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Abstract

Let α ∈ (0, 1), l ≥ 2 and let Hn be an l-graph on n vertices. Hn is (α, ξ)-uniform if every ξn

vertices of Hn span (α± ξ)
(
ξn
l

)
edges. Our main result is the following.

For all δ̃, there exist δ, r, n0 such that, if n > n0 and H(l)
n is (α, δ)-uniform, then all but

exp{−r1/l/20}
(
n
r

)
r-sets of vertices induce a subhypergraph that is (α, δ̃)-uniform.

We also present the following application. Let F be a fixed l-graph, and c > 0. Then there

is an n0 and r′ such that: If H is an n vertex l-graph (n > n0) such that the deletion of any cnl

edges of H leaves an l-graph that admits no homomorphism into F , then there exists H′ ⊂ H

on r′ vertices, that also admits no homomorphism into F . This extends a recent result of Alon

and Shapira [3], who proved it when F is a complete graph.

1 Introduction

Throughout this paper we write x = y ± z for the statement x ∈ [y − z, y + z], and we omit ceiling

and floor symbols. We write H(l)
n to denote an n vertex l-graph.

Definition 1.1. H(l)
n is (α, ξ)-uniform if every ξn vertices of H(l)

n span (α ± ξ)
(
ξn
l

)
edges. H(l)

n is

(α, ξ)-dense if every ξn vertices of H(l)
n span at least α

(
ξn
l

)
edges.
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Our main result, Theorem 1.2 below, says that in an l-graph whose edges are uniformly dis-

tributed, this property is inherited to almost all sets of constant size.

Theorem 1.2. (Sections 6–8) Let α ∈ (0, 1), l ≥ 2 be fixed. For all δ̃, there exist δ, r, n0 such

that, if n > n0 and H(l)
n is (α, δ)-uniform, then all but exp{−r1/l/20}

(
n
r

)
r-sets of vertices induce

a subhypergraph that is (α, δ̃)-uniform.

Remark 1.3. By bounding some inequalties more carefully in the proof of Theorem 1.2, we can

improve the factor exp{−r1/l/20} to exp{−cr}, where c is an absolute constant.

Remark 1.4. Note that the minimum r with the property of Theorem 1.2 must satisfy r →∞ as

δ̃ → 0. Otherwise, we could choose δ̃ such that δ̃r < l and α > δ̃. With this choice, no r-set R can

be (α, δ̃)-uniform, since every subset of R of size δ̃r < l has density 0 < α− δ̃.

Remark 1.5. We will in fact prove Theorem 1.2 with the following quantification:

∀δ̃ ∃r0 ∀r > r0 ∃δ, n0 ∀n > n0

Remark 1.6. Note also that if δ′ < δ, and Theorem 1.2 holds for δ, then it also holds for δ′, since

an (α, δ′)-uniform hypergraph is also (α, δ)-uniform. We may therefore take δ to be as small as we

need in relation to r, in particular, we assume that δ � 1/rr.

Remark 1.7. After proving Theorem 1.2, we found out that Alon, de la Vega, Kannan, and

Karpinski [4] independently and simultaneously proved a similar theorem (Theorem 9 in the extended

version of [4]) using completely different techniques. It may be possible to use their ideas to prove

Theorem 1.2 with exp{−r1/l/20} replaced by 1/40 .

Remark 1.8. We recently learned that Theorem 1.2 was also obtained for l=3 by Nagle and Czy-

grinow [6] using an alternative proof. Those authors infer Theorem 1.2 by first establishing an

analogue in a stronger environment provided by an application of the Frankl-Rodl hypergraph regu-

larity lemma (cf. [14]).

Theorem 1.2 has already had applications to Ramsey-Turán problems for hypergraphs. In

particular, it is used in [18] to construct infinitely many l-graphs whose Ramsey-Turán density is

strictly positive and less than the Turán density. In this paper we present another application.

Erdős asked the following question, which generalizes a theorem of Bollobás, Erdős, Simonovits,

and Szemerédi [5]: Given positive integers c and k, do there exist positive integers fk(c) and n0
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such that the following holds: If G is an n vertex graph with n > n0 with the property that the

chromatic number of G cannot be made less than k by the omission of at most cn2 edges, then G

contains a k-chromatic subgraph with at most fk(c) vertices.

It is well-known that chromatic number is a global property, namely, that a graph can have

large chromatic number without having a small subgraph with large chromatic number. Another

motivation for Erdős’ question is: to what extent is chromatic number global in the sense described

above? Duke and the second author [8] answered Erdős’ question. Recently, a new approach was

developed by Goldreich, Goldwasser, and Ron [15] which gives better bounds on fk(c). Their

motivation came from computer science, to find efficient algorithms to test whether a graph has a

given property. These results were further improved by Alon and Krivelevich [1].

As a relatively straightforward application of Theorem 1.2, we generalize these results to hy-

pergraphs. Moreover, instead of speaking just about chromatic number, we observe that the same

proof gives a slightly stronger statement about homomorphisms. Recall that the l-graph H has a

homomorphism into the l-graph F if there is a function f : V (H) → V (F) such that if {u1, . . . , ul}

is an edge of H, then {f(u1), . . . , f(ul)} is an edge of F .

Theorem 1.9. (Section 3) Let F be a fixed l-graph, and c > 0. Then there is an n0 and r′ such

that: If H is an n vertex l-graph (n > n0) such that the deletion of any cnl edges of H leaves an

l-graph that admits no homomorphism into F , then there exists H′ ⊂ H on r′ vertices, that also

admits no homomorphism into F .

2 The Regularity Lemma

In this section we describe our main tool needed to prove Theorem 1.2, the Szemerédi Regularity

Lemma. In an l-graph H, let X1, . . . , Xl be pairwise disjoint sets of vertices. Write e(X1, . . . , Xl)

for the number of edges with exactly one point in each Xi. The density of the l-tuple X1, . . . , Xl is

d(X1, . . . , Xl) =
e(X1, . . . , Xl)
|X1| . . . |Xl|

.

Given ε > 0, the l-tuple X1, . . . , Xl is ε-regular with density α = d(X1, . . . , Xl) if for every choice

of Yi ⊆ Xi with

|Yi| ≥ ε|Xi| for each i ,

we have

d(Y1, . . . , Yl) = α± ε.
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We also extend the definition of (α, ε)-uniform to a partite situation.

Definition 2.1. The l-partite H = H(V1, . . . , Vl) is (α, ε)-uniform if for every choice of V ′
i ⊂ Vi,

with |V ′
i | = ε|Vi|, the density d(V ′

1 , . . . , V
′
l ) = α± ε.

Remark 2.2. For an l-tuple L = X1, . . . , Xl there is a subtle distinction between the following two

statements

1) L is ε-regular with density α

2) L is (α, ε)-uniform.

It is clear that 1) implies 2), but if 2) holds, then the best we can say regarding 1) is that L is

2ε-regular with density α′ = α ± ε. Throughout this paper we use 1) in contexts where the density

of L is not central and 2) where it is.

Consider a partition P = V0 ∪ V1 ∪ · · · ∪ Vt of V (H). We say that P is an ε-regular partition if

1) |V0| < ε|V |,

2) |V1| = · · · = |Vt|,

3) the l-tuple Vi1 , . . . , Vil is ε-regular for all but εtl choices of l of the Vi’s.

With these notions we can state the celebrated Szemerédi Regularity Lemma. Below we state

a version for l-graphs, l ≥ 2. Its proof is essentially the same as for the case l = 2.

Lemma 2.3. (Regularity Lemma) Let l ≥ 2 be fixed. For every ε > 0 and every integer t0 ≥ 1

there exist integers T, n0 such that every l-graph of order at least n0 admits an ε-regular partition

V0, . . . , Vt with t0 ≤ t ≤ T .

3 Proof of Theorem 1.9

In this section, we sketch the proof of Theorem 1.9 using Theorem 6.1 (later we prove that Theorem

6.1 is equivalent to Theorem 1.2).

Proof of Theorem 1.9 (Sketch): Let c,F be given, and let H be an l-graph on n > n0

vertices (n0 comes from Lemma 2.3 and Theorem 6.1) such that after deleting any cnl edges, the

resulting l-graph admits no homomorphism into F . Let ε � c, and t0 � max{|V (F)|, 1/c}. Let

V = V0 ∪ . . . ∪ Vt be an ε-regular partition of H, where |V0| ≤ ε|V | = εn. We now apply Theorem

6.1 to each ε-regular l-tuple that has density at least c/2 . In our setup, ε plays the role of the

parameter δ in Theorem 6.1. By Theorem 6.1, if the l-tuple {Vi1 , . . . , Vil} is ε-regular with density
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α ≥ c/2, then for all but exp{−r1/l/10}
(
m
r

)
choices of l-tuples (Ṽi1 , . . . , Ṽil) of r-sets Ṽij ⊂ [Vij ]

r, the

l-tuple (Ṽi1 , . . . , Ṽil) is (α, δ̃)-uniform. Consequently, if we choose an r-set Ṽi from each Vi randomly,

then the expected number of l-tuples of chosen r sets violating the conclusion of Theorem 6.1 is

at most exp{−r1/l/10}
(
t
l

)
. Hence there exists a choice of r-sets V ′

i ⊂ Vi for i ∈ [t], such that all

but 2exp{−r1/l/10}
(
t
l

)
of the l-tuples of these r-sets satisfy the conclusion of Theorem 6.1. Delete

from H all edges that

1a) have nonempty intersection with V0

1b) lie within at most l − 1 distinct Vis

1c) contain one vertex from each of Vii , . . . , Vil , where Vi1 , . . . , Vil is an ε-irregular l-tuple, or is

ε-regular with density less than c/2

2) lie within an l-tuple Vi1 , . . . , Vil for which V ′
i1

, . . . , V ′
il

violates the conclusion of Theorem 6.1.

