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Abstract

For an l-graph G, the Turán number ex(n,G) is the maximum number of edges in an n-vertex

l-graph H containing no copy of G. The limit π(G) = limn→∞ ex (n,G)/
(
n
l

)
is known to exist

[8]. The Ramsey-Turán density ρ(G) is defined similarly to π(G) except that we restrict to only

those H with independence number o(n). A result of Erdős and Sós [3] states that π(G) = ρ(G)

as long as for every edge E of G there is another edge E′ of G for which |E ∩E′| ≥ 2. Therefore

a natural question is whether there exists G for which ρ(G) < π(G).

Another variant ρ̃(G) proposed in [3] requires the stronger condition that every set of vertices

of H of size at least εn (0 < ε < 1) has density bounded below by some threshold. By definition,

ρ̃(G) ≤ ρ(G) ≤ π(G) for every G. However, even ρ̃(G) < π(G) is not known for very many

l-graphs G when l > 2.

We prove the existence of a phenomenon similar to supersaturation for Turán problems for

hypergraphs. As a consequence, we construct, for each l ≥ 3, infinitely many l-graphs G for

which 0 < ρ̃(G) < π(G).

We also prove that the 3-graph G with triples 12a, 12b, 12c, 13a, 13b, 13c, 23a, 23b, 23c, abc,

satisfies 0 < ρ(G) < π(G). The existence of a hypergraph H satisfying 0 < ρ(H) < π(H) was

conjectured by Erdős and Sós [3], proved by Frankl and Rödl [6], and later by Sidorenko [14].

Our short proof is based on different ideas and is simpler than these earlier proofs.
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1 Introduction

1.1 Background

An l-graph is a hypergraph G = (V (G), E(G)), whose edge set E(G) consists of l-element subsets of

the vertex set V (G). We write n(G) and e(G) for the number of vertices and edges, respectively, in a

hypergraph G. The Turán problem for l-graphs asks for the maximum number t(n, l, r) of edges in

an n-vertex l-graph that contains no copy of the complete l-graph on r vertices. For l = 2 Turán’s

theorem [18] provides an answer, while for each r > l > 2 this problem is unsolved, and is one of

the most fundamental problems in extremal hypergraph theory. More generally, for an l-graph G,

the Turán number ex(n,G) is the maximum number of edges in an n-vertex l-graph H containing

no copy of G. The limit π(G) = limn→∞ ex(n,G)/
(
n
l

)
is known to exist, is determined for every

graph by the Erdős-Simonovits-Stone theorem [2, 4], but very difficult to compute even for specific

l-graphs when l > 2.

One of the most important properties of these extremal problems is the supersaturation phe-

nomenon [15]. This states that if an n-vertex l-graph has at least (π(G) + ε)
(
n
l

)
edges, then it

contains not just one, but at least δ
(

n
n(G)

)
copies of G as a subgraph, where δ > 0 depends only on

ε. A consequence of this is that π(G) remains unchanged if we blow up vertices of G, i.e., replace

a vertex v by several vertices v1, . . . , vt, such that v ∪ S ∈ E(G) if and only if vi ∪ S ∈ E(G)

for all i = 1, . . . , t. For graphs, the supersaturation phenomenon is essentially the content of the

Erdős-Simonovits-Stone theorem.

Our motivation is to prove the supersaturation phenomenon in the context of Ramsey-Turán

problems for hypergraphs. Throughout this paper we omit ceiling and floor symbols unless crucial.

Many of the conjectured extremal examples for hypergraph Turán problems have large indepen-

dent sets. Motivated by this observation, Erdős and Sós imposed a restriction on the underlying

l-graphs in this problem, namely that they should not have large independent sets. The resulting

set of problems and results comprise Ramsey-Turán theory. More precisely, for 0 < δ ≤ 1,

ex(n,G, δ) = max{e(F) : F is an n-vertex l-graph with G 6⊂ F and α(F) < δn},

or zero if no such hypergraph exists. The Ramsey-Turán number ρ(G) is defined as

sup
δ(n)

{
lim sup

n→∞
ex(n,G, δ(n))(

n
l

) : δ(n) → 0 as n →∞
}

.

Obviously ρ(G) ≤ π(G) for every G, and there exist graphs G for which ρ(G) < π(G) (the simplest

example is G = K3 which satisfies ρ(K3) = 0 < 1/2 = π(K3)).
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Moving on to hypergraphs, a basic question is whether there exists an l-graph (l > 2) G with

ρ(G) < π(G). Erdős and Sós [3] proved that such G do exist but with ρ(G) = 0. They asked whether

there exist l-graphs (l > 2) with

0 < ρ(G) < π(G). (1)

This was answered positively by Frankl and Rödl [6] for every l > 2, who showed that there exist

infinitely many l-graphs for which (1) holds; however, they were not able to obtain a single explicit

G. Subsequently, Sidorenko [14], using ideas from [6], proved that for the 3-graph G whose edge set

is {123, 145, 167, 245, 267, 345, 367, 467, 567}, inequality (1) holds.

We give another example for which (1) holds that has only six vertices. Moreover, our proof is

much shorter than that in [14] and is entirely self-contained.

Definition 1.1. Let F1 be the 3-graph of one edge. For r > 1, Fr is the 3-graph obtained from a

copy Y of Fr−1 by adding a set X of r + 1 new vertices and all edges in {xx′y : x, x′ ∈ X, y ∈ Y }.

