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Abstract

A celebrated result in Ramsey Theory states that the order of magnitude of the triangle-
complete graph Ramsey numbers R(3, t) is t2/ log t. In this paper, we consider an analogue of
this problem for uniform hypergraphs. A triangle is a hypergraph consisting of edges e, f, g such
that |e∩ f | = |f ∩ g| = |g ∩ e| = 1 and e ∩ f ∩ g = ∅. For all r ≥ 2, let R(C3,K

r
t ) be the smallest

positive integer n such that in every red-blue coloring of the edges of the complete r-uniform
hypergraph Kr

n, there exists a red triangle or a blue Kr
t . We show that there exist constants

a, br > 0 such that for all t ≥ 3,

at
3

2

(log t)
3

4

≤ R(C3,K
3
t ) ≤ b3t

3

2

and for r ≥ 4
t
3

2

(log t)
3

4
+o(1)

≤ R(C3,K
r
t ) ≤ brt

3

2 .

This determines up to a logarithmic factor the order of magnitude of R(C3,K
r
t ). We conjecture

that R(C3,K
r
t ) = o(t3/2) for all r ≥ 3. We also study a generalization to hypergraphs of cycle-

complete graph Ramsey numbers R(Ck,Kt) and a connection to r3(N), the maximum size of a
set of integers in {1, 2, . . . , N} not containing a three-term arithmetic progression.

1 Introduction

A hypergraph is a pair (V,E) where V is a set whose elements are called vertices and E is a family of

subsets of V called edges. If all edges have size r, then the hypergraph is referred to as an r-graph.

Throughout this paper, Ck denotes a loose k-cycle, namely the hypergraph with edges e1, . . . , ek such

that |ei ∩ ei+1| = 1 for i = 1, . . . , k− 1, |e1 ∩ ek| = 1, and ei ∩ ej = ∅ otherwise. In particular, a loose

triangle is a hypergraph consisting of three edges e, f, g such that |e ∩ f | = |f ∩ g| = |g ∩ e| = 1 and

e ∩ f ∩ g = ∅. Since we consider only loose cycles and triangles, we will omit the word “loose”. A

hypergraph is linear if any pair of distinct edges of the hypergraph intersect in at most one vertex.

An independent set in a hypergraph is a set of vertices containing no edges of the hypergraph. Let

Kr
t denote the t-vertex complete r-graph, i.e., the t-vertex r-graph whose edges are all r-element

subsets of the vertex set. In this paper we consider the cycle versus complete hypergraph Ramsey
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numbers R(Ck,K
r
t ) – this is the minimum n such that every n-vertex r-graph contains either a cycle

Ck or an independent set of t vertices. Our main effort will be on the triangle-complete hypergraph

Ramsey number R(C3,K
r
t ). A celebrated result of Kim [15] together with earlier bounds by Ajtai,

Komlós and Szemerédi [2] shows that

R(C3,Kt) = Θ
( t2

log t

)

as t → ∞.

This establishes the order of magnitude of these Ramsey numbers for graphs.

1.1 Triangle-free hypergraphs

The study of the independence number in triangle-free hypergraphs was initiated by Ajtai, Komlós,

Pintz, Spencer and Szemerédi [1] and used to give a counterexample to a conjecture of Erdős on

the Heilbronn problem [21] on the largest area of a triangle with vertices from n points in the unit

square. Motivated also by the triangle-complete graph Ramsey numbers, in this paper we determine

for r ≥ 3 the order of magnitude of the triangle-complete Ramsey numbers for r-graphs up to

logarithmic factors:

Theorem 1.1. There exist constants a, b3 > 0 such that for all t ≥ 1,

at
3
2

(log t)
3
4

≤ R(C3,K
3
t ) ≤ b3t

3
2 .

For each r > 3, there exist constants ar, br > 0 such that for all t ≥ 1,

t
3
2

(log t)
3
4
+ ar√

log log t

≤ R(C3,K
r
t ) ≤ brt

3
2 .

We shall see that br ≤ (2r)9/2 for all r ≥ 3. The upper bound in Theorem 1.1 is proved in Section 3.

The lower bound in Theorem 1.1 comes from a construction that combines randomness and linear

algebra and a construction of triangle-free hypergraphs coming from sets with no three-term arith-

metic progressions, presented in Section 5. The preliminaries required to analyze this construction

are presented in Section 4. Some of the ideas of the construction were recently used in [16] to study

a related problem. In light of Theorem 1.1, we make the following conjecture:

Conjecture 1.1. For all fixed r ≥ 3,

R(C3,K
r
t ) = o(t3/2) as t → ∞.

We shall see in Section 2 that if H is a triangle-free hypergraph (the edges may have arbitrary size)

on n vertices, then H contains an independent set of size at least ⌊√n⌋. By Theorem 1.1, this is not

tight for r-uniform hypergraphs for each fixed r ≥ 3. It would be interesting to see if it is tight when

edges whose size depends on n are allowed.
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1.2 Linear triangle-free hypergraphs

We indicate a connection between independent sets in linear triangle-free hypergraphs and Roth’s

Theorem [21] on arithmetic progressions. Let r3(N) denote the largest size of a set of integers in

{1, 2, . . . , N} containing no three-term arithmetic progressions. This problem has attracted much

attention, starting with the original theorem of Roth [21] showing that r3(N) = o(N). The best

current known bounds are as follows: for some constant c > 0,

N

ec
√
logN

≤ r3(N) ≤ N

(logN)1−o(1)
.

The lower bound, which comes from a construction of Behrend [5], is essentially unchanged for more

than sixty years. The upper bound, due to Sanders [24] improves many earlier results which gave

smaller powers of logN in the denominator. Let RL(C3,K
3
t ) denote the minimum n such that every

linear triangle-free 3-graph on at least n vertices contains an independent set of size t. We prove the

following theorem:

Theorem 1.2. There are constants ã, b̃ > 0 such that for all t ≥ 1

t
3
2

eã
√
log t

≤ RL(C3,K
3
t ) ≤

b̃t
3
2√

log t
.

Furthermore, if for some c > 0, RL(C3,K
3
t ) = O(t3/2(log t)−3/4−c), then

r3(N) = O
( N

(logN)
4c
3

)

.

