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STRUCTURE AND STABILITY OF TRIANGLE-FREE SET
SYSTEMS

DHRUV MUBAYI

Abstract. We define the notion of stability for a monotone Property of set
systems. This phenomenon encompasses some classical results in combina-
torics, foremost among them the Erdős-Simonovits stability theorem. A tri-
angle is a family of three sets A, B, C such that A∩B, B ∩C, C ∩A are each
nonempty, and A∩B∩C = ∅. We prove the following new theorem about the
stability of triangle-free set systems.

Fix r ≥ 3. For every δ > 0, there exist ε > 0 and n0 = n0(ε, r) such that
the following holds for all n > n0: if |X| = n and G is a triangle-free family

of r-sets of X containing at least (1− ε)
�n−1

r−1

�
members, then there exists an

(n− 1)-set S ⊂ X which contains fewer than δ
�n−1

r−1

�
members of G.

This is one of the first stability theorems for a nontrivial problem in ex-
tremal set theory. Indeed, the corresponding extremal result, that for n ≥
3r/2 > 4, every triangle-free family G of r-sets of X has size at most

�n−1
r−1

�

was a longstanding conjecture of Erdős (open since 1971) that was only re-
cently settled in [18] for all n ≥ 3r/2.

1. Introduction.

Throughout this paper, X is an n-element set. For any nonnegative integer r,
we write

(
X
r

)
for the family of all r-element subsets of X.

In this paper, we explicitly formulate the notion of stability for monotone prop-
erties of set systems. A Property P is an infinite family of set-systems closed under
isomorphism. The property P is monotone if G ∈ P and G′ ⊂ G imply that G′ ∈ P.
One can characterize monotone properties by properties not containing forbidden
subsystems. More precisely, if F is a family of set-systems, and PF is an infinite
class of set-systems containing no (isomorphic copies of a) set-system from F , then
PF is a monotone property. On the other hand, given any monotone property P,
define F as the collection of set-systems not contained in any member of P. Then
clearly P ⊂ PF , and the other inclusion also holds, since if G ∈ PF \ P, then G
is not contained in any member of P. The definition of F implies that G ∈ F ,
which contradicts the fact that G ∈ PF . In the case that P consists of r-uniform
set systems, we write Pr.
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The property Pn (Pr
n) is the subfamily of P (Pr) consisting of those set systems

on n elements. The classical extremal problem in this regard is to determine

ex(n,F) = max{|G| : G ∈ Pn}, or exr(n,F) = max{|G| : G ∈ Pr
n}

where F is a forbidden family for a monotone property P. In most cases, there are
only a few extremal structures G that achieve this maximum. For example, one of
the first results of this type is Mantel’s theorem from 1907 (a precursor to Turán’s
theorem), that the maximum number of edges in an n vertex graph containing no
triangle is bn2/4c, and equality holds only for Kbn/2c,dn//2e. Perhaps the historical
second to Mantel theorem is Sperner’s 1928 theorem, that if G ∈ 2[n] contains no two
sets A ⊂ B, then |G| ≤ (

n
bn/2c

)
, with equality only for

(
[n]
bn/2c

)
or

(
[n]
dn/2e

)
. The third

theorem we mention, in some sense forms the starting point of our investigation.
The transversal number τ(A) of the set system A is the minimum size of a set that
has nonempty intersection with every member of A. Define a star to be any set
system A with τ(A) = 1.

Theorem 1.1. (Erdős-Ko-Rado [5]) Let n ≥ 2r and G ⊂ (
X
r

)
be an intersecting

family. Then |G| ≤ (
n−1
r−1

)
. If n > 2r and equality holds, then G is a star.

Upon obtaining the extremal result, and (hopefully) the extremal structures, one
can go a step further, and ask whether the families in P of size close to ex(n,F)
have structure close to the structure of one of the extremal examples (although
sometimes the order of these discoveries is reversed; see the discussion that follows).
Another way of viewing this picture is that we are asking for the “continuity” of
the discrete F-free structures whose size is close to the maximum. The seminal
result in this regard is the Simonovits stability theorem, proved independently by
Erdős and Simonovits. The Turán graph Tl(n) is the complete l-partite graph on
n vertices with part sizes as equal as possible.

Theorem 1.2. (Erdős, Simonovits [21]) Fix l ≥ 3. For every δ > 0, there exists
ε > 0 and n0 = n0(ε) such that the following holds for every n > n0: if G is an n
vertex graph containing no copy of Kl+1 with |G| > (1 − ε)|Tl(n)|, then G can be
transformed to Tl(n) by adding and deleting at most δn2 edges.

Thus while Turán’s theorem determines the structure of the extremal Kl+1-free
graph, Theorem 1.2 proves the continuity of the structure of Kl+1-free graphs whose
size is close to |Tl(n)|. Put plainly, a stability result usually tells us more about
the problem under study than just the extremal result. However, apart from this
intrinsic value, it also yields unexpected new consequences. We mention two such
examples.

A basic result of Erdős-Kleitman-Rothschild [6] determines the number of la-
belled graphs on n vertices containing no copy of Kl+1. We denote the set of these
graphs by Forb(n, l +1). Since any subgraph of Tl(n) is in Forb(n, l +1), we imme-
diately obtain |Forb(n, l + 1)| ≥ 2|Tl(n)|. The result of Erdős-Kleitman-Rothschild
states that this is sharp asymptotically in the exponent, namely, that

|Forb(n, l + 1)| = 2(1+o(1))|Tl(n)|.

The question of whether the o(1)|Tl(n)| = o(n2) term could be replaced by a term
of the form O(n2−γ) for some positive γ was open since 1976. Recently, a strik-
ing theorem of Balogh-Bollobás-Simonovits [1] proves this assertion (for a much
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larger class of forbidden subgraphs), and one of the main tools in the proof is a
strengthening of Theorem 1.2.

Another approach first used by Simonovits [21] for graphs, and more recently
by several authors [11, 13, 14, 16, 19] for hypergraphs, is to prove an exact result
using a stability result. More precisely, one can determine exr(n,F) exactly by first
determining the asymptotic value, then using a stability theorem to prove that any
structure with the extremal number of sets is the unique extremal structure. This
is especially valuable in extremal hypergraph theory, where exact results are rare,
and any new approach gives insight to the governing phenomenon of the problems.

