Turán problems and shadows II: trees

Alexandr Kostochka* ${ }^{*}$ Dhruv Mubayi ${ }^{\dagger}$ Jacques Verstraëte ${ }^{\ddagger}$

December 22, 2015

Abstract

The expansion G^{+}of a graph G is the 3 -uniform hypergraph obtained from G by enlarging each edge of G with a vertex disjoint from $V(G)$ such that distinct edges are enlarged by distinct vertices. Let $\mathrm{ex}_{r}(n, F)$ denote the maximum number of edges in an r-uniform hypergraph with n vertices not containing any copy of F. The authors [11] recently determined $\mathrm{ex}_{3}\left(n, G^{+}\right)$namely when G is a path or cycle, thus settling conjectures of Füredi-Jiang [9] (for cycles) and Füredi-Jiang-Seiver [10] (for paths).

Here we continue this project by determining the asymptotics for $\operatorname{ex}_{3}\left(n, G^{+}\right)$when G is any fixed forest. This settles a conjecture of Füredi [8]. Using our methods, we also show that for any graph G, either $\operatorname{ex}_{3}\left(n, G^{+}\right) \leq\left(\frac{1}{2}+o(1)\right) n^{2}$ or $\operatorname{ex}_{3}\left(n, G^{+}\right) \geq(1+o(1)) n^{2}$, thereby exhibiting a jump for the Turán number of expansions.

1 Introduction

An r-uniform hypergraph F, or simply r-graph, is a family of r-element subsets of a finite set. We associate an r-graph F with its edge set and call its vertex set $V(F)$. Given a set of r-graphs \mathcal{F}, let $\operatorname{ex}_{r}(n, \mathcal{F})$ denote the maximum number of edges in an r-graph on n vertices that does not contain any r-graph from \mathcal{F}. When $\mathcal{F}=\{F\}$ we write $\mathrm{ex}_{r}(n, F)$. We will omit the subscript r in this notation if it is obvious from context, and this paper deals exclusively with the case $r=3$. Let G be a graph, and for each edge $e \in G$ let X_{e} be a set of $r-2$ vertices so that $X_{e} \cap V(G)=\emptyset$ and $X_{e} \cap X_{f}=\emptyset$ when $e \neq f$. The r-uniform expansion G^{+}of a graph G is the r-graph $G^{+}=\left\{e \cup X_{e}: e \in G\right\}$.

Expansions of graphs include many important hypergraphs whose extremal functions have been investigated, for instance when G is a triangle and more generally a clique $[8,9,10,11,13,14,15]$. Even the simplest case of the expansion of a path with two edges is non-trivial, in this case we are asking for two hyperedges intersecting in exactly one point. Here the extremal function was determined by Frankl [6], settling a conjecture of Erdős and Sós. If a graph is not r-colorable then its r-uniform expansion G^{+}is not r-partite, so $\operatorname{ex}_{r}\left(n, G^{+}\right)=\Omega\left(n^{r}\right)$. We focus on ex ${ }_{r}\left(n, G^{+}\right)$ when G is r-partite, where a well-known result of Erdős [2] yields ex $\left(n, G^{+}\right)=O\left(n^{r-\epsilon_{G}}\right)$ for some $\epsilon_{G}>0$.

[^0]The authors [11] had previously determined $\operatorname{ex}_{3}\left(n, G^{+}\right)$exactly (for large n) when G is a path or cycle of fixed length $k \geq 3$, thereby answering questions of Füredi-Jiang-Seiver [10] and Füredi-Jiang [9].

1.1 Results

A set of vertices in a hypergraph F containing exactly one vertex from every edge of F is called a crosscut, following Frankl and Füredi [7]. Let $\sigma(F)$ be the minimum size of a crosscut of F if it exists, i.e.,

$$
\sigma(F):=\min \{|X|: X \subset V(F), \forall e \in F,|e \cap X|=1\}
$$

if such an X exists. Note that crosscuts always exist for expansions, since one can pick a vertex in X_{e} for every edge $e \in G$ and the resulting set of vertices is a crosscut of G^{+}of size $|G|$. In the case that G is a tree, one can obtain a smaller crosscut by choosing some vertices in $V(G)$ that form an independent set in G, and vertices in X_{e} for those edges e not covered by the independent set.

Since the r-graph on n vertices consisting of all edges containing exactly one vertex from a fixed subset of size $\sigma(F)-1$ does not contain F, we have

$$
\begin{equation*}
\operatorname{ex}_{r}(n, F) \geq(\sigma(F)-1)\binom{n-\sigma(F)+1}{r-1} \sim(\sigma(F)-1+o(1))\binom{n}{r-1} \tag{1}
\end{equation*}
$$

An intriguing open question is when asymptotic equality holds above and this is one of our motivations for this project. Indeed, it appears that the parameter $\sigma(F)$ often plays a crucial role in determining the extremal function for F. The value of $\operatorname{ex}_{3}\left(n, G^{+}\right)$was determined precisely by the authors [11] when G is a path or cycle. Füredi [8] determined the asymptotics when G is a forest and $r \geq 4$, by showing that $\operatorname{ex}_{r}\left(n, G^{+}\right)=\left(\sigma\left(G^{+}\right)-1+o(1)\right)\binom{n}{r-1}$. Füredi's proof involved extensive use of the delta system method but the method does not work for $r=3$. Determining $\operatorname{ex}_{r}\left(n, G^{+}\right)$when G is a tree seems to get harder as r gets smaller, for example, when $r=2$ it becomes the Erdős-Sós Conjecture [5]. Füredi conjectured [8] that $\operatorname{ex}_{3}\left(n, G^{+}\right) \sim\left(\sigma\left(G^{+}\right)-1\right)\binom{n}{2}$ when G is a forest, and our main result verifies this conjecture:
Theorem 1.1. (Main Result) Let G be a forest. Then

$$
\operatorname{ex}_{3}\left(n, G^{+}\right) \sim\left(\sigma\left(G^{+}\right)-1\right)\binom{n}{2}
$$

Our next result concerns $\operatorname{ex}_{3}\left(n, G^{+}\right)$for any graph G with $\sigma\left(G^{+}\right)=2$. Note that all such graphs are subgraphs of either $K_{2, t}$ for some $t \geq 2$ or S_{t}^{*} which is the graph obtained from a star with $t \geq 2$ edges by adding an edge not incident to the highest degree vertex.

Theorem 1.2. For every fixed graph G with $\sigma\left(G^{+}\right)=2$,

$$
\operatorname{ex}_{3}\left(n, G^{+}\right) \sim\binom{n}{2}
$$

A straightforward consequence of Theorem 1.2 is that for any graph G, we have either

$$
\operatorname{ex}_{3}\left(n, G^{+}\right) \leq\left(\frac{1}{2}+o(1)\right) n^{2} \quad \text { or } \quad \operatorname{ex}_{3}\left(n, G^{+}\right) \geq(1+o(1)) n^{2}
$$

This paper is organized as follows: in Section 2 we prove some preliminary lemmas. In Section 3, we give a bipartite version of the canonical Ramsey theorem of Erdős and Rado [3], which is one of the main tools for Theorem 1.1. We prove Theorem 1.1 in Section 6 and Theorem 1.2 in Section 7.

Notation and terminology. A 3-graph is called a triple system. The edges will be written as unordered lists, for instance, $x y z$ represents $\{x, y, z\}$. For a set X of vertices of a hypergraph H, let $H-X=\{e \in H: e \cap X=\emptyset\}$. If $X=\{x\}$, then we write $H-x$ instead of $H-X$. The codegree of a pair $\{x, y\}$ of vertices in H is $d_{H}(x, y)=|\{e \in H: S \subset e\}|$ and for a set S of vertices, $N_{H}(S)=\{x \in V(H): S \cup\{x\} \in H\}$ so that $\left|N_{H}(S)\right|=d_{H}(S)$ when $|S|=2$. The shadow of H is the graph $\partial H=\{x y: \exists e \in H,\{x, y\} \subset e\}$. The edges of ∂H will be called the sub-edges of H. A triple system is linear if every pair of its edges intersect in at most one point. For an edge e in a triple system H, let $\delta_{H}(e)$ and $\triangle_{H}(e)$ respectively denote the smallest and largest codegree among the three pairs in e.

2 Full hypergraphs

In this section we state and prove a basic result about hypergraphs that generalizes the fact that a graph with average degree d contains a subgraph of minimum degree at least $d / 2$.

Definition 2.1. A triple system H is d-full if every sub-edge of H has codegree at least d.
Thus H is d-full is equivalent to saying that the minimum non-zero codegree in H is at least d. The following lemma extends the well known fact that any graph G has a subgraph of minimum degree at least $d+1$ with at least $|G|-d|V(G)|$ edges.

Lemma 2.2. For $d \geq 1$, every n-vertex triple system H has a $(d+1)$-full subgraph F with

$$
|F| \geq|H|-d|\partial H|
$$

Proof. A d-sparse sequence is a maximal sequence $e_{1}, e_{2}, \ldots, e_{m} \in \partial H$ such that $d_{H}\left(e_{1}\right) \leq d$, and for all $i>1, e_{i}$ is contained in at most d edges of H which contain none of $e_{1}, e_{2}, \ldots, e_{i-1}$. The 3 -graph F obtained by deleting all edges of H containing at least one of the e_{i} is $(d+1)$-full. Since a d-sparse sequence has length at most $|\partial H|$, we have $|F| \geq|H|-d|\partial H|$.

3 Colors, lists, and a canonical Ramsey theorem

One of our main new ideas is to use the canonical Ramsey theorem of Erdős and Rado [3]. We need a bipartite version of this classical result.

Definition 3.1. Let F be a bipartite graph with parts X and Y and an edge-coloring χ. Then

1. χ is X-canonical if for each $x \in X$, all edges of F on x have the same color and edges on different vertices in X have different colors
2. χ is canonical if χ is X-canonical or Y-canonical
3. χ is rainbow if the colors of all the edges of F are different and
4. χ is monochromatic if the colors of all the edges of F are the same.

Recall that a sunflower or Δ-system is a collection of sets such that the intersection of any two of them is equal to the intersection of all of them. This common intersection is called the core of the sunflower. A key result on sunflowers is the Erdős-Rado Sunflower Lemma [4]:

Lemma 3.2. (Erdős-Rado Sunflower Lemma) If F is a collection of sets of size at most k and $|F| \geq k!(s-1)^{k}$, then F contains a sunflower with s sets.

If χ is an edge-coloring of a graph F and $G \subset F$, then $\left.\chi\right|_{G}$ denotes the edge-coloring of G obtained by restricting χ to the edge-set of G. A bipartite version of the canonical Ramsey theorem is as follows:

Theorem 3.3. For each $s>0$ there exists $t>0$ such that for any edge-coloring χ of $G=K_{t, t}$, there exists $K_{s, s} \subset G$ such that $\left.\chi\right|_{K_{s, s}}$ is monochromatic or rainbow or canonical.