Theorem 1.2. (Section 2)

2/7 ≤ ρ(F2) ≤ 2/3 < 3/4 ≤ π(F2).

Another variant of the Ramsey-Turán problem, due to Erdős and Sós [3], is to require F to have

uniformly positive density. In fact, there is a hierarchy of uniformity conditions on hypergraphs

([3], [16] section 5), two of which we present below. We write H(l)
n to denote an n-vertex l-graph,

and write a = b± c for a ∈ [b− c, b + c].

It is more convenient to consider sequences {Hi} of l-graphs instead of individual l-graphs.

Without loss of generality, we assume that n(Hi) → ∞ and n(Hi+1) ≥ n(Hi). A hypergraph H
contains G if G is a (not necessarily induced) subhypergraph of H; H is G-free if H contains no copy

of G. The sequence {Hi} is G-free if infinitely many Hi are G-free. The sequence {Hi} contains G
if all but finitely many of the Hi’s contain G.

An l-graph H is (α, ξ)-uniform if every ξn vertices of H span (α±ξ)
(
ξn
l

)
edges; it is (α, ξ)-dense

if every ξn vertices of H span at least α
(
ξn
l

)
edges. Note that the definitions of (α, ξ)-uniform and

(α, ξ)-dense automatically imply their respective conclusions to sets of size at least ξn. To see this

in the case of (α, ξ)-dense, suppose that S ⊂ V (H) with s = |S| ≥ ξn. Then by averaging over all

sets of size ξn in S,

e(S) ≥
(

s
ξn

)
α
(
ξn
l

)
(

s−l
ξn−l

) = α

(
s

l

)
. (2)

DENSE: {Hi} is α-dense if for all ξ > 0, there exists n0 such that for all n > n0, the hypergraph

Hn is (α, ξ)-dense.
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UNIFORM: {Hi} is α-uniform if for all ξ > 0, there exists n0 such that for all n > n0, the

hypergraph Hn is (α, ξ)-uniform.

Remark 1.3. We use the term α-uniform when we speak about sequences of hypergraphs. This

should not be confused with the common usage of l-uniform which denotes hypergraphs whose edges

have size l.

Now we define Ramsey-Turán functions based on these definitions. Let

ρD(G) = sup{α : there exists an α-dense sequence {Hi} that is G-free }
= inf{α : every α-dense sequence {Hi} contains G },

ρU (G) = sup{α : there exists an α-uniform sequence {Hi} that is G-free }
= inf{α : every α-uniform sequence {Hi} contains G }.

It is sometimes more convenient to work with l-graphs that are (α, ξ)-uniform than (α, ξ)-dense.

Therefore, we consider both parameters ρD and ρU . Indeed, the following theorem also proves

that these two concepts are the same for Turán problems. In fact, as a referee pointed out, it also

shows this for every property that is closed under taking subgraphs. We say that {Hi} contains

the subsequence {H′ji
} if for every i, Hji contains H′ji

.

Theorem 1.4. (Section 4) Fix 0 < α < 1. Every α-dense sequence {Hi} contains an α-uniform

subsequence {H′ji
}.

From Theorem 1.4 together with the fact that for every ε > 0, every (α + ε)-uniform sequence is

also α-dense, we can easily see that ρD(G) = ρU (G) for every G. Consequently we can define

ρ̃(G) = ρD(G) = ρU (G).

It is straightforward to verify that ρ̃(G) = 0 for every graph G, hence our focus is on hyper-

graphs. Using the reduction in Theorem 1.4 we describe infinitely many l-graphs (l ≥ 3) with

0 < ρ̃(G) < π(G) (in fact, the following result implies an even stronger statement).

Theorem 1.5. (Section 5) Let G be an l-graph with l ≥ 3. Then for any ε > 0, there exists Ĝ
containing G with ρ(Ĝ) > 1− ε and ρ̃(Ĝ) = ρ̃(G).

Let G be such that ρ̃(G) > 0. Choosing ε > 0 so that 1 − ε > ρ̃(Ĝ), Theorem 1.5 yields the

following.
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Corollary 1.6. If ρ̃(G) > 0, then there exists Ĝ ⊃ G for which

0 < ρ̃(Ĝ) < ρ(Ĝ) ≤ π(Ĝ). (3)

Remark 1.7. Two simple examples of 3-graphs with positive ρ̃ are H(4, 3), the 3-graph with four

points and three triples, and K3
4 , the complete 3-graph on four points. Füredi and the second author

independently proved that ρ̃(H(4, 3)) ≥ 1/4, and ρ̃(K3
4 ) ≥ 1/2.

The hypergraphs in Definition 1.1 are another infinite family of 3-graphs with 0 < ρ̃(Fr) <

π(Fr). These are the only known examples for which such a result has been proved using purely

elementary arguments.

Theorem 1.8. (Section 2) For r > 2,

1− 3
r

+
2
r2
≤ ρ̃(Fr) ≤ 1− 2

r(r + 1)
< 1− 1

r2
≤ π(Fr).

1.2 The main tool

In this subsection we describe the main tool that allows us to prove supersaturation for Ramsey-

Turán problems. Informally, Theorem 1.9 says that in an l-graph whose edges are uniformly

distributed, this property is inherited to almost all sets of constant size. Recall that H(l)
n denotes

an n-vertex l-graph.