It would be interesting if one could prove that r3(N) = o(N) using Theorem 1.2 above. The bound

RL(C3,K
3
t ) = O(t3/2/

√
log t) may also be evidence for Conjecture 1.1, that R(C3,K

3
t ) = o(t3/2).

1.3 k-Cycle-free hypergraphs

The construction used in Theorem 1.1 extends more generally to give lower bounds on all cycle-

complete hypergraph Ramsey numbers. The cycle C3 is precisely a hypergraph triangle. We give for

all k, r ≥ 3 a construction of Ck-free r-graphs with low independence number, based on known results

on the Ck-free bipartite Ramanujan graphs of Lubotzky, Phillips and Sarnak [18]. Specifically, we

prove the following theorem by a suitable and fairly straightforward modification of the construction.

We write f = O∗(g) to denote that for some constant c > 0, f(t) = O((log t)cg(t)), and f = Ω∗(g) is
equivalent to g = O∗(f).

Theorem 1.3. For fixed r, k ≥ 3,

R(Ck,K
r
t ) = Ω∗

(

t1+
1

3k−1

)

as t → ∞.

The key point of this theorem is that the exponent 1 + 1/(3k − 1) of t is bounded away from 1

by a constant independent of r, and strictly improves for all r, k ≥ 5 the lower bounds given by

considering appropriate random hypergraphs, namely

R(Ck,K
r
t ) = Ω∗

(

t1+
1

kr−r−k

)

as t → ∞.
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In the case r = 2, namely for graphs, the best available constructions for lower bounds on r(Ck,K
r
t )

indeed come from appropriate random graphs; in particular the Ck-free random graph process studied

by Bohman and Keevash [8].

By using the known constructions of extremal bipartite graphs of girth 12, arising from generalized

hexagons, we obtain the following improvement of the lower bound in Theorem 1.3 for C5 i.e. for

loose pentagons:

Theorem 1.4. For fixed r ≥ 3, there exists a constant cr > 0 such that

R(C5,K
r
t ) ≥ cr

( t

log t

)
5
4

as t → ∞.

The main part of this theorem is the exponent 5/4; we suspect that this exponent may be tight as

t → ∞, and perhaps even more generally, that r(Ck,K
r
t ) = Θ∗(tk/(k−1)) for all r, k ≥ 3. Our second

conjecture is as follows:

Conjecture 1.5. For all r ≥ 3,

R(C5,K
r
t ) = O(t5/4) as t → ∞.

For graphs, the best current bounds are a2t
4
3/ log t ≤ R(C5,Kt) ≤ b2t

3/2/
√
log t. for some constants

a2 > 0 and b2 > 0, where the upper bound is due to Caro, Li, Rousseau and Zhang [10] and the

lower bound is from Bohman and Keevash [8].

2 Non-uniform hypergraphs

The goal of this section is to give a simple proof that any triangle-free hypergraph on n vertices has

an independent set of size at least ⌊√n⌋. Recall that the chromatic number χ(H) of a hypergraph

H is the minimum k such that there is an assignment of k colors to the vertices such that no subset

of vertices of the same color forms an edge of H.

Theorem 2.1. Let H be any hypergraph on n vertices not containing a triangle and in which |e| ≥ 2

for all e ∈ H. Then

α(H) ≥ ⌊√n⌋.

Proof. Suppose for a contradiction that α(H) < ⌊√n⌋. Then χ(H) > k := ⌊√n⌋. So, H contains a

(k + 1)-vertex-critical subgraph H ′, which means that χ(H ′) = k + 1 but χ(H ′ − v) ≤ k for every

v ∈ V (H ′). By Corollary 3 on Page 431 of [7] (see also [27] and [17]), the strong degree of each vertex

in H ′ is at least k, i.e. for each v ∈ V (H ′) there are k edges e1, e2, . . . , ek such that ei ∩ ej = {v}
for all 1 ≤ i < j ≤ k. In words, the eis share v and nothing else. Choose a vertex vi in each ei\{v}.
Since H ′ has no triangles, the set {v1, . . . , vk} is an independent set of H of size k ≥ ⌊√n⌋, which is

a contradiction. �

This result is almost tight since R(C3, t) = Θ(t2/(log t)), so there are n-vertex triangle-free graphs

with independence number of order
√
n log n. It would be interesting to see if for hypergraphs

(not necessarily uniform) where every edge has size at least three, the above lower bound on the

independence number is tight.
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3 Proof of Theorem 1.1 : Upper Bound

The aim of this section is to prove the upper bound of Theorem 1.1. For r ≥ 3, let △r denote the

family of all triangle-free hypergraphs each of whose edges has size at least three and size at most

r. The upper bound on R(C3,K
r
t ) in Theorem 1.1 will be derived as a direct consequence of the

following more general statement about hypergraphs in △r:

Theorem 3.1. For every r ≥ 3 and G ∈ △r, α(G) ≥ |V (G)|2/3/(8r3).

This section is devoted to the proof of Theorem 3.1, which gives the constant br = (8r3)3/2 = (2r)9/2

in the upper bound in Theorem 1.1.

3.1 Expandable sets

In this section we state and prove a sequence of preliminary results needed for the proof of Theorem

3.1.

A set S of vertices of G ∈ △r is called expandable if, for every T ⊆ V (G)− S with |T | ≤ 2r, there is

an edge of G containing S and disjoint from T , otherwise S is non-expandable. For example, if S is

an edge of G, then it is expandable, and every set S ⊂ V (G) of size more than r is non-expandable.

Let G be an n-vertex graph in△r with the smallest
∑

e∈E(G) |e| for which Theorem 3.1 fails. Certainly

G has at least one edge.

Lemma 3.2. No three expandable sets in G form a triangle.

Proof. If sets S1, S2, S3 form a triangle, then by the definition of expandable sets, there is an edge

e1 ⊇ S1 disjoint from (S2 ∪ S3) \ S1, there is an edge e2 ⊇ S2 disjoint from (e1 ∪ S3) \ S2, and there

is an edge e3 ⊇ S3 disjoint from (e1 ∪ e2) \ S3. Now e1, e2, e3 form a triangle in G, contradicting

G ∈ △r. �

Lemma 3.3. Let S ⊂ V (G) be an expandable set and |S| ≥ 3. Then no edge of G of size more than

|S| contains S.

