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Abstract

A d-dimensional simplex is a collection of d+1 sets with empty intersection, every d of which
have nonempty intersection. A k-uniform d-cluster is a collection of d + 1 sets of size k with
empty intersection and union of size at most 2k.

We prove the following result which simultaneously addresses an old conjecture of Chvátal
[7] and a recent conjecture of the second author [28]. For d ≥ 2 and ζ > 0 there is a number
T such that the following holds for sufficiently large n. Let G be a k-uniform set system on
[n] = {1, · · · , n} with ζn < k < n/2 − T , and suppose either that G contains no d-dimensional
simplex or that G contains no d-cluster. Then |G| ≤ (

n−1
k−1

)
with equality only for the family of

all k-sets containing a specific element.
In the non-uniform setting we obtain the following exact result that generalises a question

of Erdős and a result of Milner, who proved the case d = 2. Suppose d ≥ 2 and G is a set
system on [n] that does not contain a d-dimensional simplex, with n sufficiently large. Then
|G| ≤ 2n−1 +

∑d−1
i=0

(
n−1

i

)
, with equality only for the family consisting of all sets that either

contain some specific element or have size at most d− 1.
Each of these results is proved via the corresponding stability result, which gives structural

information on any G whose size is close to maximum. These in turn rely on a stability result
that we obtain, which is based on a purely combinatorial result of Frankl, thus superseding a
result of Friedgut [17] that was proved using spectral techniques.

1 Introduction

Extremal problems for set systems are fundamental in Combinatorics. We will be concerned with
maximising the size of a system that does not contain a configuration of sets called a d-dimensional
simplex (or d-simplex), which is a collection of d + 1 sets with empty intersection, every d of which
have nonempty intersection.

∗Department of Mathematics, Caltech, Pasadena, CA 91125, USA. Email: keevash@caltech.edu. Research sup-

ported in part by NSF grant DMS-0555755.
†Department of Mathematics, Statistics, & Computer Science, University of Illinois at Chicago, 851 S. Morgan

Street, Chicago, IL 60607-7045; email: mubayi@math.uic.edu. Research partially supported by National Science

Foundation Grant DMS-0400812, and an Alfred P. Sloan Research Fellowship.

2000 Mathematics Subject Classification: 05C35, 05C65, 05D05

Keywords: Extremal set theory, intersecting family, stability

1



Various cases of this basic question can be traced back to some of the oldest theorems and
conjectures in extremal combinatorics. First, there is the theorem of Erdős, Ko and Rado [6] which
is one of the fundamental results in extremal set theory. It states that for n ≥ 2k an intersecting
k-uniform set system on [n] = {1, · · · , n} can have size at most

(
n−1
k−1

)
, and if n > 2k, then equality

holds only for a star, i.e. a family consisting of all sets that contain some specific element x ∈ [n].
Since a 1-simplex is a pair of non-empty disjoint sets this can be interpreted as solving the uniform
extremal problem for 1-simplices.

Second, there is the (6, 3)-theorem of Ruzsa and Szemerédi, which states that a nearly disjoint
triple system (meaning that every two triples have at most one common element) on [n] containing
no 2-simplex has size at most o(n2). The correct growth rate of this maximum is still a major
open problem. This has nontrivial consequences in number theory, as it implies Roth’s Theorem
on 3-term arithmetic progressions (a special case of Szemerédi’s Theorem).

Third, there is the Turán problem for hypergraphs, which asks for the maximum size of a k-
uniform hypergraph on [n] which contains no complete k-uniform hypergraph on d + 1 elements.
This problem is open for all d+1 > k > 2. When d = k, the forbidden configuration is a d-simplex,
and determining this maximum even for d = k = 3 is a famous conjecture of Turán from the 1940’s
(Erdős offered $1000 for its solution).

The case d = k = 2 of the Turán problem for hypergraphs is quite easy, and is a special case of
Turán’s theorem (proved by Mantel in 1907), which is the starting point of extremal graph theory.
It states that a graph on [n] with no triangle has at most bn2/4c edges and equality holds only for
the complete bipartite graph Kbn/2c,dn/2e. Motivated by this, Erdős [11] posed the more general
problem of determining the largest k-uniform set system on [n] with no triangle (i.e. 2-simplex).
Many cases of this were solved by various authors ([5, 8, 12, 13]) over the years, until finally the
problem was completely solved by the second author and Verstraëte [30], who showed that for k ≥ 3
and n ≥ 3k/2 a k-uniform set system on [n] with no triangle can have size at most

(
n−1
k−1

)
, with

equality only for a star.

Chvátal [7] generalized Erdős’ conjecture as follows.

Conjecture 1.1 (Chvátal [7]) Suppose k ≥ d + 1 ≥ 2, n > k(d + 1)/d and G is a k-uniform set
system on [n] with no d-simplex. Then |G| ≤ (

n−1
k−1

)
, with equality only for a star.

We have already mentioned the solutions of this conjecture for d = 1 and d = 2, but it is
open for larger d. A significant breakthrough was achieved by Frankl and Füredi [16], who proved
Conjecture 1.1 for sufficiently large n.

Many similar problems in extremal set theory are easier to solve for n large compared to k.
The best example of this is the Erdős-Ko-Rado theorem for t-intersecting families. It is quite easy
to determine the maximum size of a k-uniform t-intersecting family on [n] for large n (indeed this
was known to Erdős-Ko-Rado), but the solution for all n was open for over thirty years until it
was finally settled by Ahlswede and Khachatrian [1]. The case t = 2 of the Ahlswede-Khachatrian
result was recently used in complexity theory. Indeed, it was a key component in the work of Dinur
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and Safra [10], who showed that approximating the Minimum Vertex Cover problem to within a
factor of 1.3606 is NP-hard. For the simplex problem, even the solution for large n by Frankl and
Füredi was far from trivial. Our main result settles Conjecture 1.1 when k/n and n/2− k are both
bounded away from zero.

Another potential generalisation of the Erdős-Ko-Rado theorem was suggested by Katona
(see [15]) and extended by the second author [28]. A k-uniform d-cluster is a collection of d+1 sets
of size k with empty intersection and union of size at most 2k. Note that a 1-cluster is the same as
a 1-simplex (which consists of two disjoint sets), for which the Erdős-Ko-Rado theorem solves the
extremal problem. Katona posed the case d = 2 and Frankl and Füredi [15] obtained partial results
and made a conjecture for the extremal problem. This was settled by the second author [28], who
showed that if k ≥ 3 and n ≥ 3k/2 a k-uniform set system on [n] with no 2-cluster can have size
at most

(
n−1
k−1

)
, with equality only for a star. The same question with 2k replaced by a smaller

number, say 2k−1, leads to many interesting and unsolved questions (see [15, 23] for results in the
case k = 3). The following conjecture, which generalizes the Frankl-Füredi conjecture, was posed
in [28].

Conjecture 1.2 ([28]) Let k ≥ d + 1 ≥ 2 and n > k(d + 1)/d. Suppose that G is a k-uniform set
system on [n] with no d-cluster. Then |G| ≤ (

n−1
k−1

)
, with equality only if G is a star.

As mentioned above, Conjecture 1.2 holds for d = 1 and d = 2. The second author [27] recently
proved that for fixed k ≥ d + 1 ≥ 2 we have |G| ≤ (1 + o(1))

(
n−1
k−1

)
as n →∞, and that Conjecture

1.2 holds for d = 3 and large n. It was also recently observed by Chen and Liu that for d = k − 1,
Conjecture 1.2 reduces to Conjecture 1.1, and since the latter was solved by Chvátal [7], Conjecture
1.2 holds for d = k − 1. Our result addresses Conjecture 1.2 for all d ≥ 2 but in a different range,
namely when k/n and n/2− k are both bounded away from zero.

