On the size-Ramsey number of hypergraphs

Andrzej Dudek*

Steven La Fleur[†] Vojtech Rödl[§] Dhruv Mubayi[‡]

November 8, 2016

Abstract

The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs.

We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we consider the size-Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size-Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain.

1 Introduction

Given graphs G and H, say that $H \to G$ if every 2-edge-coloring of H results in a monochromatic copy of G in H. Using this notation, the Ramsey number R(G) of G is the minimum n such that $K_n \to G$. Instead of minimizing the number of vertices, one can minimize the number of edges. Define the *size-Ramsey number* $\hat{R}(G)$ of G to be the minimum number of edges in a graph H such that $H \to G$. More formally,

$$\ddot{R}(G) = \min\{|E(H)| : H \to G\}.$$

The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau and Schelp [5] in 1978. By definition of R(G), we have $K_{R(G)} \to G$. Since the complete graph on R(G) vertices has $\binom{R(G)}{2}$ edges, we obtain the trivial bound

$$\hat{R}(G) \le \binom{R(G)}{2}.$$
(1)

^{*}Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, andrzej.dudek@wmich.edu. Supported in part by Simons Foundation Grant #244712.

[†]Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, slafleu@emory.edu.

[‡]Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, mubayi@math.uic.edu. Supported in part by NSF grant DMS-1300138

⁸Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, rodl@mathcs.emory.edu. Supported in part by NSF grants DMS-1301698 and DMS-1102086.

Chvátal (see, e.g., [5]) showed that equality holds in (1) for complete graphs. In other words,

$$\hat{R}(K_n) = \binom{R(K_n)}{2}.$$
(2)

One of the first problems in this area was to determine the size-Ramsey number of the n vertex path P_n . Answering a question of Erdős [4], Beck [1] showed that

$$\hat{R}(P_n) = O(n). \tag{3}$$

Since $\hat{R}(G) \geq |E(G)|$ for any graph, Beck's result is sharp in order of magnitude. The linearity of the size-Ramsey number of paths was generalized to bounded degree trees by Friedman and Pippenger [11] and to cycles by Haxell, Kohayakawa and Łuczak [12]. Beck [2] asked whether $\hat{R}(G)$ is always linear in the size of G for graphs G of bounded degree. This was settled in the negative by Rödl and Szemerédi [19], who proved that there are graphs of order n, maximum degree 3, and size-Ramsey number $\Omega(n(\log n)^{1/60})$. They also conjectured that for a fixed integer Δ there is an $\varepsilon > 0$ such that

$$\Omega(n^{1+\varepsilon}) = \max_{G} \hat{R}(G) = O(n^{2-\varepsilon}),$$

where the maximum is taken over all graphs G of order n with maximum degree at most Δ . The upper bound was recently proved by Kohayakawa, Rödl, Schacht, and Szemerédi [15]. For further results about the size-Ramsey number see, e.g, the survey paper of Faudree and Schelp [8].

Somewhat surprisingly the size-Ramsey numbers have not been studied for hypergraphs, even though classical Ramsey numbers for hypergraphs have been studied extensively since the 1950's (see, e.g., [7, 6]), and more recently [3]. In this paper we initiate this study for k-uniform hypergraphs. A k-uniform hypergraph \mathcal{G} (k-graph for short) on a vertex set $V(\mathcal{G})$ is a family of k-element subsets (called edges) of $V(\mathcal{G})$. We write $E(\mathcal{G})$ for its edge set. Given k-graphs \mathcal{G} and \mathcal{H} , say that $\mathcal{H} \to \mathcal{G}$ if every 2-edge-coloring of \mathcal{H} results in a monochromatic copy of \mathcal{G} in \mathcal{H} . Define the size-Ramsey number $\hat{R}(\mathcal{G})$ of a k-graph \mathcal{G} as

$$\hat{R}(\mathcal{G}) = \min\{|E(\mathcal{H})| : \mathcal{H} \to \mathcal{G}\}.$$

2 Results and open problems

Motivated by extending the basic theory from graphs to hypergraphs, we prove results for cliques, trees, paths, and bounded degree hypergraphs.

2.1 Cliques

For every k-graph \mathcal{G} , we trivially have

$$\hat{R}(\mathcal{G}) \leq \binom{R(\mathcal{G})}{k},$$

where $R(\mathcal{G})$ is the ordinary Ramsey number of \mathcal{G} . Our first objective was to generalize (2) to 3-graphs, which shows that equality holds for graphs. It is fairly easy to obtain a lower bound for $\hat{R}(\mathcal{K}_n^{(3)})$ that is quadratic in $R(\mathcal{K}_n^{(3)})$, but we were only able to do slightly better.

Theorem 2.1 $\hat{R}(\mathcal{K}_n^{(3)}) \ge \frac{n^2}{96} {R(\mathcal{K}_n^{(3)}) \choose 2}.$

The following basic questions remain open.

Question 2.2 Is $\hat{R}(\mathcal{K}_n^{(k)}) = {\binom{R(\mathcal{K}_n^{(k)})}{k}}$?

Question 2.3 For $k \geq 3$ let $N = R(\mathcal{K}_n^{(k)})$. Define $\mathcal{K}_N^{(k)^-}$ to be the hypergraph obtained from $\mathcal{K}_N^{(k)}$ by removing one edge. Is it true that $\mathcal{K}_N^{(k)^-} \to \mathcal{K}_n^{(k)}$?

Clearly, the affirmative answer to the latter gives a negative answer to Question 2.2. Very recently, McKay [16] showed that $\hat{R}(\mathcal{K}_4^{(3)}) \leq {\binom{13}{3}} - 1 = {\binom{R(\mathcal{K}_4^{(3)})}{3}} - 1$ implying that for k = 3 and n = 4 the answers to Question 2.2 and 2.3 are "no" and "yes", respectively.

2.2 Trees

Given integers $1 \leq \ell < k$ and n, a k-graph $\mathcal{T}_{n,\ell}^{(k)}$ of order n with edge set $\{e_1, \ldots, e_m\}$ is an ℓ -tree, if for each $2 \leq j \leq m$ we have $|e_j \cap \bigcup_{1 \leq i < j} e_i| \leq \ell$ and $e_j \cap \bigcup_{1 \leq i < j} e_i \subseteq e_{i_0}$ for some $1 \leq i_0 < j$. We are able to give the following general upper bound for trees.

Theorem 2.4 Let $1 \le \ell < k$ be fixed integers. Then

$$\hat{R}(\mathcal{T}_{n,\ell}^{(k)}) = O(n^{\ell+1}).$$

One can easily show that this bound is tight in order of magnitude when $\ell = 1$ (see Section 4 for details). The situation for $\ell \geq 2$ is much less clear.

Question 2.5 Let $2 \leq \ell < k$ be fixed integers. Is it true that for every n there exists a k-uniform ℓ -tree \mathcal{T} of order at most n such that

$$\hat{R}(\mathcal{T}) = \Omega(n^{\ell+1}).$$

Here is another related question pointed out by Fox [9]. Let us weaken the restriction on the edge intersection in the definition of $\mathcal{T}_{n,\ell}^{(k)}$. Let $\overline{\mathcal{T}}_{n,\ell}^{(k)}$ be a k-graph of order n with edge set $\{e_1, \ldots, e_m\}$ such that for each $2 \leq j \leq m$ we have $|e_j \cap \bigcup_{1 \leq i < j} e_i| \leq \ell$.