Proof. Let X and Y be the parts of G and let $S=\left\{y_{1}, y_{2}, \ldots, y_{2 s^{2}}\right\} \subset Y$. Let W be the set of vertices $x \in X$ contained in at least s edges of the same color connecting x with S. If $|W|>m:=s^{2}\binom{2 s^{2}}{s}$, then there is a set $Y^{\prime} \subset S$ of size s and a set $X^{\prime} \subset W$ of size s^{2} such that for every $x \in X^{\prime}$, the edges $x y$ with $y \in Y^{\prime}$ all have the same color. In this case we recover either a monochromatic $K_{s, s}$ or an X^{\prime}-canonical $K_{s, s}$. Now suppose $|W| \leq m$. For $x \in X_{0}:=X \backslash W$, let $C(x)$ be a set of $2 s$ distinct colors on edges between x and S. By Lemma 3.2, if $\left|X_{0}\right|>(2 s)!(s!m)^{2 s}$, then there exists $X_{1} \subset X_{0}$ such that $\left\{C(x): x \in X_{1}\right\}$ is a Δ-system of size $s!m$. Let C be the core of this Δ-system. First suppose $|C| \geq s$. Take a subset $C^{\prime} \subset C$ with $\left|C^{\prime}\right|=s$. To each vertex x in X_{1}, associate an s-subset S_{x} in S such that the edges $\left\{x y: y \in S_{x}\right\}$ have all the colors from C^{\prime} appearing on them. There are $\binom{2 s^{2}}{s}=m / s^{2} s$-subsets of S, and $\left|X_{1}\right|=s!m$, so we have a set X_{2} of at least $s^{2} \cdot s!>s \cdot s!$ vertices in X_{1} which each sends s edges with colors from C^{\prime} into a fixed subset Y_{3} of S of size s. This implies that for some set $X_{3} \subset X_{2}$ of size s, the $K_{s, s}$ between X_{3} and Y_{3} is Y_{3}-canonical. Finally, suppose $|C|<s$. Pick $C^{\prime}(x) \subset C(x) \backslash C$ of size s for $x \in X_{0}$. Since $\left|X_{0}\right|=s!m>s\binom{2 s^{2}}{s}$, we find a set $Y^{*} \subset S$ of size s as well as a set $X^{*} \subset X$ of s vertices $x \in X_{0}$ such that the edges between x and Y^{*} have colors from $C^{\prime}(x)$. Since the sets $C^{\prime}(x)$ are disjoint, this is a rainbow copy of $K_{s, s}$.

We now link this to hypergraphs via the following definition.
Definition 3.4. Let H be a 3-graph. For $G \subset \partial H$ and $e \in G$, let

$$
L_{G}(e)=N_{H}(e) \backslash V(G) .
$$

The set $L_{G}(e)$ is called the list of e and the elements of $L_{G}(e)$ are called colors.

Let $L_{G}=\bigcup_{e \in G} L_{G}(e)$ - this is the set of colors in the lists of edges of G.

Definition 3.5. A list edge coloring of G is a map $\chi: G \rightarrow L_{G}$ with $\chi(e) \in L_{G}(e)$ for all $e \in G$. List-edge-colorings $\chi_{1}, \chi_{2}: G \rightarrow L_{G}$ are disjoint if $\chi_{1}(e) \neq \chi_{2}(f)$ for all $e, f \in G$.

If χ is an injection - the coloring is rainbow - then clearly $G^{+} \subset H$. We require one more definition:

Definition 3.6. Let H be a 3-graph and $m \in \mathbb{N}$. An m-multicoloring of $G \subset \partial H$ is a family of list-edge-colorings $\chi_{1}, \chi_{2}, \ldots, \chi_{m}: G \rightarrow L_{G}$ such that $\chi_{i}(e) \neq \chi_{j}(e)$ for every $e \in G$ and $i \neq j$.

A necessary and sufficient condition for the existence of an m-multicoloring of G is that all edges of G have codegree at least m in H. We stress here that the definitions are all with respect to the fixed host 3 -graph H. The following result will be key to the proofs of Theorem 1.1 and Theorem 1.2.

Theorem 3.7. Let $m, s \in \mathbb{N}$, let H be a 3-graph, and let $G=K_{t, t} \subset \partial H$. Suppose G has an m-multicoloring. If t is large enough, then there exists $F=K_{s, s} \subset G$ such that F has either a rainbow list-edge-coloring or an m-multicoloring such that the colorings are pairwise disjoint, and each coloring is monochromatic or canonical.

Proof. Set $s=t_{m} / m^{2}$ and $t_{m}<t_{m-1}<\cdots<t_{1}<t_{0}=t$ where Theorem 3.3 with input t_{i} has output t_{i-1}. Pick a color $c_{1}(e)$ on each edge $e \in G$ and apply Theorem 3.3 to G. We obtain a rainbow, monochromatic or canonical subgraph G_{1} of G where $G_{1}=K_{t_{1}, t_{1}}$. If it is rainbow, then we are done, so assume it is monochromatic or canonical. For every $e \in G_{1}$, remove $c_{1}(e)$ from its list. Now pick another color on each edge of G_{1} and repeat. We obtain subgraphs $G_{m} \subset G_{m-1} \subset \cdots \subset G_{1}$ such that each G_{i} is monochromatic or canonical where $G_{i}=K_{t_{i}, t_{i}}$ has parts X_{i}, Y_{i}. In particular, each coloring of the m-multicoloring of G restricted to G_{m} is monochromatic or canonical.

Let us assume that we have a monochromatic colorings, $b X_{m}$-canonical colorings, and $c Y_{m^{-}}$ canonical colorings of G_{m} where $a+b+c=m$. It suffices to ensure that these colorings are pairwise disjoint. A color $\chi(x y)$ in an X_{i}-canonical coloring of G_{i} cannot appear in a $Y_{i^{\prime}}$-canonical coloring of $G_{i^{\prime}}$ for $i^{\prime}>i$ as $\chi(x y)$ was deleted from all edges incident to x when forming G_{i+1}. A similar statement holds with X and Y interchanged, so every X_{m}-canonical coloring of G_{m} is disjoint from every Y_{m}-canonical coloring of G_{m}. The same argument shows that no color in a monochromatic coloring appears in a canonical coloring. It suffices to show that colors on different X_{m}-canonical colorings are disjoint (and the same for Y_{m}-canonical).

Let the $b X_{m}$-canonical colorings be $\chi_{1}, \ldots, \chi_{b}$. Construct an auxiliary graph K with $V(K)=X_{m}$ where $x x^{\prime} \in K$ if there exist $i \neq i^{\prime}$ and a color α that is canonical for x in χ_{i} and canonical for x^{\prime} in $\chi_{i^{\prime}}$. Then $\Delta(K) \leq b(b-1)$, so K has an independent set of size $s=t_{m} / m^{2} \leq\left|X_{m}\right| / b^{2}$. Let us restrict X_{m} to this independent set. We repeat this procedure for Y_{m} and finally obtain a subgraph $F=K_{s, s}$ with an m-multicoloring that satisfies the requirement of the theorem.

4 Cleaning lemmas

The lemmas in this section will allow us to find for an appropriate triple system H a large dense graph $G \subset \partial H$ that possesses an m-multicoloring with the colors outside of $V(G)$. Using such substructures, we will embed expansions of graphs into H.

Lemma 4.1. Let $m, t \in \mathbb{N}, \delta \in \mathbb{R}_{+}$and H be an n-vertex triple system. Suppose that $F \subset \partial H$ and for each $f \in F$ let $S_{f} \subset V(H) \backslash f$ with $\left|S_{f}\right|=m$. If $|F| \geq \delta n^{2}$ and n is large enough, then there exists $K \subset F$ such that $K \cong K_{t, t}$ and $S_{f} \cap V(K)=\emptyset$ for each $f \in K$.

Proof. Let T be a random subset of $V(H)$ obtained by picking each vertex independently with probability $p=1 / 2$. Let $G=\left\{f \in F: f \subset T, S_{f} \cap T=\emptyset\right\}$. Then

$$
\mathbb{E}(|G|) \geq|F| p^{2}(1-p)^{m} \geq \frac{\delta}{2^{m+2}} n^{2} .
$$

So there is a $T \subset V(H)$ with $|G|$ at least this large. If n is large enough, then the Kövari-SósTurán Theorem implies that there exists a complete bipartite graph $K \subset G \subset F$ with parts of size t. Due to the definition of G, the subgraph K satisfies the requirements of the lemma.

Lemma 4.2. Let A_{1}, \ldots, A_{m} be disjoint subsets of a set V and a_{1}, \ldots, a_{m} be distinct elements of V. Then there are $\left\lceil\frac{m}{3}\right\rceil$ pairwise disjoint sets of the kind $A_{i}+a_{i}:=A_{i} \cup\left\{a_{i}\right\}$.

Proof. Note that the statement of the lemma allows $a_{i} \in A_{i}$. Since all a_{1}, \ldots, a_{m} are distinct, if $\left(A_{i}+a_{i}\right) \cap\left(A_{j}+a_{j}\right) \neq \emptyset$, then $a_{i} \in A_{j}$, or $a_{j} \in A_{i}$, or both. Let F be the digraph with vertex set $\left\{A_{1}+a_{1}, \ldots, A_{m}+a_{m}\right\}$ and $A_{i} A_{j} \in F$ if $a_{i} \in A_{j}$ and $i \neq j$. Since the outdegree of every vertex in F is at most $1, F$ is 3 -colorable and thus has an independent I of size $\left\lceil\frac{m}{3}\right\rceil$. By definition, the members of I are pairwise disjoint.

5 Trees and crosscuts

In this section we produce a structural decomposition of a tree T that will be used later to embed T^{+}in a hypergraph. We will also prove some basic lemmas about this decomposition.

Let G be a graph and consider a minimum crosscut X of G^{+}. For an edge $e \in G$, let v_{e} be the unique vertex such that $e \cup v_{e} \in G^{+}$; say that v_{e} is the enlargement of e. Partition X into $I \cup J$ where J comprises the vertices of X that are used for enlargement of the edges of G. Let $R \subset G$ be the set of edges e such that $v_{e} \in J$. Then $I \subset V(G)$ is an independent set in G and $R \subset G-I$. Furthermore, $\sigma\left(G^{+}\right)=|X|=|I|+|R|$. On the other hand for any independent set $I \subset V(G)$ and subgraph $R \subset G-I$, such that every edge of $G-I$ is in R, we obtain a crosscut $X=I \bigcup \cup_{e \in R}\left\{v_{e}\right\}$ of G^{+}. Consequently,

$$
\sigma\left(G^{+}\right)=\min \{|I|+|G-I|: I \subset V(G) \text { is an independent set }\} .
$$

In the ensuing proof, it is more convenient to work with the pair (I, R) rather than a crosscut X of G^{+}.