It is easy to see that the number of edges deleted fromH in 1a)–1c) is at most (c/2)nl. The num-

ber of edges deleted in 2) is at most 2exp{−r1/l/10}
(
t
l

)
(n/t)l < (c/2)nl, since c � 1/r. Therefore

we have altogether deleted at most cnl edges, and the resulting l-graph admits no homomorphism

into F .

Define the reduced l-graph H∗ of H with vertex set {V1, . . . , Vt}, where {Vi1 , . . . , Vil} forms

an edge if the corresponding l-tuple in H is ε-regular with density at least c/2. Then it is easy

to see that H∗ also admits no homomorphism into F . If {Vi1 , . . . , Vil} is an edge of H∗, then

V ′
i1

, . . . , V ′
il

satisfies the following property: for every choice of Ci1 ⊂ V ′
i1

, . . . , Cil ⊂ V ′
il
, where

|Cij | ≥ |V ′
i |/|V (F)| ≥ δ̃r for all j, there is an edge with one element in each of Ci1 , . . . , Cil . From

this it is easy to show that the subhypergraph H′ of H with vertex set V ′
1 ∪ . . . ∪ V ′

t admits no

homomorphism into F (see Duke-Rödl [8] for the details in the graph case). Moreover, the number

of vertices in H′ is tr = r′ which is independent of n.

4 Hypergeometric Lemmas

In this section we state several generalizations of the hypergeometric inequalities that are proved in

the Appendix. We begin with the following two statements which follow easily from large deviation

results of the hypergeometric distribution (see [17]).

Lemma 4.1. Let |X| = x, and |Y | = y with Y ⊆ X. Let R ∈ [X]r be a random r-set chosen

independently from the family of all r-sets of X. Let r > r0 and 3/2 > σ ≥ 1/ log r. Then with
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probability greater than 1− e−
√

r, the following holds:

a) |R ∩ Y | = ry
x (1± σ) if y ≥ x/r1/4,

b) |R ∩ Y | < r19/20 if y ≤ x/r1/10.

Proof. See Appendix.

An easy consequence of Lemma 4.1 is the following:

Proposition 4.2. For all T , there exist r0, n0, such that if r > r0, n > n0, the following holds:

Let B = B1 ∪ . . . ∪ BT , where the Bi’s are pairwise disjoint and each of size n/T . Then all but

Te−
√

r
(
n
r

)
of the r-sets R ∈ [B]r satisfy |R ∩Bi| = (r/T )(1± 1/ log r) for each i ∈ [T ].

Proof. It suffices to show that for a randomly chosen r-set R, the probability that |R ∩ Bi| 6=

(r/T )(1 ± 1/ log r) is less than e−
√

r. This follows from Lemma 4.1 part a) since r0 is sufficiently

large that n/T > n/r1/4.

We also need the following fractional extension of Proposition 4.2.

Lemma 4.3. For all c, ξ, there exist r0, n0 such that if r > r0, n > n0, the following holds: If∑
i∈[n] xi = cn, where 0 ≤ xi ≤ 1 for each i, then all but e−

√
r/2
(
n
r

)
of the r-sets R ∈ [n]r satisfy∑

i∈R xi = (c± ξ)r.

Proof. See Appendix.

The following is an extension of the hypergeometric inequalities to edge sets of weighted graphs.

Given a set S in a weighted graph, the weight of S is the sum of the weights of all the edges induced

by S. We write degG(x) for the weighted degree of vertex x.

Lemma 4.4. Fix k ≥ 2. For every β, there exists r0, n0 such that if r > r0, n > n0, the following

holds. Let G be an n vertex weighted graph with total weight at most βnk, maximum weighted degree

at most nk−1, and maximum edge weight at most nk−2. Then all but 2e−
√

r/2
(
n
r

)
of the r-sets of

vertices induce a subgraph with weight at most 2βnk−2r2.

Proof. See Appendix.

Proposition 4.5. Let G = (A,B) be a bipartite graph with n2/t edges and |A| = |B| = n. Let

B ⊂ E(G) be a set of size at most ε′n2/t. Let B′ ⊂ [E(G)]2 be a set size at most ε′n4/t2. Then the

following holds: For all ε′, t, there exist r0, n0, such that if r > r0, n > n0, then
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for all but 6e−
√

r/2
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r,

|(Ã× B̃) ∩ E(G)| = r2

t
(1± 1/10)

and in the graph spanned by Ã× B̃,

1) at most 2ε′r2/t edges lie in B, and

2) at most 2ε′r4/t2 pairs of edges lie in B′.

Proof. See Appendix.

5 Notation for Theorem 1.2

In this section we generalize notation from Section 3 to weighted hypergraphs. Let l ≥ 2, and

let A1, . . . , Al be pairwise disjoint sets. Let w : A1 × . . . × Al → [0, 1]. Think of w as a weight

function on the edges of the complete l-partite l-graph H with parts A1, . . . , Al. In the case H is

not complete, the weight function w assigns zero to all edges outside H.

The weight of the l-tuple L = A1, . . . , Al under w is

w(L) =
∑

{w(a1, . . . , al); (a1, . . . , al) ∈ A1 × . . .×Al}.

The density of L is

d(L) =
w(L)

|A′
1| · · · |A′

l|
.

For A′
i ⊂ Ai, i ∈ [l], define the density

d(A′
1, . . . , A

′
l) =

∑
{w(a1, . . . , al); (a1, . . . , al) ∈ A′

1 × · · · ×A′
l}

|A′
1| · · · |A′

l|
.

We define w to be ε-regular of density α = d(L) if for all choices of A′
i ⊂ Ai, with |A′

i| ≥ εn for

each i ∈ [l],

d(A′
1, . . . , A

′
l) = α± ε.

As in Section 3, w is (α, ε)-uniform if for all choices of A′
i ⊂ Ai, with |A′

i| ≥ εn for each i ∈ [l], we

have

d(A′
1, . . . , A

′
l) = α± ε.

Given functions γi : Ai → [0, 1], i ∈ [l], and |γi| =
∑

a∈Ai
γi(a), the fractional density

d(γ1, . . . , γl) =
∑
{w(a1 . . . al)

∏
i γi(ai); (a1, . . . , al) ∈ A1 × · · · ×Al}

|γ1| . . . |γl|
.
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Remark 5.1. All these definitions extend naturally to l-uniform hypergraphs that are not neces-

sarily l-partite.

6 Proof of Theorem 1.2

6.1 The Structure

In order to prove Theorem 1.2, we will prove the following stronger weighted version of it.

Theorem 6.1. Fix 0 < α < 1 and l ≥ 2. Let H be a weighted l-graph with vertex set X of size

n and weight function w. For all δ̃, there exist δ, r, n0 such that, if n > n0 the following holds:

Suppose that w is (α, δ)-uniform. Then for all but exp{−r1/l/20}
(
n
r

)
r-sets of vertices X̃ ∈ [X]r,

the restriction of w to X̃ is (α, δ̃)-uniform.

For l ≥ 2, let WT (l) be the statement of Theorem 6.1 for l-graphs, and UWT (l) be the statement

of Theorem 1.2 for l-graphs. By restricting to 0-1 weight functions, we see that

WT (l) =⇒ UWT (l).

We will prove WT (l) by induction on l, with the base case l = 2 in Section 6.4. Therefore our

next step is to prove

WT (l) =⇒ WT (l + 1) (1)

for each l ≥ 2.

We will only prove

WT (2) =⇒ UWT (3). (2)

Extending (2) to WT (2) =⇒ WT (3) and further extending this to (1) is simply a matter of adding

notation. In the interest of clarity we decided not to write the proof for this more general statement.

We feel that our proof of (2) will convince the reader of (1), and Section 6.5.6 describes the minor

notational changes needed to rigorously prove (1).

6.2 An equivalent l-partite formulation

In proving Theorem 6.1, it is more convenient to work with an l-partite l-graph. Indeed, the

theorem that we prove is:
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Theorem 6.2. Fix 0 < α < 1 and l ≥ 2. Let G = G(A1, . . . , Al) be an l-partite l-graph with

|Ai| = n for all i and weight function w. For all δ̃, there exist δ, r, n0 such that if n > n0, the

following holds: Suppose that w is (α, δ)-uniform. Then for all but exp{−r1/l/10}
(
n
r

)l choices of

l-tuples (Ã1, Ã2, . . . , Ãl) of r-sets Ãi ∈ [Ai]r, i ∈ [l], the restriction of w to ∪iÃi is (α, δ̃)-uniform.

Remark 6.3. Note that Remarks 1.4, 1.5 and 1.6 after Theorem 1.2 also apply to Theorems 6.1

and 6.2.

We need some additional notation. An equipartition P of a set S is a partition of S into sets of

equal size. The equipartition P contains an edge e of S if e has nonempty intersection with each

of the parts of P .

