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Abstract

A d-simplex is a collection of d + 1 sets such that every d of them have nonempty
intersection and the intersection of all of them is empty. Fix k ≥ d + 2 ≥ 3 and let G
be a family of k-element subsets of an n-element set that contains no d-simplex. We
prove that if |G| ≥ (1− o(1))

(
n−1
k−1

)
, then there is a vertex x of G such that the number

of sets in G omitting x is o(nk−1) (here o(1) → 0 and n →∞). A similar result when
n/k is bounded from above was recently proved in [11].

Our main result is actually stronger, and implies that if |G| > (1 + ε)
(
n−1
k−1

)
for

any ε > 0 and n sufficiently large, then G contains d + 2 sets A,A1, . . . , Ad+1 such
that the Ai’s form a d-simplex, and A contains an element of ∩j 6=iAj for each i. This
generalizes, in asymptotic form, a recent result of Vestraëte and the first author [18],
who proved it for d = 1, ε = 0 and n ≥ 2k.

1 Introduction

For any integer k ≥ 2, we denote the family of all k-element subsets of [n] := {1, . . . , n} by(
[n]
k

)
. A family of sets is a star if there is a fixed element that lies in all sets; it is intersecting

if every two of its sets have nonempty intersection.

Theorem 1 (Erdős-Ko-Rado [1]) Let n ≥ 2k and G ⊂ (
[n]
k

)
be an intersecting family.

Then |G| ≤ (
n−1
k−1

)
. If n > 2k and equality holds, then G is a star.

The forbidden family in Theorem 1 comprises a pair of disjoint sets. A generalization of

this structure, with geometric motivation is as follows.
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Definition 2 Fix d ≥ 1. A collection of d + 1 sets A1, A2, ..., Ad+1 is a d-dimensional

simplex (or d-simplex) if every d sets have nonempty intersection, and no point lies in all

d + 1 sets.

Indeed, a 1-simplex is a pair of disjoint edges, and Theorem 1 states that if G ⊂ (
[n]
k

)

with |G| > (
n−1
k−1

)
, then G contains a 1-simplex. Perhaps surprisingly, the same threshold for

|G| guarantees a d-simplex, which is a much more complicated configuration.

Conjecture 3 (Chvátal [2]) Suppose that k ≥ d + 1 ≥ 2 and n > k(d + 1)/d. If G ⊂ (
[n]
k

)

contains no d-simplex, then |G| ≤ (
n−1
k−1

)
. Equality holds if and only if G is a star.

The case d = 2 of Conjecture 3, which had earlier been asked by Erdős [3], was settled

by the first author and Verstraëte in [17]. For large n, Conjecture 3 has been proved by

Frankl and Füredi [5]. On the other hand, Keevash and the first author [11] very recently

proved Conjecture 3 when k/n and n/2− k are both bounded away from zero.

There has been a lot of activity recently in extremal combinatorics in proving stability

results. Loosely speaking, a stability result for an extremal problem with forbidden con-

figuration F tells us that if our underlying F -free hypergraph has close to maximum size,

then its structure is close to that of the example of maximum size. Such results are often

independently interesting, although they have predominantly been used to solve classical ex-

tremal problems. Indeed, the seminal work of Erdös and Simonovits [20] on graph stability

back in the 1960’s determined the correct extremal number for graphs without color-critical

subgraphs. Moreover, the recent developments for hypergraphs (see, e.g. [7, 8, 9, 12]) seem

particularly exciting, since so few exact hypergraph results are known, and it is becoming

apparent that no general theory that is strictly analogous to the graph case seems viable.

Within classical intersection type theorems in extremal set theory, there is some evidence

that the stability method is trying to compete with the more well established delta system

method to prove exact results. For example, a recent conjecture of the author [15] states

that if n > k(d + 1)/d and G ⊂ (
[n]
k

)
satisfies |G| >

(
n−1
k−1

)
, then G contains d sets with

union of size at most 2k and empty intersection. For large n, this was recently proved by

Füredi and Ozkahya [6] using delta systems, and simultaneously by the present authors [16]

using stability. In other work, Verstraëte and the first author [19] recently proved using the

stability approach that if G ⊂ (
[n]
k

)
satisfies |G| >

(
n−1
k−1

)
and n is sufficiently large, then G

contains a collection of sets such that every point in their union is covered exactly twice.

This generalizes the well-known fact that an n-vertex graph with n edges contains a cycle.

The delta system method doesn’t seem to be well suited for this problem.

