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Abstract

The expansion G+ of a graph G is the 3-uniform hypergraph obtained from G by enlarg-
ing each edge of G with a vertex disjoint from V (G) such that distinct edges are enlarged by
distinct vertices. Let exr(n, F ) denote the maximum number of edges in an r-uniform hyper-
graph with n vertices not containing any copy of F . The authors [11] recently determined
ex3(n,G

+) namely when G is a path or cycle, thus settling conjectures of Füredi-Jiang [9]
(for cycles) and Füredi-Jiang-Seiver [10] (for paths).

Here we continue this project by determining the asymptotics for ex3(n,G
+) when G is

any fixed forest. This settles a conjecture of Füredi [8]. Using our methods, we also show that
for any graph G, either ex3(n,G

+) ≤
(
1
2 + o(1)

)
n2 or ex3(n,G

+) ≥ (1 + o(1))n2, thereby
exhibiting a jump for the Turán number of expansions.

1 Introduction

An r-uniform hypergraph F , or simply r-graph, is a family of r-element subsets of a finite set.

We associate an r-graph F with its edge set and call its vertex set V (F ). Given a set of r-graphs

F , let exr(n,F) denote the maximum number of edges in an r-graph on n vertices that does not

contain any r-graph from F . When F = {F} we write exr(n, F ). We will omit the subscript

r in this notation if it is obvious from context, and this paper deals exclusively with the case

r = 3. Let G be a graph, and for each edge e ∈ G let Xe be a set of r − 2 vertices so that

Xe ∩ V (G) = ∅ and Xe ∩Xf = ∅ when e ̸= f . The r-uniform expansion G+ of a graph G is the

r-graph G+ = {e ∪Xe : e ∈ G}.

Expansions of graphs include many important hypergraphs whose extremal functions have been

investigated, for instance when G is a triangle and more generally a clique [8, 9, 10, 11, 13, 14, 15].

Even the simplest case of the expansion of a path with two edges is non-trivial, in this case we

are asking for two hyperedges intersecting in exactly one point. Here the extremal function was

determined by Frankl [6], settling a conjecture of Erdős and Sós. If a graph is not r-colorable

then its r-uniform expansion G+ is not r-partite, so exr(n,G
+) = Ω(nr). We focus on exr(n,G

+)

when G is r-partite, where a well-known result of Erdős [2] yields ex(n,G+) = O(nr−ϵG) for some

ϵG > 0.
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The authors [11] had previously determined ex3(n,G
+) exactly (for large n) when G is a path

or cycle of fixed length k ≥ 3, thereby answering questions of Füredi-Jiang-Seiver [10] and

Füredi-Jiang [9].

1.1 Results

A set of vertices in a hypergraph F containing exactly one vertex from every edge of F is called

a crosscut, following Frankl and Füredi [7]. Let σ(F ) be the minimum size of a crosscut of F if

it exists, i.e.,

σ(F ) := min{|X| : X ⊂ V (F ), ∀e ∈ F, |e ∩X| = 1}

if such an X exists. Note that crosscuts always exist for expansions, since one can pick a vertex

in Xe for every edge e ∈ G and the resulting set of vertices is a crosscut of G+ of size |G|. In

the case that G is a tree, one can obtain a smaller crosscut by choosing some vertices in V (G)

that form an independent set in G, and vertices in Xe for those edges e not covered by the

independent set.

Since the r-graph on n vertices consisting of all edges containing exactly one vertex from a fixed

subset of size σ(F )− 1 does not contain F , we have

exr(n, F ) ≥ (σ(F )− 1)

(
n− σ(F ) + 1

r − 1

)
∼ (σ(F )− 1 + o(1))

(
n

r − 1

)
. (1)

An intriguing open question is when asymptotic equality holds above and this is one of our

motivations for this project. Indeed, it appears that the parameter σ(F ) often plays a crucial role

in determining the extremal function for F . The value of ex3(n,G
+) was determined precisely

by the authors [11] when G is a path or cycle. Füredi [8] determined the asymptotics when G is a

forest and r ≥ 4, by showing that exr(n,G
+) = (σ(G+)−1+o(1))

(
n

r−1

)
. Füredi’s proof involved

extensive use of the delta system method but the method does not work for r = 3. Determining

exr(n,G
+) when G is a tree seems to get harder as r gets smaller, for example, when r = 2 it

becomes the Erdős-Sós Conjecture [5]. Füredi conjectured [8] that ex3(n,G
+) ∼ (σ(G+)−1)

(
n
2

)
when G is a forest, and our main result verifies this conjecture:

Theorem 1.1. (Main Result) Let G be a forest. Then

ex3(n,G
+) ∼ (σ(G+)− 1)

(
n

2

)
.

Our next result concerns ex3(n,G
+) for any graph G with σ(G+) = 2. Note that all such graphs

are subgraphs of either K2,t for some t ≥ 2 or S∗
t which is the graph obtained from a star with

t ≥ 2 edges by adding an edge not incident to the highest degree vertex.

Theorem 1.2. For every fixed graph G with σ(G+) = 2,

ex3(n,G
+) ∼

(
n

2

)
.

A straightforward consequence of Theorem 1.2 is that for any graph G, we have either

ex3(n,G
+) ≤

(
1

2
+ o(1)

)
n2 or ex3(n,G

+) ≥ (1 + o(1))n2.
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This paper is organized as follows: in Section 2 we prove some preliminary lemmas. In Section

3, we give a bipartite version of the canonical Ramsey theorem of Erdős and Rado [3], which is

one of the main tools for Theorem 1.1. We prove Theorem 1.1 in Section 6 and Theorem 1.2 in

Section 7.

Notation and terminology. A 3-graph is called a triple system. The edges will be written as

unordered lists, for instance, xyz represents {x, y, z}. For a set X of vertices of a hypergraph

H, let H − X = {e ∈ H : e ∩ X = ∅}. If X = {x}, then we write H − x instead of H − X.

The codegree of a pair {x, y} of vertices in H is dH(x, y) = |{e ∈ H : S ⊂ e}| and for a set S

of vertices, NH(S) = {x ∈ V (H) : S ∪ {x} ∈ H} so that |NH(S)| = dH(S) when |S| = 2. The

shadow of H is the graph ∂H = {xy : ∃e ∈ H, {x, y} ⊂ e}. The edges of ∂H will be called the

sub-edges of H. A triple system is linear if every pair of its edges intersect in at most one point.

For an edge e in a triple system H, let δH(e) and △H(e) respectively denote the smallest and

largest codegree among the three pairs in e.

2 Full hypergraphs

In this section we state and prove a basic result about hypergraphs that generalizes the fact

that a graph with average degree d contains a subgraph of minimum degree at least d/2.

Definition 2.1. A triple system H is d-full if every sub-edge of H has codegree at least d.

Thus H is d-full is equivalent to saying that the minimum non-zero codegree in H is at least d.

The following lemma extends the well known fact that any graph G has a subgraph of minimum

degree at least d+ 1 with at least |G| − d|V (G)| edges.

Lemma 2.2. For d ≥ 1, every n-vertex triple system H has a (d+ 1)-full subgraph F with

|F | ≥ |H| − d|∂H|.

Proof. A d-sparse sequence is a maximal sequence e1, e2, . . . , em ∈ ∂H such that dH(e1) ≤ d,

and for all i > 1, ei is contained in at most d edges of H which contain none of e1, e2, . . . , ei−1.

The 3-graph F obtained by deleting all edges of H containing at least one of the ei is (d+1)-full.

Since a d-sparse sequence has length at most |∂H|, we have |F | ≥ |H| − d|∂H|. 2

3 Colors, lists, and a canonical Ramsey theorem

One of our main new ideas is to use the canonical Ramsey theorem of Erdős and Rado [3]. We

need a bipartite version of this classical result.