Here we provide a common formulation for these and other problems. In what
follows, we write Gn for a set system whose underlying set has size n. The formu-
lation below applies as well to Pr even though we write it only for P. Recall that
the forbidden family for P is the collection F of set-systems not contained in any
member of P.

Definition. Let t > 0 be an integer, P be a monotone property of set systems,
and F be a forbidden family for P. The property P is t-stable if there exists m0 =
m0(F) and set systems H1

m, . . . ,Ht
m for every m > m0 such that the following

holds: for every δ > 0, there exists ε > 0 and n0 = n0(ε) such that for all n > n0,
if Gn ∈ Pn with

|Gn| > (1− ε)ex(n,F),

then Gn can be transformed to some Hi
n by adding and removing at most δ|Gn| sets.

Say that P is stable if it is 1-stable.

Our interest is in developing stability results in extremal set theory. Perhaps
the first such result is the theorem of Hilton and Milner [12], which determines
the maximum size of an intersecting family G ⊂ (

[n]
r

)
with τ(G) > 1. An easy

consequence of their result is that if r is fixed, n > n0(r), and |G| > cnr−2 for some
constant c depending only on r, then τ(G) = 1 (it is likely that this was also known
to Erdős-Ko-Rado). We prove a stability result for set systems where the forbidden
configuration is a generalization of that in Mantel’s theorem.

A triangle is a family of three sets A, B,C such that A∩B, B∩C, C∩A are each
nonempty, and A ∩ B ∩ C = ∅. Let f(r, n) denote the maximum size of a family
A ⊂ (

X
r

)
containing no triangle. Mantel’s theorem states that f(2, n) = bn2/4c,

and this motivated Erdős [4] to ask for the determination of f(r, n) for r > 2. He
conjectured that

(1.1) f(r, n) =
(

n− 1
r − 1

)
for n ≥ 3r/2.

(Actually, in [4] it is stated more as a question, and n ≥ 3r/2 is not explicitly
mentioned, but later, e.g. in [3, 8], (1.1) is referred to as a conjecture of Erdős.)

This conjecture attracted quite a few researchers, including Chvátal, Bermond,
Frankl and Füredi [3, 2, 7, 8, 9], whose work resulted in its solution for 3r/2 ≤
n ≤ 2r, and n > n0(r), where n0(r) is an unspecified but exponentially growing
function of r. Recently, the author and Verstraëte [18] proved (1.1) for all n ≥ 3r/2
using a new combinatorial method. We take this one step further and prove that
the property of being triangle-free is stable, with the unique extremal configuration
being a star with the maximum number of sets. The following is an equivalent
formulation, and is the main result of this paper.
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Theorem 1.3. (Main Result) Fix r ≥ 3. For every δ > 0, there exist ε > 0 and
n0 = n0(ε, r) such that the following holds for all n > n0: if |X| = n and G ⊂ (

X
r

)

contains no triangle, |G| > (1−ε)
(
n−1
r−1

)
, then there exists an S ⊂ X with |S| = n−1

such that |G ∩ (
S
r

)| ≤ δ
(
n−1
r−1

)
.

Chvátal [3] proved (1.1) for r = 3. In fact, he proved the more general statement
that if n ≥ r +2 ≥ 5, A ⊂ (

X
r

)
, and |A| > (

n−1
r−1

)
, then A contains r sets A1, . . . , Ar

such that every r − 1 of them have nonempty intersection, but ∩iAi = ∅. This
configuration is also called an (r − 1)-dimensional simplex. Chvátal generalized
(1.1) as follows.

Conjecture 1.4. (Chvátal) Let r ≥ d + 1 ≥ 3, n ≥ r(d + 1)/d and A ⊂ (
X
r

)
. If

A contains no d-dimensional simplex, then |A| ≤ (
n−1
r−1

)
. If equality holds, then A

is a star.

Frankl and Füredi [9] proved Conjecture 1.4 for n > n0(r), where n0(r) is ex-
ponential in r. It would be very surprising if the property of containing no d-
dimensional simplex was not stable. Nevertheless, we lack the tools to settle the
following conjecture at present.

Conjecture 1.5. Fix r ≥ d + 1 ≥ 3. For every δ > 0, there exist ε > 0 and
n0 = n0(ε, r) such that the following holds for all n > n0: if |X| = n and G ⊂ (

X
r

)

contains no d-dimensional simplex and |G| > (1 − ε)
(
n−1
r−1

)
, then there exists an

S ⊂ X with |S| = n− 1 such that |G ∩ (
S
r

)| ≤ δ
(
n−1
r−1

)
.

In Section 2 we provide additional notation for set systems. The main combina-
torial lemmas are proved in Section 3, where a bipartite version of Erdős’ question
is considered. Section 4 contains two technical lemmas, and the proof of Theorem
1.3 is completed in Section 5. In Section 6 we list a host of open problems, where
stability results could be obtained.

2. Notation

For A ⊂ (
X
r

)
, let V (A) =

⋃
A∈AA and n(A) = |V (A)|. For Y ⊂ X, we define

A− Y = A ∩ (
X\Y

r

)
. When Y = {y}, we write A− y instead of A− {y}.

The following six definitions and associated notations will be used repeatedly
throughout the paper:

Sum of Families. The sum of families A1,A2, . . . ,At, denoted
∑

iAi, is the
family of all sets in each Ai. Note that

∑Ai may have repeated sets, even if none
of the Ai have repeated sets.

Trace of a Set. The trace of a set Y in A is defined by tr(Y ) = trA(Y ) = {A ⊂
X \ Y : A ∪ Y ∈ A}. We define tr(A) =

∑
x∈X tr(x).

Degree. The degree of a vertex x in A is deg(x) = degA(x) = |trA(x)|.
The families Sx and Lx. Let A be an r-uniform family of sets in X and x ∈ X.