The first author proved a stability result for the d = 2 case of Conjecture 3, and conjec-

tured that a similar result holds for larger d.
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Conjecture 4 (Mubayi [13]) Fix k ≥ d + 1 ≥ 3. For every δ > 0, there exist ε > 0

and n0 = n0(ε, k) such that the following holds for all n > n0: If G ⊂ (
[n]
k

)
contains no

d-simplex and |G| > (1 − ε)
(

n−1
k−1

)
, then there exists an S ⊂ [n] with |S| = n − 1 such that

|G ∩ (
S
k

)| < δ
(

n−1
k−1

)
.

In this paper we settle Conjecture 4 except in the case k = d + 1. For k > d + 1, our

result is actually stronger, since it guarantees a structure that contains a d-simplex.

Definition 5 Fix d ≥ 1. A collection of d + 2 sets A,A1, A2, ..., Ad+1 is a strong d-simplex

if {A1, A2, ..., Ad+1} is a d-simplex, and A contains an element of ∩j 6=iAj for each i ∈ [d+1].

Note that a strong 1-simplex is a collection of three sets A,B, C such that A ∩ B and

B∩C are nonempty, and A∩C is empty. One can also think of this as a path of length three.

Our main result below is more conveniently stated and proved using asymptotic notation,

where o(1) → 0 as n →∞.

Theorem 6 (Main Result) Fix k ≥ d+2 ≥ 3. Let G ⊂ (
[n]
k

)
contain no strong d-simplex.

If |G| ≥ (1− o(1))
(

n−1
k−1

)
, then there is an element x ∈ [n] such that the number of sets of G

omitting x is o(nk−1).

A similar statement was proved in a recent paper of Keevash and the first author [11]

where this problem was considered when n/2 − k and k/n are both bounded away from 0

(thus the sets have size linear in the number of vertices). In [11] the stability result was used

to settle Conjecture 3 in this range of n. We were unable to use Theorem 6 to prove the

corresponding exact result in the case of n large (this would give a new proof of the result

of Frankl and Füredi [5]). Nevertheless, an immediate consequence of the stability result is

the following asymptotic result for strong simplices.

Corollary 7 Fix k ≥ d + 2 ≥ 3. Let G ⊂ (
[n]
k

)
contain no strong d-simplex. Then |G| ≤

(1 + o(1))
(

n−1
k−1

)
as n →∞.

It seems that the results of Frankl and Füredi [5] do not transparently imply, even in

asymptotic form, the richer configuration guaranteed by Corollary 7 (although the current

authors admit that the proof in [5] is very complicated, and it may be possible to modify it

to give another proof of Corollary 7). As mentioned above, a strong 1-simplex is just a path

of length 3 whose end edges are disjoint. The exact extremal function for this configuration

was determined for all n ≥ 2k recently by the first author and Verstraëte [18].

The method of our proof requires that k ≥ d+2. It will be interesting to prove the result

for k = d + 1 (the result is false for k = d, since in this range the order of magnitude of |G|
can be as large Θ(nk)). We further conjecture that an exact result holds for set systems not

containing a strong d-simplex. This is a slight strengthening of Chvátal’s conjecture.
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Conjecture 8 Let k ≥ d+1 ≥ 3, n > k(d+1)/d and G ⊂ (
[n]
k

)
contain no strong d-simplex.

Then |G| ≤ (
n−1
k−1

)
with equality only for a star.

The proof of Theorem 6 is by induction on d. The base case d = 1 needs a separate

argument, and we present this in Section 3. The bulk of the proof is then presented in

Section 4. The induction argument has two main steps, which are contained in subsections

4.1 and 4.2.

The basic framework for the proof is the same as that in [13], however, several additional

technical steps involving new ideas are needed. The most important of these is the loading

of the induction hypothesis, which leads to the definition of strong simplices. Indeed, this is

the reason that the base case needs to be proved separately. Furthermore, graphs without

strong 1-simplices (i.e., paths of length three) do not have the stability property, so the base

case is true only for k ≥ 3, and this is one reason why our proof works only for k ≥ d + 2.

2 Definitions and Notation

We mostly consider set systems consisting of k-element sets on a ground set [n] = {1, 2, ..., n},
usually denoted by G. We denote by V (G), the vertex set or the ground set where V (G) =

∪G∈GG. Subsets are generally denoted by upper case Roman letters, integers by lower case

Roman letters and reals by Greek letters.

