Hypergraph Ramsey Numbers: Triangles versus Cliques

Alexandr Kostochka* Dhruv Mubayi † Jacques Verstraete[‡]

Abstract

A celebrated result in Ramsey Theory states that the order of magnitude of the triangle-complete graph Ramsey numbers R(3,t) is $t^2/\log t$. In this paper, we consider an analogue of this problem for uniform hypergraphs. A triangle is a hypergraph consisting of edges e, f, g such that $|e \cap f| = |f \cap g| = |g \cap e| = 1$ and $e \cap f \cap g = \emptyset$. For all $r \geq 2$, let $R(C_3, K_t^r)$ be the smallest positive integer n such that in every red-blue coloring of the edges of the complete r-uniform hypergraph K_n^r , there exists a red triangle or a blue K_t^r . We show that there exist constants $a, b_r > 0$ such that for all $t \geq 3$,

$$\frac{at^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}}} \le R(C_3, K_t^3) \le b_3 t^{\frac{3}{2}}$$

and for $r \geq 4$

$$\frac{t^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}+o(1)}} \le R(C_3, K_t^r) \le b_r t^{\frac{3}{2}}.$$

This determines up to a logarithmic factor the order of magnitude of $R(C_3, K_t^r)$. We conjecture that $R(C_3, K_t^r) = o(t^{3/2})$ for all $r \geq 3$. We also study a generalization to hypergraphs of cycle-complete graph Ramsey numbers $R(C_k, K_t)$ and a connection to $r_3(N)$, the maximum size of a set of integers in $\{1, 2, ..., N\}$ not containing a three-term arithmetic progression.

1 Introduction

A hypergraph is a pair (V, E) where V is a set whose elements are called vertices and E is a family of subsets of V called edges. If all edges have size r, then the hypergraph is referred to as an r-graph. Throughout this paper, C_k denotes a loose k-cycle, namely the hypergraph with edges e_1, \ldots, e_k such that $|e_i \cap e_{i+1}| = 1$ for $i = 1, \ldots, k-1$, $|e_1 \cap e_k| = 1$, and $e_i \cap e_j = \emptyset$ otherwise. In particular, a loose triangle is a hypergraph consisting of three edges e, f, g such that $|e \cap f| = |f \cap g| = |g \cap e| = 1$ and $e \cap f \cap g = \emptyset$. Since we consider only loose cycles and triangles, we will omit the word "loose". A hypergraph is linear if any pair of distinct edges of the hypergraph intersect in at most one vertex.

An independent set in a hypergraph is a set of vertices containing no edges of the hypergraph. Let K_t^r denote the t-vertex complete r-graph, i.e., the t-vertex r-graph whose edges are all r-element subsets of the vertex set. In this paper we consider the cycle versus complete hypergraph Ramsey

^{*}Department of Mathematics, University of Illinois at Urbana-Champaign, IL and Sobolev Institute of Mathematics, Novosibirsk, Russia. Research of this author is supported in part by NSF grant DMS-0965587 and by grants 12-01-00448-a and 12-01-00631 of the Russian Foundation for Basic Research. E-mail: kostochk@math.uiuc.edu

[†]Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, IL. Research supported in part by NSF grants DMS 0653946 and DMS 0969092. E-mail: mubayi@math.uic.edu

[‡]Department of Mathematics, University of California at San Diego, La Jolla, CA. Research supported by NSF Grant DMS 1101489. E-mail: jverstra@math.ucsd.edu

numbers $R(C_k, K_t^r)$ – this is the minimum n such that every n-vertex r-graph contains either a cycle C_k or an independent set of t vertices. Our main effort will be on the triangle-complete hypergraph Ramsey number $R(C_3, K_t^r)$. A celebrated result of Kim [15] together with earlier bounds by Ajtai, Komlós and Szemerédi [2] shows that

$$R(C_3, K_t) = \Theta\left(\frac{t^2}{\log t}\right)$$
 as $t \to \infty$.

This establishes the order of magnitude of these Ramsey numbers for graphs.

1.1 Triangle-free hypergraphs

The study of the independence number in triangle-free hypergraphs was initiated by Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] and used to give a counterexample to a conjecture of Erdős on the Heilbronn problem [21] on the largest area of a triangle with vertices from n points in the unit square. Motivated also by the triangle-complete graph Ramsey numbers, in this paper we determine for $r \geq 3$ the order of magnitude of the triangle-complete Ramsey numbers for r-graphs up to logarithmic factors:

Theorem 1.1. There exist constants $a, b_3 > 0$ such that for all $t \ge 1$,

$$\frac{at^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}}} \le R(C_3, K_t^3) \le b_3 t^{\frac{3}{2}}.$$

For each r > 3, there exist constants $a_r, b_r > 0$ such that for all $t \ge 1$,

$$\frac{t^{\frac{3}{2}}}{(\log t)^{\frac{3}{4} + \frac{a_r}{\sqrt{\log \log t}}}} \le R(C_3, K_t^r) \le b_r t^{\frac{3}{2}}.$$

We shall see that $b_r \leq (2r)^{9/2}$ for all $r \geq 3$. The upper bound in Theorem 1.1 is proved in Section 3. The lower bound in Theorem 1.1 comes from a construction that combines randomness and linear algebra and a construction of triangle-free hypergraphs coming from sets with no three-term arithmetic progressions, presented in Section 5. The preliminaries required to analyze this construction are presented in Section 4. Some of the ideas of the construction were recently used in [16] to study a related problem. In light of Theorem 1.1, we make the following conjecture:

Conjecture 1.1. For all fixed $r \geq 3$,

$$R(C_3, K_t^r) = o(t^{3/2})$$
 as $t \to \infty$.

We shall see in Section 2 that if H is a triangle-free hypergraph (the edges may have arbitrary size) on n vertices, then H contains an independent set of size at least $\lfloor \sqrt{n} \rfloor$. By Theorem 1.1, this is not tight for r-uniform hypergraphs for each fixed $r \geq 3$. It would be interesting to see if it is tight when edges whose size depends on n are allowed.

1.2 Linear triangle-free hypergraphs

We indicate a connection between independent sets in linear triangle-free hypergraphs and Roth's Theorem [21] on arithmetic progressions. Let $r_3(N)$ denote the largest size of a set of integers in $\{1, 2, ..., N\}$ containing no three-term arithmetic progressions. This problem has attracted much attention, starting with the original theorem of Roth [21] showing that $r_3(N) = o(N)$. The best current known bounds are as follows: for some constant c > 0,

$$\frac{N}{e^{c\sqrt{\log N}}} \le r_3(N) \le \frac{N}{(\log N)^{1-o(1)}}.$$

The lower bound, which comes from a construction of Behrend [5], is essentially unchanged for more than sixty years. The upper bound, due to Sanders [24] improves many earlier results which gave smaller powers of $\log N$ in the denominator. Let $RL(C_3, K_t^3)$ denote the minimum n such that every linear triangle-free 3-graph on at least n vertices contains an independent set of size t. We prove the following theorem:

Theorem 1.2. There are constants $\tilde{a}, \tilde{b} > 0$ such that for all $t \geq 1$

$$\frac{t^{\frac{3}{2}}}{e^{\tilde{a}\sqrt{\log t}}} \le RL(C_3, K_t^3) \le \frac{\tilde{b}t^{\frac{3}{2}}}{\sqrt{\log t}}.$$

Furthermore, if for some c > 0, $RL(C_3, K_t^3) = O(t^{3/2}(\log t)^{-3/4-c})$, then

$$r_3(N) = O\left(\frac{N}{(\log N)^{\frac{4c}{3}}}\right).$$

It would be interesting if one could prove that $r_3(N) = o(N)$ using Theorem 1.2 above. The bound $RL(C_3, K_t^3) = O(t^{3/2}/\sqrt{\log t})$ may also be evidence for Conjecture 1.1, that $R(C_3, K_t^3) = o(t^{3/2})$.