Theorem 1.9. (Mubayi-Rödl [11]) Let 0 < α < 1, l ≥ 2 be fixed. For all δ̃, there exists r0 such

that for all r > r0, there exist δ, n0 such that, if n > n0 and H(l)
n is (α, δ)-uniform, then all but

exp{−r1/l/20}(n
r

)
r-sets of vertices induce a subhypergraph that is (α, δ̃)-uniform.

Remark 1.10. Note that r0 = r0(δ̃) →∞ as δ̃ → 0.

Remark 1.11. Note also that if δ′ < δ, and Theorem 1.9 holds for δ, then it also holds for δ′, since

an (α, δ′)-uniform hypergraph is also (α, δ)-uniform. We may therefore take δ to be as small as we

need in relation to r, in particular, we assume that δ < 1/2rr+1. This will be needed in Section 5.

Remark 1.12. A closely related result to Theorem 1.9 was proved independently and simultaneously

by Alon, de la Vega, Kannan, and Karpinski [1] (Theorem 9 in the extended version of [1]) using

completely different techniques. One technical difficulty in applying that result to our situation is

that it was proved only for l-partite l-graphs. Another difference is that the conclusion of Theorem

1.9 applies to all but an exponentially small (in r) proportion of r-sets, while the result of Alon et

al. only gives the conclusion for 39/40 fraction of the r-sets. With the added steps of proving the

result from [1] in a non l-partite framework, it could just as well be used for the main applications

in this paper.
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2 Elementary proofs for 0 < ρ < π and 0 < ρ̃ < π

In this section we prove Theorems 1.2 and 1.8. We need the following well-known and easy fact.

Lemma 2.1. Fix l ≥ 2. If G is an l-graph with χ(G) ≥ k, then π(G) ≥ 1− (k − 1)1−l.

Proof. Let Hk be the n-vertex l-graph with vertex partition V1 ∪ · · · ∪ Vk−1, where ||Vi| − |Vj || ≤ 1

for all i 6= j, and all edges except those that lie entirely within any one of the Vi’s. The density of

Hk is 1− (k − 1)1−l − o(1) (as n →∞) and χ(Hk) ≤ k − 1. Since χ(G) ≥ k, there is no copy of G
in Hk. Therefore π(G) ≥ 1− (k − 1)1−l.

Lemma 2.2. χ(Fr) ≥ r + 1 for every r ≥ 1.

Proof. We proceed by induction on r, noting that χ(F1) ≥ 2. Suppose, for contradiction, that

r > 1 and χ(Fr) ≤ r. Recall that a copy of Fr has vertex partition X ∪ Y , where |X| = r + 1

and Y is a copy of Fr−1. A proper r-coloring of Fr assigns the same color, say 1, to at least two

vertices in X. Consequently, color 1 is forbidden on Y , and therefore Y is properly (r− 1)-colored.

However, this contradicts the induction hypothesis χ(Fr−1) ≥ r.

For vertices u, v in a hypergraph, we write du,v for the number of edges containing both u and

v. Recall that H(4, 3) is the unique four vertex triple system with three triples.

Proof of Theorem 1.2: Recall that we must show 2/7 ≤ ρ(F2) ≤ 2/3 < 3/4 ≤ π(F2).

Set G = F2. Then G contains H(4, 3), and Frankl and Füredi [5] proved that ρ(H(4, 3)) ≥ 2/7.

Consequently, ρ(G) ≥ ρ(H(4, 3)) ≥ 2/7.

Lemma 2.2 implies that χ(G) ≥ 3, so by Lemma 2.1 we obtain π(G) ≥ 1 − 21−3 = 3/4 (it is

proved in [10] that π(G) = 3/4).

We now prove that ρ(G) ≤ 2/3. Fix ε > 0, and suppose that H is an n-vertex 3-graph with

(2/3 + ε)
(
n
3

)
edges and let n be large enough so that α(H) < εn. We will prove that H contains a

copy of G thus completing the proof. Since

∑
S⊂V (H),
|S|=3

∑

u,v∈S

du,v =
∑
u,v

du,v(n− 2) ≥ (2 + 3ε)(n− 2)
(

n

3

)
,

there is an S0 ⊂ V (H) of size three with

∑

u,v∈S0

du,v ≥ (2 + 3ε)(n− 2).
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If fewer than εn vertices from V (H)− S0 form edges with all pairs from S0, then
∑

u,v∈S0

du,v < 3εn + 2(1− ε)n = εn + 2n < (2 + 3ε)(n− 2) ≤
∑

u,v∈S0

du,v.

Consequently, at least εn vertices from V (H) − S0 form edges with all three pairs from S0. By

hypothesis, there is an edge contained in these εn vertices, and together with S0, this forms a copy

of G.

The lower bound for ρ̃(Fr) in Theorem 1.8 follows from the following construction.

Construction 2.3. Fix r ≥ 2. Color the edges of a complete graph on n vertices with r-colors,

where each color appears on each edge independently with probability 1/r. For each set S of three

vertices, include S as an edge in a hypergraph if the colors on the three edges in S are distinct.

We first show that any resulting 3-graph Hn,r from Construction 2.3 contains no copy G of Fr.