Definition 3.1. Let F be a bipartite graph with parts X and Y and an edge-coloring χ. Then
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1. χ is X-canonical if for each x ∈ X, all edges of F on x have the same color and

edges on different vertices in X have different colors

2. χ is canonical if χ is X-canonical or Y -canonical

3. χ is rainbow if the colors of all the edges of F are different and

4. χ is monochromatic if the colors of all the edges of F are the same.

Recall that a sunflower or ∆-system is a collection of sets such that the intersection of any two

of them is equal to the intersection of all of them. This common intersection is called the core

of the sunflower. A key result on sunflowers is the Erdős-Rado Sunflower Lemma [4]:

Lemma 3.2. (Erdős-Rado Sunflower Lemma) If F is a collection of sets of size at most k

and |F | ≥ k!(s− 1)k, then F contains a sunflower with s sets.

If χ is an edge-coloring of a graph F and G ⊂ F , then χ|G denotes the edge-coloring of G

obtained by restricting χ to the edge-set of G. A bipartite version of the canonical Ramsey

theorem is as follows:

Theorem 3.3. For each s > 0 there exists t > 0 such that for any edge-coloring χ of G = Kt,t,

there exists Ks,s ⊂ G such that χ|Ks,s is monochromatic or rainbow or canonical.

Proof. Let X and Y be the parts of G and let S = {y1, y2, . . . , y2s2} ⊂ Y . Let W be the

set of vertices x ∈ X contained in at least s edges of the same color connecting x with S. If

|W | > m := s2
(
2s2

s

)
, then there is a set Y ′ ⊂ S of size s and a set X ′ ⊂ W of size s2 such

that for every x ∈ X ′, the edges xy with y ∈ Y ′ all have the same color. In this case we

recover either a monochromatic Ks,s or an X ′-canonical Ks,s. Now suppose |W | ≤ m. For

x ∈ X0 := X\W , let C(x) be a set of 2s distinct colors on edges between x and S. By Lemma

3.2, if |X0| > (2s)!(s!m)2s, then there exists X1 ⊂ X0 such that {C(x) : x ∈ X1} is a ∆-system of

size s!m. Let C be the core of this ∆-system. First suppose |C| ≥ s. Take a subset C ′ ⊂ C with

|C ′| = s. To each vertex x in X1, associate an s-subset Sx in S such that the edges {xy : y ∈ Sx}
have all the colors from C ′ appearing on them. There are

(
2s2

s

)
= m/s2 s-subsets of S, and

|X1| = s!m, so we have a set X2 of at least s2 · s! > s · s! vertices in X1 which each sends s

edges with colors from C ′ into a fixed subset Y3 of S of size s. This implies that for some set

X3 ⊂ X2 of size s, the Ks,s between X3 and Y3 is Y3-canonical. Finally, suppose |C| < s. Pick

C ′(x) ⊂ C(x)\C of size s for x ∈ X0. Since |X0| = s!m > s
(
2s2

s

)
, we find a set Y ∗ ⊂ S of size s

as well as a set X∗ ⊂ X of s vertices x ∈ X0 such that the edges between x and Y ∗ have colors

from C ′(x). Since the sets C ′(x) are disjoint, this is a rainbow copy of Ks,s. 2

We now link this to hypergraphs via the following definition.

Definition 3.4. Let H be a 3-graph. For G ⊂ ∂H and e ∈ G, let

LG(e) = NH(e) \ V (G).

The set LG(e) is called the list of e and the elements of LG(e) are called colors.

Let LG =
∪

e∈G LG(e) – this is the set of colors in the lists of edges of G.
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Definition 3.5. A list edge coloring of G is a map χ : G→ LG with χ(e) ∈ LG(e) for all e ∈ G.

List-edge-colorings χ1, χ2 : G→ LG are disjoint if χ1(e) ̸= χ2(f) for all e, f ∈ G.

If χ is an injection – the coloring is rainbow – then clearly G+ ⊂ H. We require one more

definition:

Definition 3.6. Let H be a 3-graph and m ∈ N. An m-multicoloring of G ⊂ ∂H is a family of

list-edge-colorings χ1, χ2, . . . , χm : G→ LG such that χi(e) ̸= χj(e) for every e ∈ G and i ̸= j.

A necessary and sufficient condition for the existence of an m-multicoloring of G is that all edges

of G have codegree at least m in H. We stress here that the definitions are all with respect to

the fixed host 3-graph H. The following result will be key to the proofs of Theorem 1.1 and

Theorem 1.2.

Theorem 3.7. Let m, s ∈ N, let H be a 3-graph, and let G = Kt,t ⊂ ∂H. Suppose G has an

m-multicoloring. If t is large enough, then there exists F = Ks,s ⊂ G such that F has either

a rainbow list-edge-coloring or an m-multicoloring such that the colorings are pairwise disjoint,

and each coloring is monochromatic or canonical.

Proof. Set s = tm/m
2 and tm < tm−1 < · · · < t1 < t0 = t where Theorem 3.3 with input ti has

output ti−1. Pick a color c1(e) on each edge e ∈ G and apply Theorem 3.3 to G. We obtain

a rainbow, monochromatic or canonical subgraph G1 of G where G1 = Kt1,t1 . If it is rainbow,

then we are done, so assume it is monochromatic or canonical. For every e ∈ G1, remove c1(e)

from its list. Now pick another color on each edge of G1 and repeat. We obtain subgraphs

Gm ⊂ Gm−1 ⊂ · · · ⊂ G1 such that each Gi is monochromatic or canonical where Gi = Kti,ti

has parts Xi, Yi. In particular, each coloring of the m-multicoloring of G restricted to Gm is

monochromatic or canonical.

Let us assume that we have a monochromatic colorings, b Xm-canonical colorings, and c Ym-

canonical colorings of Gm where a + b + c = m. It suffices to ensure that these colorings are

pairwise disjoint. A color χ(xy) in anXi-canonical coloring ofGi cannot appear in a Yi′-canonical

coloring of Gi′ for i
′ > i as χ(xy) was deleted from all edges incident to x when forming Gi+1.

A similar statement holds with X and Y interchanged, so every Xm-canonical coloring of Gm

is disjoint from every Ym-canonical coloring of Gm. The same argument shows that no color

in a monochromatic coloring appears in a canonical coloring. It suffices to show that colors on

different Xm-canonical colorings are disjoint (and the same for Ym-canonical).

Let the b Xm-canonical colorings be χ1, ..., χb. Construct an auxiliary graphK with V (K) = Xm

where xx′ ∈ K if there exist i ̸= i′ and a color α that is canonical for x in χi and canonical for

x′ in χi′ . Then ∆(K) ≤ b(b − 1), so K has an independent set of size s = tm/m
2 ≤ |Xm|/b2.

Let us restrict Xm to this independent set. We repeat this procedure for Ym and finally obtain

a subgraph F = Ks,s with an m-multicoloring that satisfies the requirement of the theorem. 2
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4 Cleaning lemmas

The lemmas in this section will allow us to find for an appropriate triple system H a large dense

graph G ⊂ ∂H that possesses an m-multicoloring with the colors outside of V (G). Using such

substructures, we will embed expansions of graphs into H.

Lemma 4.1. Let m, t ∈ N, δ ∈ R+ and H be an n-vertex triple system. Suppose that F ⊂ ∂H

and for each f ∈ F let Sf ⊂ V (H) \ f with |Sf | = m. If |F | ≥ δn2 and n is large enough, then

there exists K ⊂ F such that K ∼= Kt,t and Sf ∩ V (K) = ∅ for each f ∈ K.

Proof. Let T be a random subset of V (H) obtained by picking each vertex independently with

probability p = 1/2. Let G = {f ∈ F : f ⊂ T, Sf ∩ T = ∅}. Then

E(|G|) ≥ |F |p2(1− p)m ≥ δ

2m+2
n2.