Suppose G is a set system consisting of k-element subsets on [n] and D ⊂ [n] with

|D| ≤ k. The degree dG(D) is the number of sets G ∈ G with D ⊂ G; when D = {x}, we

simply write dG(x). The trace of a vertex x in G is defined as trG(x) = {S−{x} : x ∈ S ∈ G}.
The sets A ∈ trG(x) fall into two families : LG(x) consists of those A for which there is some

y 6= x for which A∪{y} is also in G; SG(x) consists of those A for which A∪{y} ∈ G implies

y = x. Note that dG(x) = |LG(x)|+ |SG(x)|.
Say that x, y ∈ [n] are in the same connected component of G if there is a sequence

x = x1, x2, ..., xt = y for some t such that for every 1 ≤ i ≤ t− 1, there exists a set Ai ∈ G
with {xi, xi+1} ∈ Ai.

We say that a function f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0. Similarly, f(n) > (1 −
o(1))g(n) means that limn→∞

f(n)
g(n)

≥ 1. All asymptotic notation in this paper is taken as

n →∞, where n is the number of vertices.

3 1-simplex stability

In this section, our goal is to prove the d = 1 case of Theorem 6. By definition, a strong

1-simplex is a collection of three sets, A,B,C such that A ∩ B = ∅, but A ∩ C 6= ∅ and
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B ∩ C 6= ∅. Alternately, a strong 1-simplex is a path of length 3.

Theorem 9 (Stability Result) Fix k ≥ 3. Let G ⊂ (
[n]
k

)
contain no strong 1-simplex. If

|G| ≥ (1 − o(1))
(

n−1
k−1

)
, then there exists x ∈ [n] such that the number of sets omitting x is

o(nk−1).

We need the following lemmas in order to prove Theorem 9.

Lemma 10 Let n > k ≥ 3 and let G ⊂ (
[n]
k

)
contain no strong 1-simplex. Suppose

K1,K2, ....Ks are components of G. Then Ki is an intersecting family for all i ∈ [s].

Proof. Suppose, for contradiction, that Ki contains disjoint sets A,B. Since Ki is connected,

let P be the shortest A-B path in Ki. Let C be the set immediately following A and let D

(possibly D = B) follow C. Since P is the shortest path, A ∩D = ∅.
Consequently, the sets A,C, and D form a strong 1-simplex in G. This contradiction implies

that Ki is an intersecting family for all i ∈ [s]. 2

Lemma 11 Let k ≥ 3. If n1, n2, ..., ns are such that n1 ≥ n2 ≥ ... ≥ ns ≥ k with
∑

i ni ≤ n,

and

∑
i

(
ni

k − 1

)
≥ (1− o(1))

(
n− 1

k − 1

)
,

then n1 ≥ (1− o(1))n.

Proof. In order to prove Lemma 11, it suffices to show that for ε > 0 and n sufficiently large,

if n1, n2, ..., ns are such that n1 ≥ n2 ≥ ... ≥ ns ≥ k with
∑

i ni ≤ n and

∑
i

(
ni

k − 1

)
≥ (1− ε)

(
n− 1

k − 1

)
,

then there exists an ε′ = ε′(ε, k) such that ε′ → 0 as ε → 0 and n1 ≥ (1− ε′)n.

We interpret
∑

i

(
ni

k−1

)
as the number of (k− 1)-sets in H =

⋃s
i=1

(
Xi

k−1

)
where X1, X2, ..., Xs

are disjoint and |Xi| = ni. Then, for every x ∈ V (H), dH(x) ≤ (
n1−1
k−2

)
with equality only

when x ∈ Xi and |Xi| = n1.

Suppose, for contradiction, that n1 < (1− ε′)n. Then, since n(H) =
∑

i ni ≤ n and k ≥ 3,

∑
i

(
ni

k − 1

)
= |H| =

∑
x∈V (H) deg(x)

k − 1
<

n

k − 1

(
(1− ε′)(n− 1)

k − 2

)
< (1− ε)

(
n− 1

k − 1

)
,

where the last inequality follows from an appropriate choice of ε′ and the fact that n is

sufficiently large. This contradiction implies that n1 ≥ (1− ε′)n. 2

The next result follows immediately from the Hilton-Milner theorem on nontrivial inter-

secting families. In order to make the proof self contained we give a much simpler argument.
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Lemma 12 Let n > k ≥ 3 and G ⊂ (
X
k

)
be an intersecting family with |G| > 3+

(
3k−3

2

)(
n−2
k−2

)
.