Then we define

Sx = {Y ∈ tr(x) : |tr(Y )| = 1} and Lx = tr(x)\Sx.

We write S =
∑

x∈X Sx and L =
∑

x∈X Lx = tr(A)\S. Note that if A ∈ Lx, then
there exists y 6= x such that A ∈ Ly.

Paths and Connectivity. A path in A is a family P of sets A1, A2, . . . such
that Ai ∩ Aj 6= ∅ if and only if |i − j| ≤ 1. Family A is connected if every pair of
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vertices in V (A) is contained in some path in A. A component of A is a maximal
non-empty connected subfamily of A.

Shadow. The shadow ∂G of a set system G ⊂ (
X
r

)
is defined by

∂G = {S ∈ (
X

r−1

)
: there exists T ∈ G with S ⊂ T}.

Throughout the paper, the Greek letters ε, δ etc are real numbers and m,n, r, s, t
etc are integers.

3. Combinatorial lemmas and a bipartite formulation

The proof techniques of this paper rely on carefully counting various subsets in
a set system. Many of the crucial ideas that will be used repeatedly are presented
in this section.

Lemma 3.1. Let n > r ≥ 3, let G ∈ (
X
r

)
be triangle-free, and z ∈ X. Suppose that

K1, . . . ,Ks are the components of Lz. Let K′i consist of Ki together with all the sets
in Sz that contain a point in V (Ki). Then K′i is an intersecting family.

Proof. Suppose, for a contradiction, that K′i contains disjoint sets A,B. Since Ki

is connected, Ki ∪ {A,B} is also connected. Let P be a shortest A,B-path in
Ki∪{A,B}, and let C be the set on P immediately following A. Since C 6⊂ {A,B},
we know that C ∈ Ki. Let D be the set on P immediately following C (possibly
D = B). Because P is a shortest path, A∩D = ∅. Since C ∈ Ki ⊂ Lz, there exists
z′ 6= z with C ∈ Lz′ . Consequently, the sets

A ∪ z, C ∪ z′, D ∪ z

form a triangle in G. This contradiction implies that K′i is an intersecting family. ¤

Lemma 3.2. Let n > r ≥ 3, and G ∈ (
X
r

)
be triangle-free. Then every z ∈ X

satisfies

(3.1) |Lz| ≤
(

n− 1
r − 2

)
.

Proof. Let K1,K1, . . . ,Ks be the components of Lz. Lemma 3.1 implies that each
Ki ⊂

(
X

r−1

)
is intersecting. Let ni = n(Ki). If ni ≥ 2(r − 1), then Theorem 1.1

yields |Ki| ≤
(
ni−1
r−2

) ≤ (
ni

r−2

)
. If ni ≤ 2r− 3, then |K′i| ≤

(
ni

r−1

)
, and again this is at

most
(

ni

r−2

)
. Therefore, convexity of binomial coefficients yields

(3.2) |Lz| =
s∑

i=1

|Ki| ≤
s∑

i=1

(
ni

r − 2

)
≤

(
n− 1
r − 2

)
,

where the last inequality holds since
∑

i ni ≤ n− 1. ¤
The crux of our method in this paper is that we relate

∑
z |Lz| to |G| by counting

the contribution to the sum from the (r − 1)-sets in ∂G. This is illustrated in
Proposition 3.3 below, which can be viewed as a bipartite version of the extremal
problem for triangle-free families. This is one of the crucial new steps needed to
prove Theorem 1.3, and a variant of the counting argument in its proof will be used
again later.

Proposition 3.3. Let n > r ≥ 3 and 0 < ε < 1/10. Suppose that X has partition
A ∪ B with |B| ≤ εn. If G ⊂ (

X
r

)
is triangle-free, and every E ∈ G satisfies

|E ∩B| ≥ 2, then |G| < rε
(

n
r−1

)
.
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Proof. Since each set in G contains at least two elements in B,

(3.3) 2|G| ≤
∑

x∈B

deg(x) =
∑

x∈B

(|Sx|+ |Lx|) =
∑

x∈B

|Sx|+
∑

x∈B

|Lx|.

The condition of the theorem also implies that if E′ ∈ ∂G, then |E′ ∩B| ≥ 1. Since
SB =

∑
x∈B Sx ⊂ ∂G, the same conclusion holds for sets in SB . For every E ∈ SB ,

there is exactly one x for which E ∈ Sx. Therefore

(3.4)
∑

x∈B

|Sx| = |SB | ≤ |B|
(

n− 1
r − 2

)
≤ εn

(
n− 1
r − 2

)
.

Since G is triangle-free, Lemma 3.2 implies that |Lx| ≤
(
n−1
r−2

)
for every x ∈ B which

yields

(3.5)
∑

x∈B

|Lx| = |LB | ≤ |B|
(

n− 1
r − 2

)
≤ εn

(
n− 1
r − 2

)
.

Now (3.3), (3.4) and (3.5) yield

2|G| ≤ 2εn

(
n− 1
r − 2

)
< 2rε

(
n

r − 1

)
.

This gives the required bound on |G|. ¤

4. Two more Lemmas

The following lemma follows from a result of Hilton and Milner [12]. We present
our own proof for the sake of completeness. It includes a proof of the Erdős-Ko-
Rado Theorem (Theorem 1.1) for large n.

Lemma 4.1. Let n > t ≥ 3 and G ⊂ (
X
t

)
be an intersecting family with |G| >

3 +
(
3t−3

2

)(
n−2
t−2

)
. Then G is star.

Proof. Suppose first that there exists E ∈ G for which |E ∩F | ≥ 2 for every F ∈ G.
Then

|G| ≤ 1 +
(

t

2

)(
n− 2
t− 2

)
< 3 +

(
3t− 3

2

)(
n− 2
t− 2

)
,

a contradiction. We may therefore assume that there exists some x ∈ V (G) and
distinct sets E, E′ ∈ G such that E ∩ E′ = {x}. Suppose that x 6∈ F for some
F ∈ G. Since G is an intersecting family, {E, E′, F} forms a triangle, and therefore
every set in G contains at least two elements from E ∪ E′ ∪ F . Consequently,

|G| ≤ 3 +
(|E ∪ E′ ∪ F |

2

)(
n− 2
t− 2

)
≤ 3 +

(
3t− 3

2

)(
n− 2
t− 2

)
,

a contradiction. Hence x ∈ F for every F ∈ G, and therefore G is a star. ¤

Lemma 4.2. For t ≥ 4 and any 0 < ε′ < 1/2t, let

ε ≤ ε′(t− 3)
4

and n0 =
t

ε
+ 1.