1.3 k-Cycle-free hypergraphs

The construction used in Theorem 1.1 extends more generally to give lower bounds on all cycle-complete hypergraph Ramsey numbers. The cycle C_3 is precisely a hypergraph triangle. We give for all $k, r \geq 3$ a construction of C_k -free r-graphs with low independence number, based on known results on the C_k -free bipartite Ramanujan graphs of Lubotzky, Phillips and Sarnak [18]. Specifically, we prove the following theorem by a suitable and fairly straightforward modification of the construction. We write $f = O^*(g)$ to denote that for some constant c > 0, $f(t) = O((\log t)^c g(t))$, and $f = \Omega^*(g)$ is equivalent to $g = O^*(f)$.

Theorem 1.3. For fixed $r, k \geq 3$,

$$R(C_k, K_t^r) = \Omega^* \left(t^{1 + \frac{1}{3k - 1}} \right) \quad as \ t \to \infty.$$

The key point of this theorem is that the exponent 1 + 1/(3k - 1) of t is bounded away from 1 by a constant independent of r, and strictly improves for all $r, k \ge 5$ the lower bounds given by considering appropriate random hypergraphs, namely

$$R(C_k, K_t^r) = \Omega^* \left(t^{1 + \frac{1}{kr - r - k}} \right)$$
 as $t \to \infty$.

In the case r = 2, namely for graphs, the best available constructions for lower bounds on $r(C_k, K_t^r)$ indeed come from appropriate random graphs; in particular the C_k -free random graph process studied by Bohman and Keevash [8].

By using the known constructions of extremal bipartite graphs of girth 12, arising from generalized hexagons, we obtain the following improvement of the lower bound in Theorem 1.3 for C_5 i.e. for loose pentagons:

Theorem 1.4. For fixed $r \geq 3$, there exists a constant $c_r > 0$ such that

$$R(C_5, K_t^r) \ge c_r \left(\frac{t}{\log t}\right)^{\frac{5}{4}}$$
 as $t \to \infty$.

The main part of this theorem is the exponent 5/4; we suspect that this exponent may be tight as $t \to \infty$, and perhaps even more generally, that $r(C_k, K_t^r) = \Theta^*(t^{k/(k-1)})$ for all $r, k \ge 3$. Our second conjecture is as follows:

Conjecture 1.5. For all $r \geq 3$,

$$R(C_5, K_t^r) = O(t^{5/4})$$
 as $t \to \infty$.

For graphs, the best current bounds are $a_2 t^{\frac{4}{3}}/\log t \le R(C_5, K_t) \le b_2 t^{3/2}/\sqrt{\log t}$. for some constants $a_2 > 0$ and $b_2 > 0$, where the upper bound is due to Caro, Li, Rousseau and Zhang [10] and the lower bound is from Bohman and Keevash [8].

2 Non-uniform hypergraphs

The goal of this section is to give a simple proof that any triangle-free hypergraph on n vertices has an independent set of size at least $\lfloor \sqrt{n} \rfloor$. Recall that the *chromatic number* $\chi(H)$ of a hypergraph H is the minimum k such that there is an assignment of k colors to the vertices such that no subset of vertices of the same color forms an edge of H.

Theorem 2.1. Let H be any hypergraph on n vertices not containing a triangle and in which $|e| \ge 2$ for all $e \in H$. Then

$$\alpha(H) \ge \lfloor \sqrt{n} \rfloor.$$

Proof. Suppose for a contradiction that $\alpha(H) < \lfloor \sqrt{n} \rfloor$. Then $\chi(H) > k := \lfloor \sqrt{n} \rfloor$. So, H contains a (k+1)-vertex-critical subgraph H', which means that $\chi(H') = k+1$ but $\chi(H'-v) \le k$ for every $v \in V(H')$. By Corollary 3 on Page 431 of [7] (see also [27] and [17]), the strong degree of each vertex in H' is at least k, i.e. for each $v \in V(H')$ there are k edges e_1, e_2, \ldots, e_k such that $e_i \cap e_j = \{v\}$ for all $1 \le i < j \le k$. In words, the e_i s share v and nothing else. Choose a vertex v_i in each $e_i \setminus \{v\}$. Since H' has no triangles, the set $\{v_1, \ldots, v_k\}$ is an independent set of H of size $k \ge \lfloor \sqrt{n} \rfloor$, which is a contradiction.

This result is almost tight since $R(C_3,t) = \Theta(t^2/(\log t))$, so there are *n*-vertex triangle-free graphs with independence number of order $\sqrt{n \log n}$. It would be interesting to see if for hypergraphs (not necessarily uniform) where every edge has size at least three, the above lower bound on the independence number is tight.

3 Proof of Theorem 1.1: Upper Bound

The aim of this section is to prove the upper bound of Theorem 1.1. For $r \geq 3$, let \triangle_r denote the family of all triangle-free hypergraphs each of whose edges has size at least three and size at most r. The upper bound on $R(C_3, K_t^r)$ in Theorem 1.1 will be derived as a direct consequence of the following more general statement about hypergraphs in \triangle_r :

Theorem 3.1. For every $r \geq 3$ and $G \in \triangle_r$, $\alpha(G) \geq |V(G)|^{2/3}/(8r^3)$.

This section is devoted to the proof of Theorem 3.1, which gives the constant $b_r = (8r^3)^{3/2} = (2r)^{9/2}$ in the upper bound in Theorem 1.1.

3.1 Expandable sets

In this section we state and prove a sequence of preliminary results needed for the proof of Theorem 3.1.

A set S of vertices of $G \in \Delta_r$ is called *expandable* if, for every $T \subseteq V(G) - S$ with $|T| \leq 2r$, there is an edge of G containing S and disjoint from T, otherwise S is *non-expandable*. For example, if S is an edge of G, then it is expandable, and every set $S \subset V(G)$ of size more than r is non-expandable.

Let G be an n-vertex graph in \triangle_r with the smallest $\sum_{e \in E(G)} |e|$ for which Theorem 3.1 fails. Certainly G has at least one edge.

Lemma 3.2. No three expandable sets in G form a triangle.

Proof. If sets S_1, S_2, S_3 form a triangle, then by the definition of expandable sets, there is an edge $e_1 \supseteq S_1$ disjoint from $(S_2 \cup S_3) \setminus S_1$, there is an edge $e_2 \supseteq S_2$ disjoint from $(e_1 \cup S_3) \setminus S_2$, and there is an edge $e_3 \supseteq S_3$ disjoint from $(e_1 \cup e_2) \setminus S_3$. Now e_1, e_2, e_3 form a triangle in G, contradicting $G \in \Delta_r$.

Lemma 3.3. Let $S \subset V(G)$ be an expandable set and $|S| \geq 3$. Then no edge of G of size more than |S| contains S.

Proof. Suppose an expandable set S with $|S| \geq 3$ is contained in $e \in E(G)$ with $|e| \geq |S| + 1$. Let V(G') = V(G) and E(G') = E(G) - e + S. By Lemma 3.2, $G' \in \Delta_r$. Since $\sum_{e \in E(G')} |e| < \sum_{e \in E(G)} |e|$, by the minimality of G, $\alpha(G') \geq |V(G')|^{2/3}/8r^3 = n^{2/3}/8r^3$. But every independent set in G' is also independent in G, and so $\alpha(G) \geq \alpha(G') \geq n^{2/3}/8r^3$, a contradiction to the choice of G.