Suppose to the contrary that such a G exists. Recall from Definition 1.1 that G consists of a part

Y that is a copy of Fr−1, and a part X of size r + 1 with all triples xx′y where x, x′ ∈ X, y ∈ Y .

Pick y ∈ Y . Then some two edges yx, yx′ must have the same color, consequently xx′y cannot be

an edge in Hn,r and therefore in G.

Next we show that for any ε > 0, there is an n0 such that for n > n0 there exists an Hn,r that

is (α, ε)-uniform, where α = (1− 1/r)(1− 2/r). Note that α is the probability that a set S of size

three was selected as an edge.

The event that a specific edge is present in Hn,r is independent of the same event for some

other edge. Hence we can apply the Chernoff inequality (see, e.g., [7] page 27) to conclude that the

probability that there is a set of vertices of size εn with density outside α± ε is at most
(

n

εn

)
exp

{
−cεα

(
εn

3

)}
< 1,

since n is sufficiently large. Consequently, there is an H = Hn,r that is (α, ε)-uniform, and H
contains no copy of Fr. We conclude that

ρ̃(Fr) ≥ α = 1− 3/r + 2/r2. (4)

Proof of Theorem 1.8: We must prove that

1− 3/r + 2/r2 ≤ ρ̃(Fr) ≤ 1− 1(
r+1
2

) < 1− 1
r2
≤ π(Fr).

The first inequality has been shown in (4). For the last inequality, we use Lemma 2.2 and then

Lemma 2.1.

7



We now focus on proving that ρ̃(Fr) = ρD(Fr) ≤ 1−1/
(
r+1
2

)
. Our approach is to use induction

on r, and extends the argument in the proof of Theorem 1.2. Fix ε > 0, and let δr = εr. Suppose

that H is an n-vertex 3-graph (n sufficiently large) that is (α, δr)-dense, where α = (1−1/
(
r+1
2

)
+ε).

We will show that H contains a copy of Fr. Consequently, every α-dense {Hi} contains Fr. This

proves that ρ̃(Fr) = ρD(Fr) ≤ α = 1 − 1/
(
r+1
2

)
+ ε, and since ε > 0 is arbitrary we obtain

ρ̃(Fr) ≤ 1− 1/
(
r+1
2

)
.

The result is trivial for r = 1, so assume that r > 1. Writing V for V (H), and counting

codegrees in two ways, we have

∑
S⊂V,
|S|=r+1

∑

u,v∈S

du,v =
∑

x,y∈V

dx,y

(
n− 2
r − 1

)
≥

(
n− 2
r − 1

)
3

(
1− 1(

r+1
2

) + ε

)(
n

3

)
.

Consequently, there is an (r + 1)-set S0 ⊂ V for which

∑

u,v∈S0

du,v ≥
3
(
n−2
r−1

) (
1− 1

(r+1
2 ) + ε

)(
n
3

)
(

n
r+1

) =
[
(1 + ε)

(
r + 1

2

)
− 1

]
(n− r + 1). (5)

Let T ⊂ V − S0 be the set of vertices which do not form triples with all pairs of vertices from S0.

Set |T | = tn with 0 ≤ t ≤ 1. Then

∑

u,v∈S0

du,v ≤ tn

[(
r + 1

2

)
− 1

]
+ (n− tn− (r + 1))

(
r + 1

2

)
+ 3

(
r + 1

3

)

=
[
t(

(
r + 1

2

)
− 1) + (1− t)

(
r + 1

2

)]
n− (r + 1)

(
r + 1

2

)
+ 3

(
r + 1

3

)

=
[(

r + 1
2

)
− t

]
n− (r + 1)

(
r + 1

2

)
+ 3

(
r + 1

3

)

≤
[(

r + 1
2

)
− t

]
n.

Together with (5), this implies that t ≤ 1 − (ε/2)
(
r+1
2

)
. Therefore, every vertex in a set B of at

least (ε/2)
(
r+1
2

)
n − r ≥ εn vertices in V − S0 forms edges with each pair from S0. Since H is

(α, δr)-dense, every set B′ ⊂ B of size at least εr−1|B| ≥ δrn has density at least α. Consequently,

the hypergraph induced by B is (α, δr−1)-dense. We now apply induction to obtain a copy of Fr−1

in B. Together with S0 this forms a copy of Fr in H as required.

3 The Regularity Lemma

In this section we describe our main tool needed to prove Theorem 1.4, the Szemerédi Regularity

Lemma (see [17] and [9]). In an l-graph H, let X1, . . . , Xl be pairwise disjoint sets of vertices. Write
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e(X1, . . . , Xl) for the number of edges with exactly one point in each Xi. The density of the l-tuple

(X1, . . . , Xl) is

d(X1, . . . , Xl) =
e(X1, . . . , Xl)
|X1| . . . |Xl| .

Given ε > 0, the l-tuple (X1, . . . , Xl) is ε-regular with density α = d(X1, . . . , Xl) if for every choice

of Yi ⊆ Xi with

|Yi| ≥ ε|Xi| for each i ,

we have

d(Y1, . . . , Yl) = α± ε.

We also extend the definition of (α, ε)-uniform to an l-partite situation.