Then G is a star.

Proof. First, suppose that there exists E ∈ G such that |E ∩ F | ≥ 2 for every F ∈ G. Then

|G| ≤ 1 +

(
k

2

)(
n− 2

k − 2

)
< 3 +

(
3k − 3

2

)(
n− 2

k − 2

)
,

a contradiction. Thus, we may assume that there exists some x ∈ V (G) and distinct sets

E, E ′ ∈ G such that E ∩ E ′ = {x}. Suppose that x 6∈ F for some F ∈ G. Since G is an

intersecting family, E,E ′, F form a triangle in G and therefore, every set in G contains at

least 2 elements from E ∪ E ′ ∪ F . Consequently,

|G| ≤ 3 +

(|E ∪ E ′ ∪ F |
2

)(
n− 2

k − 2

)
≤ 3 +

(
3k − 3

2

)(
n− 2

k − 2

)
,

a contradiction. Hence x ∈ F for every F ∈ G, and therefore, G is a star. 2

Our final tool is the following exact result for strong 1-simplices.

Theorem 13 (Mubayi-Verstraëte [18]) Fix n ≥ 2k ≥ 6. Let G ⊂ (
[n]
k

)
contain no strong

1-simplex. Then |G| ≤ (
n−1
k−1

)
.

Proof of Theorem 9. Let K1,K2, ...Ks be the components of G. Let ni = |V (Ki)|. By

Lemma 10, Ki is an intersecting family for each i ∈ [s]. If ni ≥ 2k, then by Theorem 1,

|Ki| ≤
(

ni−1
k−1

) ≤ (
ni

k−1

)
and if ni ≤ 2k − 1, then |Ki| ≤

(
ni

k

) ≤ (
ni

k−1

)
. We may assume that

n1 ≥ n2 ≥, ... ≥ ns. Then

(1− o(1))

(
n− 1

k − 1

)
≤ |G| =

∑
i

|Ki| ≤
∑

i

(
ni

k − 1

)
.

Lemma 11 implies that n1 ≥ (1− o(1))n. Moreover, convexity of binomial coefficients yields

|G| = |K1|+
s∑

i=2

|Ki| ≤ |K1|+
s∑

i=2

(
ni

k − 1

)
≤ |K1|+

(
n− n1

k − 1

)
≤ |K1|+ o(nk−1). (1)

Since |G| ≥ (1− o(1))
(

n−1
k−1

)
, (1) implies that

|K1| ≥ (1− o(1))

(
n− 1

k − 1

)
> 3 +

(
3k − 3

2

)(
n− 2

k − 2

)
,

where the last inequality holds since n is sufficiently large. Since K1 is an intersecting family

of k-element sets, Lemma 12 implies that K1 is a star. Let x be the center of K1. Then

dG(x) ≥ (1− o(1))
(

n−1
k−1

)
. Finally, Theorem 13 implies that the number of sets in G omitting

x is o(nk−1). 2
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4 d-simplex stability

In this section, we will prove Theorem 6. We need the following crucial lemma to carry out

the induction step.

Lemma 14 If G ⊂ (
[n]
k

)
contains no strong d-simplex and w ∈ [n], then LG(w) contains no

strong (d− 1)-simplex.

Proof. Suppose, for contradiction, LG(w) contains the strong (d−1)-simplex {A,A1, ..., Ad},
where {A1, ..., Ad} is a (d − 1)-simplex. Since A ∈ LG(w), there exists y ∈ X such that

y 6= w and Bd+1 = A ∪ {y} ∈ G. Let B = A ∪ {w} and Bi = Ai ∪ {w} for all i ∈ [d]. Then,

{B,B1, ..., Bd+1} is a strong d-simplex in G, a contradiction. 2

We now proceed to the proof of Theorem 6 by induction on d. The base case d = 1 is

Theorem 9, so we let d ≥ 2. Fix k ≥ d + 2 ≥ 4. Let G ⊂ (
[n]
k

)
contain no strong d-simplex

with |G| ≥ (1− o(1))
(

n−1
k−1

)
. We obtain the element x ∈ [n] in the conclusion of the theorem

in two steps:

1) Find a vertex w with |LG(w)| large and |SG(w)| small, and use induction to conclude that

LG(w) contains a large star with center x.

2) Show that |G − x| = |{G ∈ G : x 6∈ G}| = o(nk−1).

Throughout the next two sections, we will assume that n is sufficiently large wherever

required.