Lemma 3.4. For every $3 \le i < j \le r$ no i-element subset of V(G) is contained in more than $(2r)^{j-i}$ edges of size j.

Proof. We use induction on j-i. If a (j-1)-element $S \subset V(G)$ is contained in 2r+1 edges of size j in G, then S is expandable, a contradiction to Lemma 3.3. Suppose now that $3 \leq i \leq j-2$ and an i-element $S \subset V(G)$ is contained in $m \geq (2r)^{j-i}+1$ edges $e_1, e_2, \ldots, e_m \in E(G)$ of size j. By Lemma 3.3, S is not expandable. This means that for some set T of 2r vertices of $V(G) \setminus S$, we have $(e_i \setminus S) \cap T \neq \emptyset$ for every $1 \leq i \leq m$. In other words, T intersects the part outside S of every e_i .

By the pigeonhole principle, there is an $x \in T$ such that the set $S \cup \{x\}$ is contained in at least $(2r)^{j-i-1} + 1$ edges among e_1, e_2, \ldots, e_m , a contradiction.

Corollary 3.5. For every $3 \le j \le k$ each 2-element non-expandable subset of V(G) is contained in at most $(2k)^{j-2}$ edges of size j.

Proof. Suppose that $S = \{x, y\}$ is a non-expandable pair of vertices in G is contained in $m \ge (2k)^{j-2} + 1$ edges e_1, \ldots, e_m of size j. Then some 2k vertices x_1, \ldots, x_{2k} outside S intersect all edges of G containing S, and in particular, all edges e_1, \ldots, e_m . Then by the pigeonhole principle, for some $1 \le t \le 2k$, the 3-element set $S + x_t$ is contained in at least $(2k)^{j-3} + 1$ edges among e_1, \ldots, e_m , a contradiction to Lemma 3.4.

3.2 Proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1. For $3 \le i \le r$, let G_i be the subgraph of G consisting of all edges of size i, that is, $E(G_i) = \{e \in E(G) : |e| = i\}$. For convenience, denote n = |V(G)|.

Lemma 3.6. For every $3 < j \le r$, $|E(G_j)| \le (2r)^{j-2} \binom{n}{2}$.

Proof. Let $e \in E(G_j)$ and $x, y, z \in e$. By Lemma 3.2, at least one of the pairs $\{x, y\}, \{x, z\}$ and $\{y, z\}$ is non-expandable and thus, by Corollary 3.5, is contained in at most $(2r)^{j-2}$ edges of G_j . Since every $e \in E(G_j)$ contains such a pair, the lemma follows.

Lemma 3.7. $|E(G_3)| \ge n^{5/3}/4r^2$.

Proof. Suppose that $|E(G_3)| < n^{5/3}/4r^2$. Let $p = n^{-1/3}/4r^2$ and let W be a random subset of V(G) where each $v \in V(G)$ is in W with probability p independently of all other vertices. By Lemma 3.6, for $j \geq 4$, the expected number of edges of size j in G[W] is at most

$$|E(G_j)|p^j \le (2r)^{j-2} \binom{n}{2} (4r^2)^{-j} n^{-j/3} \le (2r)^{-j} n^{2/3}.$$

By assumption, the expected number of edges of size 3 in G[W] is at most

$$n^{5/3}p^3/4r^2 = (2r)^{-8}n^{2/3} \le (2r)^{-5}n^{2/3}.$$

So, the expectation of |W| - |E(G[W])| is at least

$$pn - \sum_{i=4}^{r} (2r)^{-j} n^{2/3} - (2r)^{-5} n^{2/3} \ge pn - 2(2r)^{-4} n^{2/3} = \left(1 - \frac{1}{2r^2}\right) pn.$$

Thus there is a particular subset U of V(G) with $|U| - |E(G[U])| \ge 0.9pn$. Then deleting a vertex from each edge in G[U] we obtain an independent subset U' of U with $|U'| \ge 0.9pn$, so $\alpha(G) \ge n^{2/3}/5r^2 > n^{2/3}/8r^3$, a contradiction to the choice of G.

The key part of the proof will be to produce an independent set in $H = G_3$ of size at least $n^{2/3}/8r^3$ that is also an independent set in G, using the preceding lemmas. By Lemma 3.7, $|E(H)| \ge (2r)^{-2}n^{5/3}$. Let d = 3|E(H)|/n be the average degree of H, so $d \ge 3n^{2/3}/4r^2$. An edge $e \in H$ is called k-light if exactly k pairs of vertices of e have codegree in H at most e. An edge is heavy if it is 0-light. We see quickly that e has no heavy edges: for a heavy edge e and e have e have e have e and e have e have

we can greedily choose distinct vertices $a, b, c \notin \{x, y, z\}$ such that edges $\{a, x, y\}, \{b, y, z\}, \{c, x, z\}$ form a triangle, since each of the pairs (x, y), (y, z), (z, x) has codegree at least $r + 1 \ge 4$. We now consider two cases.

Case 1. The number of edges in H that are 2-light or 3-light is at least 2|E(H)|/3.

For each vertex v, let d'(v) be the number of edges e of H containing v such that e is either 2-light or 3-light and v is incident to two light pairs of e. Then $\sum_v d'(v)$ counts each such e one or three times so $\sum_v d'(v) \geq 2|E(H)|/3$. Therefore some vertex v of H is in at least 2|E(H)|/3n = 2d/9 edges, where two pairs of codegree (in H) at most r in each edge contain v. Let e_1, e_2, \ldots, e_m be such a set of edges on v with $m \geq 2d/9$. Then the link graph L(v) consisting of pairs $e_i \setminus \{v\}$ has maximum degree at most r. It follows by Vizing's Theorem that L(v) has a matching of size $\ell \geq m/(r+1)$. This means that we have found edges, say e_1, e_2, \ldots, e_ℓ sharing no vertices other than v, and such that in each e_i the two pairs containing v have codegree at most r. Now pick x_1, x_2, \ldots, x_ℓ where $x_i \in e_i \setminus \{v\}$ for $1 \leq i \leq \ell$. We claim that this is an independent set in the entire hypergraph G. If not, then say $e = \{x_1, \ldots, x_j\} \in E(G)$. Then $\{e, e_1, e_2\}$ is a triangle in G, since e_1 and e_2 share only v, v, and v a

Figure 1: Finding an independent set in Case 1.

Case 2. The number of 1-light edges in H is at least |E(H)|/3.

For each vertex v, let d''(v) be the number of edges e of H containing v such that e is 1-light and v is incident to the light pair of e. Then $\sum_{v} d''(v)$ counts each such e exactly twice so $\sum_{v} d''(v) \ge 2|E(H)|/3$. By averaging, some v in H lies in at least 2|E(H)|/3n = 2d/9 1-light edges such that the pair of codegree in H at most r in each edge contains v. Then there are at least 2d/9r distinct vertices