If n > n0 and n1 ≥ n2 ≥ · · · ≥ ns ≥ t with
∑

i n1 ≤ n− 1 and
s∑

i=1

(
ni

t− 2

)
> (1− 2ε)

(
n− 2
t− 2

)
,

then n1 > (1− ε′)(n− 1).
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Proof. First observe that ε′ < 1 yields

(4.1)
n− 1
t− 2

(
(1− ε′)(n− 2)

t− 3

)
< (1− ε′)t−3 n− 1

n− t + 1

(
n− 2
t− 2

)

Now ε ≤ ε′(t− 3)/4 < 1/6 implies that

(1− ε′)t−3
< e−ε′(t−3) = e−4ε < 1− 4ε + 8ε2 < (1− ε)(1− 2ε),

and the choice of n0 implies that
n− 1

n− t + 1
<

1
1− ε

.

Using these two bounds in (4.1) we obtain

(4.2)
n− 1
t− 2

(
(1− ε′)(n− 2)

t− 3

)
< (1− 2ε)

(
n− 2
t− 2

)
.

We interpret
∑s

i=1

(
ni

t−2

)
as the number of (t− 2)-sets in H =

⋃s
i=1

(
Xi

t−2

)
, where

X1, . . . , Xs are disjoint sets with |Xi| = ni. Thus for every x ∈ V (H), we have
degH(x) ≤ (

n1−1
t−3

)
, with equality only if x ∈ Xi and ni = n1.

Suppose, for a contradiction, that n1 ≤ (1 − ε′)(n − 1). Then, since n(H) =∑
i ni ≤ n− 1,

(4.3)
s∑

i=1

(
ni

t− 2

)
= |H| =

∑
x∈V (H) deg(x)

t− 2
<

n− 1
t− 2

(
(1− ε′)(n− 2)

t− 3

)
.

By (4.2), this is at most (1− 2ε)
(
n−2
t−2

)
, which is a contradiction. ¤

5. Proof of Theorem 1.3

In this section we complete the proof of the Main Result.

Proof of Theorem 1.3: Fix r ≥ 3 and δ as in the theorem. When r ≥ 4, let

ε′′ ≤ δ

5r
, ε′ ≤ ε′′

4
, ε ≤ ε′(r − 3)

4
, n0 = max{r

ε
+ 1, 5r3}.

When r = 3, let

ε′ ≤ δ

6
, ε ≤

(
ε′

114

)2

, n0 =
4
ε

+ 1.

In both cases, we can think of the flow of constants as

0 <
1
n0

¿ ε ¿ ε′ ¿ ε′′ ¿ δ,

although in the case r ≥ 8, it is possible for ε > ε′. In particular, for all r ≥ 3, we
can let

ε = max

{(
δ

684

)2

,
δ(r − 3)

80r

}
.

Let G ⊂ (
X
r

)
be a triangle-free family with |G| > (1 − ε)

(
n−1
r−1

)
. Our strategy is to

obtain the (n− 1)-set S in the conclusion of the theorem in three steps:
1) Find a vertex w with |Lw| very large.
2) Study the structure of |Lw|, in particular, show that it contains a large star

with center x. In the case r ≥ 4, this follows from Lemma 4.1. However, when



8 DHRUV MUBAYI

r = 3 possibly |Lw| can consist of disjoint (graph) triangles. Consequently, the
proof of this step for r = 3 is more lengthy and difficult.

3) Define S = X \{x} and show that S satisfies the requirements of the theorem,
since otherwise we obtain a triangle in G (this is the most lengthy and difficult part
of the proof for r ≥ 4).

Step 1.
We begin with the following equation which is an easy double counting exercise.

r|G| =
∑

x∈X

deg(x) =
∑

x∈X

(|Sx|+ |Lx|) =
∑

x∈X

|Sx|+
∑

x∈X

|Lx|.

Since
∑

x |Sx| = |S| ≤ (
n

r−1

)
, there exists w ∈ X for which

|Lw| ≥
r|G| − (

n
r−1

)

n
>

r(1− ε)
(
n−1
r−1

)− (
n

r−1

)

n

> (1− 2ε)
(

n− 2
r − 2

)
,(5.1)

where the last inequality follows from a short calculation and the fact that n > n0.
This concludes Step 1. We now separate the cases r = 3 and r ≥ 4, since the
arguments are quite different.

Step 2 (r ≥ 4)
As in Lemma 3.2, let K1,K1, . . . ,Ks be the components of Lw. Then by Lemma

3.1 each Ki is an intersecting family, and (5.1) and (3.2) give

(5.2) (1− 2ε)
(

n− 2
r − 2

)
< |Lw| =

s∑

i=1

|Ki| ≤
s∑

i=1

(
ni

r − 2

)
,

where
∑

i ni ≤ n− 1.
We may now apply Lemma 4.2 with t = r to (5.2) and conclude that

(5.3) n1 ≥ (1− ε′)(n− 1).

Moreover, convexity of binomial coefficients yields
(5.4)

|Lw| = |K1|+
s∑

i=2

|Ki| ≤ |K1|+
s∑

i=2

(
ni

r − 2

)
< |K1|+

(
n− n1

r − 2

)
< |K1|+ε′

(
n− 2
r − 2

)
.

Since |Lw| > (1− 2ε)
(
n−2
r−2

)
, we have by (5.4) and n > n0 ≥ 5r3,

|K1| > (1− 2ε− ε′)
(

n− 2
r − 2

)

> (1− 2ε′)
(

n− 2
r − 2

)
(5.5)

> 3 +
(

3r − 6
2

)(
n− 2
r − 3

)
.(5.6)

Since K1 is an intersecting family of (r−1)-sets, (5.6) and Lemma 4.1 with t = r−1
imply that K1 is a star. Let x be the center of K1. This concludes Step 2.

