1 o o m=l oy
s—2 s—1

|Lo| >

As Ay & Lo, it follows that m > (n — 1)/(s — 1) + s — 1 and this concludes the proof of the
claim and Case 4. O

Case 5: a1 = [(n—1)/(s—1)].

We note that for z > 1, we have |x| > x — 1 so in this case a; > (n —1)/(s — 1) — 1 and we
only need to prove that m > (n—1)/(s —1) + s — 1.

Suppose all the (s — 1)-sets in [n] \ A; are covered. Observe that n —a; > ng(s — 1) by (18)
and a; < (n—a; —1)/(s—2)asa; < (n—1)/(s—1). Define

L= {An(n]\ A1) : A€ L, |[An([n]\ A1) > 2}.

By induction on s,
—a;—1 -1
) >t s o T s o
§—2 s—1

Since A; N ([n]\ A1) =0, we have m > (n—1)/(s — 1) +s — 1.

Now, we consider the case in which there is an (s — 1)-set {z1,...,25 1} in [n] \ A; that is
uncovered. Note that we can assume d := min,ec4, d(w) = 2 in this case as if d = 1, then all
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the (s — 1)-sets in [n] \ A; are covered and if d > 3, then m >2a; > (n—1)/(s—1) +s—1.
Furthermore, we may assume that the number of points with degree at least 3 in A; is at
most s — 1, as if there are at least s points with degree at least 3, we have m > 1+a; +s >
(n—1)/(s—1)+s—1. For any p € Ay the s-set {p,x1,x9,...,25_1} is covered, so {p, z;}
is covered for some i € [s — 1]. For 1 <i < s—1, set

By, ={p € Ay : {p,x;} C A; for some j}.

Without loss of generality, assume |B,,| > |By,| > -+ > | B, |- Then

aq

S

Let B), C B, be the set of points in B,, that have degree two. Since the number of points
in A; with degree greater than two is at most s — 1, we have

1

ai
B | > — 1. 20
Bl > 5 s+ (20)

Let Q2 = [n]\ (A1 U{21}). Suppose {ui,...,us_1} C Q2 is uncovered and let p € B}, . Then
the s-set {p,u1,us, ..., us—1} must be covered, so there a set A; containing p and u; for
some j. Since |B;, | > s — 1, there are p;,p; € B), and 1 < j < s — 1 so that the pairs p;u;
and pou; are both covered. The sets containing these pairs are distinct as pi, p, € A;. This
is a contradiction as any set containing a point from B,, contains xj, so it implies that the
pair u;, z; is in two distinct sets.

Hence all (s — 1)-sets in @y are covered. (21)

Define
;CQ Z:{AQQQZAGE, |AﬂQ2| 22}

We first consider the case s = 3. Suppose first that n is odd, say n = 2k+1 for some integer k.
Then, a; = k and |Q2| = k. Then either Q)5 € L or by the de Bruijn-Erdés theorem |L£o] > k.
Suppose Q3 € L. Since A; has minimum degree 2, we have m > k+2 = (n—1)/2 + 2 as
required. Now suppose Q)2 ¢ L. By the de Bruijn-Erdds theorem, |Lo| > k. If |Lo] > k+ 1,
we have m > k42 as Ay NQy = 0. If |Ls] = k, then L, is either a near pencil or projective
plane. In either case, any pair of sets in ()5 intersects in exactly one point. Suppose m = k+1
for the sake of contradiction. Then since 1 has degree at least a;/(s—1) = a;1/2, there must
be a matching of size a;/2 in (). This is a contradiction, so we have m > k + 2.

Now, suppose n = 2k. Then, a; = k — 1 and |@Q2] = k. Since |Q2| > ai, by the de Bruijn-
Erdés theorem |L£o| > k. This implies m > k+ 1. By the same argument as above using the
fact that x; has degree at least a;/2, we have m # k+ 1, so m > k + 2.

We now consider s > 4. Write n — 1 = (s — 1)¢ + r for integers ¢, with 0 < r < s—1 so
that a; = ¢. We will show that m >/¢+s>(n—1)/(s—1)+s— 1.

Case 5.1: r > 2.
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Note that |Qz| =n—a; — 1= (s —2){ +r and
|Q2|—1 r—1
— =+ ——2> 1
5—2 +s—2_

Fori > 1,|A;NQ2 <a; =0 < (|Q2] —1)/(s—2). Since |Q2] > no(s — 1), by induction on s,

-1 -1
]£212m+s—2:£+r +s—2.
5—2 2

Since A; N Qs = 0,
r—1+ 1
s—1.
2

m >0+ —
This shows that m > ¢+ s asr > 2.
Case 5.2: r € {0,1}.
Case 5.2.1: There is no By € L of size ¢ such that B; C Q).