Erdős also posed his extremal question for triangles in the non-uniform setting. It was solved
by Milner (unpublished), who showed that a triangle-free set system on [n] can have size at most
2n−1 +n. The second author and Verstraëte [30] gave a short proof and showed that equality holds
only for the family consisting of all sets that either contain some specific element or have size at
most 1. We will generalise this and determine the maximum size of a set system on [n] with no
d-simplex. Although we initially believed that this generalisation would not be too difficult, our
methods for this problem more or less use the full machinery for the problem in the uniform setting.
It would be interesting to obtain a new and shorter argument.

A key tool in our proofs is the idea of stability, or approximate structure, which can be traced
back to work of Erdős and Simonovits in the 60’s in extremal graph theory. Informally stated, a
stability result tells us about the structure of configurations that are close to optimal in an extremal
problem: for example, a triangle-free graph with n2/4−o(n2) edges differs from a complete bipartite
graph by o(n2) edges. Such a result is interesting in its own right, but somewhat surprisingly it
is often a useful stepping stone in proving an exact result. Indeed, it was developed by Erdős and
Simonovits to determine the exact Turán number for k-critical graphs. This approach has been
recently used with great success in hypergraph Turán theory (see [18, 19, 20, 24, 25, 29, 32, 33]),
enumeration of discrete structures [4] and extremal set theory (see [2, 26, 27]).
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Recently, Friedgut [17] (see also Dinur and Friedgut [9]) has proved some stability results for
intersecting families using spectral methods and discrete fourier analysis. We will strengthen his
result, using a purely combinatorial theorem of Frankl [14], and this stability result will enable us
to derive others for simplices and clusters.

The rest of this paper is organised as follows. In the next section we will state our results
and describe the strategy of the proof. We have chosen to postpone this as we need to introduce
another more complicated configuration which behaves nicely in induction arguments. Section 3
begins with a summary of our notation and contains other preliminary material, namely, our basic
inductive lemmas and estimates on hypergeometric and binomial random variables. Sections 4–6
contain the main proofs, firstly in the uniform and secondly in the non-uniform setting. The final
section contains some concluding remarks and conjectures.

2 Results

Our main result for the problems about uniform families settles Conjectures 1.1 and 1.2 when k/n

and n/2−k are both bounded away from 0. One of the main new ideas to solve the simplex problem
is to prove a result that guarantees a structure more complicated than a simplex.

Definition. Fix d ≥ 1. A collection of d + 2 sets A,A1, . . . , Ad+1 is a strong d-simplex if
{A1, . . . , Ad+1} is a d-simplex, and A contains an element of ∩i6=jAi for each j ∈ [d + 1].

For example, a strong 1-simplex is a path of length 3, i.e. three sets A,B, C such that A ∩ B

and B ∩ C are nonempty and A ∩ C = ∅.

Theorem 2.1 (Main Result) For all ζ > 0 and d ≥ 2 there exists δ > 0 and integers T and
N so that the following holds for all n > N . Suppose G is a k-uniform set system on [n] where
k = n/2− t, with T < t < (1/2− ζ)n, and |G| > (1− δt/n)

(
n−1
k−1

)
. Suppose also either that G does

not contain a strong d-simplex or that G does not contain a d-cluster. Then G is a star, and so
|G| ≤ (

n−1
k−1

)
.

Theorem 2.1 certainly implies the result stated in the abstract, and actually carries some
stronger structural information about set systems that are near to maximum size, which is in-
dependently interesting and also facilitates our inductive argument. It is noteworthy that the
theorem does not hold when d = 1. For example, one can take the construction from the Hilton-
Milner theorem [21], where G comprises all sets containing {1} and intersecting {2, · · · , k + 1},
together with the set {2, · · · , k +1}. Clearly G is intersecting, its size is very close to

(
n−1
k−1

)
(as long

as n < 3k for example), and it is not a star. Nevertheless, we need a statement similar to Theorem
2.1 for the base case in our inductive proof. For intersecting families, such a stability result follows
from a result of Frankl. The theorem below will be proved in Section 4.

Theorem 2.2 (Stability Result for intersecting families) For all ε, ζ > 0 there exists γ > 0
and M so that the following holds for all n > M . Suppose G is a k-uniform set system on [n] where
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k = n/2 − t, with 0 < t < (1/2 − ζ)n, and |G| > (1 − γt/n)
(
n−1
k−1

)
. Suppose also that G does not

contain a strong 1-simplex. Then there is some x in [n] so that all but at most ε
(
n−1
k−1

)
sets of G

contain x.

Remark. Since a strong 1-simplex contains a 1-cluster, Theorem 2.2 clearly holds if we replace
‘strong 1-simplex’ by ‘1-cluster’. This will be used in the course of the paper.

As we mentioned earlier, Friedgut [17] has proved some stability results for intersecting families
using spectral methods and discrete fourier analysis. Specifically, he proves Theorem 2.2 but only
when t > ζn. Also, in [9], with Dinur, they take care of the case t = [1/2− o(1)]n. However, since
in much of the current work we must analyze the situation when k is very close to n/2 (especially
for the nonuniform case), we need the full generality of Theorem 2.2.

In the non-uniform setting we prove the following theorem.

Theorem 2.3 (Exact Result – nonuniform case) Suppose d ≥ 2 and G is a set system on [n]
that does not contain a d-simplex, with n sufficiently large. Then |G| ≤ 2n−1 +

∑d−1
i=0

(
n−1

i

)
, with

equality iff G consists of all sets that either contain some fixed element x or have size at most d−1.

Theorem 2.3 is also proved via the stability approach. The difficulty in applying this method
is that intersecting families on [n] of size 2n−1 are abundant (indeed, any intersecting family can
be augmented to one of size 2n−1), and no reasonable stability result for non-uniform intersecting
families holds, i.e., no stability result holds for Theorem 2.3 when d = 1. Nevertheless, we are able
to prove the following stability theorem, from which Theorem 2.3 can be deduced with relative
ease. Our result also applies to d-clusters, where we say that a (not necessarily uniform) collection
of sets A1, · · ·Ad+1 is a d-cluster if ∩d+1

i=1 Ai = ∅ and | ∪d+1
i=1 Ai| ≤ 2maxd+1

i=1 |Ai|.

Theorem 2.4 (Stability Result – nonuniform case) Suppose d ≥ 2, n is sufficiently large, G
is a set system on [n] and |G| > (1 − n−5/8)2n−1. Suppose also that either G does not contain a
d-simplex or G does not contain a d-cluster. Then there is some x in [n] so that every set A ∈ G
with ||A| − n/2| < n2/3 contains x. In particular |G| < 2n−1 + 2n−nc

for any constant c < 1/3.

The basic idea behind the proof of Theorem 2.4 is to analyse those sets of G whose size is close
to n/2. Since |G| is close to 2n−1, most of its sets fall in this range. We then use Theorem 2.1 to
obtain structural information about these sets, and finally we use this information to deduce the
structure of all of G. Many of the bounds used in the proof involve somewhat delicate estimates of
sums and products of binomial coefficients

(
n
k

)
, where k ∼ n/2. Our tools for these estimates are

the binomial and hypergeometric distributions, and our results on these are collected in Section
3.3, and proved in the Appendix.

5



3 Preliminaries

3.1 Notation

We consider set systems on a ground set [n] = {1, · · · , n}, mostly denoted by G (calligraphic).
Subsets are generally denoted by upper case Roman letters, integers by lower case Roman letters,
reals by Greek letters. If G is non-uniform we use Gk to denote its sets of size k and GI to denote
∪k∈IGk for a set of sizes I.