Step 3 (r ≥ 4)
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The rest of the proof is devoted to proving that G − x = G ∩ (
X\{x}

r

)
satisfies

(5.7) |G − x| ≤ δ

(
n− 1
r − 1

)
.

Let

Gw,x = trG({w, x}) =
{

E ∈
(

X

r − 2

)
: E ∪ {w, x} ∈ G

}
.

Claim 1. There are disjoint (r − 3)-sets S1, S2 ⊂ V (K1) such that for each
i ∈ {1, 2},

|{y ∈ V (K1) : Si ∪ {w, x, y} ∈ G}| ≥ (1− ε′′)(n− r + 1).

Proof. Let t be the number of (r − 3)-sets T ⊂ V (K1) \ {x} satisfying

trGw,x(T ) = |{y ∈ V (K1) : T ∪ {w, x, y} ∈ G}| > (1− ε′′)(n− r + 1).

Then

(r − 2)|K1| =
(

r − 2
r − 3

)
|K1| =

∑
T ′⊂V (K1)\{x}
|T ′|=r−3

trGw,x(T ′)

≤ t(n− r + 1) +
[(

n− 2
r − 3

)
− t

]
(1− ε′′)(n− r + 1).

This implies that

t >
(r − 2)|K1| −

(
n−2
r−3

)
(1− ε′′)(n− r + 1)

ε′′(n− r + 1)
.

By (5.5), this is at least

(r − 2)(1− 2ε′)
(
n−2
r−2

)− (
n−2
r−3

)
(1− ε′′)(n− r + 1)

ε′′(n− r + 1)

=
1− 2ε′

ε′′

(
n− 2
r − 3

)
− 1− ε′′

ε′′

(
n− 2
r − 3

)

=
ε′′ − 2ε′

ε′′

(
n− 2
r − 3

)

≥ 1
2

(
n− 2
r − 3

)
>

(
n− 3
r − 4

)

where the second last inequality holds ε′ ≤ ε′′/4 and the last inequality holds since
n > 2r. Thus the Erdős-Ko-Rado theorem (Theorem 1.1) applies to give the sets
S1 and S2. ¤

Define, for i ∈ {1, 2},
Ai = {y ∈ V (K1) : Si ∪ {w, x, y} ∈ G},

and let

A = A1 ∩A2 = {y ∈ V (K1) : Si ∪ {w, x, y} ∈ G for i = 1, 2}.
Set

B = X \ (A ∪ {w, x}).
Note that S1∪S2 ⊂ B. By Claim 1, |Ai| ≥ (1−ε′′)(n−r+1) for i = 1, 2. Therefore

|A| = |A1 ∩A2| ≥ 2(1− ε′′)(n− r + 1)− n.
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It now follows that

|B| ≤ n− |A| ≤ 2n− 2(1− ε′′)(n− r + 1) ≤ 3ε′′n.

Partition G − x into G1 ∪ G2, where

G1 = {E ∈ G − x : |E ∩B| ≤ 1} and G2 = {E ∈ G − x : |E ∩B| ≥ 2}.
Since G2 is triangle-free, it satisfies the conditions of Proposition 3.3 with 3ε′′ playing
the role of ε, and therefore

(5.8) |G2| ≤ 3rε′′
(

n

r − 1

)
.

We now focus on G1. Note that

G1 − w = {E ∈ G1 : w 6∈ E} = {E ∈ G − {w, x} : |E ∩B| ≤ 1}.
Claim 2. G1 − w = ∅

Proof. Suppose, for a contradiction, that E ∈ G1 − w. Since |E ∩ B| ≤ 1 and
S1 ∪ S2 ⊂ B, we have |E ∩ (S1 ∪ S2)| ≤ 1. Furthermore, by Claim 1 we know that
S1 and S2 are disjoint. Therefore E has empty intersection with at least one Si,
say S1. Since at least r − 1 elements of E lie in A, and r ≥ 3, there exist distinct
elements y, y′ ∈ A ∩ E. By the definition of A, we know that

S1 ∪ {w, x, y} ∈ G and S1 ∪ {w, x, y′} ∈ G.

Since E ∩ (S1 ∪ {w, x}) = ∅, these two sets together with E form a triangle in G,
which is a contradiction. ¤

Note that Claim 2 says that all sets of G1 contain w. This implies that |G1| =
|trG1(w)|. Since G1 ⊂ G − {x}, we have trG1(w) ⊂ trG−x(w). Therefore

(5.9) |G1| ≤ |trG−x(w)|.
Our final step is to bound |trG−x(w)|.

Partition trG−x(w) into tr0G−x(w) ∪ tr1G−x(w), where

tr0G−x(w) = {E ∈ trG−x(w) : |E ∩B| = 0}, and

tr1G−x(w) = {E ∈ trG−x(w) : |E ∩B| ≥ 1}.
Consider E ∈ tr1G−x(w). Since E ⊂ (

X\{x}
r−1

)
and |E ∩B| ≥ 1, we conclude that

(5.10) |tr1G−x(w)| ≤ |B|
(

n− 2
r − 2

)
< 3ε′′n

(
n− 2
r − 2

)
< 3ε′′

(
n− 1
r − 1

)
.