Suppose r = 1. Note that |Q2| = (s —2)¢ + 1 and

Qa1
s—2

L.

We also have |A; N Qs| < ¢ — 1 for all i. Since |Q2| > ng(s — 1), by induction we have the
strict inequality

—1
|£2‘>%+8—2:€+8—2.
8_

Since A; N Qo = 0, this implies m > £ + s.

Suppose r = 0. Note that £ = (n —1)/(s — 1), |Q2| = (s — 2)¢ and

Qo) —1]
{ﬁJ—f—l-

We also have |4; N Q2| < ¢ —1 for all i and |Q2| > no(s — 1). By induction on s,

—1 1
|£2|2M+3—2:€— +s—2.
5—2 5—2

Since A; N Qy = (0, this implies

m >l — +s—1.

S p—
Since s > 4, this shows m >/l +s—1=(n—-1)/(s—1)+s— 1.
Case 5.2.2: There exists By € L of size ¢ such that By C Q.

We use an iterative argument for this case. Recall (21) that all (s —1)-sets in Q)2 are covered.
Let 2 < j < s—2. Suppose all (s—j+1)-sets in @); are covered and B;_; C ); is an f-set in L.
Let Qj11 = @, \ Bj_1 so that Ay, By, ..., B;_; is a matching. We can assume the minimum
degree among points in B;_; is 2 as we did with A;. Similarly we can also assume that the
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number of points in B;_; with degree at least 3 is at most s — 1. We can also assume the
maximum degree of points in B;_; is at most s, as otherwise m > 1+/0+ (s+1—2) ={(+s.
Recall that B is the set of v € A; such that {v,z;} is covered and d(v) = 2. We first
construct a matching M;_; C B], x B;_; of covered pairs. For every v € B, , let X,, € L be
the set containing x; and v. We will assume at most s — 1 of the sets { X}, . B, are disjoint
from B;_; as otherwise we have m > £+ s since points in B;_; have minimum degree 2. This
means that there are at least B, — s+ 1 covered pairs in B;, x B;_;. Since the maximum
degree of points in B;_; is at most s, there is a matching M C B, x B;_; of size at least
(|B;,| —s+1)/s. Let M;_; be the matching formed by deleting pairs (g, k) with d(h) > 3
from M. Note that (20) implies

2 Bl =+
j—1 =

—s5+1>s5—7.

We now claim that the (s — j)-sets in @;4; are covered. Suppose {hi,...,hs,_;} is an
uncovered set in (;4+1. Since every (s — j + 1)-set in @); is covered, for every p € Bj_q,
the (s — 1)-set p, hq,..., hs_; is covered. It follows that the pair p, h; is covered for some
i € [s—j]. Since |M,_1| > s—j, there is h;, and points =,y in the restriction of M;_; to B;_;
so that the pairs x, hy and y, hy are both covered. This is a contradiction as d(z) = d(y) = 2,
so sets in £ that contain z, hy and y, hy, both contain ;. Hence the pair hy, z; is in two sets
in £. Consequently, all (s — j)-sets in @)1 are covered. Define

£j+1 = {AOQ]-H A€ ﬁ, ]AﬂQj+1| > 2} .

Let us first suppose that 7 = 1. Assume j < s — 2. If |4, NQ;41| < ¢ —1 for all 4, then
|4 N Qja| <= (|Qjs1| —1)/(s — j —1). Since

: : n—2 :
|Qj+1’:(8—j—1)£+1:(s—j—1)8_1 > no(s —j),
and by induction,
=1
|£j+1|>M+S—j—1:€+S—j—l.
s—j—1
Since Ay, By, ..., Bj_; are disjoint from Q;1, we get m > £ + s. Otherwise, there is a set

B; C Qj41 with size ¢ in £ and we continue the procedure. Now, suppose the procedure
terminates at j = s — 2. Then, we have (-sets Ay, By, ..., Bs_3 and all the pairs in Q,_; =
]\ (A1 U{z1} UB;U...U B,_3) are covered. Since |Qs_1| = ¢ + 1, by the de Bruijn-Erdds
theorem, |Ls_1| > ¢+41. Since Ay, By, ..., Bs_3 are disjoint from Qs_1, we have m > {+s—1.
We now show that m > ¢ + s. Suppose m = £ + s — 1 for the sake of contradiction. Then,
L1 is either a near pencil or projective plane. Since x; has degree at least /(s — 1) and
m = {+ s— 1, there must be a matching of size ¢/(s— 1) in Ly. Since By, ..., Bs_3 have size
¢, they cannot contain z;. It follows that there must be a matching of size £/(s — 1) among
the elements of £ that cover the pairs in (),_;. This is a contradiction as any 2 sets in £,_»
intersect in exactly one point. This shows m > ¢ + s.
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Figure 4: Iterative Procedure