Definition 5.1. A crosscut pair of a graph G is a pair (I, R) where

- $I \subset V(G)$ is an independent set,
- $R=\{e \in G: e \cap I=\emptyset\}$.

The crosscut pair (I, R) is optimal if $|I|+|R|=\sigma\left(G^{+}\right)$.

Given a crosscut pair (I, R), let

$$
L=\left\{v \in V(G) \backslash(V(R) \cup I): d_{G}(v)=1\right\} \quad \text { and } \quad D=\left\{v \in V(G) \backslash(V(R) \cup I): d_{G}(v)>1\right\}
$$

so that $D=V(G) \backslash(V(R) \cup I \cup L)$.

Figure 1: Optimal crosscut decomposition $\sigma\left(G^{+}\right)=7=|I|+|R|$

Lemma 5.2. Let T be a tree with $\sigma\left(T^{+}\right)=\ell+1>0$. Consider an optimal crosscut pair (I, R) of T that maximizes $|I|$. Then $(a)|R| \leq \ell / 2$ and (b) no pendant edge of T belongs to R.

Proof. Suppose $y z \in R$ is a pendant edge of T with $d_{T}(z)=1$. Then z is not adjacent to any vertex of I. The crosscut pair $\left(I^{\prime}, R^{\prime}\right)$ where $I^{\prime}=I \cup\{z\}$ and $R^{\prime}=R \backslash\{y z\}$ contradicts the maximality of I, proving (b). Since T has no cycles, the number of edges induced by $I \cup V(R)$ is at most $|I|+|V(R)|-1$. On this other hand, each vertex r of R must be connected to I by one of these edges, else we could move r into I, contradicting the maximality of I. Consequently,

$$
|V(R)|+|R| \leq|I|+|V(R)|-1
$$

This yields $|I| \geq 1+|R|$. Since (I, R) is optimal, $|I|+|R|=\ell+1$ and this gives (a).

Lemma 5.3. Let F be a k-vertex forest. Then there exists a k-vertex tree $T \supset F$ with $\sigma\left(T^{+}\right)=$ $\sigma\left(F^{+}\right)$.

Proof. Let F have components $T_{1}, T_{2}, \ldots, T_{s}$. For each $j=1, \ldots, s$, let $\left(I_{j}, R_{j}\right)$ be an optimal crosscut pair of T_{j} with $\left|I_{j}\right|$ a maximum. If $I_{j}=\emptyset$, then any pendant edge of T_{j} is in R, contradicting Lemma 5.2.(b). Therefore $I_{j} \neq \emptyset$ for $j=1,2, \ldots, s$. If $I=\bigcup_{j=1}^{s} I_{j}$ and $R=\bigcup_{j=1}^{s} R_{j}$, then clearly (I, R) is an optimal crosscut pair of F, and $\sigma\left(F^{+}\right)=\sum_{j=1}^{s} \sigma\left(T_{j}^{+}\right)$. For each $j: 1 \leq j \leq s-1$, let us add an edge between T_{j} and T_{j+1} as follows: pick $u \in V\left(T_{j}\right)-I_{j}$ and $v \in I_{j+1}$ and add the edge $u v$. This results in a tree $T \supset F$ with $\sigma\left(T^{+}\right)=\sigma\left(F^{+}\right)$.

In what follows, we will be thinking of trees as bipartite graphs.
Definition 5.4. Let T be a tree with parts P and Q, with $|P| \leq|Q|$. Let

$$
\lambda(T)= \begin{cases}|P|-1 & \text { if some leaf of } T \text { is in } P \\ |P| & \text { otherwise. }\end{cases}
$$

If F is a forest with components S_{1}, \ldots, S_{h}, then we define $\lambda(F)=\sum_{i=1}^{h} \lambda\left(S_{i}\right)$.
Lemma 5.5. For every forest $F, \lambda(F) \leq|F| / 2$.
Proof. It is an easy exercise to show that if T is a tree with parts P and Q and $|P|=|Q|$, then each of P and Q contains a leaf. This shows $\lambda(T) \leq|T| / 2$ for every tree T, and applying this to the components of F, we obtain the lemma.

A cycle in a hypergraph is a sequence of vertices v_{1}, \ldots, v_{t} and a sequence of distinct edges e_{1}, \ldots, e_{t} where e_{i} contains both v_{i} and v_{i+1} for $i=1, \ldots, t-1$ and e_{t} contains both v_{t} and v_{1}. A hypergraph is a linear forest if it has no cycles.

Lemma 5.6. Let T be a tree with an optimal crosscut pair $(I, R), \sigma\left(T^{+}\right)=\ell+1>0$ and $\lambda:=\lambda(T)$. Then

$$
\begin{equation*}
d_{T}(r) \leq \ell-\lambda \quad \text { for each } r \in V(R) \tag{2}
\end{equation*}
$$

Proof. Suppose that R consists of h components R_{1}, \ldots, R_{h} and $r \in V\left(R_{1}\right)$. The second end of every edge $r v \in G-R$ must be in I. Also every vertex of R has a neighbor in I, because otherwise we could move the vertex into I and obtain a crosscut pair of the same size and larger $|I|$. Moreover, as T is acyclic, every $V\left(R_{j}\right)$ has at least $\left|V\left(R_{j}\right)\right|=1+\left|R_{j}\right|$ neighbors in I and the neighborhoods of sets R_{j} in I form a hypergraph linear forest. Thus r is not adjacent to at least $\sum_{j=1}^{h}\left|R_{j}\right|=\ell_{2}$ vertices in I. Let $\ell_{1}=|I|$. By definition, r is not adjacent to at least $\lambda\left(R_{1}\right)$ vertices in $V\left(R_{1}\right)$ (the smaller partite set of $V\left(R_{1}\right)$). So, since $|R|-\lambda \geq\left|R_{1}\right|-\lambda\left(R_{1}\right)$,

$$
\begin{equation*}
d_{T}(r) \leq\left(|I|-\ell_{2}\right)+\left(\left|V\left(R_{1}\right)\right|-\lambda\left(R_{1}\right)\right) \leq \ell_{1}-\ell_{2}+(1+|R|-\lambda)=\ell_{1}+1-\lambda . \tag{3}
\end{equation*}
$$

The last expression is at most $\ell-\lambda$ unless $\ell_{2}=1$. Suppose $\ell_{2}=1$. Then $h=1, \lambda=0, r$ has exactly one neighbor in $V(R)$, and instead of (3), we have

$$
d_{T}(r) \leq\left(|I|-\ell_{2}\right)+1=\ell_{1}=\ell-\lambda
$$

So, (2) holds in this case, as well.

6 Proof of Theorem 1.1

Let G be a forest with k vertices, and $\ell=\sigma\left(G^{+}\right)-1$. We are to show $\operatorname{ex}_{3}\left(n, G^{+}\right) \leq(\ell+o(1))\binom{n}{2}$. Let H be a triple system on n vertices with $|H|>(\ell+\epsilon)\binom{n}{2}$ where $\epsilon>0$. By Lemma 5.3, $G^{+} \subset T^{+}$for some tree T with k vertices and $\sigma\left(T^{+}\right)=\sigma\left(G^{+}\right)$, so it is enough to show $T^{+} \subset H$. for $n>n_{0}(\epsilon, k)$. Suppose for a contradiction that $T^{+} \not \subset H$.

6.1 Finding a rich triple system

Recall that $\delta_{H}(e)=\min _{u v \subset e} d_{H}(u v)$. In this section we show how to find hypergraphs $H_{3} \subset$ $H_{1} \subset H$ such that $\delta_{H_{1}}(e) \geq \ell+1$ for every $e \in H_{1}, H_{3}$ has quadratically many edges, and $\delta_{H}(f) \leq 3 k$ for all $f \in H_{3}$. We will later use H_{1} and H_{3} to embed T^{+}.

Let H_{1} be obtained from H by consecutive deletion of edges having a pair of codegree at most ℓ in the current 3 -graph, so that $\delta_{H_{1}}(e) \geq \ell+1$ for all $e \in H_{1}$. Let F_{1} denote the set of deleted edges. Since we deleted at most ℓ edges at each step and the number of steps is at most $\binom{n}{2}$, we have $\left|F_{1}\right| \leq \ell n^{2} / 2$ and $\left|H_{1}\right|=\left|H_{0}\right|-\left|F_{1}\right| \geq(\ell+\epsilon) n^{2} / 2-\ell n^{2} / 2 \geq \epsilon n^{2} / 2$. By definition,

$$
\begin{equation*}
\delta_{H_{1}}(e) \geq \ell+1 \quad \text { for every } e \in H_{1} . \tag{4}
\end{equation*}
$$

Let

$$
H_{2}=\left\{e \in H_{1}: \delta_{H}(e)>3 k\right\} \quad \text { and } \quad H_{3}=\left\{e \in H_{1}: \delta_{H}(e) \leq 3 k\right\},
$$

so that $H_{1}=H_{2} \cup H_{3}$. Suppose for a contradiction that $\left|H_{2}\right|>3 k^{2} n$. If $\left|\partial H_{2}\right|>k n$, then $T \subset$ ∂H_{2}, and we greedily extend T to $T^{+} \subset H$. Otherwise, $\left|\partial H_{2}\right| \leq k n$, in which case by Lemma 2.2 H_{2} has a $3 k$-full subgraph of size at least $\left|H_{2}\right|-3 k\left|\partial H_{2}\right|>0$. This subgraph clearly contains a copy of T^{+}. This contradiction shows $\left|H_{2}\right| \leq 3 k^{2} n$, and therefore $\left|H_{3}\right|=\left|H_{1}\right|-\left|H_{2}\right| \geq \epsilon n^{2} / 4$ for large enough n.

By the definition of H_{3}, in each $e \in H_{3}$ we can fix some $f_{e} \in\binom{e}{2}$ with $d_{H}\left(f_{e}\right) \leq 3 k$. Let $F=\left\{f_{e}: e \in H_{3}\right\}$. Then $|F| \geq\left|H_{3}\right| / 3 k>\epsilon n^{2} / 12 k$. For each $f \in F$, let $S_{f} \subset N_{H_{1}}(f)$ with $\left|S_{f}\right|=\ell+1$. Applying Lemma 4.1 to $F \subset \partial H_{3}$ we find a copy K of $K_{t, t}$ for large t such that each edge f of K is contained in $\ell+1$ edges $f \cup\{v\} \in H_{1}$ with $v \in S_{f}$.