4.1 Step 1

Our goal in his subsection is to prove the following claim.

Claim 1 There exists w ∈ [n] such that |LG(w)| > (1− o(1))
(

n−2
k−2

)
and |SG(w)| = o(nk−1).

Proof. It suffices to show that there exists w ∈ [n] such that for any ε > 0, |LG(w)| >

(1− 3ε)
(

n−2
k−2

)
and |SG(w)| < ε

(
n−1
k−1

)
< εnk−1. Double counting gives

k|G| =
∑

x∈[n]

dG(x) =
∑

x∈[n]

(|SG(x)|+ |LG(x)|) =
∑

x∈[n]

|SG(x)|+
∑

x∈[n]

|LG(x)|.

Since each set in SG(x) is counted at most once in the sum, we have
∑

x∈[n] |SG(x)| ≤ (
n

k−1

)
.

As we may also assume that |G| > (1− ε)
(

n−1
k−1

)
, this gives

∑

x∈[n]

|LG(x)| > (1− ε)k

(
n− 1

k − 1

)
−

(
n

k − 1

)
> (1− 2ε)n

(
n− 2

k − 2

)
. (2)
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Therefore, on average, we have |LG(x)| > (1 − 2ε)
(

n−2
k−2

)
. By Lemma 14, we know that for

every v ∈ [n], LG(v) contains no strong (d − 1)-simplex, so by induction we conclude that

|LG(v)| < (1 + ε)
(

n−2
k−2

)
. Therefore, most x ∈ [n] have |LG(x)| close to the average value, and

so we can expect to find one which also has |SG(x)| small. We now make this precise.

Let V = {x ∈ [n] : |LG(x)| ≤ (1− 3ε)
(

n−2
k−2

)}. Then it follows that

∑

x∈[n]

|LG(x)| =
∑
x∈V

|LG(x)|+
∑

x 6∈V

|LG(x)| ≤ |V |(1−3ε)

(
n− 2

k − 2

)
+(n−|V |)(1+ε)

(
n− 2

k − 2

)
. (3)

(2) and (3) imply

(1− 2ε)n < |V |(1− 3ε) + (1 + ε)(n− |V |).
A simple calculation yields |V | < 3n/4. This means that at least n/4 elements x 6∈ V satisfy

|Lx(G)| > (1− 3ε)
(

n−2
k−2

)
. Suppose that |SG(x)| > ε

(
n−1
k−1

)
for all x 6∈ V . Then, we have

∑

x∈[n]

|SG(x)| ≥
∑

x 6∈V

|SG(x)| > ε
n

4

(
n− 1

k − 1

)
>

(
n

k − 1

)
,

which is a contradiction. Therefore, there exists w 6∈ V such that |SG(w)| < ε
(

n−1
k−1

)
< εnk−1.

Since |LG(w)| > (1− 3ε)
(

n−2
k−2

)
as well, this completes the proof. 2

Let w be as in Claim 1. By Lemma 14, LG(w) is a family of (k − 1)-element sets that

contains no strong (d − 1)-simplex. Also, |LG(w)| > (1 − o(1))
(

n−2
k−2

)
= (1 − o(1))

(
(n−1)−1
(k−1)−1

)
.

Hence, induction applies and we conclude that there exists x ∈ [n]− {w} such that

dLG(w)(x) > (1− o(1))

(
n− 2

k − 2

)
. (4)

This implies that

|LG(w)− x| = |{L ∈ LG(w) : x 6∈ L}| = o(nk−2). (5)

4.2 Step 2

Our goal in this subsection is to complete the proof by showing that

|G − x| = |{G ∈ G : x 6∈ G}| = o(nk−1).

Let

Gw,x =

{
E ∈

(
[n]− {w, x}

k − 2

)
: E ∪ {w, x} ∈ G

}
.

The following result about matchings due to Frankl is a useful tool in proving Claim 2.
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Theorem 15 (Frankl [4]) Let F ⊂ (
n
k

)
contain no s pairwise disjoint sets. Then |F| ≤

(s− 1)
(

n−1
k−1

)
for all n ≥ sk.

Claim 2 There exist d pairwise disjoint (k − d− 1)-element sets A1, A2, . . . , Ad, such that

for each i ∈ [d], Ai ⊂ V (LG(w))− {x} and

∣∣∣∣
{

E ∈
(

V (LG(w))− {x}
d− 1

)
: Ai ∪ E ∈ Gw,x

}∣∣∣∣ > (1− o(1))

(
n− 2

d− 1

)
.