Proof. Suppose an expandable set S with |S| ≥ 3 is contained in e ∈ E(G) with |e| ≥ |S| + 1. Let

V (G′) = V (G) and E(G′) = E(G)−e+S. By Lemma 3.2, G′ ∈ △r. Since
∑

e∈E(G′) |e| <
∑

e∈E(G) |e|,
by the minimality of G, α(G′) ≥ |V (G′)|2/3/8r3 = n2/3/8r3. But every independent set in G′ is also
independent in G, and so α(G) ≥ α(G′) ≥ n2/3/8r3, a contradiction to the choice of G. �

Lemma 3.4. For every 3 ≤ i < j ≤ r no i-element subset of V (G) is contained in more than (2r)j−i

edges of size j.

Proof. We use induction on j − i. If a (j − 1)-element S ⊂ V (G) is contained in 2r+ 1 edges of size

j in G, then S is expandable, a contradiction to Lemma 3.3. Suppose now that 3 ≤ i ≤ j − 2 and

an i-element S ⊂ V (G) is contained in m ≥ (2r)j−i + 1 edges e1, e2, . . . , em ∈ E(G) of size j. By

Lemma 3.3, S is not expandable. This means that for some set T of 2r vertices of V (G)\S, we have

(ei \ S) ∩ T 6= ∅ for every 1 ≤ i ≤ m. In other words, T intersects the part outside S of every ei.

By the pigeonhole principle, there is an x ∈ T such that the set S ∪ {x} is contained in at least

(2r)j−i−1 + 1 edges among e1, e2, . . . , em, a contradiction. �
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Corollary 3.5. For every 3 ≤ j ≤ k each 2-element non-expandable subset of V (G) is contained in

at most (2k)j−2 edges of size j.

Proof. Suppose that S = {x, y} is a non-expandable pair of vertices in G is contained in m ≥
(2k)j−2+1 edges e1, . . . , em of size j. Then some 2k vertices x1, . . . , x2k outside S intersect all edges

of G containing S, and in particular, all edges e1, . . . , em. Then by the pigeonhole principle, for some

1 ≤ t ≤ 2k, the 3-element set S + xt is contained in at least (2k)j−3 + 1 edges among e1, . . . , em, a

contradiction to Lemma 3.4. �

3.2 Proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1. For 3 ≤ i ≤ r, let Gi be the subgraph of G

consisting of all edges of size i, that is, E(Gi) = {e ∈ E(G) : |e| = i}. For convenience, denote

n = |V (G)|.

Lemma 3.6. For every 3 < j ≤ r, |E(Gj)| ≤ (2r)j−2
(n
2

)

.

Proof. Let e ∈ E(Gj) and x, y, z ∈ e. By Lemma 3.2, at least one of the pairs {x, y}, {x, z} and

{y, z} is non-expandable and thus, by Corollary 3.5, is contained in at most (2r)j−2 edges of Gj .

Since every e ∈ E(Gj) contains such a pair, the lemma follows. �

Lemma 3.7. |E(G3)| ≥ n5/3/4r2.

Proof. Suppose that |E(G3)| < n5/3/4r2. Let p = n−1/3/4r2 and let W be a random subset of V (G)

where each v ∈ V (G) is in W with probability p independently of all other vertices. By Lemma 3.6,

for j ≥ 4, the expected number of edges of size j in G[W ] is at most

|E(Gj)|pj ≤ (2r)j−2

(

n

2

)

(4r2)−jn−j/3 ≤ (2r)−jn2/3.

By assumption, the expected number of edges of size 3 in G[W ] is at most

n5/3p3/4r2 = (2r)−8n2/3 ≤ (2r)−5n2/3.

So, the expectation of |W | − |E(G[W ])| is at least

pn−
r
∑

j=4

(2r)−jn2/3 − (2r)−5n2/3 ≥ pn− 2(2r)−4n2/3 =

(

1− 1

2r2

)

pn.

Thus there is a particular subset U of V (G) with |U | − |E(G[U ])| ≥ 0.9pn. Then deleting a vertex

from each edge in G[U ] we obtain an independent subset U ′ of U with |U ′| ≥ 0.9pn, so α(G) ≥
n2/3/5r2 > n2/3/8r3, a contradiction to the choice of G. �

The key part of the proof will be to produce an independent set in H = G3 of size at least n2/3/8r3

that is also an independent set in G, using the preceding lemmas. By Lemma 3.7, |E(H)| ≥
(2r)−2n5/3. Let d = 3|E(H)|/n be the average degree of H, so d ≥ 3n2/3/4r2. An edge e ∈ H

is called k-light if exactly k pairs of vertices of e have codegree in H at most r. An edge is heavy if it

is 0-light. We see quickly that H has no heavy edges: for a heavy edge {x, y, z} ∈ H, since r+1 ≥ 4,
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we can greedily choose distinct vertices a, b, c 6∈ {x, y, z} such that edges {a, x, y}, {b, y, z}, {c, x, z}
form a triangle, since each of the pairs (x, y), (y, z), (z, x) has codegree at least r + 1 ≥ 4. We now

consider two cases.

Case 1. The number of edges in H that are 2-light or 3-light is at least 2|E(H)|/3.

For each vertex v, let d′(v) be the number of edges e of H containing v such that e is either 2-light or

3-light and v is incident to two light pairs of e. Then
∑

v d
′(v) counts each such e one or three times

so
∑

v d
′(v) ≥ 2|E(H)|/3. Therefore some vertex v of H is in at least 2|E(H)|/3n = 2d/9 edges,

where two pairs of codegree (in H) at most r in each edge contain v. Let e1, e2, . . . , em be such a

set of edges on v with m ≥ 2d/9. Then the link graph L(v) consisting of pairs ei\{v} has maximum

degree at most r. It follows by Vizing’s Theorem that L(v) has a matching of size ℓ ≥ m/(r + 1).