Definition 3.1. The l-partite l-graph H = H(V1, . . . , Vl) is (α, ε)-uniform if for every choice of

V ′
i ⊂ Vi, with |V ′

i | = ε|Vi|, the density d(V ′
1 , . . . , V

′
l ) = α± ε.

Remark 3.2. For an l-tuple L = (X1, . . . , Xl) there is a subtle distinction between the following

two statements

1) L is ε-regular with density α

2) L is (α, ε)-uniform.

It is clear that 1) implies 2), but if 2) holds, then the best we can say regarding 1) is that L is

2ε-regular with density α′ = α± ε.

Consider a partition P = V0 ∪ V1 ∪ · · · ∪ Vk of V (H). We say that P is an ε-regular partition if

1) |V0| < ε|V |,
2) |V1| = · · · = |Vk|,
3) the l-tuple (Vi1 , . . . , Vil) is ε-regular for all but εkl choices of l of the Vi’s.

With these notions we can state the celebrated Szemerédi Regularity Lemma. Below we state

a version for l-graphs, l ≥ 2. Its proof is essentially the same as for the case l = 2 (see [12] for an

exposition).

Lemma 3.3. (Regularity Lemma) Let l ≥ 2 be fixed. For every ε > 0 and every integer k0 ≥ 1

there exist integers K, n0 such that every l-graph of order at least n0 admits an ε-regular partition

V0, . . . , Vk with k0 ≤ k ≤ K.
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4 Dense equals Uniform

In this section we prove Theorem 1.4. We think this result is of independent interest; however, its

main application is to prove Theorem 1.5 by putting it in the context of Theorem 1.9. Our proof

uses the Szemerédi Regularity Lemma described in Section 3.

Lemma 4.1. For every l ≥ 2, ε > 0, β ≥ α ≥ 0, there is an m0 such that for m > m0 the following

holds: Let H = H(V1, . . . , Vl) be an ε-regular l-partite l-graph with density β > 0 and |Vi| = m for

all i. Then there is an l-partite H′ ⊂ H which is (α, 2ε)-uniform.

Proof. Form H′ by choosing each edge of H independently with probability p = α/β. Then the

probability that there exist V ′
i ⊂ Vi, |V ′

i | = 2εm with dH′(V ′
1 , . . . , V

′
l ) 6= α ± 2ε is by Chernoff’s

inequality at most (
m

2εm

)l

exp{−cεα(2εm)l} < 1,

since m > m0. Consequently there is an H′ for which dH′(V ′
1 , . . . , V

′
l ) = α ± 2ε for all choices of

V ′
i ⊂ Vi, |V ′

i | = 2εm.

Proof of Theorem 1.4: Let {Hi} be an α-dense sequence of l-graphs. We will show that {Hi}
contains an α-uniform subsequence {Gt} with n(Gt) → ∞. Since our definition of hypergraph

sequence also requires the order of the individual hypergraphs to be nondecreasing, and {Gt} may

not have this property, we can always take a subsequence {G′t} of Gt having this property (since

n(Gt) →∞). Our strategy is to show that

for every µ > 0, there is an iµ and an H(µ) ⊂ Hiµ which is (α, 4µ)-uniform.

Our proof will also show that

n(H(µ)) →∞ as µ → 0. (6)

This is clearly enough, since an easy diagonalization argument yields an α-uniform sequence. For

example, {Gt} = {H(1/t)} is an α-uniform sequence.

Fix µ > 0 and

p = max
{⌈

2l2

µl+1α

⌉
,

⌈
l2

µ

⌉}
. (7)

Let R(l)(p) be the minimum number t such that every two-coloring of the edges of a complete

l-graph on t vertices yields a monochromatic complete l-graph on p vertices. Ramsey’s Theorem

[13] states that R(l)(p) is finite for every fixed l, p. Next choose s so that

R(l)(p) ≤ s. (8)
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Now choose ε so small that

ε <
αµl+1

10l
(9)

and

s ≤
⌊

1
4(lε)1/(l−1)

⌋
. (10)

Also choose k0 > 1/[(lε)1/(l−1)].

Given inputs ε, k0 to the Regularity Lemma, assume that it outputs K, n0. Having α and l fixed,

observe that p, s, ε, k0 and consequently also K and n0 can be viewed as functions of µ. Hence, for

ξ = ξ(µ) = p/K, there exists iµ such that for all i > iµ, the hypergraph Hi is (α, ξ)-dense. Take

Hi so that i > iµ and Hi has more than n0 vertices. Because n(Hi) → ∞, this is possible. From

now on we denote Hi simply by H.

Apply the Regularity Lemma to H with inputs ε, k0. We obtain an ε-regular partition V0 ∪
V1 ∪ · · · ∪ Vk (K > k > k0) of H with all but εkl of the l-tuples (Vj1 , . . . , Vjl

) being ε-regular.

Then V1 ∪ · · · ∪ Vk is also an ε-regular partition with all but εkl of the l-tuples (Vj1 , . . . , Vjl
) being

ε-regular.