Proof that Theorem 6.2 =⇒ Theorem 6.1: As mentioned earlier, we only consider the un-

weighted case and l = 3. Alternatively, the weights are all 0 or 1. We describe the structure of the

proof, postponing the details to the Appendix.

To prove that Theorem 6.2 =⇒ Theorem 6.1, we will show that given a hypergraph satisfying

the hypothesis of Theorem 6.1, every equipartition of its vertex set yields a 3-partite hypergraph

satisfying the hypothesis of Theorem 6.2. More precisely,

hypothesis of Theorem 6.1 with δ, n0 =⇒ hypothesis of Theorem 6.2 with 14δ, n0/3 (3)

and similarly

conclusion of Theorem 6.2 with δ̃/2, r/3 =⇒ conclusion of Theorem 6.1 with δ̃, r. (4)

In fact we prove (4) in contrapositive form, namely

conclusion of Theorem 6.1 with δ̃, r fails =⇒ conclusion of Theorem 6.2 with δ̃/2, r/3 fails. (5)

Proof of (3): See Appendix.

Proof of (5): See Appendix.

6.3 Degree Conditions for Regularity: the weighted case

In this section we extend degree conditions for ε-regularity of graphs to weighted graphs (c.f. [2]

Lemmas 3.1 and 3.2).
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First we describe the results for the unweighted case. Let G = (X, Y ) be a bipartite graph.

Consider the following two statements where 0 ≤ ε, ε′, α ≤ 1:

(i) UNI(ε): G is (α, ε)-uniform

(ii) DPC(ε′):

a) All but ε′|X| vertices of X have degree |Y |(α± ε′)

b) All but ε′|X|2 pairs of vertices in X have a common neighborhood of size |Y |(α2 ± ε′)

The next Proposition is almost identical to Lemma 3.1 and Lemma 3.2 in [2]. We refer the

reader to [2] or [7] for a proof.

Proposition 6.4. UNI(ε) and DPC(ε′) are equivalent in the following sense

1) ∀ε,∃ε′, n0,∀α, if min{|X|, |Y |} > n0, then DPC(ε′) ⇒ UNI(ε).

2) ∀ε′,∃ε, n0,∀α, if min{|X|, |Y |} > n0, then UNI(ε) ⇒ DPC(ε′).

To extend this result to the weighted case, the following Proposition is useful.

Proposition 6.5. Let H(A1, . . . , Al) be an l-partite l-graph, w be a weight function on H of density

α, and γi : Ai → {0, 1}. Suppose that δ > 0 and |γi| is an integer for each i. Then the following

are equivalent:

1) w is (α, δ)-uniform

2) for all choices of γi : Ai → [0, 1] with |γi| > δn,

d(γ1, . . . , γl) = α± δ.

Proof. See Appendix.

Now we extend Proposition 6.4 to the weighted case. We need the following set up: Let

A = {a1, . . . , an}, B = {b1, . . . , bn} and w : A × B → [0, 1]. Let wi,j = w(ai, bj), and let ~wi =

(wi,1, . . . , wi,n). Set α = (1/n2)
∑

i,j wi,j . Consider the following two statements:

(i) UNI(δ): w is (α, δ)-uniform

(ii) DPC(δ′): All but δ′n2 pairs i, i′ have dot product ~wi · ~wi′ = (α± δ′)2n.

Proposition 6.6. UNI(δ) and DPC(δ′) are equivalent in the following sense:

1) ∀δ,∃δ′, n0,∀α, ∀n > n0, DPC(δ′) ⇒ UNI(δ)

2) ∀δ′,∃δ, n0∀α, ∀n > n0, UNI(δ) ⇒ DPC(δ′)
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Proof. See Appendix.

6.4 Proof of Theorem 6.2 for graphs

Theorem 6.7. Fix 0 < α < 1. Let G = G(A,B) be a bipartite graph with |A| = |B| = n and

weight function w. For all δ̃, there exist δ, r, n0 such that if n > n0, the following holds: Suppose

that w is (α, δ)-uniform. Then for all but exp{−
√

r/10}
(
n
r

)2 choices of r-sets Ã ∈ [A]r, B̃ ∈ [B]r,

the restriction of w to Ã ∪ B̃ is (α, δ̃)-uniform.

Proof. Our constants will satisfy the hierarchy δ̃ � δ′′ ≥ δ′ � δ. The choice of these constants,

however will ensure that δ̃ → 0 as δ → 0, thus allowing any δ̃ > 0 as input for the Theorem.

Since w is (α, δ)-uniform, G satisfies DPC(δ′) for some δ′ by Proposition 6.6 Part 2. Define

an auxiliary graph GA with vertex set A and edges consisting of pairs i, i′ forming the exceptional

set in DPC(δ′). The definition of DPC(δ′) implies that GA has at most δ′n2 edges. Now apply

Lemma 4.4 with β = δ′ and k = 2. We obtain that all but 2e−
√

r/2
(
n
r

)
of the r-sets Ã ∈ [A]r induce

at most 2δ′r2 edges from GA. Fix once such Ã.

We will show that for most of the r-sets B̃ ∈ [B]r, the pair Ã, B̃ satisfies DPC(δ′′) where

δ′′ = 3δ. This will imply by Proposition 6.6 Part 1 that w restricted to Ã ∪ B̃ is (α, δ̃)-uniform as

required.

Fix a pair {i, i′} ∈ [Ã]2 that is not an edge of GA. For each j ∈ B, define xj = wi,jwi′,j . By the

choice of i, i′, we have ∑
j∈B

xj =
∑
j∈B

wi,jwi′,j = ~wi · ~wi′ = (α± δ′)2n.

By Lemma 4.3 with c = (α± δ′)2 and ξ = δ′, all but e−
√

r/2
(
n
r

)
of the r-sets B̃ satisfy∑

j∈B̃

wi,jwi′,j =
∑
j∈B̃

xj = (α± 3δ′)2r. (6)

Therefore all but
(
r
2

)
e−

√
r/2
(
n
r

)
< e−

√
r/3
(
n
r

)
of the r-sets B̃ ∈ [B]r satisfy (6) for all choices

{i, i′} ∈ [Ã]2 − E(GA). Consequently, the number of choices of Ã, B̃ that do not satisfy DPC(δ′′)

is at most

2e−
√

r/2

(
n

r

)2

+ e−
√

r/3

(
n

r

)2

< e−
√

r/10

(
n

r

)2

.

For a pair Ã, B̃ that satisfies DPC(δ′′), Proposition 6.6 Part 1 implies that the restriction of w to

Ã ∪ B̃ is (α, δ̃)-uniform.
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6.5 The Induction step: Extension to hypergraphs

In this section we prove the l = 3 and unweighted case of Theorem 6.2.

Let α, δ̃ > 0 be given and letH = H(A,B, C) be a 3-partite triple system with parts A,B, C each

of size n. We will show that there exist δ, r, n0 such that, if n > n0, and H is (α, δ)-uniform, then

for all but e−r1/3/10
(
n
r

)3 choices of triples of r-sets Ã ∈ [A]r, B̃ ∈ [B]r, C̃ ∈ [C]r, the hypergraph

H̃ = H(Ã, B̃, C̃) is (α, δ̃)-uniform. Throughout the proof, our constants implicitly satisfy the

following hierarchy:

α � δ̃ � δ̃(2) � ε′′ � ε′ � ε ≫ 1/t � 1/r � δ � 1/n. (7)

Remark 6.8. In the notation above, by x � y we mean that x > (100y)100 holds. The relation

ε ≫ 1/t between ε and t is given by the Regularity Lemma (Lemma 2.3 applied with l = 2). Since

t is guaranteed to exist only for t being a very fast growing function of ε (see [16]), we will assume

that ε > 1/ log t > 1/ log r.

6.5.1 Outline of Proof

In this subsection we give the outline of the proof. Let α, δ̃ be given.

Define Γ = (A×B,C) to be the bipartite graph with edge set

E(Γ) = {((a, b), c) : (a, b, c) ∈ E(H)}.

Observe that Γ has the same density as H, namely α.

Step 1: Apply the Szemerédi Regularity Lemma to Γ with parameter ε > 0 chosen appropriately

(see Remark 6.9 after Step 4). This gives a partition

A×B = G1 ∪ · · · ∪Gt, |Gi| = n2/t, i = 1, . . . , t,

C = C1 ∪ · · · ∪ Ct, |Cj | = n/t, j = 1, . . . , t,

so that all but εt2 pairs Gi, Cj are ε-regular.

For each j = 1, . . . , t, consider the weighted graph Hj(A,B) with weight wj , where wj(a, b) is

the number of c ∈ Cj for which {a, b, c} is an edge in H.

Step 2: Fix δ̃(2) � δ̃ and apply the induction hypothesis WT (2), or equivalently, Theorem 6.7 to

Hj(A,B) to conclude that for most choices of r-sets Ã ∈ [A]r, B̃ ∈ [B]r, wj restricted to Ã ∪ B̃ is

12



(α, δ̃(2))-uniform. Since WT (2) is a statement which remains true with a smaller choice of δ and a

larger choice of r, we can choose δ and r such that (7) holds.

Let Γi,j be the subgraph of Γ induced by Gi ∪ Cj . Let Γi,j(Ã × B̃) ⊂ Γi,j be the subgraph

induced by [Gi ∩ (Ã× B̃)] ∪ Cj .