Claim 3. tr0G−x(w) = ∅
Proof. Clearly tr0G−x(w) ⊂ Lw ∪ Sw. We have already argued that K1 is a star
with center x, thus trG−x(w) ∩ Lw = ∅. Now suppose that E ∈ tr0G−x(w) ∩ Sw.
Then E ∩ B = ∅, and hence by definition of B we get E ∩ V (K1) 6= ∅. Therefore
E ∈ K′1, where K′1 is defined as in Lemma 3.1. By Lemma 3.1, K′1 is intersecting,
and thus every F ∈ K1 satisfies F ∩E 6= ∅. Since F also contains x, and x 6∈ E, we
obtain

|K1| < |E|
(

n− 2
r − 3

)
= (r − 1)

(
n− 2
r − 3

)
,

which contradicts (5.5). This completes the proof of the Claim. ¤
Claim 3, (5.10) and (5.9) imply that

(5.11) |G1| ≤ |trG−x(w)| = |tr0G−x(w)|+ |tr1G−x(w)| < 3ε′′
(

n− 1
r − 1

)
.
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Now (5.11) and (5.8) together yield

|G − x| = |G1|+ |G2| < 3ε′′
(

n− 1
r − 1

)
+ 3rε′′

(
n

r − 1

)

< rε′′
(

n− 1
r − 1

)
+ 4rε′′

(
n− 1
r − 1

)
< δ

(
n− 1
r − 1

)
,

where the last inequality holds since ε′′ ≤ δ/5r. Thus (5.7) holds and the proof is
complete in the case r ≥ 4.

Step 2 (r = 3)
Recall that w was chosen to maximize |Lw|, and therefore |Lw| ≥ (1−2ε)(n−2).

By Lemma 3.1, each component of Lw is an intersecting family. Consequently, the
graph spanned by the edges of a component is either K2 (an edge), K3 (a triangle),
or K1,p for p ≥ 2 (a nontrivial star). Let K̂1, . . . , K̂ŝ be the components isomorphic
to K2, K̃1, . . . , K̃s̃ be the components isomorphic to K3, and K1, . . . ,Ks be the
components isomorphic to some nontrivial star. Set ni = n(Ki) and assume that
n1 ≥ n2 ≥ · · · ≥ ns.

Our approach is to prove that n1 ≥ (1− ε′)n. Let

B1 = X \ (V (Lw) ∪ {w}).
Since the number of edges in each component of Lw is at most its number of vertices,
(5.1) implies that n(Lw) ≥ |Lw| ≥ (1− 2ε)(n− 2), and we obtain

(5.12) |B1| < 3εn.

Partition G − w into G0 ∪ G1 ∪ G2 ∪ G3, where

Gi = {E ∈ G − w : |E ∩B1| = i} for each i.

By Proposition 3.3,

(5.13) |G2 ∪ G3| < 9ε

(
n

2

)
.

We now focus on G0 ∪ G1. In what follows we use the notation G-component to
mean a component isomorphic to G

Claim 4. Every E ∈ G0 ∪ G1 has nonempty intersection with at most one
component of Lw. Moreover, if |E ∩ V (K)| ≥ 2 for some component K of Lw, then
either
1) K = Ki for some i, and xi ∈ E where xi is the center of Ki, or
2) E = V (K) where K is a K3-component, or
3) E \B1 = V (K) where K is a K2-component.
Proof. Suppose, for a contradiction, that both E ∩ V (K) and E ∩ V (H) are
nonempty for some two components K,H of Lw. Then there exist (2-element) sets
EK ∈ K and EH ∈ H such that both E ∩ EK and E ∩ EH are nonempty. Since
w 6∈ E and EK ∩ EH = ∅, the sets

EK ∪ {w}, EH ∪ {w}, E
from a triangle in G.

For 1) assume that there are two leaves l, l′ ∈ E ∩Ki, and xi 6∈ E. Then the sets

{w, xi, l}, {w, xi, l
′}, E
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form a triangle in G, a contradiction. Therefore xi ∈ E as claimed. For 2), suppose
that |E ∩ K̃i| = 2 for some K3-component K̃i. Let {a, b} ∈ V (K̃i)∩E, and let c be
the third element of V (K̃i). Then

{w, c, a}, {w, c, b}, E
is a triangle in G, a contradiction. Finally, if E ⊃ V (K) for some K2-component K,
then the first part of the Claim implies that the third vertex of E is in B1. Thus
E \B = V (K) ¤

Claim 4 allows us to estimate the size of G1.
Claim 5. |G1| < 7ε

(
n
2

)
Proof. Let E ∈ G1. Then |E∩V (Lw)| = 2, and Claim 4 implies that E∩V (Lw) lies
within a component K of Lw. The second part of Claim 4 implies that E ∩ V (Lw)
is a set of some component of Lw. This yields

|G1| < |Lw||B1| < n(3εn) < 7ε

(
n

2

)
,

since n > 7, completing the proof of the Claim. ¤
Now we turn to Lw ∪ Sw ∪ G0. Partition Sw into S0

w ∪ S1
w ∪ S2

w, where

Si
w = {E ∈ Sw : |E ∩B1| = i}.

Clearly

(5.14) |S1
w ∪ S2

w| ≤ |B1|n < 3εn2.

A set in G either contains w or omits w. Therefore (5.13), Claim 5 and n > n0 give

|G| = |G2 ∪ G3|+ |G1|+ |G0|+ |Lw|+ |Sw|
< 9ε

(
n

2

)
+ 7ε

(
n

2

)
+ |G0|+ n + |Sw|

< 17ε

(
n

2

)
+ |G0|+ |Sw|.

Since |G| > (1− ε)
(
n−1

2

)
, we conclude from n > n0 that

(5.15) |G0|+ |Sw| > (1− ε)
(

n− 1
2

)
− 17ε

(
n

2

)
> (1− 19ε)

(
n

2

)
.

Given E ∈ G0, Claim 4 implies that either E ⊂ V (Ki) for some i, and xi ∈ E,
where xi is the center of the star Ki, or E = V (K) for some K3-component K. If
E = {xi, li, l

′
i} ⊂ V (Ki) for some nontrivial star component, we may associate the

pair {li, l′i} to E, and this mapping is injective (since a nontrivial star has only one
center). Let ∂′G0 be the set of all such pairs {li, l′i}.