Turán’s theorem states that a k-vertex l-graph with average degree dl−1 > 1 has an independent

set of size at least (1− 1/l)k/d (the easy proof is to pick a random subset of vertices by choosing

each vertex independently with probability 1/d, compute the expected number of edges within this

set, and delete a vertex from each of these edges). We apply this to the l-graph with vertex set

[k] and edge set consisting of the l-tuples (j1, . . . , jl), where (Vj1 , . . . , Vjl
) is not ε-regular. For this

l-graph, the average degree dl−1 ≤ lεkl/k = lεkl−1, and we obtain the following lower bound for the

independence number (for this computation to work, the probability 1/d must be less than one,

and this holds since k > k0 > 1/[(lε)1/(l−1)]):
(

1− 1
l

)
k

d
=

(1− 1/l)k
(lε)1/(l−1)k

>

⌊
1

4(lε)1/(l−1)

⌋
= s.

By relabelling if needed, we may therefore assume that all the l-tuples (Vj1 , . . . , Vjl
) are ε-regular

for 1 ≤ j1 < · · · < jl ≤ s. We now restrict only to those Vh for 1 ≤ h ≤ s.

Divide these l-tuples (Vj1 , . . . , Vjl
), 1 ≤ ji ≤ s into two groups,

i) RED – those with density less than α− µ

ii) BLUE – those with density at least α− µ.

Color these l-tuples by two colors depending on which of groups i) or ii) each one lies in. Now

apply Ramsey’s theorem to the l-graph whose edges are the l-tuples we have just colored. We

obtain a monochromatic complete l-graph with p vertices by (8). Consequently, we may assume by

relabelling, that all l-tuples (Vj1 , . . . , Vjl
), where {j1, . . . , jl} ⊆ [p] have the same color.
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Claim: Every l-tuple (Vj1 , . . . , Vjl
), where {j1, . . . , jl} ⊆ [p], is blue.

Proof of Claim. Suppose for contradiction, that every l-tuple, (Vj1 , . . . , Vjl
), where {j1, . . . , jl} ⊆ [p],

is red. Let H[V1, . . . , Vp] be the l-graph induced by V1 ∪ . . . ∪ Vp. Set m = n/p where n =

n(H[V1, . . . , Vp]) (thus m = |Vj | for each 1 ≤ j ≤ k).

Since all l-tuples are colored red, the total number of edges in H[V1, . . . , Vp] is at most
(

p

l

)
ml(α− µ) + p

(
m

2

)(
pm

l − 2

)
<

(
pm

l

)
(α− µ) +

pm2

2
(pm)l−2

(l − 2)!

<

(
pm

l

)
(α− µ) +

pm2l2

2
(pm)l−2

l!

<

(
pm

l

)
(α− µ) +

µ(pm)2

2
(pm)l−2

l!
, (11)

where (11) follows from p > l2/µ in (7). Since clearly pm > l − 1, this is at most
(

pm

l

)
(α− µ) + µ

(pm)l

l!
= α

(
pm

l

)
= α

(
n(H[V1, . . . , Vp])

l

)
.

On the other hand, letting ξ = p/K < p/k, (in view of (2)), we obtain that H is not (α, ξ)-dense.

This contradiction completes the proof of the Claim.

The previous Claim implies that every l-tuple of the parts of H[V1, . . . , Vp] has density at least

α− µ. We next prove that H[V1, . . . , Vp] contains an (α, 4µ)-uniform hypergraph.

Let H[L] be the l-graph induced by the l-tuple L = (Vj1 , . . . , Vjl
). If the density of H[L] is

greater than α + µ, then we apply Lemma 4.1 to H[L] to obtain H′[L] that is (α, 2ε)-uniform (here

we need m > m0 from Lemma 4.1, which we may assume since n0 is sufficiently large). If the

density of H[L] is α ± µ, then let H′[L] = H[L]. Consequently H′[L] is (α′, 2ε)-uniform, where

α′ = α± µ.

Let H(µ) be obtained from H[V1, . . . , Vp] by replacing H[L] by H′[L] for each of the
(
p
l

)
l-tuples

L. Set m = n(H(µ))/p = |Vj | for all 1 ≤ j ≤ p. Note that n(H(µ)) = mp can be made arbitrarily

large, thus showing (6). Our next goal which will complete the proof is

Claim: H(µ) is (α, 4µ)-uniform.

Proof of Claim: Let S ⊂ V (H(µ)) be a set of size 4µn(H(µ)) = 4µmp. We will show that S has

density α± 4µ. Consider the partition S = S1 ∪S2, where S1 consists of those elements of S which

lie in a Vj that contains fewer than 2ε|Vj | = 2εm elements of S. Then |S1| < 2εmp.

Subclaim 1: The number of l-sets in S (not necessarily edges) that intersect S1 is at most

(µα/10)
(
4µmp

l

)
.

12



Proof of Subclaim: We first choose a vertex in S1 and then all possible (l− 1)-sets that contain it.

This yields at most 2εmp
(

pm
l−1

)
l-sets. Now

2εmp

(
mp

l − 1

)
=

2εmpl

l!

l−2∏

i=0

(mp− i) <
2εmpl

l!

l−2∏

i=0

(4mp− i/µ) =
2εmpl

µl(4mp− (l − 1)/µ)

(
4mpµ

l

)
,

where the inequality holds since, for example, p > (l − 2)/µ. Because of (9) and 2mp > (l − 1)/µ,

this expression is upper bounded by

2mpµα

10(4mp− (l − 1)/µ)

(
4mpµ

l

)
<

µα

10

(
4mpµ

l

)
.