Step 3: Choose ε′ appropriately (see Remark 6.9 after Step 4) and show that for most Ã ∈ [A]r, B̃ ∈

[B]r, Γi,j(Ã× B̃) satisfies DPC(3ε′) for most i, j.

Now fix Ã, B̃ satisfying the conditions of both Steps 2 and 3. Let αi,j be the density of Γi,j .

Let Γi,j(Ã× B̃, C̃) ⊂ Γi,j(Ã× B̃) be the subgraph consisting only of edges touching C̃.

Step 4: Choose ε′′ � δ̃(2) and show that for most C̃ ∈ [C]r, the graph Γi,j(Ã× B̃, C̃) is (αi,j , ε
′′)-

uniform.

Remark 6.9. We fixed ε′′ � δ̃(2) above. The proof of Step 4 relies on Proposition 6.4 part 1 which

yields ε′ = ε′(ε′′) considered in Step 3. Furthermore, the proof of Step 3 is based on Proposition 6.4

part 2, which yields ε = ε(ε′) used in Step 1.

Now fix C̃ satisfying the conditions of Step 4.

Step 5: Show that H(Ã, B̃, C̃) is (α, δ̃)-uniform.

In the following subsections, we provide the details of Steps 2–5.

6.5.2 Step 2

Claim 6.10. For all but e−
√

r/10
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r and all j ∈ [t]

(*) d(A′, B′, Cj) = α± δ̃(2) whenever A′ ⊂ Ã, B′ ⊂ B̃ with |A′| > δ̃(2)|Ã|, |B′| > δ̃(2)|B̃|.

Proof. For each j ∈ [t], consider the weighted bipartite graph Hj(A,B) and weights

wj(a, b) = |{c ∈ Cj ; (a, b, c) ∈ H}|.

Because H is (α, δ)-uniform and |Cj | = n/t � n/r � δn, we have d(A′, B′, Cj) = α ± δ whenever

A′ ⊂ A,B′ ⊂ B with |A′| ≥ δ|A|, |B′| ≥ δ|B|. Consequently, wj is (α, δ)-uniform. By the Induction

assumption, Theorem 6.7, applied to the weighted graph Hj(A,B), we conclude that for all but

e−
√

r/10
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r, the weight function wj restricted to Ã ∪ B̃ is (α, δ̃(2))-

uniform. Translating this statement to H, yields the Claim.
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6.5.3 Step 3

Let Γi,j be the subgraph of Γ induced by Gi ∪ Cj . Let αi,j be the density of Γi,j . Let Γi,j(Ã× B̃)

be the subgraph of Γi,j induced by [Gi ∩ (Ã× B̃)] ∪ Cj . For (a, b) ∈ A×B, let

Γj(a, b) = {c ∈ Cj : (a, b, c) ∈ E(H)}.

In this Subsection we prove the following Claim.

Claim 6.11. For all but 2e−
√

r/2
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r,

|(Ã× B̃) ∩Gi| =
r2

t
(1± 1/10). (8)

For all ε, there exists an ε′ such that the following holds: If Γi,j is ε-regular, then the following are

also satisfied for all but 4e−
√

r/2
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r:

All but 2ε′ r
2

t elements (a, b) ∈ (Ã× B̃) ∩Gi have |Γj(a, b)| = (αi,j ± ε′)|Cj | (9)

All but 2ε′ r
4

t2
elements {(a, b), (a′, b′)} ∈ [(Ã× B̃) ∩Gi]2 have |Γj(a, b) ∩ Γj(a′, b′)| = (α2

i,j ± ε′)|Cj |.

(10)

Furthermore, Γi,j(Ã× B̃) has density αi,j ± 5ε′.

Proof. We apply the proof of Proposition 4.5 to the bipartite graph with bipartition A ∪B whose

edges consist of all elements of Gi. This immediately gives (8) for all but 2e−
√

r/2
(
n
r

)2 choices of

Ã, B̃.

We now focus on proving (9) and (10). Since Γi,j is ε-regular of density αi,j , it is (αi,j , ε)-

uniform. Proposition 6.4 Part 2 implies that Γi,j satisfies DPC(ε′) for some ε′. In other words,

a) All but ε′|Gi| elements (a, b) ∈ Gi have |Γj(a, b)| = (αi,j ± ε′)|Cj |, and

b) All but ε′|Gi|2 elements {(a, b), (a′, b′)} ∈ [Gi]2 have |Γj(a, b) ∩ Γj(a′, b′)| = (α2
i,j ± ε′)|Cj |.

Let Bi,j and B′i,j denote the exceptions in a) or b). More precisely, let Bi,j denote the set of

elements (a, b) ∈ [Gi] for which |Γj(a, b)| 6= (αi,j ± ε′)n/t. Let B′i,j denote the set of elements

{(a, b), (a′, b′)} ∈ [Gi]2 for which |Γj(a, b) ∩ Γj(a′, b′)| 6= (α2
i,j ± ε′)n/t.

14



By a) and b) above, |Bi,j | < ε′|Gi| = ε′ n
2

t and |B′i,j | < ε′|Gi|2 = ε′ n
4

t2
. We now apply the proof

of Proposition 4.5 to the bipartite graph with bipartition A∪B whose edges consist of all elements

of Gi. This gives (9) and (10) for all but 4e−
√

r/2
(
n
r

)2 choices of Ã, B̃.

For any one of these choices Ã, B̃, the number of edges in Γi,j(Ã× B̃) is at most

3ε′|(Ã× B̃) ∩Gi||Cj |+ (1− 3ε′)(αi,j + ε′)|(Ã× B̃) ∩Gi||Cj | < (αi,j + 5ε′)|(Ã× B̃) ∩Gi||Cj |,

and at least

(1− 3ε′)(αi,j − ε′)|(Ã× B̃) ∩Gi||Cj | > (αi,j − 5ε′)|(Ã× B̃) ∩Gi||Cj |.

Therefore the density of Γi,j(Ã× B̃) is αi,j ± 5ε′.

Definition 6.12. The set Cj is good if for all but
√

εt of the i’s, the graph Γi,j is ε-regular.

Since the number of ε-irregular pairs Gi, Cj is at most εt2, we infer that at most
√

εt of the Cj ’s

are not good.

We now fix Ã ∈ [A]r, B̃ ∈ [B]r satisfying (*), and each of (8), (9), (10) for every i, j for which

Γi,j is ε-regular. The number of exceptions to (*) is at most e−
√

r/10
(
n
r

)2, and the number of

exceptions to (8), (9), (10) over all i, j is at most (t2e−
√

r/3)
(
n
r

)2. Therefore the total number of

exceptions is at most 2e−
√

r/10
(
n
r

)2, and there are at least (1− 2e−
√

r/10)
(
n
r

)2 pairs Ã, B̃ remaining.

For the rest of the proof, fix one such pair Ã, B̃.

6.5.4 Step 4

Given an r-set C̃ ∈ [C]r, we let C̃j = Cj ∩ C̃.

Claim 6.13. For all but (t + tr2)e−
√

r
(
n
r

)
of the r-sets C̃ ∈ [C]r, and all j ∈ [t]

1) |C̃j | = r
n |Cj |(1± 1/ log r) = r

t (1± 1/ log r),

and for all (a, b) ∈ Ã× B̃,

2) |Γj(a, b) ∩ C̃j | = |Γj(a, b)| |C̃j |
|Cj |(1± 1/ log r) if |Γj(a, b)| ≥ n/r1/4, and

3) |Γj(a, b) ∩ C̃j | < r19/20 if |Γj(a, b)| ≤ n/r1/10.

Proof. By Proposition 4.2 all but te−
√

r
(
n
r

)
of the r-sets C̃ ∈ [C]r satisfy 1). Similarly, by Lemma

4.1, for a fixed (a, b) ∈ Ã × B̃, all but te−
√

r
(
n
r

)
of the r-sets C̃ ∈ [C]r satisfy 2) or 3). Since
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|Ã× B̃| = r2, the total number of exceptions to 2) or 3) is at most tr2e−
√

r
(
n
r

)
. Therefore the total

number of exceptions to 1), 2) or 3) is at most (t + tr2)e−
√

r
(
n
r

)
.

Claim 6.14. Let Γi,j be ε-regular. Suppose that αi,j ≥
√

2ε′. Then all but (r2 + r4)e−
√

r
(
n
r

)
of the

r-sets C̃ ∈ [C]r satisfy

1) |Γj(a, b) ∩ C̃j | = (αi,j ± 2ε′)|C̃j | for all but 2ε′r2/t elements (a, b) ∈ Gi ∩ (Ã ∩ B̃), and

2) |Γj(a, b) ∩ Γj(a′, b′) ∩ C̃j | = (α2
i,j ± 2ε′)|C̃j | for all but 2ε′r4/t2 elements {(a, b), (a′, b′)} ∈ [Gi ∩

(Ã× B̃)]2.

Proof. By (9) and (10),

1’) |Γj(a, b)| = (αi,j ± ε′)|Cj | for all but 2ε′r2/t of the (a, b) ∈ (Ã× B̃) ∩Gi

and

2’) |Γj(a, b)∩Γj(a′, b′)| = (α2
i,j±ε′)|Cj | for all but 2ε′r4/t2 elements {(a, b), (a′, b′)} ∈ [(Ã×B̃)∩Gi]2.