Claim 6. ∂′G0 ∩ S0
w = ∅

Proof. Suppose to the contrary that {li, l′i} ∈ ∂′G0 ∩ S0
w. Then {li, l′i, xi}, and

{li, l′i, w} are both sets in G. Therefore {li, l′i} ∈ Lw, since two sets of G contain
this pair. Hence {li, l′i} 6∈ Sw, and {li, l′i} 6∈ S0

w, a contradiction. ¤
Let S0

w =
(
V (Lw)

2

) \ S0
w and ∂′G0 =

(
V (Lw)

2

) \ ∂′G0. Then Claim 6, (5.14), and
the discussion before Claim 6 imply that

|G0|+ |Sw| = |∂′G0|+ s̃ + |S0
w|+ |S1

w ∪ S2
w| < |∂′G0|+ s̃ + |S0

w|+ 3εn2

<

(
n

2

)
− |S0

w ∩ ∂′G0|+ 3εn2 + n.
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Together with (5.15) and n > n0, this implies that

(5.16) |S0
w ∩ ∂′G0| <

(
n

2

)
− (1− 19ε)

(
n

2

)
+ 3εn2 + n < 26ε

(
n

2

)
.

Claim 7. ŝ + 3s̃ < 10
√

εn.
Proof. We are to show that the number of vertices in K2- and K3-components,
namely ŝ + 3s̃, is small. We will show that if ŝ + 3s̃ ≥ 10

√
εn, then |S0

w ∩ ∂′G0| >
26ε

(
n
2

)
, contradicting (5.16). Consider a K2-component K̂i = {{a, b}}, and suppose

that a ∈ Ea ∈ S0
w and b ∈ Eb ∈ S0

w for some Ea, Eb. If Ea ∩ Eb = ∅, then the
argument in the proof of Lemma 3.1 yields a triangle in G. If Ea∩Eb = {c}, then the
same argument applies unless {a, b, c} ∈ G. But then {a, c} is contained in two edges
of G ({a, b, c} and {w, a, c}), which contradicts the fact that {a, c} = Ea ∈ S0

w ⊂ Sw.
We may therefore assume that at least one vertex in each K2-component K̂i lies

in no set of S0
w. By definition of ∂′G0, no vertex of a component of K̂i lies in a pair

from ∂′G0. We may therefore pick one element from each K̂i so that the resulting
set Ŝ of size ŝ satisfies the following two conditions

1) S0
w ∩ ∂′G0 contains all edges (2-element sets) with both endpoints in Ŝ, and

2) S0
w ∩ ∂′G0 contains all edges with one endpoint in Ŝ and the other endpoint

in
⋃ŝ

i=1 V (K̂i) \ Ŝ.
This gives

(
ŝ
2

)
+ŝ(ŝ−1) members of S0

w∩∂′G0. We next exhibit another
(
3s̃
2

)
+6ŝs̃

members of S0
w ∩ ∂′G0.

Suppose that E is a 2-element set contained in the union of the vertex sets of the
K2- and K3-components of Lw, with at least one element in some K3-component.
Then Lemma 3.1 and the definition of ∂′G0 imply that E ⊂ S0

w ∩ ∂′G0. Putting
these observations together and using n > n0 yields

|S0
w ∩ ∂′G0| ≥

(
ŝ

2

)
+ ŝ(ŝ− 1) +

(
3s̃

2

)
+ 6ŝs̃ >

(
ŝ + 3s̃

2

)2

> (5
√

εn)2 > 26ε

(
n

2

)
.

This is the contradiction we desired. ¤
Let

B2 =
ŝ⋃

i=1

V (K̂i) ∪
s̃⋃

i=1

V (K̃i) ∪B1.

Thus

X \B2 =
s⋃

i=1

V (Ki) ∪ {w}.

Then Claim 7, (5.12) and n > n0 imply that

(5.17) |B2| = ŝ + 3s̃ + |B1| < 10
√

εn + 3εn < 11
√

εn.

Partition G into G1
B2
∪ G2

B2
, where

G1
B2

= {E ∈ G : |E ∩B2| ≤ 1}, and G2
B2

= {E ∈ G : |E ∩B2| ≥ 2}.
Proposition 3.3 and (5.17) imply that

|G2
B2
| ≤ 33

√
ε

(
n

2

)
.

Therefore, since n > n0,

(5.18) |G1
B2
| = |G| − |G2

B2
| ≥ (1− ε)

(
n− 1

2

)
− 33

√
ε

(
n

2

)
> (1− 34

√
ε)

(
n− 1

2

)
.
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Since B1 ⊂ B2, it follows that G1
B2
⊂ G0 ∪G1. Therefore, if E ∈ G1

B2
, we may apply

Claim 4 to E. Either |E ∩ B2| = 1, and the remaining two points of E form a set
in a nontrivial star component of Lw, or |E ∩B2| = 0 and xi ∈ E ⊂ V (Ki), where
xi is the center of some Ki. Consequently,

|G1
B2
| ≤ |B2|

s∑

i=1

(ni − 1) +
s∑

i=1

(
ni − 1

2

)
< 23

√
ε

(
n− 1

2

)
+

s∑

i=1

(
ni − 1

2

)
,

where the last inequality is implied by (5.17) and n > n0. We thus obtain from
(5.18)

s∑

i=1

(
ni

2

)
>

s∑

i=1

(
ni − 1

2

)
> |G1

B2
| − 23

√
ε

(
n− 1

2

)
> (1− 57

√
ε)

(
n− 1

2

)
.

Lemma 4.2 with t = 4 now implies that

(5.19) n1 > (1− ε′)(n− 1)

since ε ≤ (ε′/114)2. Let x be the center of K1. This concludes Step 2.

Step 3 (r = 3)
We are now in a position to finish the proof. We will show that |G−x| < δ

(
n−1

2

)
.

Set
B = B2 ∪ {w} = X \ V (K1).

Then (5.19) and n > n0 imply that

(5.20) |B| ≤ 2ε′n.

Partition G − x into G1
B ∪ G2

B , where

G1
B = {E ∈ G − x : |E ∩B| ≤ 1}, and G2

B = {E ∈ G − x : |E ∩B| ≥ 2}.
Proposition 3.3, (5.20) and n > n0 imply that

(5.21) |G2
B | ≤ 6ε′

(
n

2

)
.