Suppose G is a set system on [n] and x ∈ [n]. The degree dG(x) is the number of sets of G that
contain x. The sets A ⊂ [n] \ {x} with A ∪ {x} ∈ G fall into two families: Lx(G) consists of those
A for which there is some y 6= x for which A∪ {y} is also in G; Sx(G) consists of those A for which
A ∪ {y} ∈ G implies that y = x. Note that dG(x) = |Lx(G)|+ |Sx(G)|.

Say that x, y ∈ [n] are in the same connected component of G if there is a sequence x =
x1, x2, · · · , xt = y for some t such that for every 1 ≤ i ≤ t − 1 there is a set Ai ∈ G with
{xi, xi+1} ∈ Ai.

3.2 Inductive lemmas

In this subsection we give two lemmas that are the cornerstone of our inductive approach.

Lemma 3.1 Suppose n > k ≥ d + 1 ≥ 3, G is a k-uniform set system on [n] and x ∈ [n].
(1) If Lx(G) contains a strong (d− 1)-simplex then G contains a strong d-simplex.
(2) If Lx(G) contains a (d− 1)-cluster then G contains a d-cluster.

Proof.

(1) Suppose that Lx(G) contains the strong (d − 1)-simplex A,A1, · · · , Ad, where A1, · · · , Ad is a
(d − 1)-simplex. By definition of Lx(G) there exists y 6= x such that Bd+1 = A ∪ {y} ∈ G. Let
B = A∪{x} and Bi = Ai∪{x} for i ∈ [d]. We will argue that B, B1, · · · , Bd+1 is a strong d-simplex
in G. For each j ∈ [d], let

Cj =
d⋂

i=1
i6=j

Ai and Dj =
d⋂

i=1
i 6=j

Bi.

Since A1, . . . , Ad forms a (d − 1)-simplex, ∩d
i=1Ai = ∅, and so ∩d

i=1Bi = {x}. As {x} ∩ Bd+1 = ∅,
we conclude that ∩d+1

i=1 Bi = ∅.
By definition of strong (d − 1)-simplex, Cj ∩ A 6= ∅ for each j ∈ [d]. Therefore Dj ∩ Bd+1 6= ∅

for each j. Also, {x} ⊂ ∩d
i=1Bi, so the intersection of every d of the Bis is nonempty. We conclude

that B1, · · · , Bd+1 is a d-simplex. To see that B, B1, · · · , Bd+1 is a strong d-simplex, observe that
{x} ⊂ ∩d

i=1Bi ∩B and B ∩Dj ∩Bd+1 ⊃ A ∩ Cj 6= ∅.
(2) Suppose that Lx(G) contains the (d − 1)-cluster A1, · · · , Ad. There exists y 6= x such that
Bd+1 = A1 ∪ {y} ∈ G. Let Bi = Ai ∪ {x} for i ∈ [d]. Since A1, . . . , Ad forms a (d − 1)-cluster,
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∩d
i=1Ai = ∅, and so ∩d

i=1Bi = {x}. As x 6∈ Bd+1, we conclude that ∩d+1
i=1 Bi = ∅. Also, | ∪d+1

i=1 Bi| ≤
| ∪d

i=1 Ai|+ |{x, y}| ≤ 2(k − 1) + 2 = 2k. Consequently, B1, · · · , Bd+1 is a d-cluster in G. ¤

Lemma 3.2 Suppose 1 < l < k, G is a k-uniform set system on [n], S ∈ G, E ⊂ [n] \ S with
|E| = k − l and H is an l-uniform set system on S with the property that A ∪ E ∈ G for every
A ∈ H.
(1) If H contains a strong (d− 1)-simplex then G contains a strong d-simplex.
(2) If H contains a (d− 1)-cluster then G contains a d-cluster.

Proof.

(1) Suppose that H contains the strong (d−1)-simplex A, A1, · · · , Ad, where A1, · · · , Ad is a (d−1)-
simplex. Let B = A ∪ E, Bi = Ai ∪ E for all i ∈ [d], and Bd+1 = S. By the proof of Lemma 3.1
part (1), replacing {x} by E, we conclude that B, B1, · · · , Bd+1 is a strong d-simplex in G.

(2) Suppose thatH contains the (d−1)-cluster A1, · · · , Ad. Let Bi = Ai∪E for i ∈ [d] and Bd+1 = S.
Since A1, . . . , Ad forms a (d − 1)-cluster, ∩d

i=1Ai = ∅, and so ∩d
i=1Bi = E. As E ∩ Bd+1 = ∅, we

conclude that ∩d+1
i=1 Bi = ∅. Also, | ∪d+1

i=1 Bi| ≤ |S| + |E| = k + (k − l) ≤ 2k. Consequently,
B1, · · · , Bd+1 is a d-cluster in G. ¤

3.3 Binomial and hypergeometric estimates

In this subsection, we describe some estimates on hypergeometric and binomial distributions that
will take some work out of our later calculations. We postpone the proofs to Appendix A.

The hypergeometric random variable X with parameters (n,m, k) is defined as follows. Fix a
set S ⊂ [n], of size |S| = m = rn. Pick a random T ⊂ [n], of size |T | = k = pn. Define X = |T ∩S|.
Note that EX = km/n = prn. Write q = 1 − p, s = 1 − r. In the estimates below the hidden
constants in the O(·) terms depend on p, q, r, s in such a way that they are bounded uniformly
in n whenever p, q, r, s are uniformly bounded away from 0, which will always be the case in our
applications.

Firstly, we have an asymptotic formula for the probabilities of individual values:

P(X = EX + t) = (2πpqrsn)−1/2e−t2/2pqrsn+O(t/n+t3/n2). (1)

For larger deviations the following ‘Chernoff bound’ approximation is useful (see [22] pp. 27–
29). Suppose either Y = X or Y = B(n, p) is a binomial variable (equal to the number of heads
in n independent tosses of a coin that comes up heads with probability p). Suppose 0 < a < 3/2.
Then

P(|Y − EY | > aEY ) < 2e−
a2

3
EY . (2)

We will also need the fact that the median of X is close to its mean: for any ε > 0 we have

P(X ≥ EX) = 1/2 + O(n−1/2+ε). (3)
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Finally we record the following estimate for later use (for fixed d ≥ 2 and large n):

n3/5∑

t=n1/10−d

t

n

(
n− 1

n/2− t− 1

)
>

1
10

n−1/22n−1. (4)

4 Stability for intersecting families – Proof of Theorem 2.2

In this section we prove Theorem 2.2. We need the following result of Frankl [14]. Given k and
3 ≤ i ≤ k + 1 we define a k-uniform intersecting set system Fi on [n] by

Fi = {A ⊂ [n] : |A| = k, 1 ∈ A,A ∩ {2, · · · , i} 6= ∅} ∪ {A ⊂ [n] : |A| = k, 1 /∈ A, {2, · · · , i} ⊂ A}.

Given a set system G on [n] the degree of a set S ⊂ [n] is dG(S) = |{A : A ∈ G, S ⊂ A}|. Let
∆(G) = maxx∈[n] dG(x) denote the maximum degree of a singleton.

Theorem 4.1 (Frankl [14]) Suppose n > 2k, 3 ≤ i ≤ k + 1, G is a k-uniform intersecting set
system on [n] and |G| > |Fi|. Then ∆(G) > ∆(Fi).

Now we use this to deduce Theorem 2.2. We recall the statement: For all ε, ζ > 0 there exists
γ > 0 and M so that the following holds for all n > M . Suppose G is a k-uniform set system on [n]
where k = n/2− t, with 0 < t < (1/2− ζ)n, and |G| > (1− γt/n)

(
n−1
k−1

)
. Suppose also that G does

not contain a strong 1-simplex. Then there is some x in [n] so that all but at most ε
(
n−1
k−1

)
sets of

G contain x.