Since αi,j ≥
√

2ε′, αi,j − ε′ > αi,j/2. Also, ε′ ≫ 1/r (and due to Remark 6.8 we further have

ε′ > 2/ log r) hence 1’) yields

|Γj(a, b)| ≥ (αi,j − ε′)|Cj | ≥ αi,j |Cj |/2 > ε′n/t > n/t2 > n/r1/4.

Consequently Lemma 4.1 implies that for all but r2e−
√

r
(
n
r

)
of the r-sets C̃ ∈ [C]r and all (a, b)

that are not exceptions in 1’),

|Γj(a, b) ∩ C̃j | = |Γj(a, b)| |C̃j |
|Cj |

(1± 1/ log r) = (αi,j ± ε′)|C̃j |(1± 1/ log r) = (αi,j ± 2ε′)|C̃j |.

Therefore 1) holds for all these sets C̃.

Similarly, α2
i,j − ε′ > α2

i,j/2, and therefore

(α2
i,j − ε′)|Cj | ≥ α2

i,j |Cj |/2 > ε′n/t > n/r1/4

Now we apply 2’) and Lemma 4.1 to conclude 2).

The total number of exceptions to 1) and 2) is at most (r2 + r4)e−
√

r
(
n
r

)
as needed.

For the rest of the proof, we fix a C̃ that satisfies the conditions of Claim 6.13, and Claim 6.14

for every pair i, j for which Γi,j is ε-regular. The number of exceptions is at most

(t + tr2 + r2t2 + r4t2)e−
√

r

(
n

r

)
< e−

√
r/3

(
n

r

)
.
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Let Γi,j(Ã× B̃, C̃) ⊂ Γi,j(Ã× B̃) be the subgraph consisting only of edges touching C̃.

Claim 6.15. Suppose that Γi,j is ε-regular. Then

Γi,j(Ã× B̃, C̃) is (αi,j , ε
′′)–uniform. (11)

Proof. We distinguish between two cases.

Case 1: αi,j >
√

2ε′. We first observe that Γi,j(Ã × B̃, C̃) satisfies DPC(3ε′). This follows

immediately from Claim 6.14 (see (9) and (10)) and the inequalities 2ε′r2/t < 3ε′|Gi ∩ (Ã × B̃)|

and 2ε′r4/t2 < 3ε′|Gi ∩ (Ã × B̃)|2 which bound the number of exceptions in each case. By Claim

6.11, Γi,j(Ã× B̃, C̃) has density αi,j ± 5ε′. Now Proposition 6.4 part 1 implies that (11) holds.

For the other case we use the following trivial fact:

Fact: Suppose that a bipartite graph G has density less than (ε′′)3, and α̃ < (ε′′). Then G is

(α̃, ε′′)-uniform.

Case 2: αi,j ≤
√

2ε′. We show that the number of edges in Γi,j(Ã × B̃, C̃) is less than (ε′′)3|Gi ∩

(Ã× B̃)||C̃j |. Since αi,j ≤
√

2ε′ < ε′′ (see Remark 6.8), the Fact implies that (11) holds. Let

S1 = {(a, b) ∈ Gi ∩ (Ã× B̃) : |Γj(a, b)| = (αi,j ± ε′)|Cj | and |Γj(a, b)| ≥ n/r1/10},

S2 = {(a, b) ∈ Gi ∩ (Ã× B̃) : |Γj(a, b)| = (αi,j ± ε′)|Cj | and |Γj(a, b)| < n/r1/10},

S3 = {(a, b) ∈ Gi ∩ (Ã× B̃) : |Γj(a, b)| 6= (αi,j ± ε′)|Cj |}.

Then the number of edges in Γi,j(Ã× B̃, C̃) is∑
(a,b)∈S1

|Γj(a, b) ∩ C̃|+
∑

(a,b)∈S2

|Γj(a, b) ∩ C̃|+
∑

(a,b)∈S3

|Γj(a, b) ∩ C̃|. (12)

By Claim 6.13 part 2, and αi,j ≤
√

2ε′,∑
(a,b)∈S1

|Γj(a, b) ∩ C̃| ≤ |Gi ∩ (Ã× B̃)|(αi,j + ε′)|C̃j |(1 + 1/ log r) <
(ε′′)3

3
|Gi ∩ (Ã× B̃)||C̃j |.

By Claim 6.13 parts 1 and 3, and r � t,∑
(a,b)∈S2

|Γj(a, b) ∩ C̃| ≤ |Gi ∩ (Ã× B̃)|r19/20 <
(ε′′)3

3
|Gi ∩ (Ã× B̃)||C̃j |.

Since Γi,j is ε-regular, (8) and (9) yield |S3| ≤ 2ε′r2/t < 3ε′|Gi ∩ (Ã× B̃)|. Therefore∑
(a,b)∈S3

|Γj(a, b) ∩ C̃| ≤ 3ε′|Gi ∩ (Ã× B̃)||C̃j | <
(ε′′)3

3
|Gi ∩ (Ã× B̃)||C̃j |.

We conclude that (12) is bounded above by (ε′′)3|Gi ∩ (Ã× B̃)||C̃j |. This completes the proof.
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6.5.5 Step 5

In the remainder of the proof, we show that Ã, B̃, C̃ satisfies the conclusion of the Theorem. In

other words, we will prove thatH(Ã, B̃, C̃) is (α, δ̃)-uniform. Note that the number of triples Ã, B̃, C̃

that are exceptions is at most

[2 exp{−
√

r/3}+ exp{−
√

r/10}]
(

n

r

)3

< exp{−r1/3/10}
(

n

r

)3

.

Pick A′ ⊂ Ã, B′ ⊂ B̃, C ′ ⊂ C̃, with |A′| > δ̃|Ã|, |B′| > δ̃|B̃|, |C ′| ≥ δ̃|C̃|. To complete the proof, we

must show that

Lemma 6.16.

d(A′, B′, C ′) = α± δ̃ (13)

Proof. Our first goal is to prove

Claim 6.17. Let A′, B′ be as above, and C̃ satisfy the conditions in Claim 6.13. Then

d(A′, B′, C̃j) = α± 2δ̃(2). (14)

Proof. Let

S1 = {(a, b) ∈ A′ ×B′ : |Γj(a, b)| ≥ n/r1/4}

and

S2 = {(a, b) ∈ A′ ×B′ : |Γj(a, b)| < n/r1/4}.

Then

d(A′, B′, C̃j) =
e(A′, B′, C̃j)

|A′||B′||C̃j |
=

∑
(a,b)∈S1

|Γj(a, b) ∩ C̃j |

|A′||B′||C̃j |
+

∑
(a,b)∈S2

|Γj(a, b) ∩ C̃j |

|A′||B′||C̃j |
.

By Definition of S2, Claim 6.13 parts 1 and 3, and δ̃ � ε � 1/t � 1/r,∑
(a,b)∈S2

|Γj(a, b) ∩ C̃j |

|A′||B′||C̃j |
<

r2r19/20

(δ̃)2r2(r/2t)
< ε.

Since δ̃(2) � ε, to finish the proof it suffices to show that∑
(a,b)∈S1

|Γj(a, b) ∩ C̃j |

|A′||B′||C̃j |
= α± 3

2
δ̃(2). (15)
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We estimate
∑

(a,b)∈S1
|Γj(a, b)∩C̃j | by estimating e(A′, B′, Cj), which we in turn estimate by using

(*):

e(A′, B′, Cj) = d(A′, B′, Cj)|A′||B′||Cj | = (α± δ̃(2))|A′||B′||Cj |. (16)

On the other hand,

e(A′, B′, Cj) =
∑

(a,b)∈S1

Γj(a, b) +
∑

(a,b)∈S2

Γj(a, b),

while
∑

(a,b)∈S2
Γj(a, b) < r2n/r1/4. Consequently,∑

(a,b)∈S1

Γj(a, b) = (α± δ̃(2))|A′||B′||Cj | ± r7/4n,

and therefore ∑
(a,b)∈S1

Γj(a, b)
|C̃j |
|Cj |

= (α± δ̃(2))|A′||B′||C̃j | ± 2r11/4.

Now by the Definition of S1 and Claim 6.13 part 2,

∑
(a,b)∈S1

|Γj(a, b) ∩ C̃j |

|A′||B′||C̃j |
=

∑
(a,b)∈S1

|Γj(a, b)| |C̃j |
|Cj |(1±

1
log r )

|A′||B′||C̃j |
=
[
α±

(
δ̃(2) + ε

)]
(1± 1

log r
).

This implies (15) since δ̃(2) � ε � 1/r.

We now focus on C ′. Let C ′
j = C ′ ∩ Cj . Then

d(A′, B′, C ′) =
t∑

j=1

|C ′
j |

|C ′|
d(A′, B′, C ′

j). (17)

Break the sum in (17) into three parts depending first on whether Cj is good or not, and then on

whether |C ′
j | is big or not:

J1 = {j : Cj is good and |C ′
j | >

√
ε′′r/t},

J2 = {j : Cj is good and |C ′
j | ≤

√
ε′′r/t},

J3 = {j : Cj is not good}.