So there is a T ⊂ V (H) with |G| at least this large. If n is large enough, then the Kövari-Sós-

Turán Theorem implies that there exists a complete bipartite graph K ⊂ G ⊂ F with parts

of size t. Due to the definition of G, the subgraphK satisfies the requirements of the lemma. 2

Lemma 4.2. Let A1, . . . , Am be disjoint subsets of a set V and a1, . . . , am be distinct elements

of V . Then there are ⌈m3 ⌉ pairwise disjoint sets of the kind Ai + ai := Ai ∪ {ai}.

Proof. Note that the statement of the lemma allows ai ∈ Ai. Since all a1, . . . , am are distinct,

if (Ai + ai) ∩ (Aj + aj) ̸= ∅, then ai ∈ Aj , or aj ∈ Ai, or both. Let F be the digraph with

vertex set {A1 + a1, . . . , Am + am} and AiAj ∈ F if ai ∈ Aj and i ̸= j. Since the outdegree of

every vertex in F is at most 1, F is 3-colorable and thus has an independent I of size ⌈m3 ⌉. By
definition, the members of I are pairwise disjoint. 2

5 Trees and crosscuts

In this section we produce a structural decomposition of a tree T that will be used later to

embed T+ in a hypergraph. We will also prove some basic lemmas about this decomposition.

Let G be a graph and consider a minimum crosscut X of G+. For an edge e ∈ G, let ve be

the unique vertex such that e ∪ ve ∈ G+; say that ve is the enlargement of e. Partition X into

I ∪ J where J comprises the vertices of X that are used for enlargement of the edges of G. Let

R ⊂ G be the set of edges e such that ve ∈ J . Then I ⊂ V (G) is an independent set in G and

R ⊂ G− I. Furthermore, σ(G+) = |X| = |I|+ |R|. On the other hand for any independent set

I ⊂ V (G) and subgraph R ⊂ G− I, such that every edge of G− I is in R, we obtain a crosscut

X = I
∪

∪e∈R{ve} of G+. Consequently,

σ(G+) = min{|I|+ |G− I| : I ⊂ V (G) is an independent set}.

In the ensuing proof, it is more convenient to work with the pair (I,R) rather than a crosscut

X of G+.
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Definition 5.1. A crosscut pair of a graph G is a pair (I,R) where
• I ⊂ V (G) is an independent set,

• R = {e ∈ G : e ∩ I = ∅}.
The crosscut pair (I,R) is optimal if |I|+ |R| = σ(G+).

Given a crosscut pair (I,R), let

L = {v ∈ V (G)\(V (R) ∪ I) : dG(v) = 1} and D = {v ∈ V (G)\(V (R) ∪ I) : dG(v) > 1}

so that D = V (G) \ (V (R) ∪ I ∪ L).

I 

I 

I

I

R 

R

L 

L 

L

L 

L

L 

D

D 

R

Figure 1 : Optimal crosscut decomposition σ(G+) = 7 = |I|+ |R|

Lemma 5.2. Let T be a tree with σ(T+) = ℓ+1 > 0. Consider an optimal crosscut pair (I,R)

of T that maximizes |I|. Then (a) |R| ≤ ℓ/2 and (b) no pendant edge of T belongs to R.

Proof. Suppose yz ∈ R is a pendant edge of T with dT (z) = 1. Then z is not adjacent to

any vertex of I. The crosscut pair (I ′, R′) where I ′ = I ∪ {z} and R′ = R\{yz} contradicts the

maximality of I, proving (b). Since T has no cycles, the number of edges induced by I ∪V (R) is

at most |I|+ |V (R)| − 1. On this other hand, each vertex r of R must be connected to I by one

of these edges, else we could move r into I, contradicting the maximality of I. Consequently,

|V (R)|+ |R| ≤ |I|+ |V (R)| − 1.

This yields |I| ≥ 1 + |R|. Since (I,R) is optimal, |I|+ |R| = ℓ+ 1 and this gives (a). 2
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Lemma 5.3. Let F be a k-vertex forest. Then there exists a k-vertex tree T ⊃ F with σ(T+) =

σ(F+).

Proof. Let F have components T1, T2, . . . , Ts. For each j = 1, . . . , s, let (Ij , Rj) be an opti-

mal crosscut pair of Tj with |Ij | a maximum. If Ij = ∅, then any pendant edge of Tj is in

R, contradicting Lemma 5.2.(b). Therefore Ij ̸= ∅ for j = 1, 2, . . . , s. If I =
∪s

j=1 Ij and

R =
∪s

j=1Rj , then clearly (I,R) is an optimal crosscut pair of F , and σ(F+) =
∑s

j=1 σ(T
+
j ).

For each j : 1 ≤ j ≤ s−1, let us add an edge between Tj and Tj+1 as follows: pick u ∈ V (Tj)−Ij
and v ∈ Ij+1 and add the edge uv. This results in a tree T ⊃ F with σ(T+) = σ(F+). 2

In what follows, we will be thinking of trees as bipartite graphs.

Definition 5.4. Let T be a tree with parts P and Q, with |P | ≤ |Q|. Let

λ(T ) =

{
|P | − 1 if some leaf of T is in P

|P | otherwise.

If F is a forest with components S1, . . . , Sh, then we define λ(F ) =
∑h

i=1 λ(Si).

Lemma 5.5. For every forest F , λ(F ) ≤ |F |/2.

Proof. It is an easy exercise to show that if T is a tree with parts P and Q and |P | = |Q|, then
each of P and Q contains a leaf. This shows λ(T ) ≤ |T |/2 for every tree T , and applying this

to the components of F , we obtain the lemma. 2

A cycle in a hypergraph is a sequence of vertices v1, . . . , vt and a sequence of distinct edges

e1, . . . , et where ei contains both vi and vi+1 for i = 1, . . . , t− 1 and et contains both vt and v1.

A hypergraph is a linear forest if it has no cycles.

Lemma 5.6. Let T be a tree with an optimal crosscut pair (I,R), σ(T+) = ℓ + 1 > 0 and

λ := λ(T ). Then

dT (r) ≤ ℓ− λ for each r ∈ V (R). (2)

Proof. Suppose that R consists of h components R1, . . . , Rh and r ∈ V (R1). The second end

of every edge rv ∈ G − R must be in I. Also every vertex of R has a neighbor in I, because

otherwise we could move the vertex into I and obtain a crosscut pair of the same size and larger

|I|. Moreover, as T is acyclic, every V (Rj) has at least |V (Rj)| = 1 + |Rj | neighbors in I and

the neighborhoods of sets Rj in I form a hypergraph linear forest. Thus r is not adjacent to

at least
∑h

j=1 |Rj | = ℓ2 vertices in I. Let ℓ1 = |I|. By definition, r is not adjacent to at least

λ(R1) vertices in V (R1) (the smaller partite set of V (R1)). So, since |R| − λ ≥ |R1| − λ(R1),

dT (r) ≤ (|I| − ℓ2) + (|V (R1)| − λ(R1)) ≤ ℓ1 − ℓ2 + (1 + |R| − λ) = ℓ1 + 1− λ. (3)

The last expression is at most ℓ − λ unless ℓ2 = 1. Suppose ℓ2 = 1. Then h = 1, λ = 0, r has

exactly one neighbor in V (R), and instead of (3), we have

dT (r) ≤ (|I| − ℓ2) + 1 = ℓ1 = ℓ− λ.

So, (2) holds in this case, as well. 2
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6 Proof of Theorem 1.1

Let G be a forest with k vertices, and ℓ = σ(G+)−1. We are to show ex3(n,G
+) ≤ (ℓ+o(1))

(
n
2

)
.

Let H be a triple system on n vertices with |H| > (ℓ + ϵ)
(
n
2

)
where ϵ > 0. By Lemma 5.3,

G+ ⊂ T+ for some tree T with k vertices and σ(T+) = σ(G+), so it is enough to show T+ ⊂ H.

for n > n0(ϵ, k). Suppose for a contradiction that T+ ̸⊂ H.