This means that we have found edges, say e1, e2, . . . , eℓ sharing no vertices other than v, and such

that in each ei the two pairs containing v have codegree at most r. Now pick x1, x2, . . . , xℓ where

xi ∈ ei\{v} for 1 ≤ i ≤ ℓ. We claim that this is an independent set in the entire hypergraph G. If

not, then say e = {x1, . . . , xj} ∈ E(G). Then {e, e1, e2} is a triangle in G, since e1 and e2 share only

v, e and e1 share only x1, and e and e2 share only x2 – see Figure 1. This independent set has size

ℓ ≥ m/(r + 1) ≥ 2d/9(r + 1) ≥ n2/3/8r3. This completes the proof in Case 1.

 

x3

x2

x1

v

Figure 1 : Finding an independent set in Case 1.

Case 2. The number of 1-light edges in H is at least |E(H)|/3.

For each vertex v, let d′′(v) be the number of edges e of H containing v such that e is 1-light and

v is incident to the light pair of e. Then
∑

v d
′′(v) counts each such e exactly twice so

∑

v d
′′(v) ≥

2|E(H)|/3. By averaging, some v in H lies in at least 2|E(H)|/3n = 2d/9 1-light edges such that the

pair of codegree in H at most r in each edge contains v. Then there are at least 2d/9r distinct vertices
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x1, x2, . . . , xm such that the codegree of (v, xi) is at most r, and there is a 1-light edge ei ⊃ {v, xi} for

all i ∈ {1, 2, . . . ,m}. Since each ei is 1-light, exactly two pairs of vertices in ei have codegree at least

1 + r, and in particular, all eis are distinct. We claim that {x1, x2, . . . , xm} is again an independent

set in G. Suppose not, and that {x1, . . . , xj} is an edge. Let ei\{xi, v} = {yi}. Note that every yi
is disjoint from {x1, . . . , xj}, otherwise if say yi = xj, then {v, xi} and {v, xj} both have codegree

less than 1 + r, but they lie in the edge ei, which has only one pair of codegree less than 1 + r – a

contradiction. So every yi is disjoint from {x1, . . . , xj}. Now we claim that y1 = y2 = . . . = yj . If

say y1 6= y2 (left drawing in Figure 2 below), consider the triples {v, x1, y1}, {v, x2, y2} and the edge

{x1, x2, . . . , xj}. Since y1, y2, x1, . . . , xj are all distinct, this is a triangle. So y1 = y2 = . . . = yj = y.

Now consider the pairs {y, x1}, {y, x2} (shown in black bold lines in the right drawing in Figure

2 below). Since {y, x1} and {y, x2} are pairs in e1 and e2, respectively, and they do not contain

v, by the choice of e1 and e2, those pairs have codegree at least 1 + r. So we can pick z1 6= z2
with z1, z2 6∈ {x1, . . . , xj , y, v} such that {x1, y, z1}, {x2, y, z2}, {x1, x2, . . . , xj} is a triangle – namely

z1, z2, x1, . . . , xj are all distinct. This shows that {x1, x2, . . . , xm} is independent, and it has size at

least 2d/9r ≥ n2/3/6r3.

 

Figure 2 : Finding an independent set in Case 2.

4 Generalized quadrangles and a spectral lemma

Generalized quadrangles were first constructed by Tits [26] and described as graphs by Benson [6].

Let Gq denote a generalized quadrangle of order q, which is a (q+1)-regular (q +1)-uniform C2, C3-

8



free hypergraph on q3 + q2 + q + 1 vertices. Generalized quadrangles of order q exist whenever q is

a prime power.

4.1 A general spectral lemma

In this section, we employ a lemma which relates the distribution of edges in a bipartite graph to

spectral properties of its adjacency matrix. This lemma is an analog of a well-known spectral lemma

in graph theory (see for example [3]) which is frequently referred to as the expander mixing lemma,

and is used especially in the context of (n, d, λ)-graphs and pseudorandom graphs. The lemma we

give, which may be referred to as the expander mixing lemma for bipartite graphs, appears in a

different form in [13] and in [14]. For completeness, we give the proof here and it is very similar to

the proof for non-bipartite graphs in [3].

Lemma 4.1. Let G(U, V ) be a d-regular bipartite graph with adjacency matrix A and let λ1 ≥ λ2 ≥
· · · ≥ λN be the eigenvalues of A. Let λ = max{|λi| : i 6∈ {1, N}}. Then for any sets X ⊆ U and

Y ⊆ V , the number e(X,Y ) of edges from X to Y satisfies

∣

∣

∣
e(X,Y )− d

|V | |X||Y |
∣

∣

∣
≤ λ

√

|X||Y |.

Proof. Let χX and χY denote the characteristic vectors of X and Y . Let x1, x2, . . . , xN be an

orthonormal basis of eigenvectors of A, where xi is the eigenvector corresponding to λi, and write

χX =

N
∑

i=1

sixi χY =

N
∑

i=1

tixi.

Then

e(X,Y ) = 〈AχX , χY 〉 = λ1s1t1 + λNsN tN +
N−1
∑

i=2

λisiti.

The values of s1, t1, sN and tN are recovered quickly from the knowledge of the first and last eigenvec-

tors, x1 and xN , recalling x1 is the constant unit vector and xN is the unit vector which is constant

on V (Gq) and minus that constant on E(Gq). Noting that ‖χX‖2 = |X| and ‖χY ‖2 = |Y |, and using

λ1 = d = −λN , it is straightforward to see

e(X,Y ) =
d

|V | |X||Y |+
N−1
∑

i=2

λisiti.

Finally, by Cauchy-Schwarz,

N−1
∑

i=2

λisiti ≤ λ(A)

(

N
∑

i=1

s2i

)1/2( N
∑

i=1

t2i

)1/2

and the sums are ‖χX‖ =
√

|X| and ‖χY ‖ =
√

|Y | respectively. �

This lemma will be used in the context of hypergraphs (in particular for the hypergraph H = Gq)

in the following way: if H is a hypergraph, then the bipartite incidence graph of H is the bipartite
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graph B(H) whose parts are V (H) and E(H), and {v, e} ∈ E(B(H)) if and only if v ∈ e. We denote

by A(H) the adjacency matrix of the bipartite incidence graph B(H), and when |V (H)| = |E(H)|
we denote by λ(H) the largest absolute value of the eigenvalues of A(H) other than λ1 and λN .

