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Abstract

A mixed hypergraph is a triple H = (X, C,D), where X is the vertex set, and each of C, D is
a list of subsets of X. A strict k-coloring of H is a surjection c : X → {1, . . . , k} such that each
member of C has two vertices assigned a common value and each member of D has two vertices
assigned distinct values. The feasible set of H is {k : H has a strict k-coloring}.

Among other results, we prove that a finite set of positive integers is the feasible set of some
mixed hypergraph if and only if it omits the number 1 or is an interval starting with 1. For the
set {s, t} with 2 ≤ s ≤ t − 2, the smallest realization has 2t − s vertices. When every member
of C ∪ D is a single interval in an underlying linear order on the vertices, the feasible set is also
a single interval of integers.

1 Introduction

A mixed hypergraph is a triple H = (X, C,D), where X is a set, called the vertex set, and C, D
are families of subsets of X, with each subset having at least two elements. A proper k-coloring of
a mixed hypergraph is a function from the vertex set to a set of k colors so that each C-edge has
two vertices with a common color and each D-edge has two vertices with distinct colors. A mixed
hypergraph is k-colorable if it has a proper coloring with at most k colors. A strict k-coloring is a
proper k-coloring using all k colors. The minimum number of colors in a strict coloring of a mixed
hypergraph H is its lower chromatic number χ(H); the maximum number is its upper chromatic
number χ̄(H).

Introduced by Voloshin [13], the theory of mixed hypergraphs is growing rapidly. It has many
potential applications, as mixed hypergraphs can be used to encode various partitioning constraints.
They have been used to model problems in such areas as list-coloring of graphs [10], integer pro-
gramming [10, 5], coloring of block designs [8, 6, 7, 9], and a variety of applied areas [14].
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A variant of mixed hypergraph coloring was investigated by Ahlswede [1]. He showed that
questions about colorings in which the vertices of every edge received a certain percentage of
distinct colors were equivalent to several multi-user source coding problems. A variant of a canonical
Ramsey problem on edge-colorings studied in [4] and [3] can also be phrased using coloring of mixed
hypergraphs.

We will assume throughout that the vertex set X is finite, and let |X| = n. For each k, let
rk be the number of partitions of the vertex set into k nonempty parts (color classes) such that
the coloring constraint is satisfied on each edge. The vector R(H) = (r1, . . . , rn) is the chromatic
spectrum of H, introduced in [12]. The set of values k such that H has a strict k-coloring is the
feasible set of H, written S(H); this is the set of indices i such that ri > 0.

A mixed hypergraph H has lower chromatic number 1 if and only if H has no D-edges. In
this case, color classes in a proper coloring can be combined to form a proper coloring using fewer
colors, and thus S(H) = {1, . . . , χ̄(H)}. Similarly, χ̄(H) = n if and only if H has no C-edges. In
this case, color classes in a proper coloring can be partitioned to form a proper coloring using more
colors, and thus S(H) = {χ(H), . . . , n}.

For spectra of mixed hypergraphs studied earlier, the feasible set was always the full interval
from χ(H) to χ̄(H). At many conferences, the fourth author asked whether this holds for all mixed
hypergraphs. We settle this in the negative. A mixed hypergraph has a gap at k if its feasible set
contains elements larger and smaller than k but omits k. In Section 2, we construct for 2 ≤ s ≤ t−2
a mixed hypergraph Hs,t with feasible set {s, t}. Furthermore, we prove that Hs,t has the fewest
vertices among all s-colorable mixed hypergraphs that have a gap at t− 1; this minimum number
of vertices is 2t− s.

This raises the question of which sets of positive integers are feasible sets of mixed hypergraphs.
We solve this for finite sets in Section 3, where we prove that a finite set of positive integers is a
feasible set if and only if it is an initial interval {1, . . . , t} or does not contain the element 1.