6.1 Finding a rich triple system

Recall that δH(e) = minuv⊂e dH(uv). In this section we show how to find hypergraphs H3 ⊂
H1 ⊂ H such that δH1(e) ≥ ℓ + 1 for every e ∈ H1, H3 has quadratically many edges, and

δH(f) ≤ 3k for all f ∈ H3. We will later use H1 and H3 to embed T+.

Let H1 be obtained from H by consecutive deletion of edges having a pair of codegree at most

ℓ in the current 3-graph, so that δH1(e) ≥ ℓ+ 1 for all e ∈ H1. Let F1 denote the set of deleted

edges. Since we deleted at most ℓ edges at each step and the number of steps is at most
(
n
2

)
, we

have |F1| ≤ ℓn2/2 and |H1| = |H0| − |F1| ≥ (ℓ+ ϵ)n2/2− ℓn2/2 ≥ ϵn2/2. By definition,

δH1(e) ≥ ℓ+ 1 for every e ∈ H1. (4)

Let

H2 = {e ∈ H1 : δH(e) > 3k} and H3 = {e ∈ H1 : δH(e) ≤ 3k},

so that H1 = H2 ∪H3. Suppose for a contradiction that |H2| > 3k2n. If |∂H2| > kn, then T ⊂
∂H2, and we greedily extend T to T+ ⊂ H. Otherwise, |∂H2| ≤ kn, in which case by Lemma 2.2

H2 has a 3k-full subgraph of size at least |H2| − 3k|∂H2| > 0. This subgraph clearly contains a

copy of T+. This contradiction shows |H2| ≤ 3k2n, and therefore |H3| = |H1| − |H2| ≥ ϵn2/4

for large enough n.

By the definition of H3, in each e ∈ H3 we can fix some fe ∈
(
e
2

)
with dH(fe) ≤ 3k. Let

F = {fe : e ∈ H3}. Then |F | ≥ |H3|/3k > ϵn2/12k. For each f ∈ F , let Sf ⊂ NH1(f) with

|Sf | = ℓ + 1. Applying Lemma 4.1 to F ⊂ ∂H3 we find a copy K of Kt,t for large t such that

each edge f of K is contained in ℓ+ 1 edges f ∪ {v} ∈ H1 with v ∈ Sf .

The ℓ+ 1 edges f ∪ {v} with v ∈ Sf containing f for every f ∈ K give an (ℓ+ 1)-multicoloring

of K, so by Theorem 3.7 there is G0 = Ks,s ⊂ K (s large) with an (ℓ + 1)-multicoloring

M1, . . . ,Mℓ+1 such that

• some Mi is rainbow, or

• theMi’s are pairwise disjoint and eachMi is either monochromatic or canon-

ical.

Let X and Y be the partite sets of G0 and

Z =
∪

x∈X,y∈Y
NH1(xy)− V (G0).

We will often think of Mi as a 3-graph comprising the edges xyw where x ∈ X, y ∈ Y and w is

the color of xy.
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6.2 Canonical colorings and embeddings

In this section we prove a series of claims using Theorem 3.7 that allow us to embed T+ within

H1 in certain situations.

Claim 1. No Mi is rainbow.

Proof: Suppose M1 is rainbow. Since s > 3k, there is an embedding ψ(T ) of T into G0. Since

M1 is rainbow, its edges containing the edges of ψ(T ) form T+ ⊂ H1. 2

Claim 2. If some Mi is Y -canonical then there are no X-canonical Mj.

Proof: Suppose M1 is Y -canonical and M2 is X-canonical. Then for every y ∈ Y there is w(y)

such that xyw(y) ∈ H1 for all x ∈ X, y ∈ Y and for every x ∈ X there is u(x) such that

xyu(x) ∈ H1 for all x ∈ X, y ∈ Y . Let T̂ be a directed out-rooted tree obtained from T with

any root v. We embed it into G0, and expand each edge as follows: if the image of a directed

edge of T̂ is xy, then expand it to xyw(y) and if the image is yx, then expand it to yxu(x). 2

Choose an optimal crosscut pair of T with maximum |I|. Let ℓ1 = |I| and ℓ2 = |R|. By

Lemma 5.2.(b), the pendant edges of T are not in R.

Claim 3. At most ℓ1 − 1 of the Mi are monochromatic.

Proof: Suppose, without loss of generality, that for i = 1, 2, . . . , ℓ1, each Mi is monochromatic

and wi is the common vertex of all edges in Mi. If I = {a1, . . . , aℓ1}, then for i = 1, . . . , ℓ1, we

place ai onto wi, and then embed T − I into G0. Since each of w1, . . . , wℓ1 is adjacent in ∂H1

with each vertex of G0, this yields an embedding of T into ∂H1. Next we extend the ℓ2 edges of

R using for each of them an edge from one of the ℓ2 sets Mℓ1+1, . . . ,Mℓ1+ℓ2 (one edge from each

set). Every other edge of the embedded T is incident with one of wi. If such an edge has the

form wix (respectively, wiy) then we take any unused y ∈ Y (respectively, x ∈ X) and extend

it to {wi, x, y}. 2

Claim 4. R ̸= ∅.

Proof: Suppose R = ∅ and U,U ′ are partite sets of T . Then all vertices of I are in the same

partite set, say U , of T (in fact, I = U as I covers all edges of T ). By Claims 1, 2 and 3 and

symmetry, we may assume that M1 is Y -canonical. For every y ∈ Y there is w(y) such that

xyw(y) ∈ H3 for all x ∈ X, y ∈ Y . Place the vertices of T into X ∪ Y so that U ⊂ X and

U ′ ⊂ Y . Since G0 is a complete bipartite graph, this yields an embedding of T into G0. Since T

is a tree, |T | = |U ′|+ |U | − 1 = |U ′|+ ℓ. For every y ∈ Y which is the image of some b ∈ U ′ we

expand one edge xy by adding w(y). For the remaining ℓ edges we use edges of M2, . . . ,Mℓ+1,

from distinct Mj for distinct edges. 2

We recall from the last section the definition of λ(F ) for a forest F .
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Claim 5. If some Mi is Y -canonical, then at most λ(R)− 1 of the Mj are monochromatic.

Proof: Suppose that Mℓ is Y -canonical (we may assume this by Claim 3) and suppose, for

a contradiction, that for i = 1, . . . , λ(R), each Mi is monochromatic and wi is the common

vertex of all edges in Mi. Also for every y ∈ Y there is w(y) such that each edge in Mℓ

containing y also contains w(y). We embed R into the subgraph of ∂H1 induced by Y ∪{w(y) :

y ∈ Y } ∪ {w1, . . . , wλ(R)} as follows. Suppose the components formed by the edges of R are

R1, . . . , Rh with smaller partite sets P1, . . . , Ph and if Pj contains leaves, then bj is one of them.

We choose arbitrary y1, . . . , yh ∈ Y , and for j such that bj exists, place bj onto w(yj) and the

neighbor in Rj of bj onto yj . Then place the remaining λ(R) vertices of P1∪ . . .∪Ph onto vertices

in {w1, . . . , wλ(R)} and the remaining vertices of V (R) (which comprise
∪

i V (Ri)\(Pi∪NR(bi)))

onto arbitrary free vertices in Y . Since each wiy ∈ ∂H1 for all y ∈ Y this yields an embedding

of R in ∂H1. Next, place the vertices of D ∪ L into new free vertices of Y , and finally, place all

vertices of I onto distinct vertices in X.

This gives an embedding of T into ∂H1. We expand it to an embedding of T+ into H1 as follows.

Since xyw(y) ∈ H1 for all x ∈ X and |X| ≥ s, we can expand the edges of the form yw(y) at

the end. Expand all edges of the form wiy and wix by adding a free vertex from X and Y ,

respectively. This allows us to expand all edges of T except those that contain some vertex of

D as an endpoint. We now focus on these edges which connect D to I.