Proof of Theorem 2.2. Set i = d2ζ−1 log ε−1e and γ = ζi. Choose M so that all calculations
below requiring large n hold.

First of all we show that G is intersecting. Partition G into components C1, · · · , Cl. If l > 1
then |G| ≤ ∑l

i=1

(|Ci|
k

) ≤ (
n−k

k

)
+ 1, using convexity of binomial coefficients and the fact that all

components contain at least k points. This contradicts our assumed lower bound on G, so G must
be connected. Now if there are two disjoint sets A and B then we can find a walk starting with
A and ending with B, and some 3 consecutive edges on this walk will form a strong 1-simplex,
contradiction. We deduce that G is intersecting.

Now
(

n− 1
k − 1

)
− |Fi| =

(
n− i

k − 1

)
−

(
n− i

k − i

)

=
(

n− 1
k − 1

)(
n− 1
i− 1

)−1 ((
n− k

i− 1

)
−

(
k − 1
i− 1

))

=
(

n− 1
k − 1

)(
n− 1
i− 1

)−1 n/2+t−1∑

m=n/2−t−1

(
m

i− 2

)

>

(
n− 1
k − 1

)(
n− 1
i− 1

)−1

(2t− 1)
(

n/2− t− 1
i− 2

)
.
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Since

(2t− 1)
(

n− 1
i− 1

)−1(n/2− t− 1
i− 2

)
= (2t− 1)

i− 1
n− 1

(
n− 2
i− 2

)−1(n/2− t− 1
i− 2

)
> ζi−2 t

n
> γ

t

n
,

we have |G| > |Fi|, and so by Theorem 4.1 ∆(G) > ∆(Fi). But we have

1−
(

n− 1
k − 1

)−1

∆(Fi) =
(

n− 1
k − 1

)−1(n− i

k − 1

)
=

i−1∏

j=1

n− k − j + 1
n− j

<

(
n− k

n− 1

)i−1

< (1− ζ/2)i < e−ζi/2 ≤ ε,

and so there is some x in [n] so that all but at most ε
(
n−1
k−1

)
sets of G contain x. ¤

5 Main Result – Proof of Theorem 2.1

In this section we prove Theorem 2.1. We will need the following result of the second author and
Verstraëte [31].

Theorem 5.1 ([31]) Suppose n ≥ 2k > 2, and G is a k-uniform set system on [n] with no strong
1-simplex. Then |G| ≤ (

n−1
k−1

)
.

Now we are ready to prove the main result in the uniform setting. We restate it and state a
lemma, and will prove both results simultaneously by induction.

Theorem 2.1 (Main Result) For all ζ > 0 and d ≥ 2 there exists δ > 0 and integers T , N so
that the following holds for n > N . Suppose G is an k-uniform set system on [n] where k = n/2− t,
with T < t < (1/2− ζ)n, and |G| > (1− δt/n)

(
n−1
k−1

)
. Suppose also either that G does not contain a

strong d-simplex or that G does not contain a d-cluster. Then G is a star, and so |G| ≤ (
n−1
k−1

)
.

Lemma 5.2 For all ζ ′ > 0 and d ≥ 2 there exist integers T ′, N ′ so that the following holds for
n′ > N ′. Suppose G′ is a k′-uniform set system on [n′], where k′ = n′/2 − t′, with T ′ < t′ <

(1/2− ζ ′)n′, C ⊂ [n′] is some set with constant size |C| = c, C ⊂ A for every A ∈ G′. Suppose also
that S ⊂ [n′] \ C, |S| = k′′ with |k′′ − k| < 2n′2/3, and either G′ ∪ {S} does not contain a strong
d-simplex or G′ ∪ {S} does not contain a d-cluster (possibly non-uniform). Then |G′| < 4

5

(
n′−c
k′−c

)
.

Proof of Theorem 2.1 and Lemma 5.2. We prove Theorem 2.1 and Lemma 5.2 together by
induction on d, and simultaneously present the argument for the base case d = 2 and the induction
step. We will indicate how to find values for the constants δ, T, T ′, N, N ′ in the beginning of each
proof.

Proof of Lemma 5.2. Let ζ ′ > 0 and d ≥ 2 be given. Let T, N be the outputs of Theorem 2.1
with inputs ζ = ζ ′/3 and d−1. Set T ′ = T and N ′ > 2N/ζ ′. We also assume that N ′ is sufficiently
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large that all calculations involving O(·) estimates in the following proof are valid. Now suppose
that n′ > N ′.

Let X be a hypergeometric random variable with parameters (n′ − c, k′′, k′ − c). Then EX =
k′′(k′ − c)/(n′ − c). We estimate |G′| in four parts according to size of intersection with S. Write
G′I = {A ∈ G′ : |A ∩ S| ∈ I}. We use the decomposition G′ = G′I1 ∪ G′I2 ∪ G′I3 ∪ G′I4 where

I1 = [0,EX/2], I2 = [EX/2,EX − T ′], I3 = [EX − T ′,EX] and I4 = [EX, k′′].

Using equation (3) for X we have
(

n′ − c

k′ − c

)−1

|G′I4 | ≤ P(X ≥ EX) = 1/2 + O(n′−0.49).

Next, equation (2) gives
(

n′ − c

k′ − c

)−1

|G′I1 | ≤ P(X ≤ EX/2) < 2e
− k′′(k′−c)

12(n′−c) = O(1/n′).

Also, equation (1) gives
(

n′ − c

k′ − c

)−1

|G′I3 | = P(EX − T ′ ≤ X ≤ EX) = T ′ ·O(n′−1/2) = O(n′−1/2).

To estimate G′I2 we consider the following sets:

G′(E) = {F : F ⊂ S, F ∪ E ∪ C ∈ G′I2}

where E ⊂ [n′] \ (C ∪ S). Then G′(E) is an l-uniform set system on S, with |S| = k′′, and
l = k′ − c − |E| for some l ∈ I2. By Lemma 3.2 either G′(E) contains no strong (d − 1)-simplex
or G′(E) contains no (d − 1)-cluster. Also, l/k′′ ≥ EX/(2k′′) = (k′ − c)/2(n′ − c) > ζ ′/3 and
l ≤ k/2−T ′ so by the choice of T ′ we can apply the induction hypothesis of Theorem 2.1 for d ≥ 3
or Theorem 5.1 for d = 2 to obtain |G′(E)| ≤ (

k′′−1
l−1

)
. Let Y be a hypergeometric random variable

with parameters (n′ − c− 1, k′′ − 1, k′ − c− 1). Then

G′I2 =
∑

E:l=k′−c−|E|∈I2

|G′(E)| ≤
∑

l∈I2

(
n′ − k′′ − c

k′ − c− l

)(
k′′ − 1
l − 1

)

≤ P(Y ≤ EX − T ′)
(

n′ − c− 1
k′ − c− 1

)
= (1/2 + O(n′−0.49))

k′ − c

n′ − c

(
n′ − c

k′ − c

)

≤ (1/4 + O(n′−0.49))
(

n′ − c

k′ − c

)
.