Our proof is constructive, producing mixed hypergraphs in which the size of the vertex set is
exponential in the number of elements below the highest gap in the feasible set. The question of
finding the minimum number of vertices in a mixed hypergraph with feasible set S of size at least
3 remains open. We present a second construction that produces smaller mixed hypergraphs when
S is composed of few intervals.

In Section 4 we consider special families of mixed hypergraphs. We prove that gaps can arise
even when C = D and all the edges have the same size. We also show that gaps cannot arise when
each member of C and D is an interval in an underlying linear order on the vertices.

2 The Smallest Mixed Hypergraphs with Gaps

We begin with an explicit construction of a mixed hypergraph with 2t− 2 vertices and feasible set
{2, t}. Let Kn denote the mixed hypergraph with n vertices in which C = ∅ and D is the set of all
pairs of vertices. Trivially, S(Kn) = {n}.

We first describe the construction informally. Beginning with Kt, we expand t − 2 of the
vertices into pairs, leaving two special vertices unexpanded. The D-edge consisting of the two
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special vertices remains, and the other D-edges expand into D-edges of size 3 or 4 (special vertex
plus pair, or union of two pairs). We add as C-edges all triples consisting of three vertices arising
from two original vertices (special vertex plus pair, or three vertices from two pairs).

This describes the construction completely, but we present it more formally to facilitate proofs.
The smallest instance is for t = 4; from K4 we produce a 6-vertex mixed hypergraph with spectrum
{2, 4}. We use the notation [m] = {1, . . . ,m}.

Construction 1 We define a hypergraph H2,t with vertex set {x1, x2, a1, . . . , at−2, b1, . . . , bt−2}.
Let T be the set of all triples of the form xraibi, for r ∈ {1, 2} and i ∈ [t − 2]. Let U be the set
of quadruples of the form aibiajbj for i, j ∈ [t − 2]. Let W be the union, over i, j ∈ [t − 2], of the
sets of four triples contained in {ai, bi, aj , bj}. The C-edges in H2,t are T ∪ W . The D-edges are
T ∪ U ∪ {x1x2}.

Lemma 1 The feasible set of the hypergraph H2,t in Construction 1 is {2, t}.

Proof. Let c be an arbitrary proper coloring of H2,t. If c(ai) 6= c(bi), then the C-edges in T and
W that contain ai and bi force all other vertices to have the same color as ai or bi. Thus in this
case there are at most two colors. The existence of D-edges prevents a proper 1-coloring, and for
j ∈ [t− 2], setting all c(aj) = c(x1) = 1 and c(bj) = c(x2) = 2 completes a proper 2-coloring.

Hence we may assume that c(ai) = c(bi) for all i ∈ [t − 2]. Now the D-edges in U force these
colors to be distinct for all i, and the D-edges in T along with x1x2 require additional colors for x1

and x2. This completely forces the coloring, which uses t colors and is proper.

In order to extend this construction to lower chromatic number s, we use a simple lemma about
combining feasible sets. The join of two mixed hypergraphs (X1, C1,D1) and (X2, C2,D2) with
disjoint vertex sets is the mixed hypergraph (X, C,D) defined by X = X1 ∪X2, C = C1 ∪ C2, and
D = D1 ∪ D2 ∪R, where R is the set of pairs consisting of one vertex from X1 and one from X2.

Lemma 2 If H1 and H2 are mixed hypergraphs, then the feasible set of the join of H1 and H2 is
{i + j : i ∈ S(H1), j ∈ S(H2)}.

Proof. The D-edges added between the vertex sets of H1 and H2 prohibit colors from appearing
in both sets. Thus the proper colorings of the join are precisely the colorings that consist of proper
colorings of H1 and H2 using disjoint sets of colors.

In particular, taking the join of a mixed hypergraph H with the mixed hypergraph Ka has the
effect of “shifting” the feasible set of H to the right by a units, adding a to each element of S(H).