The $\ell+1$ edges $f \cup\{v\}$ with $v \in S_{f}$ containing f for every $f \in K$ give an $(\ell+1)$-multicoloring of K, so by Theorem 3.7 there is $G_{0}=K_{s, s} \subset K$ (s large) with an $(\ell+1)$-multicoloring $M_{1}, \ldots, M_{\ell+1}$ such that

- some M_{i} is rainbow, or
- the M_{i} 's are pairwise disjoint and each M_{i} is either monochromatic or canonical.

Let X and Y be the partite sets of G_{0} and

$$
Z=\bigcup_{x \in X, y \in Y} N_{H_{1}}(x y)-V\left(G_{0}\right) .
$$

We will often think of M_{i} as a 3 -graph comprising the edges $x y w$ where $x \in X, y \in Y$ and w is the color of $x y$.

6.2 Canonical colorings and embeddings

In this section we prove a series of claims using Theorem 3.7 that allow us to embed T^{+}within H_{1} in certain situations.

Claim 1. No M_{i} is rainbow.

Proof: Suppose M_{1} is rainbow. Since $s>3 k$, there is an embedding $\psi(T)$ of T into G_{0}. Since M_{1} is rainbow, its edges containing the edges of $\psi(T)$ form $T^{+} \subset H_{1}$.

Claim 2. If some M_{i} is Y-canonical then there are no X-canonical M_{j}.
Proof: Suppose M_{1} is Y-canonical and M_{2} is X-canonical. Then for every $y \in Y$ there is $w(y)$ such that $x y w(y) \in H_{1}$ for all $x \in X, y \in Y$ and for every $x \in X$ there is $u(x)$ such that $x y u(x) \in H_{1}$ for all $x \in X, y \in Y$. Let \hat{T} be a directed out-rooted tree obtained from T with any root v. We embed it into G_{0}, and expand each edge as follows: if the image of a directed edge of \hat{T} is $x y$, then expand it to $x y w(y)$ and if the image is $y x$, then expand it to $y x u(x)$.

Choose an optimal crosscut pair of T with maximum $|I|$. Let $\ell_{1}=|I|$ and $\ell_{2}=|R|$. By Lemma 5.2.(b), the pendant edges of T are not in R.

Claim 3. At most $\ell_{1}-1$ of the M_{i} are monochromatic.
Proof: Suppose, without loss of generality, that for $i=1,2, \ldots, \ell_{1}$, each M_{i} is monochromatic and w_{i} is the common vertex of all edges in M_{i}. If $I=\left\{a_{1}, \ldots, a_{\ell_{1}}\right\}$, then for $i=1, \ldots, \ell_{1}$, we place a_{i} onto w_{i}, and then embed $T-I$ into G_{0}. Since each of $w_{1}, \ldots, w_{\ell_{1}}$ is adjacent in ∂H_{1} with each vertex of G_{0}, this yields an embedding of T into ∂H_{1}. Next we extend the ℓ_{2} edges of R using for each of them an edge from one of the ℓ_{2} sets $M_{\ell_{1}+1}, \ldots, M_{\ell_{1}+\ell_{2}}$ (one edge from each set). Every other edge of the embedded T is incident with one of w_{i}. If such an edge has the form $w_{i} x$ (respectively, $w_{i} y$) then we take any unused $y \in Y$ (respectively, $x \in X$) and extend it to $\left\{w_{i}, x, y\right\}$.

Claim 4. $R \neq \emptyset$.

Proof: Suppose $R=\emptyset$ and U, U^{\prime} are partite sets of T. Then all vertices of I are in the same partite set, say U, of T (in fact, $I=U$ as I covers all edges of T). By Claims 1, 2 and 3 and symmetry, we may assume that M_{1} is Y-canonical. For every $y \in Y$ there is $w(y)$ such that $x y w(y) \in H_{3}$ for all $x \in X, y \in Y$. Place the vertices of T into $X \cup Y$ so that $U \subset X$ and $U^{\prime} \subset Y$. Since G_{0} is a complete bipartite graph, this yields an embedding of T into G_{0}. Since T is a tree, $|T|=\left|U^{\prime}\right|+|U|-1=\left|U^{\prime}\right|+\ell$. For every $y \in Y$ which is the image of some $b \in U^{\prime}$ we expand one edge $x y$ by adding $w(y)$. For the remaining ℓ edges we use edges of $M_{2}, \ldots, M_{\ell+1}$, from distinct M_{j} for distinct edges.

We recall from the last section the definition of $\lambda(F)$ for a forest F.

Claim 5. If some M_{i} is Y-canonical, then at most $\lambda(R)-1$ of the M_{j} are monochromatic.

Proof: Suppose that M_{ℓ} is Y-canonical (we may assume this by Claim 3) and suppose, for a contradiction, that for $i=1, \ldots, \lambda(R)$, each M_{i} is monochromatic and w_{i} is the common vertex of all edges in M_{i}. Also for every $y \in Y$ there is $w(y)$ such that each edge in M_{ℓ} containing y also contains $w(y)$. We embed R into the subgraph of ∂H_{1} induced by $Y \cup\{w(y)$: $y \in Y\} \cup\left\{w_{1}, \ldots, w_{\lambda(R)}\right\}$ as follows. Suppose the components formed by the edges of R are R_{1}, \ldots, R_{h} with smaller partite sets P_{1}, \ldots, P_{h} and if P_{j} contains leaves, then b_{j} is one of them. We choose arbitrary $y_{1}, \ldots, y_{h} \in Y$, and for j such that b_{j} exists, place b_{j} onto $w\left(y_{j}\right)$ and the neighbor in R_{j} of b_{j} onto y_{j}. Then place the remaining $\lambda(R)$ vertices of $P_{1} \cup \ldots \cup P_{h}$ onto vertices in $\left\{w_{1}, \ldots, w_{\lambda(R)}\right\}$ and the remaining vertices of $V(R)$ (which comprise $\bigcup_{i} V\left(R_{i}\right) \backslash\left(P_{i} \cup N_{R}\left(b_{i}\right)\right)$) onto arbitrary free vertices in Y. Since each $w_{i} y \in \partial H_{1}$ for all $y \in Y$ this yields an embedding of R in ∂H_{1}. Next, place the vertices of $D \cup L$ into new free vertices of Y, and finally, place all vertices of I onto distinct vertices in X.

This gives an embedding of T into ∂H_{1}. We expand it to an embedding of T^{+}into H_{1} as follows. Since $x y w(y) \in H_{1}$ for all $x \in X$ and $|X| \geq s$, we can expand the edges of the form $y w(y)$ at the end. Expand all edges of the form $w_{i} y$ and $w_{i} x$ by adding a free vertex from X and Y, respectively. This allows us to expand all edges of T except those that contain some vertex of D as an endpoint. We now focus on these edges which connect D to I.

For every y onto which we placed a vertex $a \in D$, we expand one edge of the kind $x y$ by adding $w(y)$ and all other such edges using some M_{j} (distinct for distinct edges of T). To prove that we have enough free M_{j} first observe that the number of edges in T connecting D to I is $|D|+\ell_{1}-1$ (because I is an independent set and each edge joins precisely two components). Of these edges, $|D|$ will be expanded by expanding pairs of the form $y w(y)$ as mentioned earlier, so we must only expand $\ell_{1}-1$ more edges. The number of M_{j} that have already been used is at most $\lambda(R)+1$ and so the number of unused M_{j} is at least $\ell+1-(\lambda(R)+1)=\ell-\lambda(R)$. We finally show $\ell-\lambda(R) \geq \ell_{1}-1$ to complete the embedding. By Lemma 5.5, $\lambda(R) \leq|R| / 2$. Since $|I|+|R|=\ell+1$ and $|R| \leq \ell / 2$ from Lemma 5.2, we have $\ell-|R| / 2 \geq \ell_{1}-1$, and therefore

$$
\ell-\lambda(R) \geq \ell-\frac{|R|}{2} \geq \ell_{1}-1
$$

This shows that $T^{+} \subset H$, a contradiction.

Let $\lambda=\lambda(R)$. By Claims $1,2,3$ and symmetry, we may order the colorings so that M_{1}, \ldots, M_{p} are Y-canonical and the remaining are monochromatic. Furthermore, by Claim 5,

$$
p \geq \ell+2-\lambda
$$

6.3 Constructing the digraph D_{g}

In this section we construct a digraph D_{g} whose underlying edges lie in ∂H_{1} and it will be obtained iteratively from a sequence of digraphs D_{1}, D_{2}, \ldots The digraph D_{g} will be the vertex disjoint union of homomorphic images of directed out-trees each with height at most $\ell_{2}+1$. The rich structure of D_{g} encodes edges of H_{1} and will later be used to embed T^{+}in H_{1}.

For each $i \in\{1, \ldots, p\}$ and every $y \in Y$, let $w_{i}(y)$ be the vertex such that each edge in M_{i} containing y contains also $w_{i}(y)$ and let $W_{i}=\left\{w_{i}(y): y \in Y\right\}$. Also for every $y \in Y$, let $W(y)=\left\{w_{i}(y): i=1, \ldots, p\right\}$. Let $Q=\left\{\alpha_{p+1}, \ldots, \alpha_{\ell+1}\right\}$ be the set of the colors used in the monochromatic colorings M_{i}.

By definition, for each $i \in\{1, \ldots, p\}$, the subgraph of ∂H_{1} induced by $X \cup W_{i}$ contains the complete bipartite graph with partite sets X and W_{i}. By Theorem 3.7, all W_{i} are mutually disjoint and disjoint from Y. By the same theorem, we also have $W_{i} \cap Q=\emptyset$ where Q is the set of vertices/colors in the monochromatic colorings $M_{p+1}, \ldots, M_{\ell+1}$.

Basic cleaning procedure: By the codegree condition (4), for each $x \in X, w_{1}(y) \in W_{1}$, we can choose a set $S\left(x, w_{1}(y)\right) \subset N_{H_{1}}\left(x w_{1}(y)\right)$ with $y \in S\left(x, w_{1}(y)\right)$ and $\left|S\left(x, w_{1}(y)\right)\right|=\ell+1$. Define the 3-graph

$$
H_{1}^{\prime}=\left\{x w z \in H_{1}: x \in X, w \in W_{1}, z \in S(x, w)\right\}
$$

with $V\left(H_{1}^{\prime}\right)=\cup_{e \in H_{1}^{\prime}} e$ so that

$$
\left|V\left(H_{1}^{\prime}\right)\right| \leq|X|+\left|W_{1}\right|+(\ell+1)|X|\left|W_{1}\right|<(\ell+3) s^{2}
$$

Let F^{\prime} be the complete bipartite graph with parts X and W_{1} so that $F^{\prime} \subset \partial H_{1}^{\prime}$. Then $\left|F^{\prime}\right|=$ $|X|\left|W_{1}\right|=s^{2} \geq \delta\left|V\left(H_{1}^{\prime}\right)\right|^{2}$ for $\delta=1 /(\ell+3)$. Since s is large, we may apply Lemma 4.1 to $F^{\prime} \subset$ ∂H_{1}^{\prime} to obtain a large complete bipartite subgraph $G_{1,1} \subset F^{\prime}$ such that $S(x, w) \cap V\left(G_{1,1}\right)=\emptyset$ for all $x w \in G_{1,1}$. Since $|S(x, w)| \geq \ell+1$ for all $x w$, we can view $G_{1,1}$ as being multicolored with $\ell+1$ colors, with one of the color classes corresponding to the vertices y. Moreover, all colors lie outside $V\left(F^{\prime}\right)$. The reason we need this is to apply Claim 1 below. This is the basic cleaning procedure.