 x_1, x_2, \ldots, x_m such that the codegree of (v, x_i) is at most r, and there is a 1-light edge $e_i \supset \{v, x_i\}$ for all $i \in \{1, 2, \ldots, m\}$. Since each e_i is 1-light, exactly two pairs of vertices in e_i have codegree at least 1+r, and in particular, all e_i s are distinct. We claim that $\{x_1, x_2, \ldots, x_m\}$ is again an independent set in G. Suppose not, and that $\{x_1, \ldots, x_j\}$ is an edge. Let $e_i, \{x_i, v\} = \{y_i\}$. Note that every y_i is disjoint from $\{x_1, \ldots, x_j\}$, otherwise if say $y_i = x_j$, then $\{v, x_i\}$ and $\{v, x_j\}$ both have codegree less than 1+r, but they lie in the edge e_i , which has only one pair of codegree less than 1+r-a contradiction. So every y_i is disjoint from $\{x_1, \ldots, x_j\}$. Now we claim that $y_1 = y_2 = \ldots = y_j$. If say $y_1 \neq y_2$ (left drawing in Figure 2 below), consider the triples $\{v, x_1, y_1\}, \{v, x_2, y_2\}$ and the edge $\{x_1, x_2, \ldots, x_j\}$. Since $y_1, y_2, x_1, \ldots, x_j$ are all distinct, this is a triangle. So $y_1 = y_2 = \ldots = y_j = y$. Now consider the pairs $\{y, x_1\}, \{y, x_2\}$ (shown in black bold lines in the right drawing in Figure 2 below). Since $\{y, x_1\}$ and $\{y, x_2\}$ are pairs in e_1 and e_2 , respectively, and they do not contain v, by the choice of e_1 and e_2 , those pairs have codegree at least 1+r. So we can pick $z_1 \neq z_2$ with $z_1, z_2 \notin \{x_1, \ldots, x_j, y, v\}$ such that $\{x_1, y, z_1\}, \{x_2, y, z_2\}, \{x_1, x_2, \ldots, x_j\}$ is a triangle – namely $z_1, z_2, x_1, \ldots, x_j$ are all distinct. This shows that $\{x_1, x_2, \ldots, x_m\}$ is independent, and it has size at least $2d/9r \geq n^{2/3}/6r^3$.

Figure 2: Finding an independent set in Case 2.

4 Generalized quadrangles and a spectral lemma

Generalized quadrangles were first constructed by Tits [26] and described as graphs by Benson [6]. Let G_q denote a generalized quadrangle of order q, which is a (q+1)-regular (q+1)-uniform C_2 , C_3 -

free hypergraph on $q^3 + q^2 + q + 1$ vertices. Generalized quadrangles of order q exist whenever q is a prime power.

4.1 A general spectral lemma

In this section, we employ a lemma which relates the distribution of edges in a bipartite graph to spectral properties of its adjacency matrix. This lemma is an analog of a well-known spectral lemma in graph theory (see for example [3]) which is frequently referred to as the expander mixing lemma, and is used especially in the context of (n, d, λ) -graphs and pseudorandom graphs. The lemma we give, which may be referred to as the expander mixing lemma for bipartite graphs, appears in a different form in [13] and in [14]. For completeness, we give the proof here and it is very similar to the proof for non-bipartite graphs in [3].

Lemma 4.1. Let G(U, V) be a d-regular bipartite graph with adjacency matrix A and let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$ be the eigenvalues of A. Let $\lambda = \max\{|\lambda_i| : i \notin \{1, N\}\}$. Then for any sets $X \subseteq U$ and $Y \subseteq V$, the number e(X, Y) of edges from X to Y satisfies

$$\left| e(X,Y) - \frac{d}{|V|} |X||Y| \right| \le \lambda \sqrt{|X||Y|}.$$

Proof. Let χ_X and χ_Y denote the characteristic vectors of X and Y. Let x_1, x_2, \ldots, x_N be an orthonormal basis of eigenvectors of A, where x_i is the eigenvector corresponding to λ_i , and write

$$\chi_X = \sum_{i=1}^N s_i x_i \quad \chi_Y = \sum_{i=1}^N t_i x_i.$$

Then

$$e(X,Y) = \langle A\chi_X, \chi_Y \rangle = \lambda_1 s_1 t_1 + \lambda_N s_N t_N + \sum_{i=2}^{N-1} \lambda_i s_i t_i.$$

The values of s_1, t_1, s_N and t_N are recovered quickly from the knowledge of the first and last eigenvectors, x_1 and x_N , recalling x_1 is the constant unit vector and x_N is the unit vector which is constant on $V(G_q)$ and minus that constant on $E(G_q)$. Noting that $\|\chi_X\|^2 = |X|$ and $\|\chi_Y\|^2 = |Y|$, and using $\lambda_1 = d = -\lambda_N$, it is straightforward to see

$$e(X,Y) = \frac{d}{|V|}|X||Y| + \sum_{i=2}^{N-1} \lambda_i s_i t_i.$$

Finally, by Cauchy-Schwarz,

$$\sum_{i=2}^{N-1} \lambda_i s_i t_i \le \lambda(A) \left(\sum_{i=1}^{N} s_i^2 \right)^{1/2} \left(\sum_{i=1}^{N} t_i^2 \right)^{1/2}$$

and the sums are $\|\chi_X\| = \sqrt{|X|}$ and $\|\chi_Y\| = \sqrt{|Y|}$ respectively.

This lemma will be used in the context of hypergraphs (in particular for the hypergraph $H = G_q$) in the following way: if H is a hypergraph, then the bipartite incidence graph of H is the bipartite

graph B(H) whose parts are V(H) and E(H), and $\{v,e\} \in E(B(H))$ if and only if $v \in e$. We denote by A(H) the adjacency matrix of the bipartite incidence graph B(H), and when |V(H)| = |E(H)| we denote by $\lambda(H)$ the largest absolute value of the eigenvalues of A(H) other than λ_1 and λ_N . Lemma 4.1 is applied to B(H) to give the following hypergraph formulation:

Lemma 4.2. Let H be a d-uniform d-regular hypergraph and let $X \subseteq V(H)$ and $Y \subseteq E(H)$. Then

$$\left| \sum_{e \in V} |X \cap e| - \frac{d}{|V|} |X| |Y| \right| \leq \lambda(H) \sqrt{|X||Y|}.$$

In particular, if $\lambda(H) \leq \delta \sqrt{d}$ and $|X| \geq 2\tau n/d$, then the number of edges $e \in E(H)$ such that $|X \cap e| \geq \tau$ is at least $n - 2\delta^2 n/\tau$.

Proof. For the first inequality, if H is a d-uniform d-regular hypergraph, then B(H) is d-regular. Applying Lemma 4.1 gives

$$\left| e(X,Y) - \frac{d}{|V|} |X||Y| \right| \ \leq \ \lambda(H) \sqrt{|X||Y|}.$$

We note that

$$e(X,Y) = \sum_{e \in Y} |X \cap e|.$$

This gives the first inequality of Lemma 4.2. Applying this inequality with $\lambda(H) \leq \delta \sqrt{d}$, we obtain for any $Z \subseteq E(H)$,

$$\Bigl|\sum_{e\in Z}|X\cap e|-\frac{d}{n}|X||Z|\Bigr|\leq \delta\sqrt{d|X||Z|}.$$

Now let $Y = \{e \in E(H) : |X \cap e| \ge \tau\}$ and $Z = E(H)\backslash Y$. Suppose for a contradiction that $|Z| > 2\delta^2 n/\tau$. By definition of Z,

$$\sum_{e \in Z} |X \cap e| < \tau |Z|.$$

By the preceding inequality,

$$\tau|Z| > \sum_{e \in Z} |X \cap e| > \frac{d}{n}|X||Z| - \delta\sqrt{d|X||Z|}.$$

Since $|X| \geq 2\tau n/d$, we get

$$\tau |Z| < \delta \sqrt{2\tau n|Z|}.$$

This contradicts $|Z| > 2\delta^2 n/\tau$.

We remark that for fixed |X|, d|X|/|V| is exactly the expected value of $|X \cap e|$ when X is a random set whose elements are chosen from V(H) independently with probability |X|/|V|.