Theorem 1 If H is an s-colorable mixed hypergraph with a gap at t− 1, then n ≥ 2t− s, and for
2 ≤ s ≤ t− 2, this bound is sharp.
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Proof. Consider a proper coloring of H using k colors, where k is the smallest element of the
feasible set larger than t− 1. If n < 2t− s, then using at least t colors requires having at least s+1
color classes of size 1. Two such color classes can be combined to obtain a proper coloring using
k − 1 colors unless they form a D-edge of size 2. Since k − 1 is not in the feasible set, H contains
Ks+1. Now H is not s-colorable; the contradiction yields n ≥ 2t− s.

For s = 2, Lemma 1 shows that Construction 1 achieves the bound. For s > 2, we define Hs,t to
be the join of Ks−2 and H2,t−s+2. By Lemma 2, the feasible set of Hs,t is {s− 2}+ {2, t− s + 2} =
{s, t}. The number of vertices in Hs,t is s− 2 + 2(t− s + 2)− 2 = 2t− s.

Corollary 1 The minimum number of vertices in a mixed hypergraph with a gap in its feasible set
is 6, achieved by H2,4.

Proof. Every mixed hypergraph with a gap in its feasible set is s-colorable with a gap at t − 1,
for some s, t with t− 1 > s ≥ 2. Thus t ≥ 4 and t− s ≥ 2. By Theorem 1, n ≥ t + (t− s) ≥ 6.

A closer analysis allows one C-edge in the 6-vertex example to be dropped without changing
the spectrum. Thus 6 D-edges and 7 C-edges suffice.

3 The Family of Feasible Sets

We determine which finite sets are feasible sets of mixed hypergraphs. The n-vertex trivial mixed
hypergraph (X, ∅, ∅) has feasible set {1, . . . , n}. This gives us all intervals containing 1, and we
have observed in the introduction that these are the only feasible sets containing 1.

We construct mixed hypergraphs realizing all other feasible sets using the trivial mixed hyper-
graphs, the join operation of Lemma 2, and one additional operation. This operation is similar to
the construction of H2,t from Kt. In Construction 1, we avoided expanding two of the vertices in
order to create few vertices. Here our constructions will already be exponential in the size of the
feasible set, so we prefer the simplicity gained by expanding all vertices into pairs. The new wrinkle
in the construction is that we may have C-edges in the mixed hypergraph being expanded.

Construction 2 Let H = (X, C,D) be a mixed hypergraph. We construct a mixed hypergraph
H′ = (X ′, C′,D′) with X ′ =

⋃
v∈X{v−, v+}. For each D ∈ D, we add D′ =

⋃
v∈D{v−, v+} to D′.

For each C ∈ C, we add C ′ = {v− : v ∈ C} to C′. Finally, for each ordered pair u, v ∈ X, we add
the triples {v−, v+, u−} and {v−, v+, u+} to C′.

The application of Construction 2 may be called doubling. It has the effect of appending the
element 2 to the feasible set. This is what Construction 1 did to Kt, and the analysis here generalizes
Lemma 1.

Lemma 3 Let H be a mixed hypergraph with feasible set S. If χ(H) ≥ 2, then the mixed hypergraph
H′ obtained from H via Construction 2 has feasible set S ∪ {2}.
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Proof. Let c be an arbitrary coloring of H′. If c(v−) 6= c(v+) for some vertex v of H, then the
C-edges that are triples containing v−, v+ force all other vertices to have color c(v−) or c(v+). Thus
such a coloring uses exactly two colors. We obtain a strict 2-coloring by setting c(u−) = c(v−) and
c(u+) = c(v+) for all u. Since each member of D′ consists of full pairs, the constraints on D-edges
are satisified. Also each member of C′ contains two vertices with superscripts of the same type.

It remains to consider colorings with c(v−) = c(v+) for each vertex v of H. Let c̃ be the coloring
of H defined by c̃(v) = c(v−). For each member of D′, the coloring constraint is satisfied by c if
and only if c̃ satisfies the constraint for the corresponding member of D. The same statement
holds for members of C′ that arise from members of C. By construction, the new triples in C′ are
automatically satisfied. Thus c is a proper coloring of H′ if and only if c̃ is a proper coloring of H.
Note that c̃ uses the same number of colors as c.