For every y onto which we placed a vertex a ∈ D, we expand one edge of the kind xy by adding

w(y) and all other such edges using some Mj (distinct for distinct edges of T ). To prove that we

have enough freeMj first observe that the number of edges in T connecting D to I is |D|+ℓ1−1

(because I is an independent set and each edge joins precisely two components). Of these edges,

|D| will be expanded by expanding pairs of the form yw(y) as mentioned earlier, so we must

only expand ℓ1 − 1 more edges. The number of Mj that have already been used is at most

λ(R) + 1 and so the number of unused Mj is at least ℓ+ 1− (λ(R) + 1) = ℓ− λ(R). We finally

show ℓ − λ(R) ≥ ℓ1 − 1 to complete the embedding. By Lemma 5.5, λ(R) ≤ |R|/2. Since

|I|+ |R| = ℓ+ 1 and |R| ≤ ℓ/2 from Lemma 5.2, we have ℓ− |R|/2 ≥ ℓ1 − 1, and therefore

ℓ− λ(R) ≥ ℓ− |R|
2

≥ ℓ1 − 1.

This shows that T+ ⊂ H, a contradiction. 2

Let λ = λ(R). By Claims 1, 2, 3 and symmetry, we may order the colorings so that M1, . . . ,Mp

are Y -canonical and the remaining are monochromatic. Furthermore, by Claim 5,

p ≥ ℓ+ 2− λ.

6.3 Constructing the digraph Dg

In this section we construct a digraph Dg whose underlying edges lie in ∂H1 and it will be

obtained iteratively from a sequence of digraphs D1, D2, . . .. The digraph Dg will be the vertex

disjoint union of homomorphic images of directed out-trees each with height at most ℓ2+1. The

rich structure of Dg encodes edges of H1 and will later be used to embed T+ in H1.
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For each i ∈ {1, . . . , p} and every y ∈ Y , let wi(y) be the vertex such that each edge in Mi

containing y contains also wi(y) and let Wi = {wi(y) : y ∈ Y }. Also for every y ∈ Y , let

W (y) = {wi(y) : i = 1, . . . , p}. Let Q = {αp+1, . . . , αℓ+1} be the set of the colors used in the

monochromatic colorings Mi.

By definition, for each i ∈ {1, . . . , p}, the subgraph of ∂H1 induced by X ∪ Wi contains the

complete bipartite graph with partite sets X and Wi. By Theorem 3.7, all Wi are mutually

disjoint and disjoint from Y . By the same theorem, we also have Wi ∩Q = ∅ where Q is the set

of vertices/colors in the monochromatic colorings Mp+1, . . . ,Mℓ+1.

Basic cleaning procedure: By the codegree condition (4), for each x ∈ X,w1(y) ∈ W1, we

can choose a set S(x,w1(y)) ⊂ NH1(xw1(y)) with y ∈ S(x,w1(y)) and |S(x,w1(y))| = ℓ + 1.

Define the 3-graph

H ′
1 = {xwz ∈ H1 : x ∈ X,w ∈W1, z ∈ S(x,w)}

with V (H ′
1) = ∪e∈H′

1
e so that

|V (H ′
1)| ≤ |X|+ |W1|+ (ℓ+ 1)|X||W1| < (ℓ+ 3)s2.

Let F ′ be the complete bipartite graph with parts X and W1 so that F ′ ⊂ ∂H ′
1. Then |F ′| =

|X||W1| = s2 ≥ δ|V (H ′
1)|2 for δ = 1/(ℓ+ 3). Since s is large, we may apply Lemma 4.1 to F ′ ⊂

∂H ′
1 to obtain a large complete bipartite subgraph G1,1 ⊂ F ′ such that S(x,w) ∩ V (G1,1) = ∅

for all xw ∈ G1,1. Since |S(x,w)| ≥ ℓ+1 for all xw, we can view G1,1 as being multicolored with

ℓ + 1 colors, with one of the color classes corresponding to the vertices y. Moreover, all colors

lie outside V (F ′). The reason we need this is to apply Claim 1 below. This is the basic cleaning

procedure.

By Theorem 3.7, we obtain subsets X ′
1,1 ⊂ X,W ′

1,1 ⊂ W1, such that the (ℓ + 1)-multicoloring

restricted to X ′
1,1 ×W ′

1,1 comprises rainbow, monochromatic, or canonical colorings. Let Y ′
1,1 =

{y ∈ Y : w1(y) ∈ W ′
1,1}. None of the colorings is rainbow by Claim 1. Due to the colors

corresponding to Y ′
1,1, one of these colorings is W ′

1,1-canonical, so by Claim 2 none of the col-

orings is X ′
1,1-canonical. Consequently, Claims 3-5 imply that there is an integer p1, and a set

{w1,1(y) . . . , w1,p1(y)} for each y ∈ Y ′
1,1, whose vertices correspond to the W ′

1,1-canonical colors

of w1(y). Moreover, w1,1(y) = y,

w1,j(y) ̸= w1,j(y
′) for y ̸= y′ and w1,j(y) ̸= w1,j′(y) for j ̸= j′. (5)

In other words the (j + 1)st canonical color class contains all edges of the form xw1(y)w1,j(y)

for x ∈ X ′
1,1 and y ∈ Y ′

1,1. Let |X ′
1,1| = |Y ′

1,1| = s′1,1 and Y ′
1,1 = {y1, . . . , ys′1,1}. Add the colors of

monochromatic colorings to Q.

Type-1 cleaning: Recall that w1,1(yh) = yh for all 1 ≤ h ≤ s′1,1. By Lemma 4.2 with

Ah = {yh, w1(yh)} and ah = w1,2(yh), we can renumber yh so that the sets

{y1, w1(y1), w1,2(y1)}, . . . , {ys′1,1/3, w1(ys′1,1/3), w1,2(ys′1,1/3)}

are pairwise disjoint. Applying Lemma 4.2 with Ah = {yh, w1(yh), w1,2(yh)} and ah = w1,3(yh),

then with Ah = {yh, w1(yh), w1,2(yh), w1,3(yh)} and ah = w1,4(yh), and so on, we obtain that for

s′′1,1 =
⌈
s′1,1
3p1

⌉
we can renumber yh so that the sets

{y1, w1(y1), w1,2(y1), . . . , w1,p1(y1)}, . . . , {ys′′1,1 , w1(ys′′1,1), w1,2(ys′′1,1), . . . , w1,p1(ys′′1,1)}
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are pairwise disjoint. Let Y ′′
1,1 = {y1, . . . , ys′′1,1} and X ′′

1,1 be any subset of X ′
1,1 of size s′′1,1. This

is the type-1 cleaning.

Type-2 cleaning: Note that we automatically have w1,j(y)∩X ′′
1,1 = ∅, since xw1(y)w1,j(y) ∈ H1

for all x ∈ X ′′
1,1 so in particular, these three vertices are distinct. Since for every 1 ≤ j ≤ p1 all

vertices w1,j(yh) are distinct, at most |Q| ≤ ℓ of them are in Q. Deleting from Y ′′
1,1 the at most

p1|Q| vertices yh such that

{y1, w1(y1), w1,2(y1), . . . , w1,p1(y1)} ∩Q ̸= ∅,

we obtain a Y1,1 ⊂ Y ′′
1,1 such that for distinct y ∈ Y1,1 the sets {y, w1(y), w1,2(y), . . . , w1,p1(y)}

are disjoint from each other and from Q and X ′′
1,1. Then we choose any X1,1 ⊂ X ′′

1,1 with

|X1,1| = |Y1,1|. This is the type-2 cleaning.

Recall that s is taken sufficiently large so that the bipartite graphs we are considering are also

large. Now define G1,2 to be the complete bipartite graph with parts X1,1 and W2 and repeat

the cleaning procedures above to obtain the integer p2, subsets X1,2 ⊂ X1,1 and Y1,2 ⊂ Y1,1
and vertices w2,j(y) that are distinct for distinct y and also distinct from w1,j′(y

′) if y ̸= y′.