Question 2.6 Let $2 \le \ell < k$ be fixed integers. Is $\hat{R}(\bar{\mathcal{T}}_{n,\ell}^{(k)})$ polynomial in n?

2.3 Paths

Given integers $1 \leq \ell < k$ and $n \equiv \ell \pmod{k-\ell}$, we define an ℓ -path $\mathcal{P}_{n,\ell}^{(k)}$ to be the k-uniform hypergraph with vertex set [n] and edge set $\{e_1, \ldots, e_m\}$, where $e_i = \{(i-1)(k-\ell)+1, (i-1)(k-\ell)+2, \ldots, (i-1)(k-\ell)+k\}$ and $m = \frac{n-\ell}{k-\ell}$. In other words, the edges are intervals of length k in [n] and consecutive edges intersect in precisely ℓ vertices. The two extreme cases of $\ell = 1$ and $\ell = k - 1$ are referred to as, respectively, *loose* and *tight* paths. Clearly every ℓ -path is also an ℓ -tree. Thus, by Theorem 2.4 we obtain the following result.

$$\hat{R}(\mathcal{P}_{n,\ell}^{(k)}) = O(n^{\ell+1}).$$
(4)

Our first result shows that determining the size-Ramsey number of a path $\mathcal{P}_{n,\ell}^{(k)}$ for $\ell \leq \frac{k}{2}$ can easily be reduced to the graph case.

Proposition 2.7 Let $1 \le \ell \le \frac{k}{2}$. Then,

$$\hat{R}(\mathcal{P}_{n,\ell}^{(k)}) \le \hat{R}(P_n) = O(n).$$

Clearly, this result is optimal.

Determining the size-Ramsey number of a path $\mathcal{P}_{n,\ell}^{(k)}$ for $\ell > \frac{k}{2}$ seems to be a much harder problem. Here we will only consider tight paths ($\ell = k - 1$). By (4) we get

$$\hat{R}(\mathcal{P}_{n,k-1}^{(k)}) = O(n^k).$$
(5)

The most complicated result of this paper is the following improvement of (5).

Theorem 2.8 Fix $k \geq 3$ and let $\alpha = (k-2)/(\binom{k-1}{2}+1)$. Then

$$\hat{R}(\mathcal{P}_{n,k-1}^{(k)}) = O(n^{k-1-\alpha}(\log n)^{1+\alpha}).$$

The gap in the exponent of n between the upper and lower bounds for this problem remains quite large (between 1 and $k - 1 - \alpha$). We believe that the lower bound is much closer to the truth. Indeed, the following question still remains open.

Question 2.9 Is $\hat{R}(\mathcal{P}_{n,k-1}^{(k)}) = O(n)$?

If true, then since $\hat{R}(\mathcal{P}_{n,\ell}^{(k)}) \leq \hat{R}(\mathcal{P}_{n,k-1}^{(k)})$, this would imply the linearity of the size-Ramsey number of all ℓ -paths.

2.4 Bounded degree hypergraphs

Our main result about bounded degree hypergraphs is that their size-Ramsey numbers can be superlinear. This is proved by extending the methods of Rödl and Szemerédi [19] to the hypergraph case.

Theorem 2.10 Let $k \ge 3$ be an integer. Then there is a positive constant c = c(k) such that for every n there is a k-graph \mathcal{G} of order at most n with maximum degree k + 1 such that

$$\hat{R}(\mathcal{G}) = \Omega(n(\log n)^c).$$

There are several other problems to consider such as finding the asymptotic of the size-Ramsey number of cycles and many other classes of hypergraphs. In general, they seem to be very difficult. Therefore, this paper is the first step towards a better understanding of this concept.

In the next sections we prove these result for cliques (Section 3), trees (Section 4), paths (Section 5), and hypergraphs with bounded degree (Section 6).

3 Cliques

Proof of Theorem 2.1. We show that if \mathcal{H} is a 3-graph with $|E(\mathcal{H})| < \frac{n^2}{96} \binom{R(\mathcal{K}_n^{(3)})}{2}$ for $n \geq 4$, then $\mathcal{H} \not\to \mathcal{K}_n^{(3)}$.

Induction on $N = |V(\mathcal{H})|$. If $N < R(\mathcal{K}_n^{(3)})$, then there is a 2-coloring of $K_N^{(3)}$ with no monochromatic $K_n^{(3)}$. Since $\mathcal{H} \subseteq K_N^{(3)}$, this coloring yields a 2-coloring of \mathcal{H} with no monochromatic $K_n^{(3)}$.

Suppose that $N \ge R(\mathcal{K}_n^{(3)})$. Since $|E(\mathcal{H})| < \frac{n^2}{96} \binom{R(\mathcal{K}_n^{(3)})}{2}$, there are u and v in $V(\mathcal{H})$ with $\deg(u, v) = |\{e \in E(\mathcal{H}) : \{u, v\} \subseteq e\}| < \frac{n^2}{32}$. Otherwise,

$$|E(\mathcal{H})| = \frac{1}{3} \sum_{\{u,v\} \in \binom{V(\mathcal{H})}{2}} \deg(u,v) \ge \frac{1}{3} \binom{N}{2} \frac{n^2}{32} > |E(\mathcal{H})|,$$

a contradiction.

Let u and v be such that $\deg(u, v) < \frac{n^2}{32}$. Define \mathcal{H}_u as follows:

$$V(\mathcal{H}_u) = V(\mathcal{H}) \setminus \{v\}$$

and

$$E(\mathcal{H}_u) = \{ e : v \notin e \in E(\mathcal{H}) \} \cup \{ \{u, x, y\} : \{v, x, y\} \in E(\mathcal{H}) \text{ and } \{u, x, y\} \notin E(\mathcal{H}) \}.$$

Clearly, $|V(\mathcal{H}_u)| = N - 1$ and $|E(\mathcal{H}_u)| \leq |E(\mathcal{H})| < \frac{n^2}{96} \binom{R(\mathcal{K}_n^{(3)})}{2}$. By the inductive hypothesis there is a 2-coloring χ_u of the edges of \mathcal{H}_u with no monochromatic $\mathcal{K}_n^{(3)}$. Let $T = T_1 = N_{\mathcal{H}}(u, v) = \{w \in V(\mathcal{H}) : \{u, v, w\} \in E(\mathcal{H})\}$. Thus, $T_1 \subseteq V(\mathcal{H}_u)$ and $|T_1| < \frac{n^2}{32}$. If there exists $S_1 \subseteq T_1$ such that $|S_1| \geq \frac{n}{4}$ and $\mathcal{H}_u[S_1 \cup \{u\}]$ is monochromatic, then set $T_2 = T_1 \setminus S_1$. If there exists $S_2 \subseteq T_2$ such that $|S_2| \geq \frac{n}{4}$ and $\mathcal{H}_u[S_2 \cup \{u\}]$ is monochromatic, then set $T_3 = T_2 \setminus S_2$. We continue this process obtaining

$$T = S_1 \cup S_2 \cup \cdots \cup S_m \cup U_{\mathfrak{r}}$$

where $\mathcal{H}_u[S_i \cup \{u\}]$ is monochromatic, $|S_i| \ge \frac{n}{4}$, and $\mathcal{H}_u[U \cup \{u\}]$ contains only monochromatic cliques of order at most $\frac{n}{4}$.