Similarly, we can extend each proper coloring of H to a proper coloring of H′ using the same
number of colors, by copying the color of each vertex v onto both v− and v+. This implies that an
integer greater than 2 is feasible for H if and only if it is feasible for H′.

The proof establishes a bijection between strict colorings of H with at least three colors and
strict colorings of H′ with at least three colors.

Using shiftings (joins with cliques) and doublings, we can produce all feasible sets.

Theorem 2 A finite set of positive integers is the feasible set for some mixed hypergraph if and
only if it omits the number 1 or is an interval containing 1.

Proof. It remains only to consider the sets not containing 1. We produce a mixed hypergraph
H(T ) with feasible set T . We use induction on the size of the set T , and within each size we use
induction on the smallest element t of T . For T = {t}, we set H(T ) = Kt.

For |T | > 1 and t = 2, we let H(T ) be the mixed hypergraph obtained by applying Construc-
tion 2 to H(T − {2}). Lemma 3 implies that this works.

For |T | > 1 and t > 2, we let H(T ) be the join of Kt−2 with the mixed hypergraph H(T ′),
where T ′ is obtained from T by subtracting t − 2 from each element. Lemma 2 implies that this
works.

By modifying Construction 2 slightly, we can characterize the feasible sets realizable by mixed
hypergraphs having only one feasible partition for each feasible number of colors.

Theorem 3 A finite set S of positive integers is the feasible set of some mixed hypergraph whose
spectrum has each ri ∈ {0, 1} if and only if 1 /∈ S or max(S) ≤ 2.

Proof. A mixed hypergraph has 1 in its feasible set if and only if it has no D-edges. In such a
mixed hypergraph, combining any two color classes in a strict coloring yields a strict coloring with
fewer colors. If there is a strict coloring with k colors, then combining two color classes yields

(
k
2

)
distinct partitions for strict colorings with k − 1 colors. Thus the condition is necessary. Among
mixed hypergraphs with no D-edges, the sets {1} and {1, 2} are realized with two vertices by having
one C-edge or no C-edges.
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For sets not containing 1, we use induction to prove a stronger result. We say that a mixed
hypergraph H = (X, C,D) properly realizes a set S if S is the feasible set of H, each entry in the
spectrum of H is 0 or 1, and in every proper coloring of H, every color class has fewer than |X|/2
vertices, except for the unique half/half partition that occurs when 2 ∈ S. For a finite set S of
integers greater than 1, let m(S) = 2 max(S)−min(S). We use induction on m(S) to construct a
mixed hypergraph that properly realizes S.

The smallest value of m(S) is 2, which occurs only when S = {2}. This set is properly realized
by K2. For m(S) > 2, we have two cases, depending on whether 2 ∈ S.

If 2 /∈ S, then we properly realize S by taking the join of K1 with a mixed hypergraph H that
properly realizes T = {s− 1: s ∈ S}. Note that m(T ) = m(S)− 1. The feasible partitions of the
resulting H′ consist of those of H with the new element added as a singleton class. Thus the limit
on the size of color classes still holds.

If 2 ∈ S, then we modify the application of the doubling construction (Construction 2) to a
mixed hypergraph H = (X, C,D) that properly realizes T = S − {2}. Note that m(T ) < m(S),
since min(T ) > min(S). Let n = |X|. To the doubled hypergraph H′, we add

(
2n
n

)
− 2 further

D-edges. We add all n sets of the vertices except {v− : v ∈ X} and {v+ : v ∈ X}.
In analyzing the proper colorings of H′, we have the same two cases as in the proof of Lemma 3.

When c(v−) = c(v+) for every v ∈ X, all the new D-edges are satisfied if and only if no class
contains half of the pairs. Thus the coloring c is proper if and only if the coloring c̃ of H obtained
by setting c̃(v) = c(v−) is proper, since all proper colorings of H have no class with half the vertices.
Thus ri(H′) = ri(H) for i > 2, and also H′ has no proper 2-colorings of this type.