Subclaim 2: The number of l-sets in S intersecting some Vj in more than one vertex is at most

(µα/10)
(
4µmp

l

)
.

Proof of Subclaim: We first choose two vertices in some Vj and then all possible (l − 2)-sets that

contain it. This yields at most p
(
m
2

)(
mp
l−2

)
l-sets. This is at most

pm2

2

∏l−3
i=0(mp− i)
(l − 2)!

<
pm2l2

2l!

l−3∏

i=0

(4mp− i/µ) =
pm2l2

(
4mpµ

l

)

2µl(4mp− (l − 2)/µ)(4mp− (l − 1)/µ)
.

Because of p > 2l2/(µl+1α) from (7) and 2mp > (l − 1)/µ, this expression is upper bounded by

pm2l2

2µl(2mp)2

(
4mpµ

l

)
<

µα

10

(
4mpµ

l

)
.

An upper bound for the number of l-sets from Subclaims 1 and 2 is (2µα/10)
(
4µmp

l

)
. We have

therefore proved that of the
(
4µmp

l

)
l-sets {v1, . . . , vl} of S, at least (1 − 2µα/10)

(
4µmp

l

)
are such

that for some 1 ≤ j1 < · · · < jl ≤ p

1) vi ∈ Vji ∩ S, and

2) |Vji ∩ S| ≥ 2εm for all i = 1, . . . , l (in other words {v1, . . . , vl} ⊆ S2).

Since the l-tuple (Vj1 , . . . , Vjl
) is (α′, 2ε)-uniform, where α′ = α± µ, we infer that

e(S ∩ Vj1 , . . . , S ∩ Vjl
) = (α± (2ε + µ))

l∏

i=1

|S ∩ Vji |

whenever 2) holds. Consequently, an upper bound for the number of edges in S is
(

1− 2µ

10
α

)(
4µmp

l

)
(α + µ + 2ε) +

2µ

10
α

(
4µmp

l

)
< (α + 4µ)

(
4µmp

l

)
.

On the other hand, a lower bound is
(

1− 2µ

10
α

)(
4µmp

l

)
(α− µ− 2ε) > (α− 4µ)

(
4µmp

l

)
.

Therefore S has density (α± 4µ). This completes the proof of the claim and theorem.
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5 Proof of Theorem 1.5

In this section we use Theorem 1.9 to prove Theorem 1.5, namely, show that there exist infinitely

many l-graphs for which 0 < ρ̃(G) < ρ(G) ≤ π(G). Note that this is indeed easier than the

corresponding question of Erdős and Sós [3] for ρ(G), who asked for l-graphs G satisfying 0 <

ρ(G) < π(G) (see (1)), since ρ̃(G) ≤ ρ(G) holds always. Nevertheless, we know of no simple

method to generate such examples (other than the method in Section 2), and Theorem 1.5 implies

that any G with ρ̃(G) > 0 can be suitably augmented to provide such an example. The proof of

this implication is the content of this section.

A vertex v in an l-graph G is said to be multiplied if we replace it by l new vertices v1, . . . , vl,

replace each edge E containing v by the l edges (E − {v}) ∪ {vi} for each i, and add the edge

{v1, . . . , vl}. The following Lemma is a natural extension of the supersaturation proof for π applied

to ρ̃.

Lemma 5.1. Let G′ be an l-graph obtained from G by performing a sequence of vertex multiplica-

tions. Then ρ̃(G′) = ρ̃(G).

Proof. We may assume that G′ is obtained by multiplying a single vertex v1 of G, since we can then

repeat the argument. As obviously ρ̃(G′) ≥ ρ̃(G), we prove ρ̃(G′) ≤ ρ̃(G) by showing that for all

δ̃ > 0, ρ̃(G′) ≤ ρ̃(G) + 2δ̃. Now fix δ̃ > 0 and let α = ρ̃(G) + 2δ̃. By definition of the function ρ̃, we

must show that every α-uniform sequence of l-graphs contains G′. Pick such a sequence {Hi}.
Let α, l, δ̃ be the input of Theorem 1.9, and δ, r, n0 be the output, with δ < 1/2rr+1 (see Remark

1.11). Choose t sufficiently large that

1) n(Ht) ≥ n0, and

2) Ht is (α, δ)-uniform.

Note that t exists since {Hi} is α-uniform. We will apply Theorem 1.9 to H = Ht and prove

that H contains a copy of G′. Our proof will apply to every element of {Hi} satisfying 1) and 2).

Consequently, all but finitely many members of {Hi} contain G′ and therefore {Hi} contains G′.
By Theorem 1.9, all but e−r1/l/20

(
n
r

)
of the r-sets of vertices of H induce a subsystem H′ that

is (α, δ̃)-uniform. By the choice of α, the subsystem H′ has density at least ρ̃(G) + δ̃. Since r is

sufficiently large, H′ contains a copy of G. Letting m = n(G), we deduce that the number of copies

of G in H is at least

(1− e−r1/l/20)
(
n
r

)
(
n−m
r−m

) =
(1− e−r1/l/20)

(
n
m

)
(

r
m

) >
1

rm

(
n

m

)
. (12)
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Now consider the m-graph F whose edges consist of the copies of G in H, and associate to each

edge of F a special vertex (corresponding to the vertex that plays the role of v1). For an (m−1)-set

M , let cM be the number of edges of F containing M whose special vertex is outside M . Then

∑

|M |=m−1

cM = e(F) >
1

rm

(
n

m

)
,

so there is an M0 with

cM0 >
1

rm

(
n
m

)
(

n
m−1

) >
1

2mrm
n.