Here we used equation (3) for Y and the fact that |EX − EY | = O(1). In total we have

|G′| = |G′I1 |+ |G′I2 |+ |G′I3 |+ |G′I4 | ≤ (3/4 + O(n′−0.49))
(

n′ − c

k′ − c

)
<

4
5

(
n′ − c

k′ − c

)
,

for large n′, which proves the lemma. ¤
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Proof of Theorem 2.1. Suppose ζ > 0 and d ≥ 2 are given. Let γ, M be the outputs of
Theorem 2.2 with inputs ε = 1/10 and ζ/2. If d ≥ 3, then let δd−1, Td−1, Nd−1 be the outputs of
Theorem 2.1 (via induction) with inputs ζ/2 and d−1. Let T ′d−1, N

′
d−1 be the outputs of Lemma 5.2

(via induction) with inputs ζ ′ = ζ/2 and d− 1. Now choose

δ =
1
3

min{γ, δd−1}, T > 1 + max{3/δ, Td−1, T
′
d−1}.

Finally, choose N such that N > 1 + max{M, Nd−1, N
′
d−1} and N is sufficiently large that the

calculations below showing that (5) holds are valid.

We start with the following claim.

Claim. There exists y ∈ [n] such that |Ly(G)| > (
1− 3δ t

n

) (
n−2
k−2

)
and |Sy(G)| < 1

10

(
n−1
k−1

)
.

Proof of Claim. Consider the following double-counting equation:

(1− δt/n)k
(

n− 1
k − 1

)
< k|G| =

∑

x∈[n]

d(x) =
∑

x∈[n]

(|Sx(G)|+ |Lx(G)|) =
∑

x∈[n]

|Sx(G)|+
∑

x∈[n]

|Lx(G)|.

Since every (k − 1)-set is counted by at most one Sx(G), we have
∑

x |Sx(G)| ≤ (
n

k−1

)
, and so

∑
x

|Lx(G)| > (1− δt/n)k
(

n− 1
k − 1

)
−

(
n

k − 1

)
> (1− 2δt/n)n

(
n− 2
k − 2

)
. (5)

Note that

(n− 1)(n− k + 1)
(

n− 1
k − 1

)−1 [
(1− δt/n)k

(
n− 1
k − 1

)
−

(
n

k − 1

)
− (1− 2δt/n)n

(
n− 2
k − 2

)]

= (1− δt/n)k(n− 1)(n− k + 1)− n(n− 1)− (1− 2δt/n)(k − 1)n(n− k + 1)

=

{
1
4(tδ − 3)n2 + o(n2) if t = o(n)

δ(a/4− a3)n3 + O(n2) if t = an, a > 0

}

Since t > T > 3/δ + 1, we see that (5) holds for n > N .

Let V0 = {x : |Lx(G)| ≤ (1−3δt/n)
(
n−2
k−2

)}. For every x, we see from Lemma 3.1 that either Lx(G)
contains no strong (d− 1)-simplex or Lx(G) contains no (d− 1)-cluster. Therefore |Lx(G)| ≤ (

n−2
k−2

)

for every x, using the induction hypothesis for d ≥ 3 (by the choice of T and N) or Theorem 5.1
for d = 2. So

(1−2δt/n)n
(

n− 2
k − 2

)
≤

∑

x∈V0

|Lx(G)|+
∑

x∈[n]\V0

|Lx(G)| ≤ |V0|(1−3δt/n)
(

n− 2
k − 2

)
+(n−|V0|)

(
n− 2
k − 2

)
,

which simplifies to |V0| ≤ 2n/3. Finally there must be some y ∈ [n]\V0 with |Sy(G)| < 1
10

(
n−1
k−1

)
, oth-

erwise we would have
∑

x |Sx(G)| ≥ (n/30)
(
n−1
k−1

)
>

(
n

k−1

)
, contradiction. This y has the properties

required to prove the Claim. ¤
From this claim we can deduce that there is some w 6= y contained in at least 9

10

(
n−2
k−2

)
sets of

Ly(G). To see this, observe that by Lemma 3.1 either Ly(G) contains no strong (d− 1)-simplex or

11



Ly(G) contains no (d − 1)-cluster. Also |Ly(G)| >
(
1− 3δ t

n

) (
n−2
k−2

)
>

(
1− 3δ k−1

n−1

) (
n−2
k−2

)
. If d = 2

then by the choice of δ and N , we can apply Theorem 2.2 to Ly(G) and obtain the desired w. If
d ≥ 3, then since T > 1 + Td−1 and N > 1 + Nd−1 we can apply the induction hypothesis to give
some w that is contained in every set of Ly(G).

Now we can finish the proof by two applications of Lemma 5.2, which applies due to the choice
of T, N . First we apply it with G′ = Ly(G) on the ground set [n] \ {y} and C = {w} and see
that there cannot be S ∈ G with S ∩ C = ∅: otherwise we would have |Ly(G)| < 4

5

(
n−2
k−2

)
, which

contradicts our choice in the Claim. Therefore every set contains one of w or y.

Since (k − 1)/(n− 1) < k/n < 1/2, the number of sets that contain y but not w is at most

|Ly(G)| − 9
10

(
n− 2
k − 2

)
+ |Sy(G)| ≤ 1

10

(
n− 2
k − 2

)
+

1
10

(
n− 1
k − 1

)
≤ 3

20

(
n− 1
k − 1

)
.

Therefore the number of sets that contain w is at least |G| − 3
20

(
n−1
k−1

)
> 4

5

(
n−1
k−1

)
. Now applying

Lemma 5.2 with G′ = G and C = {w} we see that every set in G contains w, as required. ¤

6 Non-uniform systems

In this section we prove our results on non-uniform systems without a simplex or a cluster.

6.1 Lemmas for uniform families

In this subsection, we state and prove some results on the uniform problem. Some of our estimates
are not exact, but suffice for later purposes. For 2-clusters we use the following result of the second
author [28].

Theorem 6.1 ([28]) Suppose k ≥ 3, n ≥ 3k/2 and G is a k-uniform set system on [n] that does
not contain a 2-cluster. Then |G| ≤ (

n−1
k−1

)
.

We can use this to derive a (non-exact) bound for d-clusters.

Lemma 6.2 If G is a k-uniform system on [n] then k|G| ≤ ∑
x∈[n] |Lx(G)|+ (

n
k−1

)
.

Proof. k|G| = ∑
x∈[n] d(x) =

∑
x∈[n](|Lx(G)|+|Sx(G)|) ≤ ∑

x∈[n] |Lx(G)|+(
n

k−1

)
, the last inequality

since each (k − 1)-set is counted by at most one Sx. ¤

Lemma 6.3 Suppose d ≥ 2, k ≥ d+1, |k−n/2| < n3/5, n is large and G is a k-uniform set system
on [n] that does not contain a d-cluster. Then |G| ≤ (1 + 5d/n)

(
n−1
k−1

)
.

12



Proof. We argue by induction on d. The base case d = 2 follows from Theorem 6.1. For the
induction step, we apply the induction hypothesis to Lx(G) for each x ∈ [n], which has no (d− 1)-
cluster by Lemma 3.1 to get |Lx(G)| ≤

(
1 + 5(d−1)

n−1

) (
n−2
k−2

)
. Then by Lemma 6.2 we have

|G| ≤ n

k

(
1 +

5(d− 1)
n− 1

)(
n− 2
k − 2

)
+ k−1

(
n

k − 1

)

=
(

kn− n

kn− k

(
1 +

5(d− 1)
n− 1

)
+

n

k(n− k + 1)

)(
n− 1
k − 1

)

<

(
1 +

5(d− 1)
n− 1

+
4
n

+ O(n−4/5)
)(

n− 1
k − 1

)
≤ (1 + 5d/n)

(
n− 1
k − 1

)

as required. ¤
Next we give analogous bounds for strong simplices.

Lemma 6.4 Suppose n/2 + 2 ≤ k < 2n/3 and G is a k-uniform set system on [n] that does not
contain a strong 2-simplex. Then |G| ≤ (

n−1
k−1

)
.