It remains to consider colorings with c(v−) 6= c(v+) for some v. As in the proof of Lemma 3,
all other vertices must have color c(v−) or c(v+). The added D-edges of size n permit only the
partition with one class {u− : u ∈ X} and the other class {u+ : u ∈ X}.

For a set S of size k, our constructions produce mixed hypergraphs with feasible set S that have
more than 2k vertices. We obtain quick proofs of realizability and realizability with 0,1-spectrum.
For realizability in general, this number of vertices is far from minimal. Our next construction
usually yields smaller realizations. It enables us to take unions of feasible sets.

Construction 3 Let H1 = (X1, C1,D1) and H2 = (X2, C2,D2) be mixed hypergraphs. Let G

be the complete bipartite graph with bipartition X1, X2. We construct a mixed hypergraph H′ =
(X ′, C′,D′) with X ′ = E(G); we define C′ and D′ as follows after distinguishing two vertices x∗ ∈ X1

and y∗ ∈ X2.
For C ∈ C1, let C ′ = {xy∗ : x ∈ C}.
For C ∈ C2, let C ′ = {x∗y : y ∈ C}.
For D ∈ D1, let D′ = {xy : x ∈ D, y ∈ X2}.
For D ∈ D2, let D′ = {xy : x ∈ X1, y ∈ D}.
Let C′0 consist of the edge sets of paths of length three in G.
Let C′ = C′0 ∪ {C ′ : C ∈ C1 ∪ C2}.
Let D′ = {D′ : D ∈ D1 ∪ D2}.

6



In a graph G, a copy of F is a subgraph of G isomorphic to F . In an edge-coloring of G, we say
that (a copy of) F is polychromatic if its edges all receive distinct colors.

Lemma 4 Let c be a coloring of the edges of a complete bipartite graph G. If c uses at least three
colors and has no polychromatic P4, then for one of the two partite sets, each vertex is incident to
edges of only one color.

Proof. Since more than one color is used, some vertex x of G is incident to edges with at least
two colors. If some color i is missing at x, then every edge in G with color i forms a polychromatic
P4 with some two edges incident to x. Thus x is incident to edges of all colors. If any vertex y in
the partite set not containing x is incident to edges with two colors, then there is a polychromatic
P4 with yx as its central edge. Thus each vertex in the partite set not containing x is incident to
edges of only one color, and c(e) is determined by the endpoint of e in that partite set.

Lemma 5 If H1 and H2 are mixed hypergraphs such that 1 /∈ S(H1) ∪ S(H2), then the mixed
hypergraph H′ obtained from H1 and H2 via Construction 3 has feasible set S(H1) ∪ S(H2) ∪ {2}.

Proof. Since 1 /∈ S(H1) ∪ S(H2), both H1 and H2 have a D-edge, and thus also H′ has a D-edge
and is not 1-colorable. We obtain a strict 2-coloring of H′ by letting all edges incident to x∗ or y∗

have color 1 and letting all other edges have color 2.
Hence we need only consider colorings of H′ using at least three colors. By Lemma 4, each such

proper coloring c is monochromatic at vertices of one partite set. By symmetry, we may assume
that it is monochromatic at vertices of X1. Now edges of the form C ′ such that C ∈ C2 and D′

such that D ∈ D2 are all satisfied. We extract a coloring c̃ of X1 by letting c̃(x) be the color in c

of the edges incident to x. Now c̃ is a proper coloring of H1 if and only if c is a proper coloring of
H′, and the number of colors used is the same.

Let S be a finite set of integers greater than 1. When S consists of m intervals of consecutive
integers, we describe S by the numbers (g1, l1, . . . , gm, lm), where gi + 1 is the number of integers
skipped to reach the ith interval, and li − 1 is the number of integers in the ith interval. Thus
{3, 5, 6, 9, 10} is described by (1, 2, 0, 3, 1, 3). The shift of one unit from gap measure to length
measure simplifies the formula in Theorem 4; it can be motivated by the notion that there must
be an integer in the gap in order to move to the next interval.