For i = 1, 2, 3, define

(i)∑
=
∑
j∈Ji

|C ′
j |

|C ′|
d(A′, B′, C ′

j).
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Next we show that the contribution of
∑(2) and

∑(3) is negligible. By definition

(2)∑
≤

∑
|C′

j |≤
√

ε′′r/t

|C ′
j |

|C ′|
<

t
√

ε′′r/t

δ̃|C̃|
=

√
ε′′r

δ̃r
<

(ε′′)1/3

2
. (18)

Since C ′
j ⊆ C̃j , Claim 6.13 part 1 implies that |C ′

j | ≤ 2r/t. Moreover, at most
√

εt of the Cj ’s are

not good. Consequently,

(3)∑
≤
∑
j∈J3

|C ′
j |

|C ′|
<

√
ε t maxj |C ′

j |
δ̃|C̃|

<

√
ε t 2r/t

δ̃r
=

2
√

ε

δ̃
<

(ε′′)1/3

2
. (19)

We have shown that
(1)∑

≤ d(A′, B′, C ′) ≤
(1)∑

+ (ε′′)1/3. (20)

To complete the proof of Lemma 6.16, it suffices to prove the following Claim.

Claim 6.18. Let j ∈ J1. Then

d(A′, B′, C ′
j) = α± δ̃/2. (21)

Before we prove Claim 6.18, we show how to complete the proof of Lemma 6.16. Indeed, if we

assume Claim 6.18, then (17) and (20) together with ε � δ̃ yield

d(A′, B′, C ′) ≤

∑
j∈J1

|C ′
j |

|C ′|
(α + δ̃/2)

+ (ε′′)1/3 < α + δ̃/2 + (ε′′)1/3 < α + δ̃.

On the other hand,

d(A′, B′, C ′) ≥
(1)∑

≥
∑
j∈J1

{ |C ′
j |

|C ′|
(α− δ̃/2)

}

= (α− δ̃/2)

 t∑
j=1

|C ′
j |

|C ′|
−

∑
j∈J2∪J3

|C ′
j |

|C ′|

 ≥ (α− δ̃/2)(1− (ε′′)1/3) ≥ (α− δ̃),

where the second last inequality comes from the fact that∑
j∈J2

|C ′
j |

|C ′|
≤

∑
|C′

j |≤
√

ε′′r/t

|C ′
j |

|C ′|
<

(ε′′)1/3

2
and

∑
j∈J3

|C ′
j |

|C ′|
<

(ε′′)1/3

2

proved in (18) and (19).

Proof of Claim 6.18. Let G′
i = Gi ∩ (A′ × B′), and let e(G′

i, C
′
j) be the number of edges between

G′
i and C ′

j in Γi,j . Then

e(A′, B′, C ′
j) =

t∑
i=1

e(G′
i, C

′
j). (22)
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Break the sum in (22) into three parts by the following sets:

I
(j)
1 = {i : |G′

i| >
√

ε′′r2/t and Γi,j(Ã× B̃, C̃) is (αi,j , ε
′′)–uniform},

I
(j)
2 = {i : |G′

i| >
√

ε′′r2/t and Γi,j(Ã× B̃, C̃) is not (αi,j , ε
′′)–uniform},

I
(j)
3 = {i : |G′

i| ≤
√

ε′′r2/t}.

Then
t∑

i=1

e(G′
i, C

′
j) =

∑
i∈I

(j)
1

e(G′
i, C

′
j) +

∑
i∈I

(j)
2

e(G′
i, C

′
j) +

∑
i∈I

(j)
3

e(G′
i, C

′
j).

We now bound the contribution from the last two sums. If Γi,j(Ã × B̃, C̃) is not (αi,j , ε
′′)-

uniform, then by Claim 6.15, Γi,j is not ε-regular. Since j ∈ J1, Cj is good and therefore Γi,j is not

ε-regular for at most
√

εt of the Gi’s. Also, G′
i = Gi ∩ (A′ ×B′) ⊆ Gi ∩ (Ã× B̃), hence by (8),

|G′
i| ≤ |Gi ∩ (Ã× B̃)| < 2r2/t. (23)

Consequently, ∑
i∈I

(j)
2

e(G′
i, C

′
j) ≤

√
εt|G′

i||C ′
j | <

√
εt(2r2/t)|C ′

j | = 2
√

εr2|C ′
j |.

Clearly ∑
i∈I

(j)
3

e(G′
i, C

′
j) ≤ |C ′

j |
∑

|G′
i|≤

√
ε′′r2/t

|G′
i| ≤ |C ′

j |
√

ε′′r2.

Now we estimate
∑

i∈I
(j)
1

e(G′
i, C

′
j). For an i ∈ I

(j)
1 and j ∈ J1 we have

(a) Γi,j(Ã× B̃, C̃) is (αi,j , ε
′′)-uniform

(b) |G′
i| >

√
ε′′r2/t > ε′′|Gi ∩ (Ã× B̃)|

(c) |C ′
j | >

√
ε′′r/t > (

√
ε′′/2)|C̃j | > ε′′|C̃j |.

Therefore ∑
i∈I

(j)
1

e(G′
i, C

′
j) =

∑
i∈I

(j)
1

|G′
i||C ′

j |(αi,j ± ε′′). (24)

Now

d(A′, B′, C ′
j) =

∑
i∈I

(j)
1

e(G′
i, C

′
j) +

∑
i∈I

(j)
2

e(G′
i, C

′
j) +

∑
i∈I

(j)
3

e(G′
i, C

′
j)

|A′||B′||C ′
j |

. (25)

Since |A′| > δ̃|Ã|, |B′| > δ̃|B̃|,∑
i∈I

(j)
2

e(G′
i, C

′
j)

|A′||B′||C ′
j |

<
2
√

εr2|C ′
j |

|A′||B′||C ′
j |

=
2
√

εr2

|A′||B′|
<

2
√

ε

(δ̃)2
<

δ̃

16
, (26)
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and ∑
i∈I

(j)
3

e(G′
i, C

′
j)

|A′||B′||C ′
j |

<
|C ′

j |
√

ε′′r2

|A′||B′||C ′
j |

=

√
ε′′r2

|A′||B′|
<

√
ε′′

(δ̃)2
<

δ̃

16
. (27)

Consequently in view of (25), to finish the proof of the Claim it suffices to prove the following

Subclaim

Subclaim 6.19. For every j ∈ J1, ∑
i∈I

(j)
1

e(G′
i, C

′
j)

|A′||B′||C ′
j |

= α± δ̃

4
. (28)

Proof. Using (24) for j ∈ J1 we have∑
i∈I

(j)
1

e(G′
i, C

′
j)

|A′||B′||C ′
j |

=

∑
i∈I

(j)
1

|G′
i|(αi,j ± ε′′)

|A′||B′|
. (29)

Now we use Claim 6.17 (Equation (14)) as well as (a) and (b) above:

α± 2δ̃(2) = d(A′, B′, C̃j) =
∑t

i=1 e(G′
i, C̃j)

|A′||B′||C̃j |
=

∑
i∈I

(j)
1

|G′
i||C̃j |(αi,j ± ε′′)

|A′||B′||C̃j |
+

∑
i6∈I

(j)
1

e(G′
i, C̃j)

|A′||B′||C̃j |
. (30)

By arguments similar to those used for (26) and (27),∑
i6∈I

(j)
1

e(G′
i, C̃j)

|A′||B′||C̃j |
<

∑
i6∈I

(j)
1

|G′
i||C̃j |

|A′||B′||C̃j |
<

δ̃

8
. (31)

Consequently, by (31) and (30)∑
i∈I

(j)
1

|G′
i|(αi,j ± ε′′)

|A′||B′|
=

∑
i∈I

(j)
1

|G′
i||C̃j |(αi,j ± ε′′)

|A′||B′||C̃j |
= α±

(
2δ̃(2) +

δ̃

8

)
= α± δ̃

4
.

Equation (28) now follows from (29). This completes the proof of Subclaim 6.19, Claim 6.18, and

the Theorem.

6.5.6 Comments on the weighted case

In this subsection we briefly describe the relatively minor modifications needed to prove WT (l) =⇒

WT (l + 1) for l > 2. We explain only the implication WT (l) =⇒ UWT (l + 1), since extending the

result to the weighted case is essentially identical to our proof for the unweighted conclusion. We

only need to add notation that not only counts edges, but counts edges based on their weight.

Our focus is therefore on WT (l) =⇒ UWT (l+1) for l > 2. Our strategy is the same with slight

modifications to Steps 1–3.

22



Let α, δ̃ > 0 be given and let H = H(A1, . . . , Al+1) be an (l+1)-partite (l+1)-graph with parts

A1, . . . , Al+1 each of size n. We will show that there exist δ, r, n0 such that, if n > n0, andH is (α, δ)-

uniform, then for all but e−r1/(l+1)/10
(
n
r

)l choices of (l +1)-tuples of r-sets Ãi ∈ [Ai]r, i ∈ [l +1], the

hypergraph H̃ = H(Ã1, . . . , Ãl+1) is (α, δ̃)-uniform. Throughout the proof, our constants implicitly

satisfy the following hierarchy:

α � δ̃ � δ̃(l) � ε′′ � ε′ � ε � 1/t � 1/r � δ � 1/n.

Define Γ = (A1 × · · · ×Al, Al+1) to be the bipartite graph with edge set

E(Γ) = {(a1, . . . , al), al+1) : (a1, . . . , al+1) ∈ E(H)}.

Observe that Γ has the same density as H, namely α.