Now we define a 2-coloring χ of \mathcal{H} .

- (i) If $v \notin e$, then $\chi(e) = \chi_u(e)$.
- (ii) If $v \in e = \{v, x, y\}$ and $u \notin e$, then $\chi(e) = \chi_u(\{u, x, y\})$.
- (iii) If $\{u, v\} \subseteq e = \{u, v, x\}$ and $x \in S_i$, then e takes the opposite color to the color of $\mathcal{H}_u[S_i \cup \{u\}]$.
- (iv) If $\{u, v\} \subseteq e = \{u, v, x\}$ and $x \in U$, then color e arbitrarily.

Now suppose that there is a monochromatic clique $\mathcal{K} = \mathcal{K}_n^{(3)}$ in \mathcal{H} . Such a clique must contain v. Now there are two cases to consider. If $u \notin V(\mathcal{K})$, then the subgraph of \mathcal{H}_u induced by $V(\mathcal{K}) \cup \{u\} \setminus \{v\}$ is also a monochromatic copy of $\mathcal{K}_n^{(3)}$, a contradiction. Otherwise, $u \in V(\mathcal{K})$. Thus, $V(\mathcal{K}) \setminus \{u, v\} \subseteq T$ and $|V(\mathcal{K}) \setminus \{u, v\}| = n - 2$. Observe that $|V(\mathcal{K}) \cap S_i| \leq 2$ and $|V(\mathcal{K}) \cap U| < \frac{n}{4}$. But this yields a contradiction

$$n-2 = |V(\mathcal{K}) \setminus \{u,v\}| < 2m + \frac{n}{4} < 2\frac{\frac{n^2}{32}}{\frac{n}{4}} + \frac{n}{4} = \frac{n}{2} \le n-2,$$

for $n \geq 4$.

4 Trees

First for convenience we recall the definition of a hypertree. Given integers $1 \leq \ell < k$ and n, recall that a k-graph $\mathcal{T}_{n,\ell}^{(k)}$ of order n with edge set $\{e_1, \ldots, e_m\}$ is an ℓ -tree, if for each $2 \leq j \leq m$ we have $|e_j \cap \bigcup_{1 \leq i < j} e_i| \leq \ell$ and $e_j \cap \bigcup_{1 \leq i < j} e_i \subseteq e_{i_0}$ for some $1 \leq i_0 < j$.

Proof of Theorem 2.4. Fix $1 \le \ell \le k$. We are to show that $\hat{R}(\mathcal{T}_{n,\ell}^{(k)}) = O(n^{\ell+1})$. Recall that a *partial Steiner system* S(t,k,N) is a k-graph of order N such that each t-tuple is contained in at most one edge. Due to a result of Rödl [18] it is known that there is a constant $N_0 = N_0(t,k)$ such that for every $N \ge N_0$ there is an $\mathcal{S} = S(t,k,N)$ with the number of edges satisfying

$$\frac{9}{10} \cdot \frac{\binom{N}{t}}{\binom{k}{t}} \le |E(\mathcal{S})| \le \frac{\binom{N}{t}}{\binom{k}{t}} \tag{6}$$

(see also [14, 20, 21, 22] for similar results). It is easy to observe that for $1 \le s \le t$ every s-tuple is contained in at most $\frac{\binom{N-s}{t-s}}{\binom{k-s}{t-s}}$ edges.

Fix $1 \leq \ell < k$. Let $N = \lceil cn \rceil + \ell$, where the constant c is defined as

$$c = \max\left\{N_0(\ell+1,k), \frac{20}{9}(\ell+1)\binom{k}{\ell+1}\right\}.$$

Let \mathcal{H} be a $S(\ell+1, k, N)$ satisfying (6). Observe that if $\ell+1 = k$, then \mathcal{H} can be viewed as a complete k-graph of order N. Clearly, $|E(\mathcal{H})| = O(n^{\ell+1})$. It remains to show that for any $\mathcal{T} = \mathcal{T}_{n,\ell}^{(k)}$ tree, $\mathcal{H} \to \mathcal{T}$.

Define a degree of a set $U \subseteq V(\mathcal{H})$ $(1 \leq |U| < k)$ by

$$\deg(U) = |\{e \in E(\mathcal{H}) : e \supseteq U\}|$$

and for $E(\mathcal{H}) \neq \emptyset$ a minimum (non-zero) ℓ -degree by

$$\delta_{\ell}(\mathcal{H}) = \min\{\deg(U) : |U| = \ell \text{ and } U \subseteq e \text{ for some } e \in E(\mathcal{H})\}.$$

First observe that for any 2-coloring of the edges of \mathcal{H} , there is a monochromatic subhypergraph \mathcal{F} with $\delta_{\ell}(\mathcal{F}) \geq n$. Indeed, suppose that \mathcal{H} is colored with blue and red colors. Assume by symmetry that the red hypergraph \mathcal{R} has at least $\frac{1}{2}|E(\mathcal{H})|$ edges. Set $\mathcal{R}_0 = \mathcal{R}$. If there exists $U_0 \subseteq V(\mathcal{R}_0)$ with $\deg_{\mathcal{R}_0}(U_0) < n$, then let $\mathcal{R}_1 = \mathcal{R}_0 - U_0$ (we remove U_0 and all incident to U_0 edges). Now we repeat the process. If there exists $U_1 \subseteq V(\mathcal{R}_1)$ with $\deg_{\mathcal{R}_1}(U_1) < n$, then let $\mathcal{R}_2 = \mathcal{R}_1 - U_1$. Continue this way to obtain hypergraphs

$$\mathcal{R} = \mathcal{R}_0 \supseteq \mathcal{R}_1 \supseteq \mathcal{R}_2 \supseteq \cdots \supseteq \mathcal{R}_m,$$

where either $\delta_{\ell}(\mathcal{R}_m) \geq n$ or \mathcal{R}_m is empty hypergraph. But the latter cannot happen, since the number of removed edges from \mathcal{R} is less than

$$\binom{N}{\ell}n = \binom{N}{\ell+1}\frac{\ell+1}{N-\ell}n \le \binom{N}{\ell+1}\frac{\ell+1}{c} \le \frac{9}{20} \cdot \frac{\binom{N}{\ell+1}}{\binom{k}{\ell+1}} < \frac{1}{2}|E(\mathcal{H})|.$$

Figure 1: A star of order n with $\frac{n-1}{4}$ arms each of length 2.

Now we greedily embed \mathcal{T} into $\mathcal{F} = \mathcal{R}_m$. At every step we have a connected sub-tree $\mathcal{T}_i \subseteq \mathcal{T}$. Assume that we already embedded *i* edges of \mathcal{T} obtaining \mathcal{T}_i . Let $|U| \leq \ell$ be such that $U \subseteq e$ for some $e \in E(\mathcal{T}_i)$. Observe that there is always an edge $f \in E(\mathcal{F}) \setminus E(\mathcal{T}_i)$ such that $f \cap V(\mathcal{T}_i) = U$. Indeed, if $|U| = \ell$, then this is true since $\deg_{\mathcal{F}}(U) \geq n$ and $|V(\mathcal{T}_i)| < n$ and every $(\ell + 1)$ -tuple of vertices of \mathcal{F} is contained in at most one edge in \mathcal{F} . Otherwise, if $|U| < \ell$, first we find a set $W \subseteq V(\mathcal{F}) \setminus V(\mathcal{T}_i)$ such that $|W| = \ell - |U|$ and $U \cup W$ is contained in an edge of \mathcal{F} , and next apply the previous argument to $U \cup W$. Thus, we can extend \mathcal{T}_i to \mathcal{T}_{i+1} , as required.