By Theorem 3.7, we obtain subsets $X_{1,1}^{\prime} \subset X, W_{1,1}^{\prime} \subset W_{1}$, such that the $(\ell+1)$-multicoloring restricted to $X_{1,1}^{\prime} \times W_{1,1}^{\prime}$ comprises rainbow, monochromatic, or canonical colorings. Let $Y_{1,1}^{\prime}=$ $\left\{y \in Y: w_{1}(y) \in W_{1,1}^{\prime}\right\}$. None of the colorings is rainbow by Claim 1. Due to the colors corresponding to $Y_{1,1}^{\prime}$, one of these colorings is $W_{1,1}^{\prime}$-canonical, so by Claim 2 none of the colorings is $X_{1,1}^{\prime}$-canonical. Consequently, Claims 3-5 imply that there is an integer p_{1}, and a set $\left\{w_{1,1}(y) \ldots, w_{1, p_{1}}(y)\right\}$ for each $y \in Y_{1,1}^{\prime}$, whose vertices correspond to the $W_{1,1}^{\prime}$-canonical colors of $w_{1}(y)$. Moreover, $w_{1,1}(y)=y$,

$$
\begin{equation*}
w_{1, j}(y) \neq w_{1, j}\left(y^{\prime}\right) \text { for } y \neq y^{\prime} \quad \text { and } \quad w_{1, j}(y) \neq w_{1, j^{\prime}}(y) \text { for } j \neq j^{\prime} \tag{5}
\end{equation*}
$$

In other words the $(j+1)$ st canonical color class contains all edges of the form $x w_{1}(y) w_{1, j}(y)$ for $x \in X_{1,1}^{\prime}$ and $y \in Y_{1,1}^{\prime}$. Let $\left|X_{1,1}^{\prime}\right|=\left|Y_{1,1}^{\prime}\right|=s_{1,1}^{\prime}$ and $Y_{1,1}^{\prime}=\left\{y_{1}, \ldots, y_{s_{1,1}^{\prime}}\right\}$. Add the colors of monochromatic colorings to Q.

Type-1 cleaning: Recall that $w_{1,1}\left(y_{h}\right)=y_{h}$ for all $1 \leq h \leq s_{1,1}^{\prime}$. By Lemma 4.2 with $A_{h}=\left\{y_{h}, w_{1}\left(y_{h}\right)\right\}$ and $a_{h}=w_{1,2}\left(y_{h}\right)$, we can renumber y_{h} so that the sets

$$
\left\{y_{1}, w_{1}\left(y_{1}\right), w_{1,2}\left(y_{1}\right)\right\}, \ldots,\left\{y_{s_{1,1}^{\prime} / 3}, w_{1}\left(y_{s_{1,1}^{\prime} / 3}\right), w_{1,2}\left(y_{s_{1,1}^{\prime} / 3}\right)\right\}
$$

are pairwise disjoint. Applying Lemma 4.2 with $A_{h}=\left\{y_{h}, w_{1}\left(y_{h}\right), w_{1,2}\left(y_{h}\right)\right\}$ and $a_{h}=w_{1,3}\left(y_{h}\right)$, then with $A_{h}=\left\{y_{h}, w_{1}\left(y_{h}\right), w_{1,2}\left(y_{h}\right), w_{1,3}\left(y_{h}\right)\right\}$ and $a_{h}=w_{1,4}\left(y_{h}\right)$, and so on, we obtain that for $s_{1,1}^{\prime \prime}=\left\lceil\frac{s_{1,1}^{\prime}}{3^{p_{1}}}\right\rceil$ we can renumber y_{h} so that the sets

$$
\left\{y_{1}, w_{1}\left(y_{1}\right), w_{1,2}\left(y_{1}\right), \ldots, w_{1, p_{1}}\left(y_{1}\right)\right\}, \ldots,\left\{y_{s_{1,1}^{\prime \prime}}, w_{1}\left(y_{s_{1,1}^{\prime \prime}}\right), w_{1,2}\left(y_{s_{1,1}^{\prime \prime}}\right), \ldots, w_{1, p_{1}}\left(y_{s_{1,1}^{\prime \prime}}\right)\right\}
$$

are pairwise disjoint. Let $Y_{1,1}^{\prime \prime}=\left\{y_{1}, \ldots, y_{s_{1,1}^{\prime \prime}}\right\}$ and $X_{1,1}^{\prime \prime}$ be any subset of $X_{1,1}^{\prime}$ of size $s_{1,1}^{\prime \prime}$. This is the type-1 cleaning.

Type-2 cleaning: Note that we automatically have $w_{1, j}(y) \cap X_{1,1}^{\prime \prime}=\emptyset$, since $x w_{1}(y) w_{1, j}(y) \in H_{1}$ for all $x \in X_{1,1}^{\prime \prime}$ so in particular, these three vertices are distinct. Since for every $1 \leq j \leq p_{1}$ all vertices $w_{1, j}\left(y_{h}\right)$ are distinct, at most $|Q| \leq \ell$ of them are in Q. Deleting from $Y_{1,1}^{\prime \prime}$ the at most $p_{1}|Q|$ vertices y_{h} such that

$$
\left\{y_{1}, w_{1}\left(y_{1}\right), w_{1,2}\left(y_{1}\right), \ldots, w_{1, p_{1}}\left(y_{1}\right)\right\} \cap Q \neq \emptyset
$$

we obtain a $Y_{1,1} \subset Y_{1,1}^{\prime \prime}$ such that for distinct $y \in Y_{1,1}$ the sets $\left\{y, w_{1}(y), w_{1,2}(y), \ldots, w_{1, p_{1}}(y)\right\}$ are disjoint from each other and from Q and $X_{1,1}^{\prime \prime}$. Then we choose any $X_{1,1} \subset X_{1,1}^{\prime \prime}$ with $\left|X_{1,1}\right|=\left|Y_{1,1}\right|$. This is the type-2 cleaning.

Recall that s is taken sufficiently large so that the bipartite graphs we are considering are also large. Now define $G_{1,2}$ to be the complete bipartite graph with parts $X_{1,1}$ and W_{2} and repeat the cleaning procedures above to obtain the integer p_{2}, subsets $X_{1,2} \subset X_{1,1}$ and $Y_{1,2} \subset Y_{1,1}$ and vertices $w_{2, j}(y)$ that are distinct for distinct y and also distinct from $w_{1, j^{\prime}}\left(y^{\prime}\right)$ if $y \neq y^{\prime}$. Continuing in this way we obtain sets $X_{1,1} \supset X_{1,2} \supset \cdots \supset X_{1, p}:=X_{2}$ and $Y_{1,1} \supset Y_{1,2} \supset \cdots \supset$ $Y_{1, p}:=Y_{2}, \mathbf{V}_{2}=\left\{\left(i, j_{i}\right): i \in[p], j_{i} \in\left[p_{i}\right]\right\} \subset[\ell]^{2}$ and vertices $w_{\mathbf{v}}(y)$ for $\mathbf{v} \in \mathbf{V}_{2}$ and $y \in Y_{2}$ with $w_{\mathbf{v}}(y) \notin\left\{w_{\mathbf{v}}\left(y^{\prime}\right), w_{i}\left(y^{\prime}\right)\right\}$ for $y \neq y^{\prime}$.

Given a vector \mathbf{x} let $\mathbf{x} * j$ be the vector obtained from \mathbf{x} by adding a new last coordinate with entry j (for example if $\mathbf{x}=(3,7)$ then $\mathbf{x} * 4=(3,7,4)$). For $\mathbf{v} \in \mathbf{V}_{2}$, set $W_{\mathbf{v}}=\cup_{y \in Y_{2}} w_{\mathbf{v}}(y)$. Let us also construct the auxiliary digraph D_{2} with vertex set $Y_{2} \cup \bigcup_{i=1}^{p} W_{i} \cup \bigcup_{\mathbf{v} \in \mathbf{V}_{2}} W_{\mathbf{v}}$ with edges of the form $y w_{i}(y)$ for all y, i and $w_{i}(y) w_{i, j}(y)$ for $i \in[p]$ and $j \in\left[p_{i}\right]$. Because of cleanings, D_{2} is the vertex disjoint union of homomorphic images of trees of height at most two, one for each $y \in Y_{2}$.

Claim 6. $|Q| \leq k$.

Proof: Suppose for contradiction that $|Q|<k$. By the definition of monochromatic colorings and by construction, for each $x \in X_{2}$ and each $w \in Q, x w \in \partial H_{1}$ and the codegree of $x w$ is at least $\left|Y_{2}\right| \geq 3 k$ (since s and hence $\left|Y_{2}\right|$ are large). So we simply embed T into the complete bipartite graph with partite sets X_{2} and Q, and then expand it.

To summarize, we have a set of (one dimensional) vectors $\mathbf{V}_{1}=\{(1), \ldots,(p)\}$, nonnegative integers $p_{\mathbf{v}} \leq \ell$ for each $\mathbf{v} \in \mathbf{V}_{1}$ and

- $\mathbf{V}_{2}=\cup_{\mathbf{v} \in \mathbf{V}_{1}}\left\{\mathbf{v} * i: i \in\left[p_{\mathbf{v}}\right]\right\} \subset[\ell+1]^{2}$,
- $X_{2} \subset X$ and $Y_{2} \subset Y$,
- vertices $w_{\mathbf{v}}(y)$ with $w_{\mathbf{v}}(y) \neq w_{\mathbf{v}^{\prime}}\left(y^{\prime}\right)$ if $y \neq y^{\prime}$ and $\mathbf{v}, \mathbf{v}^{\prime} \in \mathbf{V}_{1} \cup \mathbf{V}_{2}$,
- edges $x w_{\mathbf{v}}(y) w_{\mathbf{v} * i}(y) \in H_{1}$ for all $x \in X_{2}, y \in Y_{2}, \mathbf{v} \in \mathbf{V}_{1}, i \in\left[p_{\mathbf{v}}\right]$ (so $\mathbf{v} * i \in \mathbf{V}_{2}$),
- a digraph D_{2} with vertex set $Y_{2} \cup \bigcup_{y \in Y_{2}, \mathbf{v} \in \mathbf{V}_{1} \cup \mathbf{V}_{2}} w_{\mathbf{v}}(y)$ and edges $y w_{\mathbf{v}}(y)$ for $y \in Y_{2}, \mathbf{v} \in \mathbf{V}_{1}$ and $w_{\mathbf{v}}(y) w_{\mathbf{v}^{\prime}}(y)$ as long as $\mathbf{v}^{\prime}=\mathbf{v} * j$ for some $j \in\left[p_{\mathbf{v}}\right]$,
- the set Q of all "central" vertices in monochromatic colorings of $X_{2} \times Y_{2}$, and $|Q| \leq k$.