Theorem 4 If S is a finite set of integers greater than 1 with interval description (g1, l1, . . . , gm, lm),
then S is the feasible set of a mixed hypergraph H = (X, C,D) such that

|X| = g1 + l1 (l1 + · · · (gm−1 + lm−1 (lm−1 + (gm + lm)))) .

Proof. Let n(S) be the claimed formula for the number of vertices in the mixed hypergraph
realizing S. The construction is by induction on the number of intervals.

Let Qg,l be the join of Kg with the mixed hypergraph on l vertices having a single universal
D-edge. The feasible set of Qg,l has interval description (g, l), and Qg,l has g + l vertices. This
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completes the case m = 1. Note that in this case max(S) = g + l; the number of vertices is always
at least the number of colors, so when m = 1 this construction is optimal.

For m > 1, let S′ be the finite set with interval description (g2, l2, . . . , gm, lm). By the induction
hypothesis, S′ is the feasible set of a mixed hypergraph H′ with n(S′) vertices. We now shift S′

to make room for the first interval in S by taking the join of H′ with Kl1 , invoking Lemma 2. We
now have l1 + n(S′) vertices.

By Lemma 5, applying Construction 3 to H′ and Q0,l1 adds [2, . . . , l1] to the current feasible
set and multiplies the number of vertices by l1. To obtain a mixed hypergraph with feasible set S,
we now take the join with Kg1 , which adds g1 vertices. The resulting hypergraph realizes S and
has g1 + l1[l1 + n(S′)] = n(S) vertices.

When S consists of m intervals of lengths at most l and the gaps have lengths bounded by a
constant times l, the mixed hypergraph resulting from Theorem 4 has O(lm) vertices.

4 Special Families of Mixed Hypergraphs

In this section we consider two special types of mixed hypergraphs. The first family may have gaps
in its feasible sets, despite its specialized structure, but the second family cannot have gaps.

A mixed hypergraph H = (X, C,D) is a bihypergraph if C = D. It is r-uniform if each C-edge
and each D-edge consists of r vertices.

Theorem 5 For each integer r ≥ 3, there exists an r-uniform bihypergraph H = (X, C,D) whose
feasible set contains a gap.

Proof. Let A = {a1, . . . , ar−1} and B = {b1, . . . , bn}, where n ≥ (r − 1)(r − 2) + 2. Let G be
the complete bipartite graph with bipartition A,B. Let H = (X, C,D) be a mixed hypergraph in
which X = E(G) and both C and D consist of the edge sets of all copies of F in G, where F is the
double-star with r edges obtained by adding a pendant edge to a leaf of K1,r−1. Thus H = (X, C,D)
is an r-uniform bihypergraph. Strict colorings of H = (X, C,D) correspond to edge-colorings of G

such that each copy of F has two edges with the same color and two edges with distinct colors.
We show first that H = (X, C,D) has a strict (r − 1)-coloring and a strict n-coloring. Assign

color i to all edges incident to ai in G. In this (r− 1)-coloring, any two edges incident to the same
vertex in A have the same color, while any two edges incident to the same vertex in B have distinct
colors. A copy of F in G contains a vertex u from A and a vertex v from B as nonleaf vertices.
Two edges incident to u have the same color, while two edges incident to v have distinct colors. A
strict n-coloring can be defined similarly by assigning color j to all edges incident to bj .

Next, let c be a strict m-coloring of H = (X, C,D), where m ≥ (r − 1)(r − 2) + 1. We argue
that m = n, thereby establishing a gap at each number from (r − 1)(r − 2) + 1 to n − 1. Since
m ≥ (r − 1)(r − 2) + 1, the pigeonhole principle yields a vertex ai in A that is incident to edges
of at least r − 1 colors. If some color α appears on no edge incident to ai, then an edge ajbk with
color α expands to a polychromatic copy of F by including aibk and r − 2 additional edges at ai

with distinct colors.
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Thus ai is incident to edges of all m colors in c. Since m ≥ r, this means that every edge of
the form bjak must have the same color as aibj ; otherwise we could again add r− 2 distinct colors
at ai to obtain a polychromatic F . Thus all edges incident to a vertex in B have the same color,
which yields m ≤ n. If m < n, then there exist distinct bj and bk in B such that all edges incident
to either of bj , bk have the same color. In this case, we have a monochromatic copy of F consisting
of r − 1 edges incident to bk and one edge incident to bj . Hence m = n.