Proof. Let ε > 0. Since k is fixed and ε is arbitrary, it suffices to show that there exist

(k − d − 1)-element sets A1, A2, . . . , Ad that are pairwise disjoint and satisfy the following

inequality for each i ∈ [d]:
∣∣∣∣
{

E ∈
(

V (LG(w))− {x}
d− 1

)
: Ai ∪ E ∈ Gw,x

}∣∣∣∣ > (1− kε)

(
n− 2

d− 1

)
. (6)

Let t be the number of (k − d− 1)-element sets T ⊂ V (LG(w))− {x} such that
∣∣∣∣
{

E ∈
(

V (LG(w))− {x}
d− 1

)
: T ∪ E ∈ Gw,x

}∣∣∣∣ > (1− kε)

(
n− 2

d− 1

)
.

Let

P = {(T, E) : |T | = k − d− 1, |E| = d− 1, T ∪ E ∈ Gw,x}.
For each S satisfying x ∈ S ∈ LG(w) we obtain

(
k−2
d−1

)
pairs (T, E) ∈ P by choosing any

E ∈ (
S−{x}
d−1

)
and T = S − {x} − E. Hence

|P | ≥
(

k − 2

d− 1

)
dLG(w)(x) >

(
k − 2

d− 1

)
(1− ε)

(
n− 2

k − 2

)
,

where the last inequality holds because of (4). On the other hand, the definition of t yields

|P | ≤ t

(
n− 2

d− 1

)
+

[(
n− 2

k − d− 1

)
− t

]
(1− kε)

(
n− 2

d− 1

)
.

Putting these two bounds together gives
(

k − 2

d− 1

)
(1− ε)

(
n− 2

k − 2

)
< t

(
n− 2

d− 1

)
+

[(
n− 2

k − d− 1

)
− t

]
(1− kε)

(
n− 2

d− 1

)
.

Rearranging and solving for t, we obtain

t >

(
k−2
d−1

)
(1− ε)

(
n−2
k−2

)− (1− kε)
(

n−2
k−d−1

)(
n−2
d−1

)

εk
(

n−2
d−1

) .

On further simplification, the above expression yields

t > k2

(
n− 3

k − d− 2

)
> (d− 1)

(
n− 3

k − d− 2

)
.
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Using Theorem 15, we obtain a collection of d disjoint sets A1, A2, . . . , Ad, as required by

the claim. 2

Claim 3 There exists a (k − d− 2)-element set Ad+1 disjoint from ∪d
i=1Ai such that

∣∣∣∣
{

E ⊂
(

V (LG(w))− {x}
d

)
: Ad+1 ∪ E ∈ Gw,x

}∣∣∣∣ > (1− o(1))

(
n− 2

d

)

Proof. Let ε > 0. As is the previous claim, it suffices to show that

∣∣∣∣
{

E ⊂
(

V (LG(w))− {x}
d

)
: Ad+1 ∪ E ∈ Gw,x

}∣∣∣∣ > (1− kε)

(
n− 2

d

)
(7)

We let t be the number of (k − d − 2)-element sets T satisfying (7). Then, by a similar

argument as in the proof of Claim 2, we obtain

(
k − 2

d

)
(1− ε)

(
n− 2

k − 2

)
< t

(
n− 2

d

)
+

[(
n− 2

k − d− 2

)
− t

]
(1− kε)

(
n− 2

d

)
.

Solving for t gives

t >

(
k−2

d

)
(1− ε)

(
n−2
k−2

)− (1− kε)
(

n−2
k−d−2

)(
n−2

d

)

εk
(

n−2
d

) .

Since k and d are fixed and ε > 0 is arbitrary, the above expression yields

t > k2

(
n− 3

k − d− 3

)
> dk

(
n− 3

k − d− 3

)
.

The number of (k − d − 2)-element sets T having at least one point in ∪d
i=1Ai is at most

dk
(

n−3
k−d−3

)
. Since t > dk

(
n−3

k−d−3

)
, we conclude that there exists at least one set Ad+1 satisfying

(7) that is disjoint from A1, A2, . . . , Ad. 2

For i = 1, 2, . . . , d, define

Hi =

{
E ∈

(
V (LG(w))

d− 1

)
: Ai ∪ E ∈ Gw,x

}

and

Hd+1 =

{
E ∈

(
V (LG(w))

d

)
: Ad+1 ∪ E ∈ Gw,x

}
.