Lemma 4.1 is applied to B(H) to give the following hypergraph formulation:

Lemma 4.2. Let H be a d-uniform d-regular hypergraph and let X ⊆ V (H) and Y ⊆ E(H). Then

∣

∣

∣

∑

e∈Y
|X ∩ e| − d

|V | |X||Y |
∣

∣

∣
≤ λ(H)

√

|X||Y |.

In particular, if λ(H) ≤ δ
√
d and |X| ≥ 2τn/d, then the number of edges e ∈ E(H) such that

|X ∩ e| ≥ τ is at least n− 2δ2n/τ .

Proof. For the first inequality, if H is a d-uniform d-regular hypergraph, then B(H) is d-regular.

Applying Lemma 4.1 gives

∣

∣

∣
e(X,Y )− d

|V | |X||Y |
∣

∣

∣
≤ λ(H)

√

|X||Y |.

We note that

e(X,Y ) =
∑

e∈Y
|X ∩ e|.

This gives the first inequality of Lemma 4.2. Applying this inequality with λ(H) ≤ δ
√
d, we obtain

for any Z ⊆ E(H),
∣

∣

∣

∑

e∈Z
|X ∩ e| − d

n
|X||Z|

∣

∣

∣
≤ δ
√

d|X||Z|.

Now let Y = {e ∈ E(H) : |X ∩ e| ≥ τ} and Z = E(H)\Y . Suppose for a contradiction that

|Z| > 2δ2n/τ . By definition of Z,
∑

e∈Z
|X ∩ e| < τ |Z|.

By the preceding inequality,

τ |Z| >
∑

e∈Z
|X ∩ e| > d

n
|X||Z| − δ

√

d|X||Z|.

Since |X| ≥ 2τn/d, we get

τ |Z| < δ
√

2τn|Z|.
This contradicts |Z| > 2δ2n/τ . �

We remark that for fixed |X|, d|X|/|V | is exactly the expected value of |X ∩ e| when X is a random

set whose elements are chosen from V (H) independently with probability |X|/|V |.
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4.2 Spectral properties of A(Gq)

In order to apply Lemma 4.2 to Gq, we determine λ(Gq). Since Gq is (q + 1)-uniform and (q + 1)-

regular, the bipartite incidence graph B(Gq) is (q + 1)-regular. Since B(Gq) is connected, this

implies q + 1 and −(q + 1) are eigenvalues of A = A(Gq) with multiplicity 1. By the definition of

a generalized quadrangle, for every vertices x and y in distinct partite sets of B(Gq), there exists

exactly one x, y-path of length 3. Since each entry a3i,j of A3 is the number of i, j-walks of length 3,

we have

A3 = J + qA

where J is the block matrix

J =

(

0 K

K 0

)

.

and K is the square all 1 matrix with appropriate dimensions. If λ 6∈ {−(q + 1), q + 1} is an

eigenvalue of A, then an eigenvector x for λ is orthogonal to the constant unit vector and so Kx = 0.

It follows that λ3 = qλ and therefore λ ∈ {−√
q, 0,

√
q}. Since the eigenvalues of A(Gq) other than

−(q + 1) and (q + 1) are not all zero, λ(Gq) =
√
q. A more complete analysis of these eigenvalues

and their multiplicities was achieved by Haemers [13]. Since we have λ(Gq) =
√
q, Lemma 4.2 gives

the following:

Corollary 4.3. Let X ⊆ V (Gq) where |X| ≥ 2τn/(q + 1), and let Y be the set of e ∈ E(Gq) such

that |X ∩ e| ≥ τ . Then

|Y | ≥ n− 2n

τ
.

Proof. Since λ(Gq) =
√
q, applying Lemma 4.2 with δ = 1 and d = q + 1 gives the result. �

5 Proof of Theorem 1.1: Lower Bound

Based on the generalized quadrangle Gq, we now specify the construction of a triangle-free n-vertex

hypergraph Hq with independence number O(n2/3
√
log n), which gives the lower bound in Theorem

1.1 for r = 3. Let τ = ⌊4 log q⌋. The idea is to place randomly a carefully chosen triangle-free 3-graph

Fq on q + 1 vertices into each of the edges of Gq, independently for each edge of Gq, to form a new

hypergraph Hq with n = q3 + q2 + q + 1 vertices. We then use the spectral result in the form of

Corollary 4.3 to deduce that a set of 2τn/q vertices of Gq must intersect almost all edges of Gq in

roughly τ vertices. Together with some basic probability, we use this to deduce that the expected

number of independent sets of size 2τn/q in Hq is o(1), and therefore some Hq has independence

number 2τn/q, as required. A similar idea will be used in the lower bound in Theorems 1.2 and 1.4,

and the appropriate modifications to Fq will be made in Section 5.3 to obtain the lower bound in

Theorem 1.1 for r > 3.

5.1 The hypergraph Fq

Throughout this section, τ = ⌊8√log q⌋. To describe Hq, we use the auxiliary hypergraph Fq with

vertex set [q + 1], defined as follows. Let V = {vij : 1 ≤ i, j ≤ τ} be a τ2-element subset of [q + 1]

11



and let S1, . . . , Sτ , T1, . . . , Tτ be a partition of [q+1]−V into sets whose sizes differ by at most one.

Let S =
⋃τ

i=1 Si and T =
⋃τ

j=1 Tj . The edge set of Fq is the set of all triples {vij , a, b} such that

a ∈ Si and b ∈ Tj . Note that Fq is actually 3-partite, with parts V, S and T . Then Hq is constructed

by taking independently for each e ∈ Gq a random bijection πe from V (Fq) to e and letting a triple

in e be an edge if its pre-image is an edge in Fq.

Lemma 5.1. Hq is triangle-free.

Proof. Since Gq is linear and triangle-free, it is sufficient to verify that Fq is triangle-free. Suppose

Fq has a triangle. Since Fq is 3-partite, some vertex in V belongs to two of the edges of the triangle.

Let this vertex be vij ∈ V , and these two edges be {vij , si, tj} and {vij , s′i, t′j}. Now the third edge

must be either {v, si, t′j} or {v, s′i, tj} for some v ∈ V . By definition of Fq, this implies that v = vij ,

a contradiction. �

Next we bound from above the probability that a set of τ vertices of e ∈ E(Gq) is an independent

set in Hq.