As mentioned in the introduction, it would be interesting to decide whether Theorem 2.4 is tight up to the hidden constant. This is definitely the case for $\ell = 1$. Indeed, let \mathcal{T} be a k-uniform star-like tree of order n defined as follows. Assume that 2k - 2 divides n - 1. \mathcal{T} consists of $\frac{n-1}{2k-2}$ arms \mathcal{P}_i (each with two edges): $E(\mathcal{P}_i) =$ $\{\{v, w_1^i, w_2^i, \ldots, w_{k-1}^i\}, \{w_{k-1}^i, w_k^i, \ldots, w_{2k-2}^i\}\}$, where $1 \leq i \leq \frac{n-1}{2k-2}$ and all w_j^i vertices are pairwise different (see Figure 1).

Assume that $\mathcal{H} \to \mathcal{T}$ and color $e \in \mathcal{H}$ by red if the degree (in \mathcal{H}) of every vertex in e is less than $\frac{n-1}{2k-2}$; otherwise e is blue. Since $\mathcal{H} \to (\mathcal{T})_2^e$ and there is no red copy of \mathcal{T} , there must be a blue copy of \mathcal{T} . Every edge in such a copy has at least one vertex of degree at least $\frac{n-1}{2k-2}$ (in \mathcal{H}). Since \mathcal{T} has $\frac{n-1}{2k-2}$ vertex disjoint edges and every edge (in \mathcal{H}) can intersect at most 3 of those disjoint edges,

$$\hat{R}(\mathcal{T}) \ge \frac{1}{3} \cdot \frac{n-1}{2k-2} \cdot \frac{n-1}{2k-2} = \Omega(n^2).$$

5 Paths

In this section we prove Proposition 2.7 and Theorem 2.8.

Proof of Proposition 2.7. Let H be a graph satisfying $H \to P_n$ and |E(H)| = O(n)(cf. (3)). We construct a k-graph \mathcal{H} as follows. Replace every vertex $v \in V(H)$ by an ℓ -tuple $\{v_1, v_2, \ldots, v_\ell\}$ (different for every v) and each $e = \{v, w\} \in E(H)$ by

$$\{v_1,\ldots,v_\ell,w_1,\ldots,w_\ell,x_1,\ldots,x_{k-2\ell}\},\$$

where $x_1, \ldots, x_{k-2\ell}$ are different for every edge e, too. Thus, \mathcal{H} is a k-graph with $|V(\mathcal{H})| = \ell |V(H)| + (k - 2\ell)|E(H)|$ and $|E(\mathcal{H})| = |E(H)|$. Now color $E(\mathcal{H})$. This coloring (uniquely) defines a coloring of E(H). Since H contains a monochromatic copy of P_n , \mathcal{H} also contains a monochromatic copy of $\mathcal{P}_{n,\ell}^{(k)}$. Consequently, $\mathcal{H} \to \mathcal{P}_{n,\ell}^{(k)}$ and the proof is complete. \Box

We now turn to the main result of this section which we restate for convenience.

Theorem 2.8 Fix $k \ge 3$ and let $\alpha = (k-2)/(\binom{k-1}{2}+1)$. Then

$$\hat{R}(\mathcal{P}_{n,k-1}^{(k)}) = O(n^{k-1-\alpha}(\log n)^{1+\alpha}).$$

First we prove an auxiliary result. In order to do it we state some necessary notation. Set

$$\beta = \frac{1}{\binom{k-1}{2} + 1}.$$

For a graph G = (V, E) let $\mathcal{T}_{\ell}(G)$ be the set of all cliques of order ℓ and let $t_{\ell} = |\mathcal{T}_{\ell}(G)|$. Let $A \subseteq V$ and $\mathcal{B} \subseteq \mathcal{T}_{k-1}(G)$ be a family of pairwise vertex-disjoint cliques. Define $x_{A,\mathcal{B}}$ as the number of k-cliques of G for which k - 1 vertices form a vertex set of some $B \in \mathcal{B}$ and the remaining vertex is from $V \setminus (A \cup \bigcup_{B \in \mathcal{B}} V(B))$. Similarly, let $y_{A,\mathcal{B}}$ be the number of k-cliques of G for which k - 1 vertices form a vertex set of some $B \in \mathcal{B}$ and the remaining vertex is from $A \cup \bigcup_{B \in \mathcal{B}} V(B)$. Finally, let z_C (for $C \subseteq V$) be the number of k-cliques containing at least one vertex from C.

Proposition 5.1 Let $k \ge 3$ be an integer and let $c = \frac{1}{3^{3k}}$ and d = 3000. Then there exists a graph G = (V, E) of order n (for sufficiently large n) satisfying the following:

(i) For every $A \subseteq V$, $|A| \leq cn$, and every $\mathcal{B} \subseteq \mathcal{T}_{k-1}(G)$, $|\mathcal{B}| = cn$, vertex disjoint (k-1)cliques such that $A \cap \bigcup_{B \in \mathcal{B}} V(B) = \emptyset$ we have

$$y_{A,\mathcal{B}} \leq \frac{1}{k+1} x_{A,\mathcal{B}}.$$

(ii) For every $C \subseteq V$, $|C| \leq (k-1)cn$,

$$z_C \le \frac{t_k}{4k}.$$

(iii) The total number of k-cliques satisfies

$$t_k \le \nu n^{k-1-\alpha} (\log n)^{1+\alpha}$$

where $\nu = (3/2)^k \frac{d^{\binom{k}{2}}}{(k-1)(k-2)}$.

Proof. It suffices to show that the random graph $G \in \mathbb{G}(n,p)$ with $p = d(\log n/n)^{\beta}$ satisfies a.a.s.¹ (i) - (iii).

Below we will use the following bounds on the tails of the binomial distribution Bin(n, p) (for details, see, *e.g.*, [13]):

$$\Pr(\operatorname{Bin}(n,p) \le (1-\gamma)\mathbb{E}(X)) \le \exp\left(-\frac{\gamma^2}{2}\mathbb{E}(X)\right),\tag{7}$$

$$\Pr(\operatorname{Bin}(n,p) \ge (1+\gamma)\mathbb{E}(X)) \le \exp\left(-\frac{\gamma^2}{3}\mathbb{E}(X)\right).$$
(8)

First we show that G a.a.s. satisfies (i). Fix an $A \subseteq V$ and $\mathcal{B} \subseteq \mathcal{T}_{k-1}$ with $|\mathcal{B}| = cn$. Observe that without loss of generality we may assume that |A| = cn. Note that $x_{A,\mathcal{B}} \sim \text{Bin}(cn(n-cn-(k-1)cn), p^{k-1})$. Thus,

$$\mathbb{E}(x_{A,\mathcal{B}}) = c(1-kc)n^2 p^{k-1} = d^{k-1}c(1-kc)n^{2-(k-1)\beta} (\log n)^{(k-1)\beta}$$

and (7) (applied with $\gamma = 1/2$) implies

$$\Pr\left(x_{A,\mathcal{B}} \leq \frac{\mathbb{E}(x_{A,\mathcal{B}})}{2}\right) \leq \exp\left(-\frac{1}{8}\mathbb{E}(x_{A,\mathcal{B}})\right)$$
$$= \exp\left(-\frac{d^{k-1}}{8}c(1-kc)n^{2-(k-1)\beta}(\log n)^{(k-1)\beta}\right). \tag{9}$$