General Setup: Let $t \leq \ell_{2}+1$ and suppose we have the following:

- $\mathbf{V}_{t} \subset[\ell+1]^{t}$,
- $X_{t} \subset X$ and $Y_{t} \subset Y$,
- for all $\mathbf{v} \in \cup_{i=1}^{t} \mathbf{V}_{t}$ and $y \in Y_{t}$ a vertex $w_{\mathbf{v}}(y)$ such that for $y \neq y^{\prime}, w_{\mathbf{v}}(y) \neq$ $w_{\mathbf{v}^{\prime}}\left(y^{\prime}\right)$,
- edges $x w_{\mathbf{v}}(y) w_{\mathbf{v} * i}(y) \in H_{1}$ for all $x \in X_{t}, y \in Y_{t}, \mathbf{v} \in \cup_{j=1}^{t-1} \mathbf{V}_{j}, i \in\left[p_{\mathbf{v}}\right]$,
- a digraph D_{t} with vertex set

$$
Y_{t} \cup \bigcup_{y \in Y_{t}, \mathbf{v} \in \cup_{i=1}^{t} \mathbf{v}_{t}} w_{\mathbf{v}}(y)
$$

and edges $w_{\mathbf{v}}(y) w_{\mathbf{v}^{\prime}}(y)$ as long as $\mathbf{v}^{\prime}=\mathbf{v} * j$ for some $j \in\left[p_{\mathbf{v}}\right]$ (define $\left.y:=w_{\emptyset}(y)\right)$,

- the set Q of all "central" vertices in monochromatic colorings of $X_{t} \times Y_{t}$, and $|Q| \leq k$.

We will now show how to construct the same setup with $t+1$.

Let $\mathbf{V}_{t}=\{\mathbf{v}(1), \ldots, \mathbf{v}(m(t))\}$. Consider the complete bipartite subgraph $G_{t, 1}$ of ∂H_{1} with parts X_{t} and $W_{\mathbf{v}(1)}=\left\{w_{\mathbf{v}(1)}(y): y \in Y_{t}\right\}$. We apply the basic cleaning procedure to $G_{t, 1}$ and obtain subsets $X_{t, 1}^{\prime} \subset X_{t}$ and $Y_{t, 1}^{\prime} \subset Y_{t}$ and colorings $M_{1}, \ldots, M_{\ell+1}$ of the edges of $G_{t, 1}$ that are rainbow, canonical, or monochromatic. By Claim 1, no coloring is rainbow. By construction, we
 in D_{t}. By Claim $4, R \neq \emptyset$ and thus $\ell_{1} \leq \ell$. We may assume that M_{1} is $W_{\mathbf{v}(1)}$-canonical. Hence by Claim 2 no M_{i} is $X_{t, 1}^{\prime}$-canonical. By Claim 3, the number of monochromatic colorings is at most $\ell_{1}-1 \leq \ell-1$, which means that the number of $W_{\mathbf{v}(1)}$-canonical colorings is at least $(\ell+1)-(\ell-1)=2$. Consequently, there is a positive integer $p_{\mathbf{v}(1)}$ and $p_{\mathbf{v}(1)}$ colorings (excluding the $\left.W_{\mathbf{v}(1) \text {-canonical coloring given by the in-neighbors of }} W_{\mathbf{v}(1)}\right)$ that are $W_{\mathbf{v}(1) \text {-canonical }}$ and the remaining $\ell+1-\left(p_{\mathbf{v}(1)}+1\right)$ colorings are monochromatic. We also have vertices $w_{\mathbf{v}(1) * i}(y)$ for all $i=1, \ldots, p_{\mathbf{v}(1)}$ which are distinct for distinct y and distinct i. As before, for each $j \in\left[p_{\mathbf{v}(1)}\right]$, the j th canonical color class consists of all (hyper)edges of the form $x w_{\mathbf{v}(1)}(y) w_{\mathbf{v}(1) * j}(y)$ for all $x \in X_{t, 1}^{\prime}, y \in Y_{t, 1}^{\prime}$.

Next we perform the type-1 cleaning procedure (using Lemma 4.2) to make sure that if $y \neq y^{\prime}$ then $w_{\mathbf{v}(1) * i}(y) \notin\left\{w_{\mathbf{v}}\left(y^{\prime}\right), y^{\prime}\right\}$ for any $\mathbf{v} \in \mathbf{V}_{1} \cup \ldots \cup \mathbf{V}_{t}$. This results in subsets $X_{t, 1}^{\prime \prime} \subset X_{t, 1}^{\prime}$ and $Y_{t, 1}^{\prime \prime} \subset Y_{t, 1}^{\prime}$. Finally, we perform the type- 2 cleaning procedure to obtain $X_{t, 1} \subset X_{t, 1}^{\prime \prime}$ and $Y_{t, 1} \subset Y_{t, 1}^{\prime \prime}$ so that these sets do not contain any vertices that correspond to monochromatic colorings in any previous round. Add the central vertices of the monochromatic colorings to Q. Repeating the proof of Claim 6, we still have $|Q| \leq k$.

Now we repeat these procedure with $\mathbf{v}(2)$ to obtain $X_{t, 2} \subset X_{t, 1}$ and $Y_{t, 2} \subset Y_{t, 1}$. Finally we perform this procedure with $\mathbf{v}(m(t))$ to obtain $X_{t+1}=X_{t, m(t)}$ and $Y_{t+1}=Y_{t, m(t)}$ and $\mathbf{V}_{t+1}=\cup_{\mathbf{v} \in \mathbf{V}_{t}}\left\{\mathbf{v} * i: i \in\left[p_{\mathbf{v}}\right]\right\}$. We also have vertices $w_{\mathbf{v}}(y)$ for every $y \in Y_{t+1}$ and $\mathbf{v} \in \mathbf{V}_{t+1}$ that are distinct for distinct y and a digraph D_{t+1} defined in the obvious way which consists of the vertex disjoint union of homomorphic image of trees of height $t+1$, one for each $y \in Y_{t+1}$. Edges of the digraph encode the canonical colorings, as in the case $t=1,2$.

We repeat this procedure till we obtain sets X_{g}, Y_{g}, D_{g}, for $g:=\ell_{2}+1$. By Claim 5, the outdegree of vertex $w_{\mathbf{v}}(y) \in V\left(D_{g}\right)$ is

$$
p_{\mathbf{v}} \geq(\ell+2-\lambda)-1=\ell+1-\lambda .
$$

Note that this is one less than the bound for p because we have one in-neighbor that accounts for one canonical coloring.

6.4 Embedding T^{+}using D_{g}

In this section we use the properties of D_{g} to embed T^{+}in H_{1}. Our plan is to place the edges of R on the edges of D_{g} and to place the vertices of I onto some vertices in X_{g}. Let $T_{1}=T-L$. Consider every tree in the forest R as a (directed) rooted tree R_{i} with root r_{i} which is a vertex in $V\left(R_{i}\right)$ of the largest degree in T_{1}. Suppose we have h such trees. By Lemma 5.6,

$$
d_{T_{1}}\left(r_{i}\right) \leq \ell-\lambda \quad \text { for all } \quad 1 \leq i \leq h .
$$

For each $y \in Y_{g}$, let $D_{g}(y)$ be the component of D_{g} containing y. Choose h vertices $y_{1}, \ldots, y_{h} \in$ Y_{g} arbitrarily, and for $1 \leq i \leq h$ we will embed R_{i} into $D_{g}\left(y_{i}\right)-w_{1}\left(y_{i}\right)$ as follows (we exclude $w_{1}\left(y_{i}\right)$ because we will use $w_{1}\left(y_{i}\right)$ later in the embedding of T^{+}). Place r_{i} on y_{i}. Suppose r_{i} has u out-neighbors in R_{i}. By construction, y_{i} has $p \geq \ell+2-\lambda$ outneighbors in $D_{g}\left(y_{i}\right)$. So by (2), we can place the outneighbors in R_{i} of r_{i} on outneighbors of y_{i} in $D_{g}\left(y_{i}\right)$. Then we place the outneighbors of placed vertices and so on. The general situation is that some $v \in V\left(R_{i}\right)$ is placed on some $w_{\mathbf{v}}(y)$ and has u outneighbors in R_{i}. By Lemma $5.2, \ell \geq 2 \ell_{2}$. By Lemma 5.5, $\lambda=\lambda(R) \leq|R| / 2=\ell_{2} / 2$. So $w_{\mathbf{v}}(y)$ has $p_{\mathbf{v}} \geq \ell+1-\lambda \geq \frac{3 \ell_{2}}{2}+1$ outneighbors in $D_{g}(y)$. At most $\ell_{2}-u$ of them are already occupied by previously embedded vertices. This leaves more than u available outneighbors of $w_{\mathbf{v}}(y)$ to place the outneighbors in R_{i} of v on them.

After placing all vertices in $V(R)$, we call a vertex of H_{1} free, if it is not occupied by vertices in $V(R)$ and is not the outneighbor of any occupied vertex in D_{g}. By construction, there are at most $|V(R)| \ell_{2} \ell \leq \ell^{3}$ non-free vertices. We now place the vertices of I on arbitrary distinct vertices in X_{g} (they are all free at this moment by construction). Then we place the vertices of D on distinct free vertices in Y_{g}. Let φ be the embedding we are producing. Let each $a \in I$ be placed on $\varphi(a) \in X_{g}$. This yields an embedding of T_{1} into ∂H_{1}. In what follows, say that a pair $x y$ is expanded to a triple $x y z$. Our next goal will be to expand the edges of T_{1}. After that we will embed the edges of $T-T_{1}$ and expand them (these are the edges incident to L).

Since the codegree of every edge in D_{g} is at least $\left|X_{g}\right|$, we do not worry about expanding the edges in R : we can do it greedily at the end. Recall that vertices in D are adjacent only to I. We need to expand the $|I|+|D|+h-1$ edges connecting I with $D \cup V(R)$. For every host y of a vertex $a \in D$ and the host $x=\varphi\left(a^{\prime}\right)$ of a neighbor $a^{\prime} \in I$ of a, we expand the edge $y x$ to $\left\{x, y, w_{1}(y)\right\}$. So the number of edges of $T_{1}-R$ not yet expanded is $|I|+h-1=\ell_{1}+h-1$. Since the sets $V\left(D_{g}(y)\right)$ are disjoint for distinct $y \in Y_{g}$, expanding the edges incident with $\varphi(a)$ for $a \in D$ is easy: we simply use the vertices $w_{2}(\varphi(a)), w_{3}(\varphi(a))$ and so on. Since the number of such edges is at most $\ell_{1}-1 \leq p-2$, no problem arises.