Continuing in this way we obtain sets X1,1 ⊃ X1,2 ⊃ · · · ⊃ X1,p := X2 and Y1,1 ⊃ Y1,2 ⊃ · · · ⊃
Y1,p := Y2, V2 = {(i, ji) : i ∈ [p], ji ∈ [pi]} ⊂ [ℓ]2 and vertices wv(y) for v ∈ V2 and y ∈ Y2 with

wv(y) ̸∈ {wv(y
′), wi(y

′)} for y ̸= y′.

Given a vector x let x ∗ j be the vector obtained from x by adding a new last coordinate with

entry j (for example if x = (3, 7) then x ∗ 4 = (3, 7, 4)). For v ∈ V2, set Wv = ∪y∈Y2wv(y). Let

us also construct the auxiliary digraph D2 with vertex set Y2 ∪
∪p

i=1Wi ∪
∪

v∈V2
Wv with edges

of the form ywi(y) for all y, i and wi(y)wi,j(y) for i ∈ [p] and j ∈ [pi]. Because of cleanings, D2

is the vertex disjoint union of homomorphic images of trees of height at most two, one for each

y ∈ Y2.

Claim 6. |Q| ≤ k.

Proof: Suppose for contradiction that |Q| < k. By the definition of monochromatic colorings

and by construction, for each x ∈ X2 and each w ∈ Q, xw ∈ ∂H1 and the codegree of xw is

at least |Y2| ≥ 3k (since s and hence |Y2| are large). So we simply embed T into the complete

bipartite graph with partite sets X2 and Q, and then expand it. 2

To summarize, we have a set of (one dimensional) vectors V1 = {(1), . . . , (p)}, nonnegative

integers pv ≤ ℓ for each v ∈ V1 and

• V2 = ∪v∈V1{v ∗ i : i ∈ [pv]} ⊂ [ℓ+ 1]2,

• X2 ⊂ X and Y2 ⊂ Y ,

• vertices wv(y) with wv(y) ̸= wv′(y′) if y ̸= y′ and v,v′ ∈ V1 ∪V2,

• edges xwv(y)wv∗i(y) ∈ H1 for all x ∈ X2, y ∈ Y2,v ∈ V1, i ∈ [pv] (so

v ∗ i ∈ V2),

• a digraph D2 with vertex set Y2 ∪
∪

y∈Y2,v∈V1∪V2
wv(y) and edges ywv(y)

for y ∈ Y2,v ∈ V1 and wv(y)wv′(y) as long as v′ = v ∗ j for some j ∈ [pv],

• the set Q of all “central” vertices in monochromatic colorings of X2 × Y2,

and |Q| ≤ k.
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General Setup: Let t ≤ ℓ2 + 1 and suppose we have the following:

• Vt ⊂ [ℓ+ 1]t,

• Xt ⊂ X and Yt ⊂ Y ,

• for all v ∈ ∪t
i=1Vt and y ∈ Yt a vertex wv(y) such that for y ̸= y′, wv(y) ̸=

wv′(y′),

• edges xwv(y)wv∗i(y) ∈ H1 for all x ∈ Xt, y ∈ Yt,v ∈ ∪t−1
j=1Vj , i ∈ [pv],

• a digraph Dt with vertex set

Yt ∪
∪

y∈Yt,v∈∪t
i=1Vt

wv(y)

and edges wv(y)wv′(y) as long as v′ = v ∗ j for some j ∈ [pv] (define

y := w∅(y)),

• the set Q of all “central” vertices in monochromatic colorings of Xt × Yt,

and |Q| ≤ k.

We will now show how to construct the same setup with t+ 1.

Let Vt = {v(1), . . . ,v(m(t))}. Consider the complete bipartite subgraph Gt,1 of ∂H1 with

parts Xt and Wv(1) = {wv(1)(y) : y ∈ Yt}. We apply the basic cleaning procedure to Gt,1 and

obtain subsets X ′
t,1 ⊂ Xt and Y

′
t,1 ⊂ Yt and colorings M1, . . . ,Mℓ+1 of the edges of Gt,1 that are

rainbow, canonical, or monochromatic. By Claim 1, no coloring is rainbow. By construction, we

already have one Wv(1)-canonical coloring obtained by considering the in-neighbors of wv(1)(y)

in Dt. By Claim 4, R ̸= ∅ and thus ℓ1 ≤ ℓ. We may assume that M1 is Wv(1)-canonical. Hence

by Claim 2 no Mi is X ′
t,1-canonical. By Claim 3, the number of monochromatic colorings is

at most ℓ1 − 1 ≤ ℓ − 1, which means that the number of Wv(1)-canonical colorings is at least

(ℓ+1)−(ℓ−1) = 2. Consequently, there is a positive integer pv(1) and pv(1) colorings (excluding

the Wv(1)-canonical coloring given by the in-neighbors of Wv(1)) that are Wv(1)-canonical and

the remaining ℓ+1−(pv(1)+1) colorings are monochromatic. We also have vertices wv(1)∗i(y) for

all i = 1, . . . , pv(1) which are distinct for distinct y and distinct i. As before, for each j ∈ [pv(1)],

the jth canonical color class consists of all (hyper)edges of the form xwv(1)(y)wv(1)∗j(y) for all

x ∈ X ′
t,1, y ∈ Y ′

t,1.

Next we perform the type-1 cleaning procedure (using Lemma 4.2) to make sure that if y ̸= y′

then wv(1)∗i(y) ̸∈ {wv(y
′), y′} for any v ∈ V1 ∪ . . . ∪ Vt. This results in subsets X ′′

t,1 ⊂ X ′
t,1

and Y ′′
t,1 ⊂ Y ′

t,1. Finally, we perform the type-2 cleaning procedure to obtain Xt,1 ⊂ X ′′
t,1 and

Yt,1 ⊂ Y ′′
t,1 so that these sets do not contain any vertices that correspond to monochromatic

colorings in any previous round. Add the central vertices of the monochromatic colorings to Q.

Repeating the proof of Claim 6, we still have |Q| ≤ k.

Now we repeat these procedure with v(2) to obtain Xt,2 ⊂ Xt,1 and Yt,2 ⊂ Yt,1. Finally

we perform this procedure with v(m(t)) to obtain Xt+1 = Xt,m(t) and Yt+1 = Yt,m(t) and

Vt+1 = ∪v∈Vt{v ∗ i : i ∈ [pv]}. We also have vertices wv(y) for every y ∈ Yt+1 and v ∈ Vt+1

that are distinct for distinct y and a digraph Dt+1 defined in the obvious way which consists of

the vertex disjoint union of homomorphic image of trees of height t+ 1, one for each y ∈ Yt+1.

Edges of the digraph encode the canonical colorings, as in the case t = 1, 2.
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We repeat this procedure till we obtain sets Xg, Yg, Dg, for g := ℓ2+1. By Claim 5, the outdegree

of vertex wv(y) ∈ V (Dg) is

pv ≥ (ℓ+ 2− λ)− 1 = ℓ+ 1− λ.

Note that this is one less than the bound for p because we have one in-neighbor that accounts

for one canonical coloring.

6.4 Embedding T+ using Dg

In this section we use the properties of Dg to embed T+ in H1. Our plan is to place the edges

of R on the edges of Dg and to place the vertices of I onto some vertices in Xg. Let T1 = T −L.
Consider every tree in the forest R as a (directed) rooted tree Ri with root ri which is a vertex

in V (Ri) of the largest degree in T1. Suppose we have h such trees. By Lemma 5.6,

dT1(ri) ≤ ℓ− λ for all 1 ≤ i ≤ h.