Step 1: Apply the Szemerédi Regularity Lemma with parameter ε > 0 to Γ. This gives a partition

A1 × · · · ×Al = G1 ∪ · · · ∪Gt, |Gi| = n2/t, i = 1, . . . , t,

Al+1 = C1 ∪ · · · ∪ Ct, |Cj | = n/t, j = 1, . . . , t,

so that all but εt2 pairs Gi, Cj are ε-regular.

For each j = 1, . . . , t, consider the weighted l-graph Hj(A1, . . . , Al) with weight wj , where

wj(a1, . . . , al) is the number of al+1 ∈ Al+1 for which {a1, . . . , al, al+1} is an edge in H.

Step 2: Apply the induction hypothesis WT (l) to Hj(A1, . . . , Al) to conclude that for most choices

of r-sets Ãi ∈ [Ai]r, i ∈ [l], wj restricted to Ã1 ∪ · · · ∪ Ãl is (α, δ̃(l))-uniform.

Let Γi,j be the subgraph of Γ induced by Gi∪Cj . Let Γi,j(Ã1×· · ·× Ãl) ⊂ Γi,j be the subgraph

induced by [Gi ∩ (Ã1 × · · · × Ãl)] ∪ Cj .

Step 3: Show that for most Ãi ∈ [Ai]r, i ∈ [l], Γi,j(Ãi × · · · × Ãl) satisfies DPC(3ε′) for most i, j.

Fix Ã1, . . . , Ãl satisfying Steps 2) and 3).

Step 4: Show that for most Ãl+1 ∈ [Al+1]r, Γi,j(Ã1 × · · · × Ãl, Ãl+1) is (αi,j , ε
′′)-uniform.

Now fix Ãl+1 satisfying the conditions of Step 4.

Step 5: Show that H(Ã1, · · · , Ãl, Ãl+1) is (α, δ̃)-uniform.
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7 Appendix

7.1 Proofs from Section 4

Lemma 4.1: Let |X| = x, and |Y | = y with Y ⊆ X. Let R ∈ [X]r be a random r-set chosen

independently from the family of all r-sets of X. Let r > r0 and 3/2 > σ ≥ 1/ log r. Then with

probability greater than 1− e−
√

r, the following holds:

a) |R ∩ Y | = ry
x (1± σ) if y ≥ x/r1/4,

b) |R ∩ Y | < r19/20 if y ≤ x/r1/10.

Proof. The following two inequalities apply to a binomially distributed random variable X =

Bi(N, p) with mean µ (see [17] pages 27-28).

1) Pr(|X − µ| ≥ εµ) ≤ 2 exp{− ε2

3 µ} for 0 < ε ≤ 3/2, and

2) Pr(X ≥ a) ≤ exp{−a} for a ≥ 7µ. Here we use the fact that these estimates apply to

the hypergeometric distribution (see [17] pages 29-30). In the range y ≥ x/r1/4 we use 1): here

µ = ry/x, 0 < ε = σ ≤ 3/2 and thus due to our assumption on r (r > r0, σ > 1/ log r) we infer that

Pr(||R ∩ Y | − ry/x| > σry/x) < 2 exp{−σ2

3
ry/x} < exp{−

√
r}.

In the range y ≤ x/r1/10, we use 2) with a = r19/20. Notice that a = r19/20 > 7ry/x = 7µ, so

Pr(|R ∩ Y | > r19/20) ≤ exp{−r19/20} < exp{−
√

r}.

This completes the proof.

Lemma 4.3: For all c, ξ, there exist r0, n0 such that if r > r0, n > n0, the following holds: If∑
i∈[n] xi = cn, where 0 ≤ xi ≤ 1 for each i, then all but e−

√
r/2
(
n
r

)
of the r-sets R ∈ [n]r satisfy∑

i∈R xi = (c± ξ)r.

Proof. The idea is to partition the elements xi into intervals and apply the hypergeometric inequal-

ities to each interval that has a large proportion of the xi’s. By choosing intervals of appropriate

size, we ensure that the major part of the contribution of
∑

i xi comes from xi’s in these intervals.

Let ε = ξ/10. Define I0 = {i : xi < ε} and for 1 ≤ j ≤ 1−ε
ε2

, let Ij = {i : lj−1 ≤ xi < lj}, where

lj = ε + jε2. Let J1 = {j : |Ij | > ε3n} and J2 = {j : |Ij | ≤ ε3n}. We now apply Lemma 4.1 with

y = |Ij |.
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If j ∈ J1, then since r0 = r0(ξ) we have y > ε3n > n/r1/4. Therefore all but e−
√

r of the r-sets

R ∈ [n]r have |R ∩ Ij | = |Ij |
n r(1± ε).

If j ∈ J2, then all but e−
√

r
(
n
r

)
of the r-sets R ∈ [n]r have either

i) |R ∩ Ij | = |Ij |
n r(1± ε) < 2ε3r or

ii) |R ∩ Ij | < r19/20 < 2ε3r.

We conclude that for all but 1
ε2

e−
√

r
(
n
r

)
of the r-sets R ∈ [n]r,

iii) |R ∩ Ij | = |Ij |
n r(1± ε) for all j ∈ J1 and

iv) |R ∩ Ij | < 2ε3r for all j ∈ J2.

Since 1
ε2

e−
√

r < e−
√

r/2 it suffices to show that the conclusion of the Lemma holds for these r-sets.

Now fix an R satisfying iii) and iv) and note that |lj |/|lj−1| < 1 + ε. Then by iv),

∑
i∈R

xi =
∑
j∈J1

∑
i∈Ij∩R

xi +
∑
j∈J2

∑
i∈Ij∩R

xi <

∑
j∈J1

∑
i∈Ij∩R

xi

+
1
ε2

2ε3r =

∑
j∈J1

∑
i∈Ij∩R

xi

+ 2εr.

Using iii) now gives

∑
j∈J1

∑
i∈Ij∩R

xi <
∑
j∈J1

|Ij ∩R|lj <
r(1 + ε)

n

∑
j∈J1

|Ij |lj <
r(1 + ε)2

n

∑
j∈J1

|Ij |lj−1 ≤
r(1 + ε)2

n

n∑
i=1

xi.

Consequently,

∑
i∈R

xi <
r(1 + ε)2

n

n∑
i=1

xi + 2εr = cr(1 + ε)2 + 2εr < cr(1 + 3ε) + 2εr < r(c + 5ε) ≤ r(c + ξ).

On the other hand, iii) and iv) together give

∑
i∈R

xi ≥
∑
j∈J1

∑
i∈Ij∩R

xi ≥
∑
j∈J1

|Ij ∩R|lj−1 ≥
∑

j∈J1
|Ij ∩R|lj

1 + ε
≥ r(1− ε)

n(1 + ε)

∑
j∈J1

|Ij |lj

≥ r(1− ε)
n(1 + ε)

 n∑
i=1

xi −
∑
j∈J2

|Ij |lj

 ≥ r(1− ε)
n(1 + ε)

(cn− εn) =
r(1− ε)(c− ε)

(1 + ε)
> r(c− 3ε) > r(c− ξ).

We have shown that for all but e−
√

r/2
(
n
r

)
of the r-sets R ∈ [n]r, the sum

∑
i∈R xi = (c ± ξ)r as

required.

The following lemma is used in the proof of Lemma 4.4. Its proof is very similar to that of

Lemma 4.3 so we omit it.
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Lemma 7.1. Given r > r0, there exists n(r) such that for n > n(r) the following holds: Suppose

that
∑

i∈[n] xi < n/r1/10 with 0 ≤ xi ≤ 1. Then for all but e−
√

r/2
(
n
r

)
R ∈ [n]r, we have

∑
i∈R xi <

r19/20.

Given a weighted graph G, we write degG(x) for the weighted degree of x, so we sum over the

weights of all edges incident with x.

Lemma 4.4: Fix k ≥ 2. For every β, there exists r, n0 such that if n > n0 then the following

holds. Let G be an n vertex weighted graph with total weight at most βnk, maximum weighted

degree at most nk−1, and maximum edge weight at most nk−2. Then all but 2e−
√

r/2
(
n
r

)
of the

r-sets of vertices induce a subgraph with weight at most 2βnk−2r2.

Proof. We may assume by adding weight to edges if needed that G has weight exactly βnk. We

may also divide all weights by nk−2 and assume that G has total weight βn2, maximum weighted

degree n, and maximum edge weight 1. Let V (G) = [n], and for each i ∈ [n], let xi = degG(i)/n.

Then
n∑

i=1

xi =
2βn2

n
= 2βn, and 0 ≤ xi =

degG(i)
n

≤ 1

so by Lemma 4.3, all but e−
√

r/2
(
n
r

)
of the r-sets R ∈ [n]r have∑

i∈R

degG(i) = n
∑
i∈R

xi = (2β ± β/10)nr.

From now we restrict only to these r-sets.