By Claim 2, for each i = 1, 2, . . . , d,

|Hi| > (1− o(1))

(
n− 2

d− 1

)
.
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Let

H0 =
d⋂

i=1

Hi.

Since d is fixed, it follows that

|H0| > (1− o(1))

(
n− 2

d− 1

)
. (8)

Let V = V (H0).

Claim 4 |V | > (1− o(1))n.

Proof. Suppose for contradiction, that there exists ε ∈ (0, 1
d2 ) such that |V | < (1− ε)(n− 2).

Then,

|H0| <

(
(1− ε)(n− 2)

d− 1

)

< (1− ε)d−1

(
n− 2

d− 1

)

<

(
1− (d− 1)ε +

(
d− 1

2

)
ε2

) (
n− 2

d− 1

)

< (1− (d− 2)ε)

(
n− 2

d− 1

)
.

This contradicts (8), hence proving the claim. 2

Let V ′ = V ∪ V (Hd+1) ∪ {w, x}. Then, B = [n] − V ′ satisfies |B| = o(n). We partition

G − x into G1 and G2 defined as follows:

G1 = {E ∈ G − x : |E ∩B| ≤ 1}

and

G2 = {E ∈ G − x : |E ∩B| > 1}.
We will show that

|G − x| = |G1 ∪ G2| = |G1|+ |G2| = o(nk−1).

We first focus on G1. Let us consider trG1(w), i.e., the collection of (k − 1)-element sets E

such that E ∪ {w} ∈ G1. By definition, trG1(w) ⊂ LG(w) ∪ SG(w) and therefore

|trG1(w)| ≤ |trG1(w) ∩ LG(w)|+ |trG1(w) ∩ SG(w)|.

From (5), we have |LG(w)− x| = o(nk−2). Therefore, it follows that

|trG1(w) ∩ LG(w)| ≤ |LG(w)− x| = o(nk−2).
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By Claim 1, it follows that

|trG1(w) ∩ SG(w)| ≤ |SG(w)| = o(nk−1).

Thus,

dG1(w) = |trG1(w)| = o(nk−2) + o(nk−1) = o(nk−1). (9)

We will now bound the size of G1 − w, i.e, the sets in G1 that do not contain w.

Claim 5 For each E ∈ G1−w, there exists a d-element set D ⊂ E−B such that dG1−w(D) <

kd
(

n−2
k−d−1

)
.

Proof. Let E ∈ G1 − w. Suppose, for contradiction, that every d-element subset of E − B

is contained in more than kd
(

n−2
k−d−1

)
sets of G1 − w. Let D′ = {a1, a2, . . . , ad+1} ⊂ E − B.

Such a choice of D′ is possible since k ≥ d + 2. For i = 1, 2, . . . , d + 1, define

Di = D′ − {ai}.

Choose E1 6= E such that D1 ⊂ E1 ∈ G1 − w. Now consider the sets E ′ ∈ G1 − w such that

D2 ⊂ E ′ 6= E and E ′ ∩ (E1−D1) 6= ∅. The number of these is at most (k− d)
(

n−2−(d−1)
k−(d+1)

)
<

(k − d)
(

n−2
k−d−1

)
. As D2 is contained in more than kd

(
n−2

k−d−1

)
sets of G1 − w, there exists a

set E2 ∈ G1 − w such that D2 ⊂ E2 6= E and (E2 − D2) ∩ (E1 − D1) = ∅. Repeating this

argument, we can find sets E3, E4, . . . , Ed+1 so that for each i = 1, 2, . . . , d+1, Di ⊂ Ei 6= E

and the sets Ei−Di are pairwise disjoint. Now consider the sets E1, E2, . . . , Ed+1 ∈ G1−w.

Clearly, this is a collection of d + 1 sets where every d sets have a non-empty intersection,

but no point lies in the intersection of all d + 1 of them. Alternatively, {E1, E2, . . . , Ed+1}
is a d-simplex. Together with E, this collection forms a strong d-simplex in G, which is a

contradiction. 2

Claim 6 |G1 − w| = o(nk−1).