Finally we consider a family of mixed hypergraphs in which the chromatic spectrum cannot have
gaps. A mixed hypergraph is a mixed interval hypergraph if each element of C ∪D is an interval in
an underlying linear order on X. In a mixed hypergraph H = (X, C,D) the subfamily C′ ⊆ C is a
sieve if for all distinct C,C ′ ∈ C′, every two elements of C ∩ C ′ form a D-edge of size 2. The sieve
number s(H) of a mixed hypergraph H is the maximum cardinality of a sieve in H.

Mixed interval hypergraphs and sieves were introduced and studied in [2], where it was shown
in particular that when a mixed interval hypergraph has a proper coloring, its lower chromatic
number is at most 2 (with equality only when D 6= ∅), and its upper chromatic number is n−s(H).

Theorem 6 The chromatic spectrum of a mixed interval hypergraph H = (X, C,D) is gap-free.

Proof. We use induction on n = |X|. For n = 2, 3 the statement is evident. Consider n > 3. Let
x1, . . . , xn be an ordering of X such that each element of C ∪ D is an interval in this ordering.

We do not change a spectrum by restricting C and D to their elements which are minimal with
respect to inclusion. Therefore we may assume that xn appears in at most one C-edge and in at
most one D-edge. Deleting the vertex xn and the C-edge and/or D-edge containing it yields a mixed
interval hypergraph H′. By the induction hypothesis, H′ has a gap-free chromatic spectrum.

Passing from H′ to H increases the lower chromatic number from 1 to 2 if H′ had no D-edges
but H has. It increases the upper chromatic number (by exactly one) if the C-edge containing xn

does not increase the sieve number of H′.
Therefore it is enough to show for i ≥ 2 that if H′ has a strict i-coloring, then also ri(H) > 0.

Consider a strict i-coloring c of H′; we obtain a strict i-coloring of H. Let k − 1 be the highest
index such that c(xk−1) 6= c(xn−1) (this exists since i ≥ 2). If xn belongs to a C-edge of size at
least three or to no C-edge, let c(xn) = c(xk−1); this extends c to a proper coloring of H.

If xn belongs to a C-edge of size 2, then setting c(xn) = c(xn−1) yields a proper coloring unless
xn belongs to a D-edge D contained in {xk, . . . , xn}. Let j be the lowest index such that each
consecutive pair in {xj , . . . , xn} forms a C-edge. These pairs cannot exhaust D, since otherwise H
is uncolorable. We obtain the proper coloring of H by giving color c(xk−1) to all of xj , . . . , xn.

Finally, we present a combining operation that preserves the absence of gaps in the chromatic
spectrum. A mixed hypergraph H = (X, C,D) is connected if it is possible to move from each vertex
to every other via steps taken within single C-edges or D-edges (in other words, the underlying
hypergraph (X, C ∪ D) is connected).

A mixed hypergraph is uniquely colorable if it has only one feasible partition. Thus its feasible
set has size 1 and the nonzero element of the spectrum equals 1. This does not reduce to the usual
definition of uniquely colorable in graphs.
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In a connected mixed hypergraphH = (X, C,D), the nonempty set X0 ⊂ X is a separator [11, 15]
if X −X0 has a partition into sets X1, X2 such that no element of C ∪D contains elements of both
X1 and X2. The mixed subhypergraph H[X0] induced by X0 ⊆ X is the mixed subhypergraph
with vertex set X0 whose C-edges and D-edges are those of H contained in X0. Given a separator
X0 and resulting partition X1, X2 of X−X0, the induced mixed subhypergraphs H1 = H[X1∪X0]
and H2 = H[X2 ∪X0] are the mixed hypergraphs derived from the separator.