4.2 Spectral properties of $A(G_q)$

In order to apply Lemma 4.2 to G_q , we determine $\lambda(G_q)$. Since G_q is (q+1)-uniform and (q+1)-regular, the bipartite incidence graph $B(G_q)$ is (q+1)-regular. Since $B(G_q)$ is connected, this implies q+1 and -(q+1) are eigenvalues of $A=A(G_q)$ with multiplicity 1. By the definition of a generalized quadrangle, for every vertices x and y in distinct partite sets of $B(G_q)$, there exists exactly one x, y-path of length 3. Since each entry $a_{i,j}^3$ of A^3 is the number of i, j-walks of length 3, we have

$$A^3 = J + qA$$

where J is the block matrix

$$J = \begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix}.$$

and K is the square all 1 matrix with appropriate dimensions. If $\lambda \notin \{-(q+1), q+1\}$ is an eigenvalue of A, then an eigenvector x for λ is orthogonal to the constant unit vector and so Kx = 0. It follows that $\lambda^3 = q\lambda$ and therefore $\lambda \in \{-\sqrt{q}, 0, \sqrt{q}\}$. Since the eigenvalues of $A(G_q)$ other than -(q+1) and (q+1) are not all zero, $\lambda(G_q) = \sqrt{q}$. A more complete analysis of these eigenvalues and their multiplicities was achieved by Haemers [13]. Since we have $\lambda(G_q) = \sqrt{q}$, Lemma 4.2 gives the following:

Corollary 4.3. Let $X \subseteq V(G_q)$ where $|X| \ge 2\tau n/(q+1)$, and let Y be the set of $e \in E(G_q)$ such that $|X \cap e| \ge \tau$. Then

$$|Y| \ge n - \frac{2n}{\tau}.$$

Proof. Since $\lambda(G_q) = \sqrt{q}$, applying Lemma 4.2 with $\delta = 1$ and d = q + 1 gives the result.

5 Proof of Theorem 1.1: Lower Bound

Based on the generalized quadrangle G_q , we now specify the construction of a triangle-free n-vertex hypergraph H_q with independence number $O(n^{2/3}\sqrt{\log n})$, which gives the lower bound in Theorem 1.1 for r=3. Let $\tau=\lfloor 4\log q\rfloor$. The idea is to place randomly a carefully chosen triangle-free 3-graph F_q on q+1 vertices into each of the edges of G_q , independently for each edge of G_q , to form a new hypergraph H_q with $n=q^3+q^2+q+1$ vertices. We then use the spectral result in the form of Corollary 4.3 to deduce that a set of $2\tau n/q$ vertices of G_q must intersect almost all edges of G_q in roughly τ vertices. Together with some basic probability, we use this to deduce that the expected number of independent sets of size $2\tau n/q$ in H_q is o(1), and therefore some H_q has independence number $2\tau n/q$, as required. A similar idea will be used in the lower bound in Theorems 1.2 and 1.4, and the appropriate modifications to F_q will be made in Section 5.3 to obtain the lower bound in Theorem 1.1 for r>3.

5.1 The hypergraph F_q

Throughout this section, $\tau = \lfloor 8\sqrt{\log q} \rfloor$. To describe H_q , we use the auxiliary hypergraph F_q with vertex set [q+1], defined as follows. Let $V = \{v_{ij} : 1 \le i, j \le \tau\}$ be a τ^2 -element subset of [q+1]

and let $S_1, \ldots, S_\tau, T_1, \ldots, T_\tau$ be a partition of [q+1]-V into sets whose sizes differ by at most one. Let $S = \bigcup_{i=1}^\tau S_i$ and $T = \bigcup_{j=1}^\tau T_j$. The edge set of F_q is the set of all triples $\{v_{ij}, a, b\}$ such that $a \in S_i$ and $b \in T_j$. Note that F_q is actually 3-partite, with parts V, S and T. Then H_q is constructed by taking independently for each $e \in G_q$ a random bijection π_e from $V(F_q)$ to e and letting a triple in e be an edge if its pre-image is an edge in F_q .

Lemma 5.1. H_q is triangle-free.

Proof. Since G_q is linear and triangle-free, it is sufficient to verify that F_q is triangle-free. Suppose F_q has a triangle. Since F_q is 3-partite, some vertex in V belongs to two of the edges of the triangle. Let this vertex be $v_{ij} \in V$, and these two edges be $\{v_{ij}, s_i, t_j\}$ and $\{v_{ij}, s_i', t_j'\}$. Now the third edge must be either $\{v, s_i, t_j'\}$ or $\{v, s_i', t_j\}$ for some $v \in V$. By definition of F_q , this implies that $v = v_{ij}$, a contradiction.

Next we bound from above the probability that a set of τ vertices of $e \in E(G_q)$ is an independent set in H_q .

Lemma 5.2. Let I be a τ -element subset of $e \in E(G_q)$. Then as $q \to \infty$, the probability that I is independent in H_q is at most $1 - \frac{\tau^3 - o(\tau^3)}{4eq}$.

Proof. Let N be the number of τ -sets X of $V(F_q) = [q+1]$ that are not independent in F_q . A lower bound for N is obtained by picking an element $v_{ij} \in V$, an element $s \in S_i$, an element $t \in T_j$ and $\tau - 3$ elements in $[q+1] - (V \cup S_i \cup T_j)$. As $q \to \infty$, this gives

$$N \ge \sum_{v_{ij} \in V} |S_i| |T_j| \binom{q+1-|S_i|-|T_j|-|V|}{\tau-3}$$

$$\ge \tau^2 \cdot \left\lfloor \frac{q}{2\tau} \right\rfloor^2 \binom{q+1-2\lceil \frac{q+1-\tau^2}{2\tau} \rceil - \tau^2}{\tau-3}$$

$$\ge \tau^2 \cdot \left\lfloor \frac{q}{2\tau} \right\rfloor^2 \binom{(1-1/\tau)(q+1)-\tau^2}{\tau-3}$$

$$= (1-o(1))\tau^2 \left(\frac{q}{2\tau} \right)^2 \binom{(1-1/\tau)q}{\tau-3}$$

$$= (1-o(1))\frac{q^2}{4}(1-1/\tau)^{\tau-3}\frac{q^{\tau-3}}{(\tau-3)!}$$

$$= (1-o(1))\frac{\tau^3}{4eq} \frac{(q+1)^\tau}{\tau!}$$

$$= (1-o(1))\frac{\tau^3}{4eq} \binom{q+1}{\tau}.$$

Now the probability that $I \subset e$ is not independent in H_q is

$$\frac{|\{\pi_e: I \text{ is not independent under } \pi_e\}|}{(q+1)!} = \frac{N\tau!(q+1-\tau)!}{(q+1)!} = \frac{N}{\binom{q+1}{\tau}}.$$

The lower bound on N now gives the desired result.

5.2 Independence number of H_q

If $n=q^3+q^2+q+1$ for some prime power q, then we show that with positive probability, H_q has no independent set of size more than $2\tau n/q$ if n is large enough and $\tau=\lfloor 8\sqrt{\log q}\rfloor$. Note that $2\tau n/q<16n^{2/3}\sqrt{\log n}$ if n is large enough. If n is not of this form, pick the smallest prime power q such that $n\leq q^3+q^2+q+1$, and remove $q^3+q^2+q+1-n$ vertices from H_q . The new hypergraph H'_q has $\alpha(H'_q)\leq \alpha(H_q)$. Since it is well-known that there exists a prime $q:n^{1/3}\leq q\leq 2n^{1/3}$, H'_q has no independent set of size more than $2\tau n/q=O(n^{2/3}\sqrt{\log n})$, as required to finish the proof of the lower bound in Theorem 1.1.