On the other hand,
Claim 8. G1

B = ∅.
Proof. Suppose that E ∈ G1

B . If w 6∈ E, then since G1
B ⊂ G0 ∪ G1, Claim 4 part 1)

implies that x ∈ E, which contradicts the definition of G1
B . On the other hand, if

w ∈ E, then E \ {w} ∈ Lw ∪ Sw, and in particular, E \ {w} ∈ K′1. Lemma 3.1 now
implies that K1 ∪ (E \ {w}) is an intersecting family. Since n1 ≥ 4, this implies
that E \ {w} ∈ K1 (i.e., E \ {w} is a 2-element set of K1), and in particular, that
x ∈ E. This again contradicts the definition of G1

B , and completes the proof of the
Claim. ¤

From (5.21) and Claim 8 we obtain

|G − x| ≤ |G1
B |+ |G2

B | ≤ 6ε′
(

n

2

)
≤ δ

(
n

2

)
.

If S = X \ {x}, then |S| = n − 1, and the number of edges of G contained in S is
at most δ

(
n−1

2

)
as required by the theorem. ¤
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6. Concluding remarks and open problems

As described in the introduction, studying the stability of monotone properties,
apart from shedding more light on the extremal problem being investigated, some-
times leads to unexpected consequences. It also provides a common framework
for several classical results. Nevertheless, the theory is in its incipient stages. A
noteworthy aspect that makes these questions more interesting is that it is likely
that many classical extremal problems are not t-stable for any fixed t. We present
two examples.

Example 1. The most basic of all results in extremal set theory is that if
G ⊂ 2[n] is an intersecting family, then |G| ≤ 2n−1. It is well known that there
are many extremal examples, since every intersecting family of size less than 2n−1

can be augmented to one of size 2n−1. Nevertheless, this does not a priori prohibit
this property from being t-stable for some t. In particular, there are two canonical
extremal examples for this problem when n is odd: H1 = ∪i>n/2

(
[n]
i

)
and H2

which is a star of size 2n−1. One could ask whether this property is 2-stable,
with respect to these two structures. However, the following example shows this
to be false. Let G1 consist of all sets of the form S ∪ {n} where S ⊂ [n − 1] with
n/2−√n < |S| < n/2− 2. Let G2 consist of all sets of size at least n/2 +

√
n + 2.

Then it is clear that G = G1 ∪G2 is an intersecting family, and it can be augmented
to one of size 2n−1. But G also shows that this property is not stable with respect to
H1 and H2. One can modify this construction and in fact argue that this property
is not t-stable for any t. ¤

Example 2. Sperner’s theorem, stating that every maximum antichain in 2[n]

is either
(

[n]
bn/2c

)
or

(
[n]
dn/2e

)
, does not seem to have a stability version. Indeed (as

pointed out by G. Turán), one can take the family G =
(

[n]
bn/2c−1

)
, which is almost

the same size as
(

[n]
bn/2c

)
, but cannot be transformed to

(
[n]
bn/2c

)
by adding or deleting

a small proportion of its sets. This argument can be extended to show that this
property is not stable and in fact not t-stable for any t > 1. ¤

In light of the two examples above, it would be very interesting to find a nontrivial
problem in extremal set theory dealing with nonuniform systems that is t-stable
for some t. Perhaps one candidate is the nonuniform analogue of the problem
considered in this paper. A result of Erdős and Milner (see Lossers [15]) states that
if G ⊂ 2[n]\∅ is triangle-free (meaning G contains no three sets A,B, C with pairwise
nonempty intersection but empty total intersection), then |G| ≤ 2n−1 + n − 1.
Recently, the author and Verstraëte [18] proved that the unique extremal example
is a star of size 2n−1 together with the remaining n− 1 1-element sets. Perhaps all
near extremal structures have a similar structure, and a stability version holds.

Problem. Determine if the property of being triangle-free (for nonuniform
systems) is stable or t-stable for some t > 1.

It seems that problems about uniform families tend more readily to have stability
analogues. We have already mentioned the Erdős-Simonovits stability theorem
for graphs, and the Hilton-Milner theorem which implies (in a strong form) that
intersecting r-uniform set systems are stable. In fact, the Hilton-Milner theorem
itself has a stability version.

Example 3. A nontrivial intersecting family is an intersecting family F with
τ(F) > 1. Define G1 = {G ∈ (

[n]
r

)
: 1 ∈ G, G ∩ [2, r + 1] 6= ∅} ∪ {[2, r + 1]}, and

G2 = {G ∈ (
[n]
r

)
: |[3] ∩ G| ≥ 2}. For r = 2, G1 ≡ G2, for r = 3, |G1| = |G2|, and
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for r ≥ 4, n > 2r, we have |G1| > |G2|. The Hilton-Milner theorem states that if
n > 2r and G ⊂ (

[n]
r

)
is a nontrivial intersecting family, then

|G| ≤ |G1| =
(

n− 1
r − 1

)
−

(
n− r − 1

r − 1

)
+ 1.

Moreover, equality holds only for G1 or G2. Although the property of being a
nontrivial intersecting family is not monotone, we can still talk about stability. A
recent result of Sanders (Lemma 7 in [20]) implies the following result.

Proposition 6.1. The property Pr of being a nontrivial intersecting family is 2-
stable for r = 3 and stable for r ≥ 4. ¤

Example 4. Erdős defined fr(n) to be the maximum size of a family of r-
sets on an n element set containing no two pairs of disjoint r-sets with the same
union. Answering a question of Erdős, Füredi [10] proved that fr(n) ≤ 7

2

(
n

r−1

)
.

The author and Verstraëte [17] slightly improved Füredi’s result by showing that
fr(n) < 3

(
n

r−1

)
. Füredi further conjectured that f 3(n) =

(
n
2

)
for infinitely many n

and for r ≥ 4,

fr(n) =
(

n− 1
r − 1

)
+

⌊
n− 1

r

⌋

for all sufficiently large n. His conjecture was motivated by the lower bound ob-
tained from a star plus a matching for r ≥ 4, and a set system obtained from a
5-design for r = 3. For r = 3 the situation seems complicated, but perhaps for
r = 4, the star is essentially the only example.

Conjecture 6.2. For r ≥ 4, the property Pr of containing no two pairs of disjoint
sets with the same union is stable. ¤
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simplex. J. Combin. Theory Ser. A 30 (1981), no. 2, 169–182.
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