Lemma 5.2. Let I be a τ -element subset of e ∈ E(Gq). Then as q → ∞, the probability that I is

independent in Hq is at most 1− τ3−o(τ3)
4eq .

Proof. Let N be the number of τ -sets X of V (Fq) = [q +1] that are not independent in Fq. A lower

bound for N is obtained by picking an element vij ∈ V , an element s ∈ Si, an element t ∈ Tj and

τ − 3 elements in [q + 1]− (V ∪ Si ∪ Tj). As q → ∞, this gives

N ≥
∑

vij∈V
|Si||Tj |

(

q + 1− |Si| − |Tj | − |V |
τ − 3

)

≥ τ2 ·
⌊ q

2τ

⌋2
(

q + 1− 2⌈ q+1−τ2

2τ ⌉ − τ2

τ − 3

)

≥ τ2 ·
⌊ q

2τ

⌋2
(

(1− 1/τ)(q + 1)− τ2

τ − 3

)

= (1− o(1))τ2
( q

2τ

)2
(

(1− 1/τ)q

τ − 3

)

= (1− o(1))
q2

4
(1− 1/τ)τ−3 qτ−3

(τ − 3)!

= (1− o(1))
τ3

4eq

(q + 1)τ

τ !

= (1− o(1))
τ3

4eq

(

q + 1

τ

)

.

Now the probability that I ⊂ e is not independent in Hq is

|{πe : I is not independent under πe}|
(q + 1)!

=
Nτ !(q + 1− τ)!

(q + 1)!
=

N
(q+1

τ

) .

The lower bound on N now gives the desired result. �
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5.2 Independence number of Hq

If n = q3 + q2 + q + 1 for some prime power q, then we show that with positive probability, Hq

has no independent set of size more than 2τn/q if n is large enough and τ = ⌊8√log q⌋. Note that

2τn/q < 16n2/3
√
log n if n is large enough. If n is not of this form, pick the smallest prime power q

such that n ≤ q3 + q2 + q+1, and remove q3 + q2 + q+1−n vertices from Hq. The new hypergraph

H ′
q has α(H

′
q) ≤ α(Hq). Since it is well-known that there exists a prime q : n1/3 ≤ q ≤ 2n1/3, H ′

q has

no independent set of size more than 2τn/q = O(n2/3
√
log n), as required to finish the proof of the

lower bound in Theorem 1.1.

Suppose that X ⊂ V (Hq) = V (Gq) is an independent set of size ⌈2τn/q⌉ in Hq. By Corollary 4.3,

at least n − 2n/τ of the edges of Gq contain at least τ vertices of I. Let Y = Y (X) be this set of

edges. For each e ∈ Y , X ∩ e is an independent set in the random hypergraph Fq on e. Let Be be

the event that X ∩ e is independent in Fq. By Lemma 5.2,

P (Be) ≤ 1− τ3

11q

provided q is large enough. The events Be are independent over e ∈ Y , and therefore the expected

number of independent sets of size 2τn/q in Hq is at most

∑

X:|X|=⌈2τn/q⌉

∏

e∈Y
P (Be) ≤

(

1− τ3 − o(τ3)

4eq

)n−2n/τ
(

n

⌈2τn/q⌉

)

≤ exp
(

−n(τ3 − o(τ3))

4eq
+

2τn

q
log

n

q

)

. (1)

Since τ = ⌊8√log q⌋ and n = q3 + q2 + q + 1 , as q → ∞, we have

−n(τ3 − o(τ3))

4eq
+

2τn

q
log

n

q
≤ nτ

q

[

−τ2 − o(τ2)

4e
+ 2 log q2

]

≤ nτ

q

[

−(1− o(1))64 log q

4e
+ 4 log q

]

.

Thus the quantity in (1) decays to zero. Therefore with high probability, Hq has no independent

set of size more than 2τn/q < 16n2/3
√
log n if n is large enough. This proves the lower bound in

Theorem 1.1 for r = 3. We next turn to the case r > 3.

5.3 The hypergraph Hq,r

In this section we prove the lower bound in Theorem 1.1 for r > 3. Take Hq,r to consist of randomly

placed copies of a carefully chosen hypergraph Fq,r on q + 1 vertices in the edges of Gq. The

hypergraph Fq,r takes the role of the hypergraph Fq in the preceding section. To describe Fq,r, we

first review a known construction of linear r-graphs based on a construction of dense sets without

three-term arithmetic progressions.

5.4 Description of Fq,r

Erdős, Frankl and Rödl [12] showed that for every r ≥ 3 there is a constant cr > 0 such that for each

N ∈ N there exists a linear triangle-free r-partite r-graph J(N, r) with N vertices in each part and
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at least N2/ exp(cr
√
logN) edges. Their construction is based on and generalizes the construction

of Ruzsa and Szemerédi [23] for r = 3 of a dense linear triangle-free 3-graph. The Ruzsa-Szemerédi

construction is in turn derived from the Behrend’s construction [5] of relatively dense sets of integers

with no three-term arithmetic progressions. Using the Erdős-Frankl-Rödl construction, we describe

a triangle-free (but not linear) r-graph Fq,r on q + 1 vertices for each r > 3. This is key in the

description of Hq,r for the proof of Theorem 1.1.

Fix r > 3, and let Cr > 0 be a constant depending on r, to be chosen later. Let J be the Erdős–

Frankl–Rödl hypergraph J(τ, r − 1), where

τ = ⌈(log q)1/2 exp(−Cr

√

log log q)⌉ = (log q)1/2−o(1).

For convenience let m = |E(J)| and let V1, . . . , Vr−1 be the parts of J . To define V (Fq,r), associate

pairwise disjoint sets Sv to the vertices v ∈ V (J), and let W be a set of m vertices disjoint from all

the sets Sv and indexed by the edges of J , namely W = {ve : e ∈ E(J)}. Then let

V (Fq,r) = W ∪
⋃

v∈V (J)

Sv

where the Sv are as equal in size as possible subject to

q + 1 = m+
⋃

v∈V (J)

Sv.