Suppose that $X \subset V(H_q) = V(G_q)$ is an independent set of size $\lceil 2\tau n/q \rceil$ in H_q . By Corollary 4.3, at least $n - 2n/\tau$ of the edges of G_q contain at least τ vertices of I. Let Y = Y(X) be this set of edges. For each $e \in Y$, $X \cap e$ is an independent set in the random hypergraph F_q on e. Let B_e be the event that $X \cap e$ is independent in F_q . By Lemma 5.2,

$$P(B_e) \le 1 - \frac{\tau^3}{11q}$$

provided q is large enough. The events B_e are independent over $e \in Y$, and therefore the expected number of independent sets of size $2\tau n/q$ in H_q is at most

$$\sum_{X:|X|=\lceil 2\tau n/q\rceil} \prod_{e\in Y} P(B_e) \le \left(1 - \frac{\tau^3 - o(\tau^3)}{4eq}\right)^{n-2n/\tau} \binom{n}{\lceil 2\tau n/q\rceil}$$

$$\le \exp\left(-\frac{n(\tau^3 - o(\tau^3))}{4eq} + \frac{2\tau n}{q} \log \frac{n}{q}\right). \tag{1}$$

Since $\tau = \lfloor 8\sqrt{\log q} \rfloor$ and $n = q^3 + q^2 + q + 1$, as $q \to \infty$, we have

$$-\frac{n(\tau^3 - o(\tau^3))}{4eq} + \frac{2\tau n}{q} \log \frac{n}{q} \le \frac{n\tau}{q} \left[-\frac{\tau^2 - o(\tau^2)}{4e} + 2\log q^2 \right] \le \frac{n\tau}{q} \left[-\frac{(1 - o(1))64\log q}{4e} + 4\log q \right].$$

Thus the quantity in (1) decays to zero. Therefore with high probability, H_q has no independent set of size more than $2\tau n/q < 16n^{2/3}\sqrt{\log n}$ if n is large enough. This proves the lower bound in Theorem 1.1 for r=3. We next turn to the case r>3.

5.3 The hypergraph $H_{q,r}$

In this section we prove the lower bound in Theorem 1.1 for r > 3. Take $H_{q,r}$ to consist of randomly placed copies of a carefully chosen hypergraph $F_{q,r}$ on q + 1 vertices in the edges of G_q . The hypergraph $F_{q,r}$ takes the role of the hypergraph F_q in the preceding section. To describe $F_{q,r}$, we first review a known construction of linear r-graphs based on a construction of dense sets without three-term arithmetic progressions.

5.4 Description of $F_{q,r}$

Erdős, Frankl and Rödl [12] showed that for every $r \geq 3$ there is a constant $c_r > 0$ such that for each $N \in \mathbb{N}$ there exists a linear triangle-free r-partite r-graph J(N,r) with N vertices in each part and

at least $N^2/\exp(c_r\sqrt{\log N})$ edges. Their construction is based on and generalizes the construction of Ruzsa and Szemerédi [23] for r=3 of a dense linear triangle-free 3-graph. The Ruzsa-Szemerédi construction is in turn derived from the Behrend's construction [5] of relatively dense sets of integers with no three-term arithmetic progressions. Using the Erdős-Frankl-Rödl construction, we describe a triangle-free (but not linear) r-graph $F_{q,r}$ on q+1 vertices for each r>3. This is key in the description of $H_{q,r}$ for the proof of Theorem 1.1.

Fix r > 3, and let $C_r > 0$ be a constant depending on r, to be chosen later. Let J be the Erdős–Frankl–Rödl hypergraph $J(\tau, r - 1)$, where

$$\tau = \lceil (\log q)^{1/2} \exp(-C_r \sqrt{\log \log q}) \rceil = (\log q)^{1/2 - o(1)}.$$

For convenience let m = |E(J)| and let V_1, \ldots, V_{r-1} be the parts of J. To define $V(F_{q,r})$, associate pairwise disjoint sets S_v to the vertices $v \in V(J)$, and let W be a set of m vertices disjoint from all the sets S_v and indexed by the edges of J, namely $W = \{v_e : e \in E(J)\}$. Then let

$$V(F_{q,r}) = W \cup \bigcup_{v \in V(J)} S_v$$

where the S_v are as equal in size as possible subject to

$$q+1 = m + \bigcup_{v \in V(J)} S_v.$$

This ensures that $F_{q,r}$ has exactly q+1 vertices. The edges of $F_{q,r}$ are defined as follows. For every $e = \{v_1, \dots, v_{r-1}\} \in J(\tau, r-1)$ with $v_i \in V_i$, recall that $v_e \in W$, and let

$$F_e = \{v_e \cup \{x_1, \dots, x_{r-1}\} : x_i \in S_{v_i}, i = 1, \dots, r-1\}.$$

Then

$$E(F_{q,r}) = \bigcup_{e \in J(\tau, r-1)} F_e.$$

Loosely speaking, the edges $e \in E(J)$ are being replaced with complete (r-1)-partite (r-1)-graphs K(e) with parts of size roughly $q/(r-1)\tau$, and then we form the edges of $F_{q,r}$ by enlarging each of the edges of K(e) with the new vertex v_e . It is straightforward to check (by both the linearity of J and the fact that J is triangle-free) that $F_{q,r}$ is triangle-free (although it is not linear). The key lemma about $F_{q,r}$ is now as follows:

Lemma 5.3. Let $r \geq 3$ and I be a τ -element subset of $e \in E(G_q)$. Then for some $d_r > 0$, the probability that I is independent in $H_{q,r}$ is at most

$$1 - \frac{\tau^{3 - d_r / \sqrt{\log \tau}}}{q}.$$

Proof. Let N be the number of τ -element subsets of $V(F_{q,r}) = [q+1]$ that are not independent in $F_{q,r}$. Since every τ -element set obtained by picking an element $w_e \in W$, an element from each set S_v such that $v \in e$, and then $\tau - r$ elements in $[q+1] \setminus (W \cup \bigcup_{v \in e} S_v)$ is not independent, we have

$$N \ge \sum_{w_e \in W} \left(\prod_{v \in e} |S_v| \right) \binom{q+1-\sum_{v \in e} |S_v|-|W|}{\tau-r}.$$

Since all S_v have almost the same cardinality, as $q \to \infty$ the right-hand side is at least

$$(m+o(m))\cdot \left(\frac{q}{\tau}\right)^{r-1}\cdot \left(\frac{q+1-q/\tau}{\tau-r}\right)^{\tau-r} \geq (m+o(m))\cdot \frac{\tau}{qer^r}\binom{q+1}{\tau}.$$

So we can choose $d_r > 0$ depending only on r such that the last expression is at least

$$\frac{\tau^{3-d_r/\sqrt{\log \tau}}}{q} \binom{q+1}{\tau}.$$

This bound proves the lemma.

The rest of the proof for $H_{q,r}$ carries through as for H_q , except at the end, the expected number of independent sets of size $2\tau n/q$ in $H_{q,r}$ is now by Lemma 5.3 at most

$$\left(1 - \frac{\tau^{3 - d_r/\sqrt{\log \tau}}}{q}\right)^{n - 2n/\tau} \binom{n}{2\tau n/q} < \exp\left(-\frac{\tau^{3 - d_r/\sqrt{\log \tau}}n}{2q} + \frac{2\tau n \log n}{q}\right).$$

We have chosen τ to ensure

$$\tau^{3-d_r/\sqrt{\log \tau}} > 6\tau \log n.$$

This ensures that the expected number of independent sets of size $2\tau n/q$ in $H_{q,r}$, for large enough n, is less than

$$\exp\left(-\frac{\tau n\log n}{q}\right) < \exp\left(-n^{2/3}\log n\right) < 1.$$

We conclude that with positive probability, for large enough n and a large enough constant C_r ,

$$\alpha(H_{q,r}) \le 2\tau n/q \le 2n^{2/3} (\log n)^{1/2 + C_r/\sqrt{\log \log n}}.$$

This gives the lower bound on Ramsey numbers in Theorem 1.1.