Now we bound from above the number of all possible choices for A and \mathcal{B} . Clearly we have at most n^{cn} choices for A. Observe that the number of choices for \mathcal{B} can be bounded from above by the number of ways of choosing an ordered subset of vertices of size (k - 1)cn. Indeed, suppose that $v_1, \ldots, v_{(k-1)cn}$ is such a choice. Then \mathcal{B} can be defined as $\{\{v_1, \ldots, v_{k-1}\}, \{v_k, \ldots, v_{2k-2}\}, \ldots, \{v_{(k-1)cn-k+1}, \ldots, v_{(k-1)cn}\}\}$. Thus we conclude that there are at most n^{kcn} ways to choose A and \mathcal{B} . Hence, by (9)

$$\Pr\left(\bigcup_{A,\mathcal{B}} \left\{ x_{A,\mathcal{B}} \le \frac{\mathbb{E}(x_{A,\mathcal{B}})}{2} \right\} \right) \le n^{kcn} \Pr\left(x_{A,\mathcal{B}} \le \frac{\mathbb{E}(x_{A,\mathcal{B}})}{2} \right)$$
$$\le \exp\left(kcn \log n - \frac{d^{k-1}}{8}c(1-kc)n^{2-(k-1)\beta}(\log n)^{(k-1)\beta} \right)$$
$$= o(1). \tag{10}$$

Similarly, since $y_{A,\mathcal{B}} \sim \operatorname{Bin}(cn \cdot kcn, p^{k-1})$,

$$\mathbb{E}(y_{A,\mathcal{B}}) = kc^2 n^2 p^{k-1} = d^{k-1} kc^2 n^{2-(k-1)\beta} (\log n)^{(k-1)\beta}.$$

and since $c = \frac{1}{3^{3k}} \le \frac{1}{k(3k+4)}$,

$$\frac{\mathbb{E}(x_{A,\mathcal{B}})}{2(k+1)} = \frac{c(1-kc)}{2(k+1)} d^{k-1} n^{2-(k-1)\beta} (\log n)^{(k-1)\beta}$$
$$\geq \frac{3}{2} d^{k-1} kc^2 n^{2-(k-1)\beta} (\log n)^{(k-1)\beta}$$
$$= \frac{3}{2} \mathbb{E}(y_{A,\mathcal{B}}).$$

¹An event E_n occurs asymptotically almost surely, or a.a.s. for brevity, if $\lim_{n\to\infty} \Pr(E_n) = 1$.

Inequality (8) (applied with $\gamma = 1/2$) yields

$$\Pr\left(y_{A,\mathcal{B}} \geq \frac{\mathbb{E}(x_{A,\mathcal{B}})}{2(k+1)}\right) \leq \Pr\left(y_{A,\mathcal{B}} \geq \frac{3}{2}\mathbb{E}(y_{A,\mathcal{B}})\right) \leq \exp\left(-\frac{1}{12}\mathbb{E}(y_{A,\mathcal{B}})\right).$$

Therefore, we deduce that

$$\Pr\left(\bigcup_{A,\mathcal{B}} \left\{ y_{A,\mathcal{B}} \ge \frac{\mathbb{E}(x_{A,\mathcal{B}})}{2(k+1)} \right\} \right) \le n^{kcn} \exp\left(-\frac{1}{12}\mathbb{E}(y_{A,\mathcal{B}})\right) = o(1).$$
(11)

Consequently, by (10) and (11) we get that *a.a.s.*

$$y_{A,\mathcal{B}} \le \frac{\mathbb{E}(x_{A,\mathcal{B}})}{2(k+1)} \le \frac{x_{A,\mathcal{B}}}{k+1}$$

for any choice of A and \mathcal{B} . This finishes the proof of (i).

For each vertex $v \in V$, let $\deg_k(v)$ denote the number of k-cliques of G which contain v. In order to show that a.a.s. G also satisfies (ii), we will first estimate $\deg_k(v)$ for each $v \in V$.

The standard application of (8) (applied with Bin(n-1, p) and $\gamma = 1/2$) with the union bound imply that *a.a.s.* the degree of every vertex $v \in V(G)$ satisfies

$$\deg(v) \le \frac{3}{2} dn^{1-\beta} (\log n)^{\beta}.$$

The number of k-cliques which contain v is equal to the number of (k-1)-cliques in the neighborhood of v. Therefore, in order to show (ii) it suffices to bound the number of (k-1)-cliques in any set of size at most $\frac{3}{2}dn^{1-\beta}(\log n)^{\beta}$.

Let $S \subseteq V$ with $s = |S| = \frac{3}{2}dn^{1-\beta}(\log n)^{\beta}$. First we will decompose all (k-1)-tuples of S into linear (k-1)-uniform hypergraphs $\mathcal{S}_1, \mathcal{S}_2, \ldots, \mathcal{S}_m$ with

$$m = (1 + o(1)) \binom{s}{k-1} \binom{k-1}{2} / \binom{s}{2}$$

and

$$|\mathcal{S}_i| = (1+o(1))\frac{\binom{s}{2}}{\binom{k-1}{2}}$$

for every $1 \leq i \leq m$. That means that each (k-1)-tuple of S belongs to exactly one S_i and each pair of elements of S appears in at most one (k-1)-tuple in S_i . The existence of such a decomposition follows from a more general result of Pippenger and Spencer [17] (see also [10]).

Let s_i be the random variable that counts the number of (k-1)-tuples of S_i which appear as (k-1)-cliques of G. Observe that $s_i \sim \operatorname{Bin}\left(|S_i|, p^{\binom{k-1}{2}}\right)$. Therefore for each i,

$$\mathbb{E}(s_i) = (1+o(1))\frac{\binom{s}{2}}{\binom{k-1}{2}}p^{\binom{k-1}{2}}$$
$$= (1+o(1))\frac{s^2}{(k-1)(k-2)}p^{\binom{k-1}{2}}$$
$$= (1+o(1))\frac{9}{4(k-1)(k-2)}d^{2+\binom{k-1}{2}}n^{1-\beta}(\log n)^{1+\beta}$$

and by (8) (with $\gamma=1/2)$

$$\Pr\left(s_i \ge \frac{3}{2}\mathbb{E}(s_i)\right) \le \exp\left(-\frac{1}{12}\mathbb{E}(s_i)\right) \le \exp\left(-\frac{3}{16k^2}d^{2+\binom{k-1}{2}}n^{1-\beta}(\log n)^{1+\beta}\right).$$