When we expand an edge $y x$ where x is the host of some $a \in I$ and y is the host of some $b \in V\left(R_{i}\right) \subset V(R)$, we need some more care, since some outneighbors of y in $D_{g}(y)$ can be
occupied. For $i=1, \ldots, h$ let $U(i)=\left|R_{i}\right|+\left|E_{T_{1}}\left(I, V\left(R_{i}\right)\right)\right|$. Then

$$
\begin{equation*}
\sum_{i=1}^{h} U(i)=\left|T_{1}-A_{0}\right| \leq|I|+|R|+h-1=\ell+h \tag{6}
\end{equation*}
$$

Order the $R_{i} \mathrm{~s}$ so that $U(1) \geq U(2) \geq \ldots \geq U(h)$ and expand the edges incident to $R_{i} \mathrm{~s}$ in the reverse order. Since each $b \in V(R)$ is adjacent to some $a \in I, U(i) \geq 3$ for every i. Suppose that it is now the turn to expand the edges incident to R_{i} and $i \geq 2$. Then $U(i) \leq U(2) \leq$ $\frac{\ell+h-3(h-2)}{2} \leq \frac{\ell+2}{2}$. We expand the edges one by one. Suppose we need now to expand $w_{\mathbf{v}}(y) x$, where $w_{\mathbf{v}}(y)$ is the host of a vertex $b \in V\left(R_{i}\right)$ (possibly $\mathbf{v}=\emptyset$ in which case by convention $w_{\mathbf{v}}(y)=y$ and $p_{\mathbf{v}}=p$). The outdegree in D_{g} of $w_{\mathbf{v}}(y)$ is $p_{\mathbf{v}} \geq \ell+1-\lambda$. At most $\left|R_{i}\right|$ of the outneighbors of $w_{\mathbf{v}}(y)$ are occupied. If we already expanded some edges incident with R_{i}, they block at most $\left|E_{T_{1}}\left(I, V\left(R_{i}\right)\right)\right|-1$ outneighbors of y. Consequently, we have at least

$$
(\ell+1-\lambda)-(U(i)-1) \geq \frac{\ell}{2}-\lambda+1 \geq \frac{\ell}{2}-\frac{\ell_{2}}{2}+1>0
$$

free outneighbors of y, and any free outneighbor may be used to expand $w_{\mathbf{v}}(y) x$.
Finally, we work with R_{1}. It is possible that $U(1)$ is as large as $\ell_{2}+\ell_{1}$. On the other hand, we have not yet used the universal vertices for monochromatic multicolorings, and this is the time to use them. Now for each $a \in V\left(R_{1}\right)$ and $x \in X_{g}$, the pair $\varphi(a) x$ has $1+\ell=\ell_{1}+\ell_{2}$ different colors in the canonical multicoloring (including any universal vertices), which means $1+\ell$ possibilities to expand $\varphi(a) x$. Since the number of edges $U(1)$ to be embedded when we embed R_{1} is at most $\ell+1$, we can perform the embedding greedily.

Having embedded and expanded T_{1}, we work with L. Since Y_{g} is large, one by one, take $c \in L$, place it on a free $y \in Y_{g}$ and expand the obtained edge $y x$ via $w_{1}(y)$.

7 Proof of Theorem 1.2

Suppose $\sigma\left(G^{+}\right)=2$ and $|V(G)|=k$. Since the n-vertex triple system of all edges containing a fixed vertex does not contain G^{+}with $\sigma\left(G^{+}\right)=2$ (by definition), $\operatorname{ex}\left(n, G^{+}\right) \geq\binom{ n-1}{2}$. Also if $\sigma\left(G^{+}\right)=2$, then either some vertex of G covers all but one edge in G (and this edge connects two leaves) or two non-adjacent vertices of G cover all edges of G. In the former case, G is contained in the star-plus-one-edge graph S_{k-1}^{*} and in the latter, G is contained in $K_{2, k-2}$. Thus it is enough to consider the cases $G=K_{2, k-2}$ and $G=S_{k-1}^{*}$.

Suppose we have an n-vertex 3 -graph H not containing G^{+}for $G \in\left\{S_{k-1}^{*}, K_{2, k-2}\right\}$ with $|H|=$ $(1+\varepsilon)\binom{n}{2}$ where $\varepsilon>0$ and n is sufficiently large. It is enough to assume $k \geq 5$. Let H^{\prime} be obtained from H by consecutive deletion of edges having a pair of codegree one, so that the minimum codegree of edges in H^{\prime} is at least two. If we deleted m edges, then $\left|\partial H^{\prime}\right| \leq\binom{ n}{2}-m$. Let E be the set of edges of H^{\prime} in which the codegrees of all pairs (in H^{\prime}) are at most 3 or at least two pairs have codegree (in H^{\prime}) exactly two. We claim that

$$
\begin{equation*}
|E| \leq\left|\partial H^{\prime}\right| \tag{7}
\end{equation*}
$$

To see this, define $\omega=\sum_{e \in H^{\prime}} \sum_{f \subset e} 1 / d(f)$, where $d(f)$ is the codegree of f in H^{\prime}. By definition of E, for every $e \in E$ we have $\sum_{f \subset e} \frac{1}{d(f)} \geq 1$. Since $E \subset H^{\prime}$, we get $\omega \geq|E|$. By interchanging the sums, we see $\omega=\left|\partial H^{\prime}\right|$:

$$
\omega=\sum_{f \in \partial H^{\prime}} \sum_{e \supset f} \frac{1}{d(f)}=\sum_{f \in \partial H^{\prime}} 1=\left|\partial H^{\prime}\right| .
$$

Therefore $|E| \leq\left|\partial H^{\prime}\right|$ as claimed.
Let $H^{\prime \prime}=H^{\prime} \backslash E$. By (7),

$$
\left|H^{\prime \prime}\right| \geq\left|H^{\prime}\right|-\left|\partial H^{\prime}\right|=|H|-m-\left(\binom{n}{2}-m\right)=|H|-\binom{n}{2} \geq \varepsilon\binom{n}{2} .
$$

By the definition of E, if $e \in H^{\prime \prime}$ and the codegrees in H^{\prime} of the vertex pairs in e are $c_{1} \leq c_{2} \leq c_{3}$, then $c_{1} \geq 2, c_{2} \geq 3$ and $c_{3} \geq 4$. Then for each $e \in H^{\prime \prime}$, there is an expansion of a triangle T_{e} in H^{\prime} such that

$$
\begin{equation*}
\text { every edge of } T_{e} \text { shares } 2 \text { vertices with } e . \tag{8}
\end{equation*}
$$

We partition $H^{\prime \prime}$ into three triple systems. Let H_{1} be the set of $e \in H^{\prime \prime}$ containing a pair $f=f_{e} \subset e$ with $3 \leq d_{H^{\prime}}(f) \leq 3 k, H_{2}$ be the set of $e \in H^{\prime \prime}$ with one pair $f_{e} \subset e$ having $d_{H^{\prime}}\left(f_{e}\right)=2$ and two pairs of codegree (in $\left.H^{\prime}\right)$ at least $3 k+1$, and $H_{3}=\left\{e \in H^{\prime \prime}: \delta_{H^{\prime}}(e) \geq 3 k+1\right\}$. By the definition of $H^{\prime \prime}$ we have $H_{1} \cup H_{2} \cup H_{3}=H^{\prime \prime}$ and one of the three cases below must hold.
Case 1: $\left|H_{1}\right| \geq \frac{\varepsilon n^{2}}{9}$. Let $F=\left\{f_{e}: e \in H_{1}\right\}\left(f_{e}\right.$ is defined above) so that $|F| \geq\left|H_{1}\right| / 3 k \geq$ $\varepsilon n^{2} / 27 k$. For every $f \in F$, choose $S_{f} \subset N_{H^{\prime}}(f)$ with $\left|S_{f}\right|=3$ such that $S_{f} \cap N_{H_{1}}(f) \neq \emptyset$ (we can do it, since by definition, each $f \in F$ is f_{e} for some $e \in H_{1}$). By Lemma 4.1 applied to F, for a large t there exists $K \subseteq F$ such that $K \cong K_{t, t}$ and for every $f \in K, S_{f} \cap V(K)=\emptyset$. By Theorem 3.7, if t is large enough, there exists $K^{\prime} \cong K_{2 k, 2 k} \subset K$ and three disjoint list-edge-colorings $\chi_{i}: K^{\prime} \rightarrow L_{K^{\prime}}$ such that each χ_{i} is monochromatic or canonical, or some χ_{i} is rainbow. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{2 k}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{2 k}\right\}$ be the parts of K^{\prime}. If say coloring χ_{1} is rainbow, then clearly $K_{2, k-2}^{+} \subset K_{2 k, 2 k}^{+} \subset H_{1}$ and we are done when $G=K_{2, k-2}$. Suppose $G=S_{k-1}^{*}$. By the construction of K, there is an edge $z x_{1} y_{1} \in H_{1}$ such that $z \notin V(K)$. By (8), H^{\prime} contains a triangle $\left\{x_{1} y_{1} u_{1}, x_{1} z u_{2}, y_{1} z u_{3}\right\}$. For at most four values of $2 \leq i \leq 2 k$, $\left\{z, u_{1}, u_{2}, u_{3}\right\} \cap\left\{y_{i}, \chi_{1}\left(x_{1} y_{i}\right)\right\} \neq \emptyset$. So, H_{1} contains $\left(S_{2 k-5}^{*}\right)^{+}$with the center x_{1}. Since $k \geq 5$, we are done.

Suppose now that no coloring is rainbow. We have three possibilities.
Case 1.1. $G=S_{k-1}^{*}$. If some coloring χ_{i} is monochromatic, say, $\chi_{1}(e)=\alpha$ for all $e \in K_{2 k, 2 k}$, then the edges $x_{i} y_{i} \alpha$ for $1 \leq i \leq k-1$ and the edge $x_{1} y_{2} \chi_{2}\left(x_{1} y_{2}\right)$ form a $\left(S_{k-1}^{*}\right)^{+} \subset H^{\prime}$ with the center α. Otherwise, we may assume that χ_{1} is X-canonical. Let α_{i} be the color in χ_{1} common to every edge containing x_{i}. Since $d_{H^{\prime}}\left(y_{1} \alpha_{1}\right) \geq 2$, there is a vertex $w \neq x_{1}$ such that $w y_{1} \alpha_{1} \in H^{\prime}$. By symmetry, we may assume that $w \notin\left\{x_{2}, y_{2}, \ldots, x_{k}, y_{k}\right\}$. Then the edges $y_{1} \alpha_{i} x_{i}$ for $2 \leq i \leq k-2$, wy $y_{1} \alpha_{1}, x_{1} \alpha_{1} y_{2}$ and $y_{1} x_{1} \chi_{2}\left(x_{1} y_{1}\right)$ form a $\left(S_{k-1}^{*}\right)^{+} \subset H^{\prime}$ with the center y_{1}.