For each y ∈ Yg, let Dg(y) be the component of Dg containing y. Choose h vertices y1, . . . , yh ∈
Yg arbitrarily, and for 1 ≤ i ≤ h we will embed Ri into Dg(yi) − w1(yi) as follows (we exclude

w1(yi) because we will use w1(yi) later in the embedding of T+). Place ri on yi. Suppose ri
has u out-neighbors in Ri. By construction, yi has p ≥ ℓ + 2 − λ outneighbors in Dg(yi). So

by (2), we can place the outneighbors in Ri of ri on outneighbors of yi in Dg(yi). Then we place

the outneighbors of placed vertices and so on. The general situation is that some v ∈ V (Ri) is

placed on some wv(y) and has u outneighbors in Ri. By Lemma 5.2, ℓ ≥ 2ℓ2. By Lemma 5.5,

λ = λ(R) ≤ |R|/2 = ℓ2/2. So wv(y) has pv ≥ ℓ + 1 − λ ≥ 3ℓ2
2 + 1 outneighbors in Dg(y). At

most ℓ2 − u of them are already occupied by previously embedded vertices. This leaves more

than u available outneighbors of wv(y) to place the outneighbors in Ri of v on them.

After placing all vertices in V (R), we call a vertex of H1 free, if it is not occupied by vertices

in V (R) and is not the outneighbor of any occupied vertex in Dg. By construction, there are

at most |V (R)|ℓ2ℓ ≤ ℓ3 non-free vertices. We now place the vertices of I on arbitrary distinct

vertices in Xg (they are all free at this moment by construction). Then we place the vertices of

D on distinct free vertices in Yg. Let φ be the embedding we are producing. Let each a ∈ I be

placed on φ(a) ∈ Xg. This yields an embedding of T1 into ∂H1. In what follows, say that a pair

xy is expanded to a triple xyz. Our next goal will be to expand the edges of T1. After that we

will embed the edges of T − T1 and expand them (these are the edges incident to L).

Since the codegree of every edge in Dg is at least |Xg|, we do not worry about expanding the

edges in R: we can do it greedily at the end. Recall that vertices in D are adjacent only to I.

We need to expand the |I| + |D| + h − 1 edges connecting I with D ∪ V (R). For every host y

of a vertex a ∈ D and the host x = φ(a′) of a neighbor a′ ∈ I of a, we expand the edge yx to

{x, y, w1(y)}. So the number of edges of T1 − R not yet expanded is |I| + h − 1 = ℓ1 + h − 1.

Since the sets V (Dg(y)) are disjoint for distinct y ∈ Yg, expanding the edges incident with φ(a)

for a ∈ D is easy: we simply use the vertices w2(φ(a)), w3(φ(a)) and so on. Since the number

of such edges is at most ℓ1 − 1 ≤ p− 2, no problem arises.

When we expand an edge yx where x is the host of some a ∈ I and y is the host of some

b ∈ V (Ri) ⊂ V (R), we need some more care, since some outneighbors of y in Dg(y) can be
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occupied. For i = 1, . . . , h let U(i) = |Ri|+ |ET1(I, V (Ri))|. Then

h∑
i=1

U(i) = |T1 −A0| ≤ |I|+ |R|+ h− 1 = ℓ+ h. (6)

Order the Ris so that U(1) ≥ U(2) ≥ . . . ≥ U(h) and expand the edges incident to Ris in the

reverse order. Since each b ∈ V (R) is adjacent to some a ∈ I, U(i) ≥ 3 for every i. Suppose

that it is now the turn to expand the edges incident to Ri and i ≥ 2. Then U(i) ≤ U(2) ≤
ℓ+h−3(h−2)

2 ≤ ℓ+2
2 . We expand the edges one by one. Suppose we need now to expand wv(y)x,

where wv(y) is the host of a vertex b ∈ V (Ri) (possibly v = ∅ in which case by convention

wv(y) = y and pv = p). The outdegree in Dg of wv(y) is pv ≥ ℓ + 1 − λ. At most |Ri| of the
outneighbors of wv(y) are occupied. If we already expanded some edges incident with Ri, they

block at most |ET1(I, V (Ri))| − 1 outneighbors of y. Consequently, we have at least

(ℓ+ 1− λ)− (U(i)− 1) ≥ ℓ

2
− λ+ 1 ≥ ℓ

2
− ℓ2

2
+ 1 > 0

free outneighbors of y, and any free outneighbor may be used to expand wv(y)x.

Finally, we work with R1. It is possible that U(1) is as large as ℓ2 + ℓ1. On the other hand,

we have not yet used the universal vertices for monochromatic multicolorings, and this is the

time to use them. Now for each a ∈ V (R1) and x ∈ Xg, the pair φ(a)x has 1 + ℓ = ℓ1 + ℓ2
different colors in the canonical multicoloring (including any universal vertices), which means

1 + ℓ possibilities to expand φ(a)x. Since the number of edges U(1) to be embedded when we

embed R1 is at most ℓ+ 1, we can perform the embedding greedily.

Having embedded and expanded T1, we work with L. Since Yg is large, one by one, take c ∈ L,

place it on a free y ∈ Yg and expand the obtained edge yx via w1(y). 2

7 Proof of Theorem 1.2

Suppose σ(G+) = 2 and |V (G)| = k. Since the n-vertex triple system of all edges containing a

fixed vertex does not contain G+ with σ(G+) = 2 (by definition), ex(n,G+) ≥
(
n−1
2

)
. Also if

σ(G+) = 2, then either some vertex of G covers all but one edge in G (and this edge connects two

leaves) or two non-adjacent vertices of G cover all edges of G. In the former case, G is contained

in the star-plus-one-edge graph S∗
k−1 and in the latter, G is contained in K2,k−2. Thus it is

enough to consider the cases G = K2,k−2 and G = S∗
k−1.

Suppose we have an n-vertex 3-graph H not containing G+ for G ∈ {S∗
k−1,K2,k−2} with |H| =

(1 + ε)
(
n
2

)
where ε > 0 and n is sufficiently large. It is enough to assume k ≥ 5. Let H ′ be

obtained from H by consecutive deletion of edges having a pair of codegree one, so that the

minimum codegree of edges in H ′ is at least two. If we deleted m edges, then |∂H ′| ≤
(
n
2

)
−m.

Let E be the set of edges of H ′ in which the codegrees of all pairs (in H ′) are at most 3 or at

least two pairs have codegree (in H ′) exactly two. We claim that

|E| ≤ |∂H ′|. (7)
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To see this, define ω =
∑

e∈H′
∑

f⊂e 1/d(f), where d(f) is the codegree of f in H ′. By definition

of E, for every e ∈ E we have
∑

f⊂e
1

d(f) ≥ 1. Since E ⊂ H ′, we get ω ≥ |E|. By interchanging

the sums, we see ω = |∂H ′|:

ω =
∑

f∈∂H′

∑
e⊃f

1

d(f)
=

∑
f∈∂H′

1 = |∂H ′|.

Therefore |E| ≤ |∂H ′| as claimed.

Let H ′′ = H ′\E. By (7),

|H ′′| ≥ |H ′| − |∂H ′| = |H| −m−
((

n

2

)
−m

)
= |H| −

(
n

2

)
≥ ε

(
n

2

)
.

By the definition of E, if e ∈ H ′′ and the codegrees in H ′ of the vertex pairs in e are c1 ≤ c2 ≤ c3,

then c1 ≥ 2, c2 ≥ 3 and c3 ≥ 4. Then for each e ∈ H ′′, there is an expansion of a triangle Te in

H ′ such that

every edge of Te shares 2 vertices with e. (8)

We partition H ′′ into three triple systems. Let H1 be the set of e ∈ H ′′ containing a pair

f = fe ⊂ e with 3 ≤ dH′(f) ≤ 3k, H2 be the set of e ∈ H ′′ with one pair fe ⊂ e having

dH′(fe) = 2 and two pairs of codegree (inH ′) at least 3k+1, andH3 = {e ∈ H ′′ : δH′(e) ≥ 3k+1}.
By the definition of H ′′ we have H1∪H2∪H3 = H ′′ and one of the three cases below must hold.