Consequently, the union bound over all subsets $S \subseteq V$ of size s and over all i for each $1 \leq i \leq m$ implies

$$\Pr\left(\bigcup_{S,i} \left\{s_i \ge \frac{3}{2}\mathbb{E}(s_i)\right\}\right) \le \binom{n}{s} \cdot m \cdot \exp\left(-\frac{3}{16k^2} d^{2+\binom{k-1}{2}} n^{1-\beta} (\log n)^{1+\beta}\right)$$
$$\le n^s \cdot s^{k-3} \cdot \exp\left(-\frac{3}{16k^2} d^{2+\binom{k-1}{2}} n^{1-\beta} (\log n)^{1+\beta}\right)$$
$$= s^{k-3} \cdot \exp\left(s \log n - \frac{3}{16k^2} d^{2+\binom{k-1}{2}} n^{1-\beta} (\log n)^{1+\beta}\right)$$
$$= s^{k-3} \cdot \exp\left(n^{1-\beta} (\log n)^{1+\beta} \left(\frac{3}{2}d - \frac{3}{16k^2} d^{2+\binom{k-1}{2}}\right)\right)$$
$$= o(1),$$

since s^{k-3} grows like a polynomial in *n*. Therefore it follows that *a.a.s.*

$$\deg_k(v) = \sum_{i=1}^m s_i \le m \cdot \frac{3}{2} \mathbb{E}(s_i) \le s^{k-3} \cdot \frac{3}{2} \mathbb{E}(s_i) = \nu n^{(k-2)(1-\beta)} (\log n)^{1+\alpha},$$
(12)

where

$$\nu = \left(\frac{3}{2}\right)^k \frac{d^{\binom{k}{2}}}{(k-1)(k-2)}.$$
(13)

In a similar way one can show that

$$\deg_k(v) \ge \lambda n^{(k-2)(1-\beta)} (\log n)^{1+\alpha},$$

where

$$\lambda = \left(\frac{1}{2}\right)^{k-1} \frac{d^{\binom{k}{2}}}{(k-1)(k-2)}.$$
(14)

Note that equation (12) gives the bound

$$t_k \le \nu n^{(k-2)(1-\beta)+1} (\log n)^{1+\alpha} = \nu n^{k-1-\alpha} (\log n)^{1+\alpha},$$

which proves part (iii).

Now we finish the proof of (ii). Since each k-clique is counted exactly k times, the number of k-cliques is a.a.s. at least

$$t_k \ge \frac{n}{k} \cdot \lambda n^{(k-2)(1-\beta)} (\log n)^{1+\alpha} = \frac{\lambda}{k} n^{k-1-\alpha} (\log n)^{1+\alpha}.$$
(15)

It follows now from (12) and (15) that given a set $C \subseteq V$, $|C| \leq (k-1)cn$, the number of k-cliques of G which intersect C is a.a.s. at most

$$z_C \le (k-1)cn \cdot \nu n^{(k-2)(1-\beta)} (\log n)^{1+\alpha} = \frac{c(k-1)k\nu}{\lambda} \cdot \frac{\lambda}{k} n^{k-1-\alpha} (\log n)^{1+\alpha} \le \frac{c(k-1)k\nu}{\lambda} t_k.$$

Finally observe that (13), (14) together with the choice of c yield that

$$\frac{c(k-1)k\nu}{\lambda} \le \frac{1}{4k}$$

implying condition (ii), as required.

Now we are ready to prove main result of this section.

Proof of Theorem 2.8. We show that there exists a k-graph \mathcal{H} with $|\mathcal{H}| = O(n^{k-1-\alpha}(\log n)^{1+\alpha})$ such that any two-coloring of the edges of \mathcal{H} yields a monochromatic copy of $\mathcal{P}_{n,k-1}^{(k)}$.

Let G be a graph from Proposition 5.1. Set $V(\mathcal{H}) = V(G)$ and let $E(\mathcal{H})$ be the set of k-cliques in G. We prove that such \mathcal{H} is a Ramsey k-graph for $\mathcal{P}_{m,k-1}^{(k)}$ with m = cn, where $c = \frac{1}{3^{3k}}$.

Take an arbitrary red-blue coloring of the edges of $\mathcal{H}_0 = \mathcal{H}$ and assume that there is no monochromatic $\mathcal{P}_{m,k-1}^{(k)}$. We will consider the following greedy *procedure* which at each step finds a blue tight path of length *i* labeled as v_1, v_2, \ldots, v_i .

- (1) Let $\mathcal{B} = \emptyset$ be the *trash* set of (k-1)-tuples and $U = V(\mathcal{H})$ be the set of *unused* vertices and set i := 0. At any point in the process, if $|\mathcal{B}| = m$, then stop.
- (2) (In this step i = 0.) If possible, then choose a blue edge from U and label its vertices by v_1, \ldots, v_k and then set i := k. Otherwise, if not possible, stop.
- (3) (In this step $i \ge k$.) Let $v_{i-k+1}, \ldots, v_{i-1}, v_i$ be the labels of the last k-1 vertices of the constructed blue path. If possible, select a vertex $u \in U$ for which $v_{i-k+1}, \ldots, v_{i-1}, v_i, u$ form a blue edge. Label u as v_{i+1} , set $U := U \setminus \{u\}$ and i := i + 1. Repeat this step until no such u can be found.
- (4) (In this step also $i \ge k$.) Let $v_{i-k+1}, \ldots, v_{i-1}, v_i$ be the labels of the last k-1 vertices of the constructed blue path which cannot be extended in a sense described in step (3). Remove these k-1 vertices from the path and set $\mathcal{B} := \mathcal{B} \cup \{\{v_{i-k+1}, \ldots, v_{i-1}, v_i\}\}$ and i := i - k + 1. After this removal there are two possibilities:
 - (i) if i < k, then put back v_1, \ldots, v_i to U (i.e. $U := U \cup \{v_1, \ldots, v_i\}$), set i := 0, and return to step (2);
 - (ii) otherwise, return to step (3).

This procedure will terminate under two circumstances: either $|\mathcal{B}| = m$ or no blue edge can be found in step (2).

First let us consider the case when $|\mathcal{B}| = m$, that means, there are m vertex disjoint (k-1)-tuples in \mathcal{B} . Denote by A the vertex set of the blue path which was obtained when $|\mathcal{B}| = m$. Clearly, |A| < m, otherwise there would be a blue $\mathcal{P}_{m,k-1}^{(k)}$. We are going to apply Proposition 5.1 with sets A and \mathcal{B} . Notice that every edge of \mathcal{H} which contains a (k-1)-tuple from \mathcal{B} and the remaining vertex from $V(\mathcal{H}) \setminus (A \cup \bigcup_{B \in \mathcal{B}} B)$ must be colored red. (This is because for a (k-1)-tuple to end up in \mathcal{B} , there must have been no vertex u in step (3) that could extend the blue path.) It also follows from step (3) that each (k-1)-tuple in \mathcal{B} is contained in at least one blue edge. Thus, Proposition 5.1 (i) implies that $y_{A,\mathcal{B}} \leq \frac{1}{k+1}x_{A,\mathcal{B}}$. That means that the number of red edges which contain a (k-1)-tuple from \mathcal{B} and the remaining vertex from U is at least k+1 times the number of blue edges with a (k-1)-tuple from \mathcal{B} .