6 Proof of Theorem 1.2

To prove the upper bound in Theorem 1.2, it is sufficient to show that every *n*-vertex linear triangle-free 3-graph has an independent set of size $\Omega(n^{2/3}(\log n)^{1/3})$. Let H be such a 3-graph. By the main theorem in [1],

$$\alpha(H) = \Omega\left(\frac{n\sqrt{\log d}}{\sqrt{d}}\right)$$

where d is the average degree of H. The union of all pairs $e \setminus \{v\}$ for edges e containing a vertex v of degree at least d in H is an independent set of 2d vertices in H, since H is linear and triangle-free. Therefore

$$\alpha(H) = \Omega\left(\min_{d} \max\left\{d, \frac{n\sqrt{\log d}}{\sqrt{d}}\right\}\right) = \Omega(n^{2/3}(\log n)^{1/3}).$$

This completes the proof of the upper bound in Theorem 1.2.

6.1 Proof of Theorem 1.2: Lower Bound

Based on the hypergraph G_q , for $n=q^3+q^2+q+1$ and q a prime power, we construct an n-vertex linear triangle-free 3-graph H_q^* with $\alpha(H_q^*) \leq n^{2/3} \exp(A\sqrt{\log n})$ for some A>0. If n is not of that form, then as in the proof of Theorem 1.1 we use the distribution of primes and a large subhypergraph of H_q^* to obtain the same result with perhaps a slightly larger implicit constant. Let $N=\lfloor (q+1)/3 \rfloor$ and let $F_q^*=J(N,3)$, where J(N,3) is defined in Section 5.4. Then $|E(F_q^*)|=|E(J)|=\Omega(qr_3(q))$. The main lemma we require counts independent sets of size τ in F_q^* .

Lemma 6.1. As $q \to \infty$ the number of independent sets of size τ in F_q^* is at most

$$\left(1 - \Omega\left(\frac{\tau^3 r_3(q)}{q^2}\right)\right) \binom{q+1}{\tau}.$$

Proof. Let N be the number of non-independent sets of size τ in F_q^* . It is sufficient to show

$$N = \Omega\left(\frac{\tau^3 r_3(q)}{q^2}\right) \binom{q+1}{\tau}.$$

Since $M := |E(F_q^*)| = \Omega(qr_3(q))$, by inclusion-exclusion,

$$\begin{split} N &\geq M \cdot \binom{q-2}{\tau-3} - \binom{M}{2} \binom{q-4}{\tau-5} \\ &= M \cdot \binom{q+1}{\tau} \frac{\tau(\tau-1)(\tau-2)}{(q+1)q(q-1)} \left(1 - \frac{(M-1)(\tau-3)(\tau-4)}{2(q-2)(q-3)}\right) \\ &= \Omega\left(\frac{\tau^3 r_3(q)}{q^2}\right) \binom{q+1}{\tau}. \end{split}$$

This is the required bound on N.

As before, we construct H_q^* by placing a randomly permuted copy of F_q^* in each edge of G_q . The expected number of independent sets of size $\lceil 2\tau n/q \rceil$ in H_q^* is then at most

$$\left(1 - O\left(\frac{\tau^3 r_3(q)}{q^2}\right)\right)^{n - 2n/\tau} \binom{n}{\lceil 2\tau n/q \rceil}$$

using Lemma 6.1 and Corollary 4.3 as in the proof of Theorem 1.1. Choose τ to satisfy

$$\frac{4\tau n\log n}{a} < \frac{n\tau^3 r_3(q)}{a^2}$$

which ensures that the expected number of independent sets is o(1). It is sufficient to take

$$\tau^2 = (1 + o(1)) \frac{4q \log n}{r_3(q)}.$$

Then with high probability

$$\alpha(H_q^*) < \frac{2\tau n}{q} < \frac{8n\sqrt{q\log n}}{q\sqrt{r_3(q)}}.$$

To obtain from this the lower bound on $RL(C_3, K_t^3)$, let $n = RL(C_3, K_t^3)$ so that

$$\frac{8n\sqrt{q\log n}}{q\sqrt{r_3(q)}} > t.$$

Since $r_3(q) > q/\exp(c\sqrt{\log q})$ for some c > 0, this gives the lower bound on $RL(C_3, K_t^r)$ in Theorem 1.2.

Finally, we connect a bound on Ramsey numbers to $r_3(N)$. According to the above proof, if $n = RL(C_3, K_t^3) = O(t^{3/2}(\log t)^{-3/4-c})$, then

$$\frac{n\sqrt{q\log n}}{q\sqrt{r_3(q)}} = \Omega(t).$$

Put N = q. Recalling $n = N^3 + o(N^3)$,

$$r_3(N) = O\left(\frac{N^5 \log N}{t^2}\right).$$

The definition of n in terms of t gives

$$t = \Omega(n^{2/3}(\log n)^{1/2 + 2c/3}) = \Omega(N^2(\log N)^{1/2 + 2c/3}).$$

Therefore

$$r_3(N) = O\left(\frac{N}{(\log N)^{4c/3}}\right).$$

This completes the proof of Theorem 1.2.

7 Proof of Theorem 1.3

For Theorem 1.3, which states that

$$R(C_k, K_t^r) = \Omega^* \left(t^{1 + \frac{1}{3k - 1}} \right),$$

we let $G_{k,q}$ be an *n*-vertex (q+1)-uniform (q+1)-regular hypergraph with no cycles of length at most k, such that q is a maximum relative to n and such that $\lambda(G_{k,q}) \leq 2\sqrt{q}$.

A construction of hypergraphs $G_{k,q}$ for primes $q \equiv 1 \mod 4$ can be obtained from the construction of Ramanujan graphs of Lubotzsky, Phillips and Sarnak [18]. These $G_{k,q}$ are constructed from the following bipartite graphs of [18]: Let p,q be primes congruent to 1 modulo 4 with p > 16. If $(\frac{p}{q}) = -1$, then $B_{p,q}$ is a bipartite (q+1)-regular graph with $p(p^2-1)$ vertices in each part and no cycle of length less than $4\log_q(p/4)$. If $(\frac{p}{q}) = 1$, then $B_{p,q}$ is a bipartite (q+1)-regular graph with $p(p^2-1)/2$ vertices in each part and no cycle of length less than $2\log_q p$. In both cases $B_{p,q}$ has no cycle of length less than $2\log_q p$ since p > 16, and the second largest eigenvalue in absolute value except the first and last is at most $2\sqrt{q}$.

So, given $k \ge 4$, we first choose a prime $q \equiv 1 \mod 4$, then choose a smallest prime $p \equiv 1 \mod 4$ with $p > q^k$. By the previous paragraph, for $n \in \{\frac{1}{2}p(p^2-1), p(p^2-1)\}$, there exists a 2n-vertex

bipartite (q+1)-regular graph $B_{p,q}$ of girth greater than 2k. This $B_{p,q}$ is the bipartite incidence graph of a C_k -free (q+1)-graph $G_{k,q}$ on n vertices. And if we choose the smallest possible p, then $n < (1+o(1)q^{3k}$. Furthermore, it follows that $\lambda(G_{k,q}) \le 2\sqrt{q}$.