We need the following separator theorem proven in [11].

Theorem 7 Let X0 be a separator inducing a uniquely colorable mixed hypergraph H0 = H[X0] in
H = (X, C,D). For the derived mixed subhypergraphs H1 = H[X1 ∪X0] and H2 = H[X2 ∪X0], the
following equalities hold:

1) χ(H) = max {χ(H1), χ(H2)};
2) χ̄(H) = χ̄(H1) + χ̄(H2)− χ̄(H0).

Next we show that identification at a uniquely colorable mixed subhypergraph preserves the
absence of gaps in the chromatic spectrum.

Theorem 8 Let H = (X, C,D) be a mixed hypergraph with a uniquely colorable separator H0,
resulting in the derived subhypergraphs H1 and H2. If the feasible sets of H1 and H2 have no gaps,
then the feasible set of H also has no gaps.

Proof. Choose i such that χ(H) ≤ i ≤ χ̄(H). By Theorem 7, there exist i0, i1, i2 such that
χ(H1) ≤ i1 ≤ χ̄(H1), χ(H2) ≤ i2 ≤ χ̄(H2), χ(H0) ≤ i0, and i = i1 + i2 − i0. Since S(H1) and
S(H2) have no gaps, we can take strict colorings of H1 with colors 1, . . . , i1 and H2 with colors
1, 2, . . . , i0, i1 + 1, i1 + 2, . . . , i1 + i2 − i0.

Since both H1 and H2 contain H0, and H0 is uniquely colorable, we can permute the names in
the coloring of H2 so that this coloring agrees with the coloring of H1 on X0. Permuting the colors
in this way yields a proper coloring of H with i colors.

The neighborhood of a vertex v in a mixed hypergraph is the set of vertices other than v belonging
to edges containing v. A simplicial vertex in H is a vertex whose neighborhood induces a uniquely
colorable mixed hypergraph. A simplicial elimination ordering of H is an ordering x1, . . . , xn of
X such that each xi is a simplicial vertex in the subhypergraph induced by xi, . . . , xn. A mixed
hypergraph is pseudo-chordal (see [15]) if it has a simplicial elimination ordering.

Corollary 2 Every pseudo-chordal mixed hypergraph has a gap-free chromatic spectrum.

Proof. Either the pseudo-chordal mixed hypergraph is itself uniquely colorable, or the neighbor-
hood of a simplicial vertex is a separator inducing a uniquely colorable mixed hypergraph, and
induction applies.
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[4] H. Lefmann, V. Rödl, and R. Thomas, Monochromatic vs. multicolored paths, Graphs Combin.
8 (1992), 323–332.

[5] D. Lozovanu and V. Voloshin, Integer programming and mixed hypergraphs, (in preparation).

[6] L. Milazzo, On upper chromatic number for SQS(10) and SQS(16), Le Matematiche L (Catania,
1995), 179–193.

[7] L. Milazzo, The monochromatic block number, Discrete Math. 165-166 (1997), 487–496.

[8] L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems,
Discrete Math. 174 (1997), 247–259.

[9] L. Milazzo and Zs. Tuza, Strict colorings for classes of Steiner triple systems, Discrete Math.
182 (1998), 233–243.

[10] Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Discrete Applied Math., (to appear).

[11] Zs. Tuza, V. Voloshin, and H. Zhou, Uniquely colorable mixed hypergraphs, (submitted).

[12] V. Voloshin, The mixed hypergraphs, Computer Science J. Moldova 1 (1993), 45–52.

[13] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Comb. 11
(1995), 25–45.

[14] V. Voloshin, Mixed hypergraphs as models for real problems, (in preparation).

[15] V. Voloshin and H. Zhou, Pseudo-chordal mixed hypergraphs Discrete Math., (to appear).

11