Now remove all the blue edges from \mathcal{H} which contain a (k-1)-tuple from \mathcal{B} and denote such k-graph by \mathcal{H}_1 . Perform the above procedure on \mathcal{H}_1 . This will generate a new trash set \mathcal{B}_1 . Observe that $\mathcal{B}_1 \cap \mathcal{B} = \emptyset$, since every edge of \mathcal{H}_1 which contains a (k-1)-tuple from \mathcal{B} must be red. Again, if $|\mathcal{B}_1| = m$, then we use the same argument as above to find that the number of red edges in \mathcal{H}_1 which contain a (k-1)-tuple from \mathcal{B}_1 and the remaining vertex from U is at least k + 1 times the number of blue edges in \mathcal{H}_1 with a (k-1)-tuple from \mathcal{B}_1 . Indeed, we can again apply the inequality from Proposition (i). This is because y_{A,\mathcal{B}_1} is smaller than the number of all blue edges in \mathcal{H} containing a (k-1)-tuple from \mathcal{B}_1 , while (since we do not remove red edges) x_{A,\mathcal{B}_1} remains same in both \mathcal{H}_1 and \mathcal{H} . Now remove the blue edges from \mathcal{H}_1 which contain a (k-1)-tuple from \mathcal{B}_1 obtaining a k-graph \mathcal{H}_2 . Keep repeating the procedure until it is no longer possible.

At some point, we will run out of blue edges in \mathcal{H}_j for some $j \geq 1$, and the procedure will terminate prematurely in step (2). In this case $|\mathcal{B}_j| < m$, |A| = 0 and U has no blue edges. However, there still may be some blue edges which contain a vertex from $\bigcup_{B \in \mathcal{B}_j} V(B)$. Proposition 5.1 (ii) (applied for $C = \bigcup_{B \in \mathcal{B}_j} V(B)$) implies that the number of such edges is at most

$$z_C \le \frac{t_k}{4k}.$$

Let $x_{A,\mathcal{B}}^i$ and $y_{A,\mathcal{B}}^i$ be the numbers corresponding to $x_{A,\mathcal{B}}$ and $y_{A,\mathcal{B}}$ obtained at the end of the procedure applied to \mathcal{H}_i . Thus,

$$y_{A,\mathcal{B}}^i \le \frac{1}{k+1} x_{A,\mathcal{B}}^i$$

for each $0 \le i \le j - 1$.

Let t_R and t_B denote the number of red and blue edges in \mathcal{H} . Observe that

$$t_B \le \sum_{0 \le i \le j-1} y_{A,\mathcal{B}}^i + z_C \le \frac{1}{k+1} \sum_{0 \le i \le j-1} x_{A,\mathcal{B}}^i + \frac{t_k}{4k}.$$
 (16)

Furthermore, since all sets \mathcal{B}_i are mutually disjoint, each red edge in \mathcal{H} containing a (k-1)-tuple from some \mathcal{B}_i can be only counted at most k times. Thus,

$$\sum_{0 \le i \le j-1} x_{A,\mathcal{B}}^i \le k \cdot t_R.$$
(17)

Consequently, by (16) and (17), we get

$$t_k = t_R + t_B \le t_R + \frac{k}{k+1}t_R + \frac{t_k}{4k}$$

and so

$$t_R \ge \frac{4k-1}{4k} \cdot \frac{k+1}{2k+1} t_k > \frac{1}{2} t_k.$$

The conclusion is that there are more red edges than there are blue edges in \mathcal{H} . If we reverse the procedure and look for a red path instead of a blue one, we will conclude that there are more blue edges than red edges. Since these two statements contradict each other, the only way to avoid both statements is if a monochromatic path exists.

6 Hypergraphs with bounded degree

In this section we prove Theorem 2.10, which states that hypergraphs with bounded degree can have nonlinear size-Ramsey numbers.

Proof of Theorem 2.10. We modify an idea from Rödl and Szemerédi [19]. For simplicity we only present a proof for k = 3, which can easily be generalized to $k \ge 3$. The hypergraph \mathcal{G} will be constructed as the vertex disjoint union of graphs \mathcal{G}_i each of which is a tree with a path added on its leaves. Next we will describe the details of such construction.

Set $c = \frac{1}{5}$. We make no effort to optimize c and always assume that n is sufficiently large.

Let

$$t = \left\lfloor \log_2 \left(\frac{2 \log_2 n}{\log_2 \log_2 n} \right) \right\rfloor.$$

Consider a binary 3-tree $\mathcal{B} = (V, E)$ on $1 + 2 + 4 + \cdots + 2^t$ vertices rooted at vertex z (see Figure 2). Denote by $L(\mathcal{B})$ the set of all its leaves. Call the edge containing z the root edge. Observe that

$$V(\mathcal{B})| = 1 + 2 + 4 + \dots + 2^{t} = 2^{t+1} - 1 < \log_2 n \tag{18}$$

(recall that n is large enough) and

$$|L(\mathcal{B})| = 2^t.$$

Let φ by an automorphism of \mathcal{B} . Since the root edge e is the unique edge with exactly one vertex of degree 1, $\varphi(z) = z$. The other two vertices of e are permuted by φ . Consequently, φ permutes two vertices of every other edge. Hence, it is easy to observe that the order of the automorphism group of \mathcal{B} satisfies

$$|Aut(\mathcal{B})| = 2^{1+2+4+\dots+2^{t-1}} = 2^{2^t-1} < 2^{2^t}.$$

Now consider a tight path \mathcal{P} of length $|L(\mathcal{B})|$ placed on the leaves $L(\mathcal{B})$ in an arbitrary order. Considering labeled vertices of $L(\mathcal{B})$ there are clearly $|L(\mathcal{B})|!$ such paths. Label them by \mathcal{P}_i for $i = 1, 2, ..., |L(\mathcal{T})|!$. Let \mathcal{B}_i be vertex disjoint copies of \mathcal{B} and $\mathcal{G}_i = \mathcal{B}_i \cup \mathcal{P}_i$, where $V(\mathcal{P}_i) = L(\mathcal{B}_i)$.

Figure 2: Binary 3-tree \mathcal{B} on 1 + 2 + 4 + 8 vertices and rooted at vertex z.

Let φ be an isomorphism between \mathcal{G}_i and \mathcal{G}_j . Since the only vertices of degree 4 are on paths \mathcal{P}_i and \mathcal{P}_j , $\varphi(\mathcal{P}_i) = \mathcal{P}_j$. Thus,

$$\varphi(E(\mathcal{B}_i)) = \varphi(E(\mathcal{G}_i) \setminus E(\mathcal{P}_i)) = E(\mathcal{G}_j) \setminus E(\mathcal{P}_j) = E(\mathcal{B}_j)$$

and so \mathcal{B}_i and \mathcal{B}_j are isomorphic. Thus, the number of pairwise non-isomorphic \mathcal{G}_i 's is at least

$$\frac{|L(\mathcal{B})|!}{|Aut(\mathcal{B})|} \ge \frac{(2^t)!}{2^{2^t}} \ge \frac{\left(\frac{2^t}{e}\right)^{2^t}}{2^{2^t}} \ge \frac{\left(2^{t-2}\right)^{2^t}}{2^{2^t}} = 2^{(t-3)2^t} > n.$$

Set

$$q = \left\lfloor \frac{n}{|V(\mathcal{B})|} \right\rfloor$$

and let $\mathcal{G} = \mathcal{G}_1 \cup \cdots \cup \mathcal{G}_q$, where all $\mathcal{G}_1, \ldots, \mathcal{G}_q$ are pairwise non-isomorphic. We show that \mathcal{G} is a desired hypergraph.