Proof. Suppose, for contradiction, that there exists ε > 0 such that |G1−w| > ε
(

n−2
k−1

)
. From

Claim 5, we know that for each E ∈ G1 − w, there exists a d-element subset D ⊂ E − B

such that dG1−w(D) < kd
(

n−2
k−d−1

)
. If t is the number of such d-element subsets, then

t ≥ ε
(

n−2
k−1

)

kd
(

n−2
k−d−1

) > ε′
(

n− 2

d

)
, (10)

where ε′ = ε
kd . Recall that

Hd+1 =

{
E ∈

(
V (LG(w))

d

)
: Ad+1 ∪ E ∈ Gw,x

}
.
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Claim 3 implies that |Hd+1| > (1− o(1))
(

n−2
d

)
. Choose δ ∈ (0, ε′

1+d2 ). Then, we have

|Hd+1| > (1− δ)

(
n− 2

d

)
.

Therefore, we conclude that at least (ε′ − δ)
(

n−2
d

)
of the d-element subsets counted in (10)

are members of Hd+1. Let us denote this family by H′. We now argue that there exists

a set D = {a1, a2, . . . , ad} ∈ H′ such that Di = D − {ai} ∈ H0 for each i = 1, 2, . . . , d.

Otherwise, for every D ∈ H′, there exists at least one (d − 1)-element subset D′ ⊂ D such

that D′ 6∈ H0. Let s be the number of these sets D′. Since d is fixed and δ is arbitrary, (8)

implies that |H0| > (1− dδ)
(

n−2
d−1

)
. In other words, the number of (d− 1)-element sets that

are not contained in H0 is less than dδ
(

n−2
d−1

)
. Then certainly,

dδ

(
n− 2

d− 1

)
> s >

(ε′ − δ)
(

n−2
d

)

n
=

(ε′ − δ)(n− d− 1)

nd

(
n− 2

d− 1

)
,

which is a contradiction since δ < ε′
1+d2 . Choose E ∈ G1 − w such that D ⊂ E − B. For

i = 1, 2, . . . , d, let

Ei = Ai ∪Di ∪ {w, x},
where A1, A2, . . . , Ad are obtained from Claim 2 and

Ed+1 = Ad+1 ∪D ∪ {w, x},

where Ad+1 is obtained from Claim 3. By definition, Ei ∈ G for each i = 1, . . . , d + 1.

Consider the collection {E,E1, E2, . . . , Ed}. The intersection of all of these sets is empty,

since {w, x} ∩ E = ∅, the Ai’s are pairwise disjoint, and ai 6∈ Di. On the other hand, all

the Ei’s contains both w and x, and every d− 1 of the Ei’s together with E have nonempty

intersection as well. Thus every d of these sets have nonempty intersection. Therefore

{E,E1, E2, . . . , Ed} is a d-simplex. Together with Ed+1, this collection forms a strong d-

simplex in G, which is a contradiction. Hence, we have proved that there exists no ε > 0 for

which |G1 − w| > ε
(

n−2
k−1

)
. Alternately, |G1 − w| = o(

(
n−2
k−1

)
) = o(nk−1). 2

Our final task is to bound |G2|. Since every E ∈ G2 contains at least two points in B, we

have

2|G2| ≤
∑
x∈B

dG2(x) =
∑
x∈B

(|SG2(x)|+ |LG2(x)|) =
∑
x∈B

|SG2(x)|+
∑
x∈B

|LG2(x)|. (11)

Define ∂G2 = {S ∈ (
[n]

k−1

)
: there exists some T ∈ G2 with S ⊂ T}. Then, for any E ′ ∈ ∂G2,

|E ′ ∩ B| ≥ 1. Since ∪x∈BSG2(x) ⊂ ∂G, the same conclusion holds for sets in ∪x∈BSG2(x).
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Also, by definition, for every E ∈ ∪x∈BSG2(x), there is exactly one x for which E ∈ SG2(x).

Therefore, ∑
x∈B

|SG2(x)| ≤ |B|
(

n− 1

k − 2

)
= o(n)

(
n− 1

k − 2

)
= o(nk−1). (12)

Lemma 14 and induction imply that |LG2(x)| < (1+ε)
(

n−2
k−2

)
for every x ∈ B and some ε > 0.

This yields

∑
x∈B

|LG2(x)| < |B|(1 + ε)

(
n− 2

k − 2

)
= o(n)(1 + ε)

(
n− 2

k − 2

)
= o(nk−1). (13)

From (12) and (13), we have

2|G2| = o(nk−1) ⇒ |G2| = o(nk−1). (14)

Finally, we conclude that

|G − x| = |G1|+ |G2|
= dG1(w) + |G1 − w|+ |G2|
= o(nk−1) + o(nk−1) + o(nk−1)

= o(nk−1),

where the respective bounds follow from (9), Claim 6, and (14). This completes the proof. 2
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