Case 1: |H1| ≥ εn2

9 . Let F = {fe : e ∈ H1} (fe is defined above) so that |F | ≥ |H1|/3k ≥
εn2/27k. For every f ∈ F , choose Sf ⊂ NH′(f) with |Sf | = 3 such that Sf ∩ NH1(f) ̸= ∅ (we

can do it, since by definition, each f ∈ F is fe for some e ∈ H1). By Lemma 4.1 applied to

F , for a large t there exists K ⊆ F such that K ∼= Kt,t and for every f ∈ K, Sf ∩ V (K) = ∅.
By Theorem 3.7, if t is large enough, there exists K ′ ∼= K2k,2k ⊂ K and three disjoint list-

edge-colorings χi : K ′ → LK′ such that each χi is monochromatic or canonical, or some χi

is rainbow. Let X = {x1, x2, . . . , x2k} and Y = {y1, y2, . . . , y2k} be the parts of K ′. If say

coloring χ1 is rainbow, then clearly K+
2,k−2 ⊂ K+

2k,2k ⊂ H1 and we are done when G = K2,k−2.

Suppose G = S∗
k−1. By the construction of K, there is an edge zx1y1 ∈ H1 such that z /∈ V (K).

By (8), H ′ contains a triangle {x1y1u1, x1zu2, y1zu3}. For at most four values of 2 ≤ i ≤ 2k,

{z, u1, u2, u3} ∩ {yi, χ1(x1yi)} ̸= ∅. So, H1 contains (S∗
2k−5)

+ with the center x1. Since k ≥ 5,

we are done.

Suppose now that no coloring is rainbow. We have three possibilities.

Case 1.1. G = S∗
k−1. If some coloring χi is monochromatic, say, χ1(e) = α for all e ∈ K2k,2k,

then the edges xiyiα for 1 ≤ i ≤ k − 1 and the edge x1y2χ2(x1y2) form a (S∗
k−1)

+ ⊂ H ′ with

the center α. Otherwise, we may assume that χ1 is X-canonical. Let αi be the color in χ1

common to every edge containing xi. Since dH′(y1α1) ≥ 2, there is a vertex w ̸= x1 such that

wy1α1 ∈ H ′. By symmetry, we may assume that w /∈ {x2, y2, . . . , xk, yk}. Then the edges y1αixi
for 2 ≤ i ≤ k − 2, wy1α1, x1α1y2 and y1x1χ2(x1y1) form a (S∗

k−1)
+ ⊂ H ′ with the center y1.

Case 1.2. G = K2,k−2 and some coloring χi is monochromatic. If two or more of the colorings

are monochromatic, say, χ1(e) = α and χ2(e) = β for all e ∈ K2k,2k with α ̸= β, then the edges

xiyiα and xiyi+kβ for 1 ≤ i ≤ k form a K+
2,k ⊂ H ′. If only one coloring is monochromatic, then

the other two are canonical. We may assume χ1(e) = α for e ∈ K2k,2k and χ2 is X-canonical. Let
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αi be the color common in χ2 to every edge containing xi. Then the edges αxiyi and αixiyk+i

for 1 ≤ i ≤ k form a K+
2,k ⊂ H ′.

Case 1.3: G = K2,k−2 and no coloring is monochromatic. This means all of the χi are canonical.

In particular, by symmetry, we can assume χ1 and χ2 are both X-canonical. If αi is the common

color of every edge on xi under χ1, and βi is the common color of every edge on xi under χ2,

then the edges y1xiαi and y2xiβi for 1 ≤ i ≤ k form a K+
2,k ⊂ H ′. This finishes Case 1.

Case 2: |H2| ≥ εn2

9 . By the Kövari-Sós-Turán Theorem, for every k there is s(k) such that

every subgraph M of Ks(k),s(k) with at least s(k)2/2 edges contains a K2k,2k. Similarly to Case

1, let F = {fe : e ∈ H2}, where dH′(fe) = 2. For every f ∈ F , let Sf = NH′(f). By definition,

|Sf | = 2 and Sf ∩NH2(f) ̸= ∅. Then |F | ≥ |H2|/2 ≥ εn2/18. By Lemma 4.1 applied to F , for a

large t there exists K ⊆ F such that K ∼= Kt,t and for every f ∈ K, Sf ∩V (K) = ∅. By Theorem

3.7, if t is large enough, there exists K0
∼= Ks(k),s(k) ⊂ K and disjoint list-edge-colorings χ1 and

χ2 of K0 such that each χi is monochromatic or canonical, or some χi is rainbow. Since each

of the lists contains a color corresponding to an edge in H2, we may assume that for at least

of half of the edges f ∈ K0, f ∪ {χ1(f)} ∈ H2. Then by the definition of s(k), there exists

K ′ ∼= K2k,2k ⊂ K0 such that for every f ∈ K ′, f ∪ {χ1(f)} ∈ H2. Now we repeat the proof of

Case 1 word by word till (and including) Case 1.2, since in these subcases we have used only two

colorings. In Case 1.3, the problem arises only when χ1 is X-canonical and χ2 is Y -canonical (or

vice-versa). Let χ2(x1yi) = αi for 1 ≤ i ≤ k. Since χ1 is X-canonical, we have edges yix1γ ∈ H ′

for 1 ≤ i ≤ k, where γ is the common color of all edges on x1 in χ1. By construction, for every

1 ≤ i ≤ k, edge x1yiγ is in H2 and hence dH′(yiγ) ≥ 3k + 1. Therefore we may choose vertices

β1, β2, . . . , βk ∈ LK\{y1, y2, . . . , yk, α1, α2, . . . , αk} such that γβiyi are all edges of H ′. These

edges together with the edges x1yiαi form K+
2,k ⊂ H ′.

Case 3: |H3| ≥ εn2

9 . If |∂H3| > ε
200kn

2, then similarly to Case 1, for every f ∈ ∂H3, choose

Sf ⊂ NH′(f) with |Sf | = 3 such that Sf ∩NH3(f) ̸= ∅. By Lemma 4.1 applied to F = ∂H3, for

a large t there exists K ⊆ F such that K ∼= Kt,t and for every f ∈ K, Sf ∩ V (K) = ∅. From

this point, we just repeat the proof of Case 1.

So |∂H3| ≤ ε
200kn

2. Then by Lemma 2.2, H3 contains an 8k-full subgraph H∗ with at least

|H3| − 8k|∂H3| ≥ ϵ
20n

2 edges. Since |H∗| ≥ ϵ
20n

2 and |∂H∗| ≤ |∂H3| ≤ ε
200kn

2, we have

dH∗(xy) ≥ 2k for some xy ∈ ∂H∗. This means that the edge xy in the graph ∂H∗ is in at least

2k triangles by (8). So, ∂H∗ contains S∗
k with the center x and K2,k with the small partite

set {x, y}. This means ∂H∗ contains a copy of G. Since H∗ is 8k-full, our copy of G greedily

extends to G+ ⊂ H∗. This finishes the main proof.

The jump in the Turán number follows immediately by observing that if σ(G+) ≥ 3, then we

may apply (1) and obtain ex3(n,G
+) ≥ (2− o(1))

(
n
2

)
. 2

8 Concluding Remarks

• Our methods can be used to determine the order of magnitude of the Turán number of

expansions of other bipartite graphs like the 3-dimensional cube and complete bipartite graphs.

These will be presented in a forthcoming paper.
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• Our approach may also be suitable for other extremal problems on trees and forests in hy-

pergraphs including the following conjecture of Kalai (see Frankl and Füredi [7]), extending the

Erdős-Sós Conjecture to r-graphs. An r-tree is an r-graph with edges e1, . . . , eq where for each

i, ei ∩ (∪j<iej) ⊂ ek for some k < i.

Conjecture 8.1. (Erdős-Sós for graphs and Kalai 1984 for r ≥ 3) Let r ≥ 2 and T be an

r-tree on v vertices. Then

exr(n, T ) ≤
v − r

r

(
n

r − 1

)
.

This conjecture has been solved for certain classes of trees (see [7]).
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