Now since δ < 1/2rr+1 and r > m we conclude that 1/(2mrm) > δ. Consequently, the set of all

special vertices corresponding to M0 contains an edge (in fact many). We have found a copy of G′
as required. This completes the proof.

Remark 5.2. In the above proof we didn’t need the full strength of Theorem 1.9 (see Remark 1.12).

We only needed in (12) that some fixed proportion of r-sets inherit the property of being (α, δ)-

uniform.

Definition 5.3. Fix l ≥ 3. Let G0 be the l-graph of one vertex. For i ≥ 1, let Gi be the l-graph

obtained by taking l disjoint copies of Gi−1, and adding all edges with exactly one point in each

copy.

An l-graph is simple if every two edges have at most one point in common. For an l-graph G,

define χs(G) to be the minimum number of colors needed to partition V (G) such that every color

class induces a simple l-graph. Let αs(G) be the maximum size of a subset of vertices that induces

a simple l-graph.

Lemma 5.4. Fix l ≥ 3. Then χs(Gi) ≥ (1 + 1/(l − 1))i−1. In particular, χs(Gi) →∞ as i →∞.

Proof. Observe that χs(G) ≥ n/αs(G) for every l-graph with n vertices. It therefore suffices to

prove that αs(Gi) ≤ l(l − 1)i−1, since Gi has li vertices. We proceed by induction on i. The base

case is i = 1, where the result is trivial. Now suppose the result holds for i − 1, and consider Gi

comprising l copies of Gi−1. The crucial observation is that taking two points from one copy of

Gi−1, and one point from each of the other l− 1 copies of Gi−1, yields a subset that does not induce

a simple l-graph. Consequently,

αs(Gi) ≤ max{l, (l − 1)αs(Gi−1)} ≤ (l − 1)[l(l − 1)i−2] = l(l − 1)i−1.

Since l is fixed, the last statement is trivial.
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Corollary 5.5. ρ(Gi) → 1 as i →∞.

Proof. Let k + 1 = χs(Gi). Fix ε > 0, and let An be an n-vertex simple l-graph with independence

number at most εn. Such l-graphs exist for every n ≥ n0 by an easy application of the probabilistic

method (see, e.g., [3]). We will moreover assume that n0 ≥ l/ε. Let Hn be the nk-vertex l-graph

with vertex set ∪k
j=1Xj , where Xj is a copy of V (An) for each j. The edge set of Hn consists of

all l-sets intersecting at least two of the Xj ’s, together with the l-sets within each Xj , where the

hypergraph induced by each Xj is isomorphic to An. Since εn ≥ l, we have α(Hn) ≤ εn. Also,

χs(Hn) ≤ k, which implies that Hn contains no copy of Gi. Furthermore, Hn has density at least

1− k1−l. By Lemma 5.4, k →∞ as i →∞, so ρ(Gi) ≥ 1− k1−l → 1.

Lemma 5.6. Fix l ≥ 3. For every i ≥ 0, there exists an l-graph G′ obtained by a sequence of vertex

multiplications (starting from a single vertex) such that Gi ⊂ G′.

Proof. We proceed by induction on i. When i = 0, the result is trivial, so let i > 0. Beginning with

a vertex x1, form the edge {x1, . . . , xl}. Now by induction, for each j, start from xj and perform

a sequence of vertex multiplications to produce an l-graph containing Gi−1. The resulting l-graph

contains Gi.

Proof of Theorem 1.5: Fix an l-graph G, and ε > 0. By Corollary 5.5, choose t so that

ρ(Gt) > 1 − ε. Now pick a vertex x in G, and by Lemma 5.6, perform a sequence of vertex

multiplications to transform x to an l-graph G′ containing Gt. Let Ĝ be the l-graph with vertex set

V (G) ∪ V (G′) that results after these multiplications. Since Ĝ is obtained from G by a sequence of

vertex multiplications, Lemma 5.1 implies that ρ̃(Ĝ) = ρ̃(G). By the choice of t, and since Gt ⊂ Ĝ,

we also have ρ(Ĝ) ≥ ρ(Gt) ≥ 1− ε.
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(1983), no. 3-4, 341–349.
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[12] H. J. Prömel, A. Steger, Excluding induced subgraphs. III. A general asymptotic. Random

Structures and Algorithms 3 (1992), no. 1, 19–31.

[13] F. P. Ramsey, On a Problem of Formal Logic, Proceedings of the London Mathematical Society,

30 (1930) 264–286.

17



[14] A. F. Sidorenko, On Ramsey-Turán numbers for 3-graphs. J. Graph Theory 16 (1992), no. 1,

73–78.

[15] M. Simonovits, Extremal graph problems, degenerate extremal problems, and supersaturated

graphs. Progress in graph theory (Waterloo, Ont., 1982), 419–437, Academic Press, Toronto,

ON, 1984.

[16] M. Simonovits, V. T. Sós, Ramsey-Turán theory, Combinatorics, graph theory, algorithms and

applications. Discrete Math. 229 (2001), no. 1-3, 293–340.
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