This ensures that Fq,r has exactly q + 1 vertices. The edges of Fq,r are defined as follows. For every

e = {v1, . . . , vr−1} ∈ J(τ, r − 1) with vi ∈ Vi, recall that ve ∈ W , and let

Fe = {ve ∪ {x1, . . . , xr−1} : xi ∈ Svi , i = 1, . . . , r − 1}.

Then

E(Fq,r) =
⋃

e∈J(τ,r−1)

Fe.

Loosely speaking, the edges e ∈ E(J) are being replaced with complete (r−1)-partite (r−1)-graphs

K(e) with parts of size roughly q/(r − 1)τ , and then we form the edges of Fq,r by enlarging each of

the edges of K(e) with the new vertex ve. It is straightforward to check (by both the linearity of

J and the fact that J is triangle-free) that Fq,r is triangle-free (although it is not linear). The key

lemma about Fq,r is now as follows:

Lemma 5.3. Let r ≥ 3 and I be a τ -element subset of e ∈ E(Gq). Then for some dr > 0, the

probability that I is independent in Hq,r is at most

1− τ3−dr/
√
log τ

q
.

Proof. Let N be the number of τ -element subsets of V (Fq,r) = [q + 1] that are not independent in

Fq,r. Since every τ -element set obtained by picking an element we ∈ W , an element from each set

Sv such that v ∈ e, and then τ − r elements in [q + 1] \ (W ∪⋃v∈e Sv) is not independent, we have

N ≥
∑

we∈W

(

∏

v∈e
|Sv|

)

(

q + 1−∑v∈e |Sv| − |W |
τ − r

)

.
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Since all Sv have almost the same cardinality, as q → ∞ the right-hand side is at least

(m+ o(m)) ·
( q

τ

)r−1
·
(q + 1− q/τ

τ − r

)τ−r
≥ (m+ o(m)) · τ

qerr

(

q + 1

τ

)

.

So we can choose dr > 0 depending only on r such that the last expression is at least

τ3−dr/
√
log τ

q

(

q + 1

τ

)

.

This bound proves the lemma. �

The rest of the proof for Hq,r carries through as for Hq, except at the end, the expected number of

independent sets of size 2τn/q in Hq,r is now by Lemma 5.3 at most

(

1− τ3−dr/
√
log τ

q

)n−2n/τ
(

n

2τn/q

)

< exp
(

−τ3−dr/
√
log τn

2q
+

2τn log n

q

)

.

We have chosen τ to ensure

τ3−dr/
√
log τ > 6τ log n.

This ensures that the expected number of independent sets of size 2τn/q in Hq,r, for large enough

n, is less than

exp
(

−τn log n

q

)

< exp
(

−n2/3 log n
)

< 1.

We conclude that with positive probability, for large enough n and a large enough constant Cr,

α(Hq,r) ≤ 2τn/q ≤ 2n2/3(log n)1/2+Cr/
√
log logn.

This gives the lower bound on Ramsey numbers in Theorem 1.1. �

6 Proof of Theorem 1.2

To prove the upper bound in Theorem 1.2, it is sufficient to show that every n-vertex linear triangle-

free 3-graph has an independent set of size Ω(n2/3(log n)1/3). Let H be such a 3-graph. By the main

theorem in [1],

α(H) = Ω
(n

√
log d√
d

)

where d is the average degree of H. The union of all pairs e\{v} for edges e containing a vertex v of

degree at least d in H is an independent set of 2d vertices in H, since H is linear and triangle-free.

Therefore

α(H) = Ω
(

min
d

max
{

d,
n
√
log d√
d

})

= Ω(n2/3(log n)1/3).

This completes the proof of the upper bound in Theorem 1.2.
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6.1 Proof of Theorem 1.2: Lower Bound

Based on the hypergraph Gq, for n = q3 + q2 + q+1 and q a prime power, we construct an n-vertex

linear triangle-free 3-graph H∗
q with α(H∗

q ) ≤ n2/3 exp(A
√
log n) for some A > 0. If n is not of that

form, then as in the proof of Theorem 1.1 we use the distribution of primes and a large subhypergraph

of H∗
q to obtain the same result with perhaps a slightly larger implicit constant. Let N = ⌊(q+1)/3⌋

and let F ∗
q = J(N, 3), where J(N, 3) is defined in Section 5.4. Then |E(F ∗

q )| = |E(J)| = Ω(qr3(q)).

The main lemma we require counts independent sets of size τ in F ∗
q .

Lemma 6.1. As q → ∞ the number of independent sets of size τ in F ∗
q is at most

(

1− Ω
(τ3r3(q)

q2

))

(

q + 1

τ

)

.

Proof. Let N be the number of non-independent sets of size τ in F ∗
q . It is sufficient to show

N = Ω
(τ3r3(q)

q2

)

(

q + 1

τ

)

.

Since M := |E(F ∗
q )| = Ω(qr3(q)), by inclusion-exclusion,

N ≥ M ·
(

q − 2

τ − 3

)

−
(

M

2

)(

q − 4

τ − 5

)

= M ·
(

q + 1

τ

)

τ(τ − 1)(τ − 2)

(q + 1)q(q − 1)

(

1− (M − 1)(τ − 3)(τ − 4)

2(q − 2)(q − 3)

)

= Ω
(τ3r3(q)

q2

)

(

q + 1

τ

)

.

This is the required bound on N . �

As before, we construct H∗
q by placing a randomly permuted copy of F ∗

q in each edge of Gq. The

expected number of independent sets of size ⌈2τn/q⌉ in H∗
q is then at most

(

1−O
(τ3r3(q)

q2

))n−2n/τ
(

n

⌈2τn/q⌉

)

using Lemma 6.1 and Corollary 4.3 as in the proof of Theorem 1.1. Choose τ to satisfy

4τn log n

q
<

nτ3r3(q)

q2

which ensures that the the expected number of independent sets is o(1). It is sufficient to take

τ2 = (1 + o(1))
4q log n

r3(q)
.

Then with high probability

α(H∗
q ) <

2τn

q
<

8n
√
q log n

q
√

r3(q)
.
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To obtain from this the lower bound on RL(C3,K
3
t ), let n = RL(C3,K

3
t ) so that

8n
√
q log n

q
√

r3(q)
> t.

Since r3(q) > q/ exp(c
√
log q) for some c > 0, this gives the lower bound on RL(C3,K

r
t ) in Theorem

1.2.