Case 1.2. $G=K_{2, k-2}$ and some coloring χ_{i} is monochromatic. If two or more of the colorings are monochromatic, say, $\chi_{1}(e)=\alpha$ and $\chi_{2}(e)=\beta$ for all $e \in K_{2 k, 2 k}$ with $\alpha \neq \beta$, then the edges $x_{i} y_{i} \alpha$ and $x_{i} y_{i+k} \beta$ for $1 \leq i \leq k$ form a $K_{2, k}^{+} \subset H^{\prime}$. If only one coloring is monochromatic, then the other two are canonical. We may assume $\chi_{1}(e)=\alpha$ for $e \in K_{2 k, 2 k}$ and χ_{2} is X-canonical. Let
α_{i} be the color common in χ_{2} to every edge containing x_{i}. Then the edges $\alpha x_{i} y_{i}$ and $\alpha_{i} x_{i} y_{k+i}$ for $1 \leq i \leq k$ form a $K_{2, k}^{+} \subset H^{\prime}$.

Case 1.3: $G=K_{2, k-2}$ and no coloring is monochromatic. This means all of the χ_{i} are canonical. In particular, by symmetry, we can assume χ_{1} and χ_{2} are both X-canonical. If α_{i} is the common color of every edge on x_{i} under χ_{1}, and β_{i} is the common color of every edge on x_{i} under χ_{2}, then the edges $y_{1} x_{i} \alpha_{i}$ and $y_{2} x_{i} \beta_{i}$ for $1 \leq i \leq k$ form a $K_{2, k}^{+} \subset H^{\prime}$. This finishes Case 1 .
Case 2: $\left|H_{2}\right| \geq \frac{\varepsilon n^{2}}{9}$. By the Kövari-Sós-Turán Theorem, for every k there is $s(k)$ such that every subgraph M of $K_{s(k), s(k)}$ with at least $s(k)^{2} / 2$ edges contains a $K_{2 k, 2 k}$. Similarly to Case 1 , let $F=\left\{f_{e}: e \in H_{2}\right\}$, where $d_{H^{\prime}}\left(f_{e}\right)=2$. For every $f \in F$, let $S_{f}=N_{H^{\prime}}(f)$. By definition, $\left|S_{f}\right|=2$ and $S_{f} \cap N_{H_{2}}(f) \neq \emptyset$. Then $|F| \geq\left|H_{2}\right| / 2 \geq \varepsilon n^{2} / 18$. By Lemma 4.1 applied to F, for a large t there exists $K \subseteq F$ such that $K \cong K_{t, t}$ and for every $f \in K, S_{f} \cap V(K)=\emptyset$. By Theorem 3.7, if t is large enough, there exists $K_{0} \cong K_{s(k), s(k)} \subset K$ and disjoint list-edge-colorings χ_{1} and χ_{2} of K_{0} such that each χ_{i} is monochromatic or canonical, or some χ_{i} is rainbow. Since each of the lists contains a color corresponding to an edge in H_{2}, we may assume that for at least of half of the edges $f \in K_{0}, f \cup\left\{\chi_{1}(f)\right\} \in H_{2}$. Then by the definition of $s(k)$, there exists $K^{\prime} \cong K_{2 k, 2 k} \subset K_{0}$ such that for every $f \in K^{\prime}, f \cup\left\{\chi_{1}(f)\right\} \in H_{2}$. Now we repeat the proof of Case 1 word by word till (and including) Case 1.2, since in these subcases we have used only two colorings. In Case 1.3, the problem arises only when χ_{1} is X-canonical and χ_{2} is Y-canonical (or vice-versa). Let $\chi_{2}\left(x_{1} y_{i}\right)=\alpha_{i}$ for $1 \leq i \leq k$. Since χ_{1} is X-canonical, we have edges $y_{i} x_{1} \gamma \in H^{\prime}$ for $1 \leq i \leq k$, where γ is the common color of all edges on x_{1} in χ_{1}. By construction, for every $1 \leq i \leq k$, edge $x_{1} y_{i} \gamma$ is in H_{2} and hence $d_{H^{\prime}}\left(y_{i} \gamma\right) \geq 3 k+1$. Therefore we may choose vertices $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in L_{K} \backslash\left\{y_{1}, y_{2}, \ldots, y_{k}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ such that $\gamma \beta_{i} y_{i}$ are all edges of H^{\prime}. These edges together with the edges $x_{1} y_{i} \alpha_{i}$ form $K_{2, k}^{+} \subset H^{\prime}$.

Case 3: $\left|H_{3}\right| \geq \frac{\varepsilon n^{2}}{9}$. If $\left|\partial H_{3}\right|>\frac{\varepsilon}{200 k} n^{2}$, then similarly to Case 1 , for every $f \in \partial H_{3}$, choose $S_{f} \subset N_{H^{\prime}}(f)$ with $\left|S_{f}\right|=3$ such that $S_{f} \cap N_{H_{3}}(f) \neq \emptyset$. By Lemma 4.1 applied to $F=\partial H_{3}$, for a large t there exists $K \subseteq F$ such that $K \cong K_{t, t}$ and for every $f \in K, S_{f} \cap V(K)=\emptyset$. From this point, we just repeat the proof of Case 1 .

So $\left|\partial H_{3}\right| \leq \frac{\varepsilon}{200 k} n^{2}$. Then by Lemma 2.2, H_{3} contains an $8 k$-full subgraph H^{*} with at least $\left|H_{3}\right|-8 k\left|\partial H_{3}\right| \geq \frac{\epsilon}{20} n^{2}$ edges. Since $\left|H^{*}\right| \geq \frac{\epsilon}{20} n^{2}$ and $\left|\partial H^{*}\right| \leq\left|\partial H_{3}\right| \leq \frac{\varepsilon}{200 k} n^{2}$, we have $d_{H^{*}}(x y) \geq 2 k$ for some $x y \in \partial H^{*}$. This means that the edge $x y$ in the graph ∂H^{*} is in at least $2 k$ triangles by (8). So, ∂H^{*} contains S_{k}^{*} with the center x and $K_{2, k}$ with the small partite set $\{x, y\}$. This means ∂H^{*} contains a copy of G. Since H^{*} is $8 k$-full, our copy of G greedily extends to $G^{+} \subset H^{*}$. This finishes the main proof.

The jump in the Turán number follows immediately by observing that if $\sigma\left(G^{+}\right) \geq 3$, then we may apply (1) and obtain $\operatorname{ex}_{3}\left(n, G^{+}\right) \geq(2-o(1))\binom{n}{2}$.

8 Concluding Remarks

- Our methods can be used to determine the order of magnitude of the Turán number of expansions of other bipartite graphs like the 3-dimensional cube and complete bipartite graphs. These will be presented in a forthcoming paper.
- Our approach may also be suitable for other extremal problems on trees and forests in hypergraphs including the following conjecture of Kalai (see Frankl and Füredi [7]), extending the Erdős-Sós Conjecture to r-graphs. An r-tree is an r-graph with edges e_{1}, \ldots, e_{q} where for each $i, e_{i} \cap\left(\cup_{j<i} e_{j}\right) \subset e_{k}$ for some $k<i$.

Conjecture 8.1. (Erdős-Sós for graphs and Kalai 1984 for $r \geq 3$) Let $r \geq 2$ and T be an r-tree on v vertices. Then

$$
e x_{r}(n, T) \leq \frac{v-r}{r}\binom{n}{r-1}
$$

This conjecture has been solved for certain classes of trees (see [7]).

9 Acknowledgments

We are grateful to Z. Füredi for informative discussions and helpful suggestions which improved this paper. Thanks also to a referee for many detailed comments on the paper.

References

[1] Collier-Cartaino, C.; Graber, N.; Jiang, T. Linear Turán numbers of r-uniform linear cycles and related Ramsey numbers, submitted.
[2] Erdős, P. On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
[3] Erdős, P.; Rado, R. A combinatorial theorem, J. London Math. Soc. 25 (1950), 249-255.
[4] Erdős, P.; Rado, R. Intersection theorems for systems of sets, J. London Math. Soc., Second Series 35 (1) (1960), 85-90.
[5] Erdős, P. Extremal problems in graph theory in: Theory of Graphs and its Applications, M. Fiedler (Ed.), Academic Press, New York (1965), 29-36.
[6] Frankl, P. On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17 (1977), no. 1, 125-134.
[7] Frankl, P.; Füredi, Z. Exact solution of some Turán-type problems, J. Combin. Theory Ser. A 45 (1987), no. 2, 226-262.
[8] Füredi, Z. Linear trees in uniform hypergraphs. European J. Combin. 35 (2014), 264-272.
[9] Füredi, Z.; Jiang, T. Hypergraph Turán numbers of linear cycles, J. Combin Theory, Ser. A, 123, (2014), 252-270.
[10] Füredi, Z.; Jiang, T.; Seiver, R. Exact solution of the hypergraph Turán problem for k uniform linear paths, Combinatorica 34, (2014), 299-322.
[11] Kostochka, A.; Mubayi, D.; Verstraëte, J. Turán problems and shadows - I: paths and cycles, J. Combin Theory, Ser. A 129 (2015), 57-79.
[12] Kövari, T.; Sós, V. T.; Turán, P. On a problem of K. Zarankiewicz. Colloquium Math. 3, (1954). 50-57.
[13] Mubayi, D. A hypergraph extension of Turán's theorem, J. Combin Theory, Ser. B, 96 (2006), no. 1, 122-134.
[14] Mubayi, D.; Verstraëte, J. Proof of a conjecture of Erdős on triangles in set-systems, Combinatorica 25 (2005), no. 5, 599-614.
[15] Pikhurko, O. Exact Computation of the Hypergraph Turán Function for Expanded Complete 2-Graphs, J. Combin Theory Ser. B 103 (2013) 220-225.

[^0]: *University of Illinois at Urbana-Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-1266016 and by Grant NSh1939.2014.1 of the President of Russia for Leading Scientific Schools.
 ${ }^{\dagger}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607. E-mail: mubayi@uic.edu. Research partially supported by NSF grants DMS-0969092 and DMS-1300138.
 ${ }^{\ddagger}$ Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA. E-mail: jverstra@math.ucsd.edu. Research supported by NSF Grant DMS-1101489.