Clearly, $|V(\mathcal{G})| \leq n$. Furthermore, by (18), we get

$$|V(\mathcal{G})| = q|V(\mathcal{B})| \ge \left(\frac{n}{|V(\mathcal{B})|} - 1\right)|V(\mathcal{B})| > n - \log_2 n.$$

Moreover, $\Delta(\mathcal{H}) = 4$ and the independence number of \mathcal{G} satisfies

$$\alpha(\mathcal{G}) \le \frac{8}{9}n. \tag{19}$$

Indeed, let $I \subseteq V = V(\mathcal{G})$ be an independent set of size $\alpha = \alpha(\mathcal{G})$. We estimate the number of edges $e(I, V \setminus I)$ between sets I and $V \setminus I$. First observe that

$$e(I, V \setminus I) \le \Delta(\mathcal{G}) \cdot |V \setminus I| \le 4(n - \alpha).$$

Next, since each triple between I and $V \setminus I$ intersects one of the partition classes on 2 vertices and $\delta(\mathcal{G}) = 1$,

$$e(I, V \setminus I) \ge \frac{\delta(\mathcal{G}) \cdot |I|}{2} = \frac{\alpha}{2}$$

This implies that

$$\frac{\alpha}{2} \le 4(n-\alpha)$$

and so (19).

Now we are ready to finish the proof and show that for any 3-graph with

$$|E(\mathcal{H})| \le \frac{1}{30} n (\log_2 n)^{\frac{1}{5}}$$

we have $\mathcal{H} \nrightarrow \mathcal{G}$.

Set $d = (\log_2 n)^{\frac{1}{5}}$ and define $V_{high} \subseteq V(\mathcal{H})$ as

$$V_{high} = \{ v \in V(\mathcal{H}) : \deg(v) \ge d \}$$

and

$$V_{low} = V(\mathcal{H}) \setminus V_{high}.$$

Clearly, $|V_{high}| \leq \frac{n}{10}$; for otherwise, $|E(\mathcal{H})| > \frac{n}{10} \cdot d \cdot \frac{1}{3} \geq |E(\mathcal{H})|$, a contradiction.

Recall that \mathcal{G} consists of q pairwise non-isomorphic copies of \mathcal{G}_i . We estimate the number of copies of \mathcal{G}_i 's contained in a sub-hypergraph induced by V_{low} . First fix an edge e in $V_{low}[\mathcal{H}]$ and count the number of copies of \mathcal{G}_i 's for which e is a root edge. Since $\deg(v) \leq d$ for each $v \in V_{low}$, we get that this number is at most

$$3 \cdot d^{2+4+\dots+2^{t-1}} \cdot d^{2^t} \le d^{2 \cdot 2^t} \le \left(\log_2 n\right)^{\frac{1}{5} \cdot 2 \cdot \frac{2\log_2 n}{\log_2 \log_2 n}} = n^{\frac{4}{5}},$$

where the factor 3 counts the number of choices for the root vertex, the next factors count the number of possible \mathcal{B}_i 's with e as a root, and the last factor counts the number of paths on the set of leaves. Thus, there is an i_0 such that \mathcal{G}_{i_0} appears in $V_{low}[\mathcal{H}]$ at most

$$\frac{n^{\frac{4}{5}} \cdot |E(\mathcal{H})|}{q} < \frac{n^{\frac{4}{5}} \cdot n(\log_2 n)^{\frac{1}{5}}}{\frac{n}{\log_2 n}} = n^{\frac{4}{5}} (\log_2 n)^{\frac{6}{5}}$$

times.

Denote by \mathcal{F} the sub-hypergraph consisting of root edges from all copies of \mathcal{G}_{i_0} in $V_{low}[\mathcal{H}]$. Thus,

$$|V(\mathcal{F})| \le 3n^{\frac{4}{5}} (\log_2 n)^{\frac{6}{5}}.$$

Color edges in \mathcal{F} together with edges incident to V_{high} blue; otherwise red. Clearly, there is no red copy of \mathcal{G} , since there is no red copy of \mathcal{G}_{i_0} . Moreover, there is no blue copy of \mathcal{G} , since every blue sub-hypergraph of order $|V(\mathcal{G})|$ has an independent set of size at least

$$|V(\mathcal{G})| - |V_{high}| - |V(\mathcal{F})| > (n - \log_2 n) - \frac{n}{10} - 3n^{\frac{4}{5}} (\log_2 n)^{\frac{6}{5}} = \frac{9}{10}n - \log_2 n - 3n^{\frac{4}{5}} (\log_2 n)^{\frac{6}{5}},$$

which is strictly bigger than $\alpha(\mathcal{G})$ (cf. (19)).

7 Acknowledgment

We are grateful to all referees for their detailed comments on an earlier version of this paper.

References

- J. Beck, On size Ramsey number of paths, trees, and circuits. I, Journal of Graph Theory 7 (1983), no. 1, 115–129.
- [2] _____, On size Ramsey number of paths, trees and circuits. II, Mathematics of Ramsey theory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 34–45.
- [3] D. Conlon, J. Fox, and B. Sudakov, *Hypergraph Ramsey numbers*, Journal of the American Mathematical Society 23 (2010), no. 1, 247–266.
- [4] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), no. 1, 25–42.
- [5] P. Erdős, R. Faudree, C. Rousseau, and R. Schelp, *The size Ramsey number*, Periodica Mathematica Hungarica 9 (1978), no. 1-2, 145–161.
- [6] P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta Mathematica Hungarica 16 (1965), 93–196.
- [7] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proceedings of the London Mathematical Society 3 (1952), 417–439.
- [8] R. Faudree and R. Schelp, A survey of results on the size Ramsey number, Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., vol. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 291–309.
- [9] J. Fox, personal communication, 2014.
- [10] P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European Journal of Combinatorics 6 (1985), no. 4, 317–326.
- [11] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), no. 1, 71–76.
- [12] P. Haxell, Y. Kohayakawa, and T. Łuczak, *The induced size-Ramsey number of cycles*, Combinatorics, Probability and Computing 4 (1995), no. 3, 217–239.
- [13] S. Janson, T. Łuczak, and A. Ruciński, Random Graphs, Wiley, New York, 2000.
- [14] P. Keevash, The existence of designs, preprint.
- [15] Y. Kohayakawa, V. Rödl, M. Schacht, and E. Szemerédi, Sparse partition universal graphs for graphs of bounded degree, Advances in Mathematics 226 (2011), no. 6, 5041–5065.
- [16] B.D. McKay, A class of Ramsey-extremal hypergraphs, preprint.
- [17] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, Journal of Combinatorial Theory, Ser. A 51 (1989), no. 1, 24–42.

- [18] V. Rödl, On a packing and covering problem, European Journal of Combinatorics 5 (1985), 69–78.
- [19] V. Rödl and E. Szemerédi, On size Ramsey numbers of graphs with bounded degree, Combinatorica 20 (2000), no. 2, 257–262.
- [20] R.M. Wilson, An existence theorem for pairwise balanced designs, I: composition theorems and morphisms, Journal of Combinatorial Theory, Ser. A 13 (1972), 220–245.
- [21] _____, An existence theorem for pairwise balanced designs, II: the structure of PBDclosed set and the existence conjecture, Journal of Combinatorial Theory, Ser. A 13 (1972), 246–273.
- [22] _____, An existence theorem for pairwise balanced designs, III: proof of the existence conjecture, Journal of Combinatorial Theory, Ser. A 18 (1975), 71–79.