Finally, we connect a bound on Ramsey numbers to r3(N). According to the above proof, if n =

RL(C3,K
3
t ) = O(t3/2(log t)−3/4−c), then

n
√
q log n

q
√

r3(q)
= Ω(t).

Put N = q. Recalling n = N3 + o(N3),

r3(N) = O
(N5 logN

t2

)

.

The definition of n in terms of t gives

t = Ω(n2/3(log n)1/2+2c/3) = Ω(N2(logN)1/2+2c/3).

Therefore

r3(N) = O
( N

(logN)4c/3

)

.

This completes the proof of Theorem 1.2. �

7 Proof of Theorem 1.3

For Theorem 1.3, which states that

R(Ck,K
r
t ) = Ω∗

(

t1+
1

3k−1

)

,

we let Gk,q be an n-vertex (q + 1)-uniform (q + 1)-regular hypergraph with no cycles of length at

most k, such that q is a maximum relative to n and such that λ(Gk,q) ≤ 2
√
q.

A construction of hypergraphs Gk,q for primes q ≡ 1 mod 4 can be obtained from the construction

of Ramanujan graphs of Lubotzsky, Phillips and Sarnak [18]. These Gk,q are constructed from the

following bipartite graphs of [18]: Let p, q be primes congruent to 1 modulo 4 with p > 16. If

(pq ) = −1, then Bp,q is a bipartite (q + 1)-regular graph with p(p2 − 1) vertices in each part and no

cycle of length less than 4 logq(p/4). If (pq ) = 1, then Bp,q is a bipartite (q + 1)-regular graph with

p(p2 − 1)/2 vertices in each part and no cycle of length less than 2 logq p. In both cases Bp,q has no

cycle of length less than 2 logq p since p > 16, and the second largest eigenvalue in absolute value

except the first and last is at most 2
√
q.

So, given k ≥ 4, we first choose a prime q ≡ 1 mod 4, then choose a smallest prime p ≡ 1 mod 4

with p > qk. By the previous paragraph, for n ∈ {1
2p(p

2 − 1), p(p2 − 1)}, there exists a 2n-vertex
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bipartite (q + 1)-regular graph Bp,q of girth greater than 2k. This Bp,q is the bipartite incidence

graph of a Ck-free (q + 1)-graph Gk,q on n vertices. And if we choose the smallest possible p, then

n < (1 + o(1)q3k. Furthermore, it follows that λ(Gk,q) ≤ 2
√
q.

Let Fk,q,r denote the r-graph consisting of a vertex-disjoint union of τ = ⌊4 log q⌋ stars of size ⌊q/τ⌋
on q vertices. In each edge of Gk,q, put a randomly permuted copy of Fk,q,r to get the r-graph Hk,q,r.

Corollary 4.3 shows that if X is a set of at least 2τn/q vertices of Hk,q,r, then at least n−8n/τ edges

of Gk,q contain at least τ vertices of X. The expected number of independent sets in Hk,q,r of size

2τn/q is at most
(

1− τ2

10q

)n−8n/τ
(

n

2τn/q

)

< exp
(

−τ2n

20q
+

2τn log n

q

)

provided q is large enough. The choice of τ ensures this decays to zero. Therefore with positive

probability,

α(Hk,q,r) = O
(τn

q

)

= O
(

n1−1/3k log n
)

,

as long as q > ckn
1/3k for some constant ck depending only on k.

Now suppose we are given k ≥ 4 and an integer n not of the form required to construct Bp,q and

hence Gk,q and Hk,q,r. For such an n, we will choose p, q so that the construction above is possible

on n′ vertices with n < n′ < 8n, and then restrict the resulting Hk,q,r (which has n′ vertices) to a

subhypergraph with only n vertices. The resulting n-vertex r-graph would again have independence

number O
(

n1−1/3k log n
)

.

Given k ≥ 4 and a sufficiently large n, choose a prime q ≡ 1 mod 4 such that

1

2
(2n)1/3k < q < (2n)1/3k.

Such a q exists by the prime number theorem in arithmetic progressions. Next choose a prime p ≡ 1

mod 4 such that

(3n)1/3 < p < 2n1/3.

Again, by the prime number theorem in arithmetic progressions, we can find such a p because n

is sufficiently large. Now set n′ = p(p2 − 1)/2 or p(p2 − 1) depending on whether (pq ) is 1 or

−1, and construct Hk,q,r as described above. The resulting (q + 1)-graph Hk,q,r contains no Ck as

q < (2n)1/3k < (3n)1/3k < p1/k. Finally, observe that

n′ > p3/2− p/2 > 3n/2− n1/3 > n

and n′ < p3 < 8n. Moreover, q > ckn
1/3k so the above bound on the independence number holds as

n → ∞.

This shows that for any r ≥ 3 and k ≥ 4,

R(Ck,K
r
t ) = Ω∗

(

t1+
1

3k−1

)

.
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7.1 Proof of Theorem 1.5

The specialization of the above arguments to k = 5 comes from the existence of generalized hexagons

(see [9] or [25]). The generalized hexagons Gq exist for prime powers q and can be viewed as (q+1)-

uniform (q + 1)-regular hypergraphs Gq on q5 + q4 + q3 + q2 + q + 1 vertices containing no cycles of

length at most five, and moreover the associated matrix A(Gq) has λ(Gq) =
√
q once more. Using

the hypergraph Fk,q,r in each edge of the hypergraph Gq as before gives the result: we obtain a

hypergraph H5,q,r with

α(H5,q,r) = O(n4/5 log n)

from which the lower bound on Ramsey numbers R(C5,K
r
t ) = Ω(t5/4(log t)−5/4) for all r ≥ 3 follows.
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[23] Ruzsa, I., Szemerédi, E. Triple systems with no six points carrying three triangles, in Combina-

torics, Keszthely, 1976, Coll. Math. Soc. J. Bolyai 18 Volume II., 939–945.

[24] Sanders, T., On Roth’s theorem on progressions, Annals of Mathematics, to appear

[25] Thas J. A.,Generalized Polygons in Handbook on Incidence Geometry (ed. F. Buekenhout),

Chapter 9, North Holland, 1995.
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