Let $F_{k,q,r}$ denote the r-graph consisting of a vertex-disjoint union of $\tau = \lfloor 4 \log q \rfloor$ stars of size $\lfloor q/\tau \rfloor$ on q vertices. In each edge of $G_{k,q}$, put a randomly permuted copy of $F_{k,q,r}$ to get the r-graph $H_{k,q,r}$. Corollary 4.3 shows that if X is a set of at least $2\tau n/q$ vertices of $H_{k,q,r}$, then at least $n - 8n/\tau$ edges of $G_{k,q}$ contain at least τ vertices of X. The expected number of independent sets in $H_{k,q,r}$ of size $2\tau n/q$ is at most

$$\left(1 - \frac{\tau^2}{10q}\right)^{n - 8n/\tau} \binom{n}{2\tau n/q} < \exp\left(-\frac{\tau^2 n}{20q} + \frac{2\tau n \log n}{q}\right)$$

provided q is large enough. The choice of τ ensures this decays to zero. Therefore with positive probability,

 $\alpha(H_{k,q,r}) = O\left(\frac{\tau n}{q}\right) = O\left(n^{1-1/3k}\log n\right),$

as long as $q > c_k n^{1/3k}$ for some constant c_k depending only on k.

Now suppose we are given $k \geq 4$ and an integer n not of the form required to construct $B_{p,q}$ and hence $G_{k,q}$ and $H_{k,q,r}$. For such an n, we will choose p,q so that the construction above is possible on n' vertices with n < n' < 8n, and then restrict the resulting $H_{k,q,r}$ (which has n' vertices) to a subhypergraph with only n vertices. The resulting n-vertex r-graph would again have independence number $O\left(n^{1-1/3k}\log n\right)$.

Given $k \geq 4$ and a sufficiently large n, choose a prime $q \equiv 1 \mod 4$ such that

$$\frac{1}{2}(2n)^{1/3k} < q < (2n)^{1/3k}.$$

Such a q exists by the prime number theorem in arithmetic progressions. Next choose a prime $p \equiv 1 \mod 4$ such that

$$(3n)^{1/3}$$

Again, by the prime number theorem in arithmetic progressions, we can find such a p because n is sufficiently large. Now set $n' = p(p^2 - 1)/2$ or $p(p^2 - 1)$ depending on whether $(\frac{p}{q})$ is 1 or -1, and construct $H_{k,q,r}$ as described above. The resulting (q+1)-graph $H_{k,q,r}$ contains no C_k as $q < (2n)^{1/3k} < (3n)^{1/3k} < p^{1/k}$. Finally, observe that

$$n' > p^3/2 - p/2 > 3n/2 - n^{1/3} > n$$

and $n' < p^3 < 8n$. Moreover, $q > c_k n^{1/3k}$ so the above bound on the independence number holds as $n \to \infty$.

This shows that for any $r \geq 3$ and $k \geq 4$,

$$R(C_k, K_t^r) = \Omega^* \left(t^{1 + \frac{1}{3k - 1}} \right).$$

7.1 Proof of Theorem 1.5

The specialization of the above arguments to k=5 comes from the existence of generalized hexagons (see [9] or [25]). The generalized hexagons G_q exist for prime powers q and can be viewed as (q+1)-uniform (q+1)-regular hypergraphs G_q on $q^5+q^4+q^3+q^2+q+1$ vertices containing no cycles of length at most five, and moreover the associated matrix $A(G_q)$ has $\lambda(G_q) = \sqrt{q}$ once more. Using the hypergraph $F_{k,q,r}$ in each edge of the hypergraph G_q as before gives the result: we obtain a hypergraph $H_{5,q,r}$ with

$$\alpha(H_{5,q,r}) = O(n^{4/5} \log n)$$

from which the lower bound on Ramsey numbers $R(C_5, K_t^r) = \Omega(t^{5/4}(\log t)^{-5/4})$ for all $r \geq 3$ follows.

References

- [1] Ajtai, M., Komlós, J., Pintz, J., Spencer, J., and Szemerédi, E. A note on Ramsey numbers, J. Comb. Theory (Series A), 29, 354–360, (1980).
- [2] Ajtai, M., Komlós, J., Szemerédi, E., A note on Ramsey numbers, J. Comb. Theory (Series A), 29, 354–360, (1980).
- [3] Alon, N., Chung, F. R. K. Explicit construction of linear sized tolerant networks, Disc. Math. 72, 15–19, (1989).
- [4] Alon, N., Spencer, J. H., (2000) The Probabilistic Method (2nd ed.). John Wiley & Sons, Inc..
- [5] Behrend, F., On sets of integers which contain no three elements in arithmetic progression, Proc. Nat. Acad. Sci 32, 331–332, (1946).
- [6] Benson, C, Minimal Regular Graphs of Girth 8 and 12, Canad. J. Math. 18, 1091–1094, (1966).
- [7] Berge, C, Graphs and hypergraphs. Translated from the French by Edward Minieka. North-Holland Mathematical Library, Vol. 6. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. xiv+528 pp.
- [8] Bohman, T., Keevash, P., The early evolution of the *H*-free process, Invent. Math, 181 no. 2 291–336, (2010).
- [9] Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [10] Caro, Y., Li, Y., Rousseau, C., Zhang, Y., Asymptotic bounds for some bipartite graph-complete graph Ramsey numbers, Discrete Math. 220 (2000), 51–56.
- [11] Duke, R., Lefmann, H., Rödl, V., On uncrowded hypergraphs, Random Structures & Algorithms, 6, 209–212, (1995).
- [12] Erdős, P., Frankl, P., Rödl, V., The Asymptotic Number of Graphs not Containing a Fixed Subgraph and a Problem for Hypergraphs Having No Exponent, Graphs and Combinatorics 2, 113–121 (1968).

- [13] Haemers, W., Interlacing eigenvalues and graphs, Linear algebra Appl. 226/228, 593–616, (1995).
- [14] Keevash, P, Sudakov, B, Verstraete, J., Bipartite Turán Numbers and a conjecture of Erdős and Simonovits, Preprint (2011).
- [15] Kim, J., The Ramsey number R(3,t) has order of magnitude $t^2/\log t$, Random Structures & Algorithms 7, 173–207, (1995).
- [16] Kostochka, A., Rödl, V., Constructions of sparse uniform hypergraphs with high chromatic number, Random Structures Algorithms 36 (2010), 46–56.
- [17] Lovász, L. On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19 1968 59–67.
- [18] Lubotzky, A., Phillips, R., Sarnak, P., Ramanujan Graphs, Combinatorica 8 (3), 261–277, (1988).
- [19] Margulis, G., Explicit constructions of graphs without short cycles and low density codes, Combinatorica 2 (1), 71–78, (1982).
- [20] Roth, K. F., On a Problem of Heilbronn, J. London Math. Soc. 26, 198–204, (1951).
- [21] Roth, K. F., On certain sets of integers, I, Journal of the London Mathematical Society 28, 104–109, (1953).
- [22] Ruzsa, I., Solving linear equations in sets of integers. I, Acta Arith. 65, 259–282, (1993).
- [23] Ruzsa, I., Szemerédi, E. Triple systems with no six points carrying three triangles, in Combinatorics, Keszthely, 1976, Coll. Math. Soc. J. Bolyai 18 Volume II., 939–945.
- [24] Sanders, T., On Roth's theorem on progressions, Annals of Mathematics, to appear
- [25] Thas J. A., *Generalized Polygons* in Handbook on Incidence Geometry (ed. F. Buekenhout), Chapter 9, North Holland, 1995.
- [26] Tits, J. Sur la trialité et certains groupes qui s'en d'eduisent, Publ. Math. I.H.E.S. Paris 2, 14–60, (1959)
- [27] Tomescu, I, Sur le problème du coloriage des graphes généralisés, (French) C. R. Acad. Sci. Paris Sér. A-B 267, A250 A252, (1968).