This follows quickly from the following result of Frankl (see also [30]).

Theorem 6.5 (Frankl [13]) Suppose n/2 < k < 2n/3 and G is an k-uniform set system on [n]
that does not contain a 2-simplex. Then |G| ≤ (

n−1
k−1

)
.

Proof of Lemma 6.4. Suppose |G| > (
n−1
k−1

)
. By Theorem 6.5 G contains a triangle A,B, C. Since

there is no strong 2-simplex every set in G misses one of A ∩ B, B ∩ C, C ∩ A. Each of these
intersections has size ≥ 4, so we have |G| ≤ 3

(
n−4

k

)
<

(
n−1
k−1

)
, contradiction. ¤

The next lemma follows from Lemma 6.4 in the same way that Lemma 6.3 follows from Theorem
6.1.

Lemma 6.6 Suppose d ≥ 2, n/2 + d ≤ k < 2n/3 and G is a k-uniform set system on [n] that does
not contain a strong d-simplex. Then |G| ≤ (1 + 5d/n)

(
n−1
k−1

)
. ¤

Now we need some estimates when k is quite close to n/2.

Lemma 6.7 Suppose n is sufficiently large, n/2 − n1/10 < k < n/2 + n1/10 and G is a k-uniform
set system on [n] that does not contain a strong 2-simplex. Then |G| ≤ (1 + 3n−1/4)

(
n−1
k−1

)
.

Our proof of Lemma 6.7 will use the following results of Frankl and Ahlswede-Khachatrian.

Lemma 6.8 (Frankl [14] Proposition 1.3) Suppose we have a p-uniform system P and a q-
uniform system Q on [m] with m > p+ q, p ≥ q and P , Q are cross-intersecting. Then |P |+ |Q| ≤(
m
p

)
.
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Theorem 6.9 (Ahlswede-Khachatrian [1]) Suppose n ≥ k ≥ t. For each 0 ≤ r ≤ k − t define
a family F(n, k, t, r) = {A ⊂ [n] : |A| = k, |A ∩ [t + 2r]| ≥ t + r}. There is some r for which
F(n, k, t, r) is a maximum size k-uniform t-intersecting family on [n].

Proof of Lemma 6.7. Suppose |G| > (1 + 3n−1/4)
(
n−1
k−1

)
. We will show that there G contains a

2-simplex A,B, C with each pairwise intersection size at least 4. The existence of a strong 2-simplex
will then follow as in the Proof of Lemma 6.4.

Suppose that every two sets of G have more than 2n1/10 elements in common. Then by The-
orem 6.9, we obtain |G| ≤ |F(n, k, t, r)| for some r where t = 2n1/10. To estimate |F(n, k, t, r)|,
consider the hypergeometric random variable Y with parameters (n, t+2r, k). Since n/2−n1/10 <

k < n/2 + n1/10, we deduce that EY < t + r, so by equation (3),

|G| < P(Y > EY )
(

n

k

)
< (1/2 + O(n−0.49))

(
n

k

)
< (1 + 3n−1/4)

(
n− 1
k − 1

)
,

where the last inequality follows by a short calculation using k > n/2 − n1/10. This contradiction
implies that there are sets A and B in G so that I = A∩B satisfies |I| ≤ 2n1/10. For the purpose of
estimation let X be a hypergeometric random variable with parameters (n, k, k). Then EX = k2/n,
so |EX − k/2| < n1/10. Let

G0 = {C ∈ G : ||C ∩A| − EX| > n3/5} ∪ {C ∈ G : ||C ∩B| − EX| > n3/5},

G1 = {C ∈ G : ||C ∩A| − EX| < 6n1/10} ∪ {C ∈ G : ||C ∩B| − EX| < 6n1/10},
G2 = G \ (G0 ∪ G1).

By equation (2) we have
(

n

k

)−1

|G0| < 2P(|X − EX| > n3/5) < 4e−n1/5/3,

and from equation (1) we have
(

n

k

)−1

|G1| < 2P(|X − EX| < 6n1/10) < 24n1/10 ·O(n−1/2) = O(n−2/5),

so |G2| > (1 + 2n−1/4)
(
n−1
k−1

)
. Without loss of generality

G3 = {C ∈ G2 : EX + 6n1/10 < |C ∩A| < EX + n3/5}

has size |G3| ≥ |G2|/2.

Consider the families G3(D) = {C\D : C ∈ G3, C∩(A\I) = D} obtained by taking intersections
of sets in G3 with A\I. By definition of G3 we only consider sets D of size |D| = d > EX +6n1/10−
|I| > EX + 4n1/10. We claim that there must be some D for which

|G3(D)| > (1 + n−1/4)
(

n− 1− k + |I|
k − 1− |D|

)
. (6)

14



Otherwise, considering a hypergeometric random variable Y with parameters (n− 1, k− |I|, k− 1)
we get the contradiction

1
2
(1 + 2n−1/4) <

(
n− 1
k − 1

)−1

|G3|

≤
(

n− 1
k − 1

)−1 ∑

d>EX+4n1/10

(
k − |I|

d

)
(1 + n−1/4)

(
n− 1− k + |I|

k − 1− |D|
)

= (1 + n−1/4)P(Y > EX + 4n1/10)

< (1 + n−1/4)P(Y > EY ) = (1 + n−1/4)(1/2 + O(n−0.49)).

Fix a set D satisfying equation (6) and for each J ⊂ I consider FJ = {E ⊂ [n]\A : E∪J ∪D ∈
G3}. If we can find E ∈ FJ , E′ ∈ FI\J with E∩E′ = ∅ for some J , then B, E∪J∪D, E′∪(I \J)∪D

is a 2-simplex, in which the pairwise intersection sizes are at least 4 (by far!), and then we are done,
as noted at the beginning of the proof. Otherwise, since |D| > EX +4n1/10 > k/2+3n1/10 we have
(n− k)− 2(k − |D|) > n− 2k + 6n1/10 > 0 and we can apply Lemma 6.8 to see that

|FJ |+ |FI\J | <
(

n− k

k − |D|
)

.

Since this holds for each J ⊂ I we have

|G3(D)| <
1
2

∑

J⊂I

(
n− k

k − |D|
)

= 2|I|−1

(
n− 1− k + |I|

k − 1− |D|
)

n− 2k + |D|+ 1
k − |D|

|I|−1∏

j=1

n− 2k + |I|+ |D|+ 1− j

n− k + |I| − j

= 2|I|−1

(
n− 1− k + |I|

k − 1− |D|
)

(1 + O(n−9/10))(1/2 + O(n−9/10))|I|−1

= (1 + O(n−4/5))
(

n− 1− k + |I|
k − 1− |D|

)
.

This contradiction with equation (6) completes the proof. ¤

Lemma 6.10 Suppose d ≥ 2, n is sufficiently large, n/2−n1/10+d < k < n/2+n1/10−d and G is a
k-uniform set system on [n] that does not contain a strong d-simplex. Then |G| ≤ (1+4n−1/4)

(
n−1
k−1

)
.

Proof. We show by induction on d that |G| ≤ (1 + 3n−1/4 + 5d/n)
(
n−1
k−1

)
, from which the stated

bound follows. The base case d = 2 follows from Lemma 6.7. For the induction step, we apply
the induction hypothesis to Lx(G) to get |Lx(G)| ≤ (1 + 3n−1/4 + 5(d − 1)/(n − 1))

(
n−2
k−2

)
for each

x ∈ [n]. Then by Lemma 6.2 we have

|G| ≤ n

k

(
1 + 3n−1/4 +

5(d− 1)
(n− 1)

)(
n− 2
k − 2

)
+ k−1

(
n

k − 1

)

=
(

kn− n

kn− k

(
1 + 3n−1/4 +

5(d− 1)
(n− 1)

)
+

n

k(n− k + 1)

)(
n− 1
k − 1

)

≤ (1 + 3n−1/4 + 5d/n)
(

n− 1
k − 1

)
,
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as required. ¤

6.2 Stability for non-uniform systems

In this subsection, we prove the following stability result for non-uniform set systems without strong
simplices or clusters.