Let us now suppose that » = 0. Assume j < s — 2. If |[4; N Q,41| < £ —1 for all ¢, then
|Ai N Qja| < [(|Qj+1 —1)/(s —j — 1)] due to

M:g_;
s—j—1 s—j—1
Since
: : n—1 :
Qi =(s—j—-Dl=(s—j—1)- P—] > no(s — J),
we may apply induction to obtain
1l — 1 1
T N S SN
s—73—1 s—j—1

Since Ay, By, ..., Bj_1 are disjoint from @41, we havem > (+s—1=(n—1)/(s—1)+s—1
as s — j — 1 > 1. Otherwise, there is a set B; C ()41 with size £ in £ and we continue the
procedure.

Now, suppose the procedure goes up to j = s — 2. Then we have (-sets A, By, ..., Bs_3 and
all the pairs in Qs—1 = [n]\ (A U{z1}UBU...UB;,_3) are covered. Since |Qs_1| = ¢, either
Qs—1 € L or by the de Bruijn-Erdés theorem, |L; 1| > (. If Q51 € L, then m >+ s —1
as we have s — 1 sets of size £ and an additional ¢ sets from the fact that A; has minimum
degree 2. If Qs_1 ¢ L, then [L;_1| > ¢, so we have m > ¢ + s — 2. Suppose m = { + s — 2.
Since z; has degree at least £/(s — 1) and m = ¢+ s — 2, there must be a matching of
size £/(s — 1) in Lo. Since By, ..., Bs_3 have size ¢, they cannot contain z;. It follows that
there must be a matching of size ¢/(s — 1) in the elements of £ that cover the pairs in Q1.
This is a contradiction as any two sets in £,_; intersect in exactly one point. This shows
m>0+s—1=(n—-1)/(s—1)+ s— 1. This concludes the proof of the lower bound in
Theorem 1. O]
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Proof of Tightness for Theorem 1. Suppose (s —1)|(n — 1). We construct a family
of s covers L,(s) on [n] with size (n — 1)/(s — 1) + s — 1. Recall that a near pencil on [n]
comprises n sets A, By,..., B, 1 where A = [n — 1] and B; = {i,n}. By the de Bruijn-
Erd6s theorem, £, (2) consists of the near pencil or a finite projective plane. For s > 3, and
t=(mn-1)/(s—1), let L,(s) consists of families obtained by taking the disjoint union of
some L € L, (s — 1) with a t-set T, and possibly enlarging each set in £ by a point in T’
while ensuring that no two sets in our family have more than one point in common. It clear
that members of £, (s) are s-covers as any s-set contains either 2 points in 7" or s — 1 points
in the £ € £,,_4(s — 1). Moreover,
n—t—1 n—1

L+1=—"-— —-2)+1=
£1+ 5—2 + (s )+ s—1

+s—1.

This shows Theorem 1 is tight if (s — 1) | (n — 1).

We now show Theorem 1 is tight asymptotically. Suppose (s—1) t (n—1) and n is sufficiently
large in terms of s. We construct an s-cover of size n/(s — 1) - (1 4+ o(1)) as n — oo. In [2],

0.525]

Baker, Harman, and Pintz showed there is a prime number in the interval [z, x + x for

x sufficiently large. Setting x = \/n/(s — 1) implies that there is a prime ¢ such that

Let Ay, Ay, ..., As_3 be pairwise disjoint sets of size |(n —1)/(s—1)]. Let x = (s — 3)[(n —
1)/(s—1)] +(¢* + ¢+ 1) and A, 5 be a set of size n — z with no points from the previous
A;’s

L={A,...,A,}. Note that any s-set has either 2 points in some A; where 1 <i < s—2

Let A,_1,...,A,, be a projective plane on the remaining ¢*> + ¢ + 1 points. Let

or 2 points in the projective plane formed by A, q,..., A, so all s-sets are covered. We
now show that |A;_ o] =n—2 < |(n—1)/(s —1)]. This is equivalent to

1
n—(s—2){ 1J§q2—l—q+1.

This holds since

n—1 n—1 n n
n—@—zwﬁ_lJgS_1+s—1<8_1+us_1+1§f+q+1

For s—1<t<m,

7 n 0.2625 n—l
A =q+1< + +1< .
s—1 s—1 s—1

This shows L is an s-cover of size

F+qgt+l+s—2=

1+ 0(1))

by (22). O
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