Theorem 6.11 Suppose d ≥ 2, n is sufficiently large, G is a set system on [n], |G| > (1 −
2n−5/8)2n−1, and either G does not contain a strong d-simplex or G does not contain a d-cluster.
Then there is some x in [n] so that every set A ∈ G with ||A|−n/2| < n2/3 contains x. In particular
|G| < 2n−1 + 2n−nc

for any constant c < 1/3 (by the Chernoff bound).

Proof. Let δ and N be the outputs of Theorem 2.1 with inputs ζ = 1/4 and d. Let N ′ be the
output of Lemma 5.2 with inputs ζ ′ = 1/4 and d. Choose n sufficiently large that all calculations
involving O(·) estimates in the following proof hold, and n > max{N, N ′, (30/δ)8}.

We partition G according to various intervals of set sizes. Recall that for an interval I we write
GI = {A ∈ G : |A| ∈ I}. We use the intervals

[0, n/2− n3/5], [n/2− n3/5, n/2− n1/10 + d], [n/2− n1/10 + d, n/2 + d],

[n/2 + d, n/2 + n3/5], [n/2 + n3/5, n].

By Chernoff bounds we have |G[0,n/2−n3/5]| + |G[n/2+n3/5,n]| < 20.99n. Also, applying Lemma 6.6
if G has no strong d-simplex or Lemma 6.3 if G has no d-cluster we have |G[n/2+2,n/2+n3/5]| ≤∑n/2+n3/5

k=n/2+d (1 + 5d/n)
(
n−1
k−1

)
< (1 + 5d/n)2n−2. Next, applying Lemma 6.10 if G has no strong

d-simplex or Lemma 6.3 if G has no d-cluster we have

|G[n/2−n1/10+d,n/2+d]| < (1 + 4n−1/4)
n/2+d∑

k=n/2−n1/10+d

(
n− 1
k − 1

)
.

We deduce that

|G[n/2−n3/5,n/2−n1/10+d]|| > (1− 2n−5/8)2n−1 − 20.99n − (1 + 5d/n)2n−2

− (1 + 4n−1/4)
n/2+d∑

k=n/2−n1/10+d

(
n− 1
k − 1

)

> (1− 5n−5/8)
∑

k<n/2−n1/10+d

(
n− 1
k − 1

)
.

This last inequality is rather delicate, and perhaps the reader will find it helpful if we point out
that in the final term the factor 4n−1/4 can be neglected as it belongs to a contribution of order
O(n−1/4+1/10−1/2) = O(n−13/20) < O(n−5/8).
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Note that 21−n
∑

k<n/2−n1/10+d

(
n−1
k−1

)
= 1/2−O(n−2/5). Now there must be some k = n/2− t

satisfying n1/10 − d < t < n3/5 with |Gk| > (1 − δt/n)
(
n−1
k−1

)
. Otherwise, using equation (4) and

n > (30/δ)8, we would have the contradiction

(1− 3n−5/8)
∑

k<n/2−n1/10+d

(
n− 1
k − 1

)
< |G[n/2−n3/5,n/2−n1/10+d]|

<
n3/5∑

t=n1/10−d

(1− δt/n)
(

n− 1
n/2− t− 1

)

<
∑

k<n/2−n1/10+d

(
n− 1
k − 1

)
− δ

10
n−1/2

∑

k<n/2−n1/10+d

(
n− 1
k − 1

)
.

By the choice of n, we may apply Theorem 2.1 with inputs ζ = 1/4 and d and conclude that
there is some point x contained in every set of Gk. Now we see that x belongs to every set
in G[n/2−n2/3,n/2+n2/3]. For otherwise (again by the choice of n) we can apply Lemma 5.2 with
C = {x} to see that |Gk| < 4

5

(
n−1
k−1

)
, which contradicts the choice of k above. (Note that this is

the only place in the proof where we need to consider non-uniform clusters or simplices.) This
completes the proof. ¤

Note that Theorem 2.4 is an immediate consequence, as a system with no d-simplex certainly
contains no strong d-simplex.

6.3 Non-uniform systems: the exact result

Now we can use our stability result to deduce an exact result.

Proof of Theorem 2.3. We argue by induction on d. The case d = 2 is an unpublished theorem
of Milner (see discussion and proof in [30]), and actually our argument will also prove this base
case.

Suppose d ≥ 2 and nd−1 is such that, for n ≥ nd−1, any set system on [n] that does not contain
a (d − 1)-simplex has at most 2n−1 +

∑d−2
i=0

(
n−1

i

)
sets. Fix a large enough number nd so that all

following inequalities are true. Now suppose n ≥ nd, G is a set system on [n] that does not contain
a d-simplex and |G| ≥ 2n−1. By Theorem 6.11 there is a point x so that all but at most 2n−nd−1−1

sets of G contain x.

It is enough to show that any set in G that does not contain x has size at most d− 1. Suppose
for a contradiction that x /∈ A ∈ G and |A| ≥ d. First consider the case when |A| < nd−1. Fix an
arbitrary partition of A into d non-empty parts B1, · · · , Bd. If we could find sets A1, · · · , Ad in G
so that x ∈ Ai and Ai ∩ A = A \ Bi for 1 ≤ i ≤ d then A,A1, · · · , Ad would be a d-simplex. Since
G does not contain a d-simplex there must be some 1 ≤ i ≤ d such that G does not contain any of
the 2n−1−|A| sets with x ∈ Ai and Ai ∩A = A \Bi. But there are at most 2n−nd−1−1 sets of G that
do not contain x, so |G| ≤ 2n−1 − 2n−1−|A| + 2n−nd−1−1 < 2n−1, contradiction.
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Next consider the case |A| > nd−1. We break up the sets in G containing x according to their
intersection with [n]\A: for each B with x ∈ B and B∩A = ∅ we let G(B) = {C ⊂ A : C∪B ∈ G}.
Now G(B) cannot contain a (d − 1)-simplex C1, · · · , Cd, for then A,C1 ∪ B, · · · , Cd ∪ B would be
a d-simplex in G. Applying the induction hypothesis for d ≥ 3, or the fact that an intersecting
family of subsets of A has size ≤ 2|A|−1 for d = 2, we have |G(B)| ≤ 2|A|−1 +

∑d−2
i=0

(|A|−1
i

)
for each

B. Therefore

|G| ≤ 2n−1−|A|
(

2|A|−1 +
d−2∑

i=0

(|A| − 1
i

))
+ 2n−nd−1−1 < 2n−1.

This contradiction shows that any set in G that does not contain x has size at most d − 1, so we
are done. ¤

7 Concluding remarks

We make the following conjecture, which would substantially strengthen Theorem 2.1.

Conjecture 7.1 Fix d ≥ 2 and ζ > 0. Suppose G is an k-uniform set system on [n], where
ζn < k < n/2, n is sufficiently large, and either G contains no strong d-simplex or G contains no
d-cluster. If |G| > (1 + ζ)

(
n−2
k−2

)
, then G is a star.

If true, Conjecture 7.1 would be essentially sharp for both problems. For the strong simplex
problem, we can take G to be all sets containing two specified elements a, b, together with two
disjoint sets A,B with a ∈ A and b ∈ B. Then |G| = (

n−2
k−2

)
+ 2, it contains no strong d-simplex for

d > 1, and it is not a star. For the d-cluster problem, we can let G′ = G − H, where H consists
of all sets of G containing a, b and lying within A ∪ B. Since n > (2 + ζ ′)k, we conclude that |H|
is exponentially (in k) smaller than |G|. Therefore, |G′| > (1− ζ)

(
n−2
k−2

)
, it contains no d-cluster for

d > 1, and it is not a star.

We end with the following ambitious conjecture which simultaneously strengthens Conjectures
1.1 and 1.2. Call a k-uniform collection of d+1 sets a d-cluster-simplex if it is both a d-cluster and
a d-simplex.

Conjecture 7.2 Suppose k ≥ d + 1 > 2, n > k(d + 1)/d and G is a k-uniform set system on [n]
with no d-cluster-simplex. Then |G| ≤ (

n−1
k−1

)
, with equality only for a star.
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[8] R. Csákány and J. Kahn, A homological approach to two problems on finite sets, J. Algebraic
Combin. 9 (1999), 141–149.

[9] I. Dinur and E. Friedgut, Intersecting families are essentially contained in juntas, submitted.

[10] I. Dinur and S. Safra, On the hardness of approximating minimum vertex cover, Ann. of Math.
(2) 162 (2005), 439–485.
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3 (1983), 341–349.
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A Proofs of hypergeometric estimates

Here we derive the hypergeometric estimates quoted in subsection 3.3. Perhaps they already appear
in the literature, but we could not find a reference, so we will deduce them from the following
‘Stirling Formula’ inequality of Robbins [34]:

n log n− n +
1
2

log(2πn)− 1/(12n + 1) < log n! < n log n− n +
1
2

log(2πn)− 1/(12n).

Proof of equation (1). Recall that we must prove

P(X = EX + t) = (2πpqrsn)−1/2e−t2/2pqrsn+O(t/n+t3/n2). (7)

We have

P(X = EX + t) =

(
rn

rpn+t

)(
sn

spn−t

)
(

n
pn

) =
(rn)!

(prn + t)!(qrn− t)!
(sn)!

(psn− t)!(qsn + t)!
(pn)!(qn)!

n!
.

To estimate this we take logs and group all terms according to four parts from the Robbins inequal-
ity: (I) n log n, (II) −n, (III) 1

2 log(2πn) and (IV) 1/(12n + 1) or 1/(12n) for lower/upper bounds
respectively.

(I) The n log n contribution to logP(X = EX + t) is

rn(log r + log n)− (prn + t)(log p + log r + log n + log(1 + t/prn))

−(qrn− t)(log q + log r + log n + log(1− t/qrn)) + sn(log s + log n)

−(psn− t)(log p + log s + log n + log(1− t/psn))− (qsn + t)(log q + log s + log n + log(1 + t/qsn))

+pn(log p + log n) + qn(log q + log n)− n log n.

All terms cancel apart from

−(prn+t) log(1+t/prn)−(qrn−t) log(1−t/qrn)−(psn−t) log(1−t/psn)−(qsn+t) log(1+t/qsn).

Expanding the logs using the series log(1 + x) = x− x2/2 + O(x3) we get a contribution

− t2

2n

(
1
pr

+
1
qr

+
1
ps

+
1
qs

)
+ O(t3/n2) = −t2/2pqrsn + O(t3/n2).

Here, and throughout all subsequent estimates, the constant in the O(·) term is uniformly bounded
provided that p, q, r, s are bounded away from 0.

(II) The −n contribution to logP(X = EX + t) is 0.

(III) The 1
2 log(2πn) contribution to logP(X = EX + t) is 1/2 times

log 2π + log r + log n− (log 2π + log p + log r + log n + log(1 + t/prn))

−(log 2π + log q + log r + log n + log(1− t/qrn)) + log 2π + log s + log n
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−(log 2π + log p + log s + log n + log(1− t/psn))− (log 2π + log q + log s + log n + log(1 + t/qsn))

+ log 2π + log p + log n + log 2π + log q + log n− (log 2π + log n).

Simplifying and expanding the logs in series we get a contribution

−1
2
(log 2π + log p + log q + log r + log s + log n) + O(t/n).

(IV) The 1/12n contribution to logP(X = EX + t) is O(1/n).

Putting together the estimates (I) to (IV) we obtain equation (1). ¤

Before continuing we recall some well-known integrals pertaining to the normal distribution:
∫ ∞

0
e−x2/2 =

√
π/2,

∫ ∞

0
xe−x2/2 = 1.

Proof of equation (3). We use the Euler-Maclaurin summation formula (see [3]), which is as
follows. Suppose f(t) is a smooth function and a is a natural number. Then I =

∫ a
0 f(t) can be

approximated by S = 1
2f(0)+ f(1)+ · · ·+ f(a− 1)+ 1

2f(a) with error |S− I| < ∫ a
0 |f ′(t)| dt. Write

P(X ≥ EX) =
∑

t≥0

P(X = EX + t).

By equation (2) we can truncate the sum at t = n1/2+ε/3 with an error exp(−O(n2ε/3)). We will
apply the Euler-Maclaurin formula with

f(t) = (2πpqrsn)−1/2e−t2/2pqrsn,

and a = n1/2+ε/3. Halving the first and last terms incurs O(n−1/2) error by equation (1). Also by
equation (1), in using f(t) to approximate P(X = EX + t) we incur relative error O(t/n+ t3/n2) =
O(n−1/2+ε). (By relative error we mean that the absolute error is obtained by multiplying by the
final estimate. This will turn out to be 1/2, so the absolute error is also O(n−1/2+ε).) Therefore
|P(X ≥ EX)− S| = O(n−1/2+ε).

To approximate by I we also incur an error

|S − I| <
∫ a

0
|f ′(t)| dt ≤ (2pqrsn)−3/2

∫ ∞

0
2te−t2/2pqrsn dt

≤ (pqrsn)−1/2

∫ ∞

0
2xe−x2/2 dx = O(n−1/2),

where we substitute t = (pqrsn)1/2x. Finally we can extend the range of integration to infinity with
error exp(−O(n2ε/3)) by applying the estimate of equation (2), which is also valid for the normal
distribution. We have thus succeeded by approximating P(X ≥ EX) to error O(n−1/2+ε) by

∫ ∞

0
(2πpqrsn)−1/2e−t2/2pqrsn dt =

∫ ∞

0
(2π)−1/2e−x2/2 dx = 1/2.
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This gives the required estimate. ¤

Proof of equation (4). By similar (and much simpler) calculations to those in the proof of
equation (1) we can estimate

2−n

(
n

n/2 + t

)
= (πn/2)−1/2e−2t2/n+O(t/n+t3/n2). (8)

Consider the expression which it is required to estimate:

E = 21−n
n3/5∑

t=n1/10−d

t

n

(
n− 1

n/2− t− 1

)
.

First we extend the sum down to t = 0 with an error
∑n1/10

t=0
t
nO(n−1/2) < O(1/n) using equation

(8). Next we use equation (8) to replace the sum by

n3/5∑

t=0

(πn/2)−1/2 t

n
e−2t2/n,

with relative error O(t/n+t3/n2) = O(n−1/5) (an absolute error of O(n−7/10).) Applying the Euler-
Maclaurin formula (checking the error estimates as in the proof of equation (3)) and substituting
t = xn1/2 we approximate by

∫ n3/5

0
(πn/2)−1/2 t

n
e−2t2/n dt =

∫ n1/10

0
(πn/2)−1/2xe−2x2

dx.

Then extending the range of integration to ∞ we approximate by (πn/2)−1/2 · 1/4. In particular
we have a lower bound of 1

10n−1/2 for large n. ¤
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