Given a vertex i, an r-set R containing i is i-bad if either

i) degR(i) > (1 + δ
10)degG(i) r−1

n−1 and degG(i) > n/r1/4, or

ii) degR(i) > r19/20 and degG(i) ≤ n/r1/10

If i) holds, then by Lemma 4.3 at most e−
√

r/2
(
n−1
r−1

)
of the r-sets containing i are i-bad. If ii)

holds, then since the edge weight is at most 1, Lemma 7.1 implies that at most e−
√

r/2
(
n−1
r−1

)
of the

r-sets containing i are i-bad. Hence for any vertex i, at most e−
√

r/2
(
n−1
r−1

)
of the r-sets containing

i are i-bad. Therefore the number of r-sets R that contain an i for which R is i-bad is at most

ne−
√

r/2
(
n−1
r−1

)
< e−

√
r/2
(
n
r

)
. For an R that contains no i for which it is i-bad, we have∑

i∈R

degR(i) < r · r19/20 +
∑
i∈R

2degG(i)
r − 1
n− 1

< r39/20 + 2
r − 1
n− 1

∑
i∈R

degG(i) < 2βr2.

Altogether we have considered all but 2e−
√

r/2
(
n
r

)
of the r-sets. The weight of one of the sets R we

have considered is
∑

i∈R degR(i)/2 < 2βr2 as needed.
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7.2 Proofs from Section 6.2

Recall that an equipartition P of a set S is a partition of S into sets of equal size. The equipartition

P contains an edge e of S if e has nonempty intersection with each of the parts of P .

Let p(x) =
(
3x
x

)(
2x
x

)
. Note that p(t)/6 is the number of equipartitions of a 3t element set into

three subsets. Then for a < b, an easy computation using
(
n
k

)
= n!/[k!(n− k)!] yields

p(a)p(b− a)
p(b)

=

(
b
a

)3(
3b
3a

) . (32)

The following Lemma deals with 3-graphs, but can easily be extended to l-graphs.

Lemma 7.2. Let α, δ̃ > 0, and let S be a set of size 3s with density at least α+ δ̃. Then the number

of equipartitions P = S1 ∪ S2 ∪ S3 of S containing at least (α + δ̃/2)s3 triples of S is at least

p(s)
6

(
1−O

(
1

δ̃2s

))
=

1
6

(
3s

s

)(
2s

s

)(
1−O

(
1

δ̃2s

))
. (33)

Proof. We consider the space of all equipartitions of S. For each edge e in S, let Xe be the indicator

random variable for e belonging to some equipartition P . Then

Pr(Xe = 1) =
6p(s− 1)

p(s)
.

We now estimate the expected number E(X) = E(
∑

e Xe) of edges contained in an equipartition.

By linearity of expectation and (32) we have

E(X) ≥ (α + δ̃)
(

3s

3

)
Pr(Xe = 1) = 6(α + δ̃)

(
3s

3

)
p(s− 1)p(1)

p(s)p(1)
= 6(α + δ̃)

(
3s

3

) (s
1

)3
6
(
3s
3

) = (α + δ̃)s3.

To show that most equipartitons contain close to the expected number of edges, we use Chebyschev’s

inequality which states that for any positive t, we have Pr(|X − E(X)| > tσ) ≤ 1/t2, where σ is

the standard deviation. We must therefore compute the variance σ2. Now

σ2 = E(X2)− [E(X)]2 = E((
∑

e

Xe)2)− [E(X)]2 = E(X) +
∑
e6=f

E(XeXf )− [E(X)]2.

The term
∑

e6=f E(XeXf ) can be computed by considering those pairs e, f that are disjoint and

those that intersect. Since |e ∩ f | 6= ∅ implies that |e ∪ f | ≤ 5, we have∑
e,f

|e∩f |6=∅

E(Xe)E(Xf ) < s5.

27



On the other hand,∑
e,f

|e∩f |=∅

E(Xe)E(Xf ) =
62p(s− 2)

p(s)

∑
e,f

|e∩f |=∅

1 = (α + δ̃)2s6 + O(s5) = [E(X)]2 + O(s5).

We have shown that the standard deviation σ of X is O(s5/2). Therefore

Pr(X < (α + δ̃/2)s3) < Pr(|X − E(X)| > (δ̃/2)s3) < O

(
1

δ̃2s

)
,

and consequently

Pr(X ≥ (α + δ̃/2)s3) ≥ 1− c

δ̃2s

for some absolute constant c. Since the total number of equipartitions of S is (1/6)
(
3s
s

)(
2s
s

)
, the

number of equipartitions which contain at least (α+δ̃/2)s3 triples of S is given by (33) as needed.

Proof of Theorem 6.1 from Theorem 6.2: Recall that we only consider the unweighted case

and l = 3. Alternatively, the weights are all 0 or 1.

Proof of (3): Given a δ-regular H of density α, we show that for all equipartitions A = A1∪A2∪A3

of V (H), the resulting 3-partite 3-graph H(A1, A2, A3) is 14δ-regular of density α.

For i = 1, 2, 3, pick A′
i ⊂ Ai, each of size at least v/3 > 14δ(n/3). We may assume that each has

size exactly v/3 since a simple averaging argument implies the result in the case of strict inequality.

We will prove that the number of edges in H(A′
1, A

′
2, A

′
3) is (1± 14δ)αv3.

The set A′
1 ∪A′

2 ∪A′
3 contains (1± δ)αv3 triples since H is δ-regular and v > δn. Similarly, for

each i, j, the set A′
i∪A′

j contains (1±δ)α
(
2v
3

)
triples, and A′

i contains (1±δ)α
(
v
3

)
triples. Therefore

the number of triples in A′
1 ∪ A′

2 ∪ A′
3 with at least one element in each of A′

1, A
′
2, and A′

3 is by

inclusion-exclusion

(1± δ)α
(

3v

3

)
− 3(1± δ)α

(
2v

3

)
+ 3(1± δ)α

(
v

3

)
= (1± 14δ)αv3.

Proof of (5): We will assume that there exist exp{−r1/l/20}
(
n
r

)
r-sets X̃ ∈ [X]r (here l = 3), which

do not satisfy property (α, δ̃). Our goal is to prove that there exists an equipartition A = A1∪A2∪A3

of X and exp{−r1/l/20}
(n/3

r/3

)3
triples of r/3-sets Ãi ∈ [Ai]r/3, i ∈ [3], which do not satisfy property

(α, δ̃/2).
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Let R be the family of r-sets X̃ ∈ [X]r, not satisfying property (α, δ̃). This means that for each

X̃ ∈ R, there is a Y = Y
X̃
⊂ X, |Ỹ | = δ̃r that has density outside α± δ̃. Let

B = {(X̃, Y
X̃

) : X̃ ∈ R}

and

B′ = {(X̃, Y
X̃

) ∈ B : d(Y
X̃

) > α + δ̃}.

We may assume without loss of generality that |B′| ≥ |B|/2 ≥ exp{−r1/l/20}
(
n
r

)
/2.

For an equipartition P = A1 ∪ A2 ∪ A3 and R ⊂ X, let PR = R1 ∪ R2 ∪ R3 be the restriction

of P to R. We prove that such a P exists that satisfies the following two properties for at least

exp{−r1/l/10}
(n/3

r/3

)3
elements (X̃, Y ) ∈ B′:

1) PY is an equipartition of Y and the density d(Y1, Y2, Y3) > (α + δ̃/2).

2) P
X̃

is an equipartition of X.

This will complete the proof.

Set n′ = n/3, r′ = r/3 and s′ = |Y |/3 = δ̃r/3. By Lemma 7.2 the number of equipartitions of

Y that contain at least (α + δ̃/2)(s′)3 triples is at least (1/6)p(s′)
(
1−O

(
1

δ̃2s′

))
. The number of

ways to extend each of these equipartitions of Y to an equipartition of X̃ is p(r′− s′). The number

of ways to extend each of these equipartitions of X̃ to an equipartition of X is p(n′ − r′).

Now form a bipartite graph with parts B′,P, where P consists of all equipartitions of X, and

join (X̃, Y ) ∈ B′ to P ∈ P if 1) and 2) are satisfied. We have just argued that every vertex of B′

has degree at least

d =
1
6
p(s′)p(r′ − s′)p(n′ − r′)

(
1−O

(
1

δ̃2s′

))
≥ 1

12
p(s′)p(r′ − s′)p(n′ − r′),

where the inequality holds since r is sufficiently large. Hence there is a P ∈ P with degree at least

|B′|d/|P| ≥ |B|d/2p(n′). Now we lower bound this and use (32) to simplify:

|B|d
2p(n′)

≥ 1
24

exp{−r1/l/20}
(

n

r

)
p(s′)p(r′ − s′)p(n′ − r′)

p(n′)

=
1
24

exp{−r1/l/20}
(

3n′

3r′

)
p(s′)p(r′ − s′)

p(r′)
p(r′)p(n′ − r′)

p(n′)

=
1
24

exp{−r1/l/20}
(

3n′

3r′

)(r′
s′

)3(
3r′

3s′

) (n′

r′

)3(
3n′

3r′

)
≥ exp{−r1/l/10}

(
n′

r′

)3

= exp{−r1/l/10}
(

n/3
r/3

)3

.
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Consequently there is an equipartition of X satisfying 1) and 2) for at least exp{−r1/l/10}
(n/3

r/3

)3
elements (X̃, Y ) ∈ B′. This concludes the proof.

7.3 Proofs from Section 6.3

Proposition 6.5: Let H(A1, . . . , Al) be an l-partite l-graph, w be a weight function on H of

density α, and γi : Ai → {0, 1}. Suppose that δ > 0 and |γi| is an integer for each i. Then the

following are equivalent:

1) w is (α, δ)-uniform

2) for all choices of γi : Ai → [0, 1] with |γi| > δn,

|d(γ1, . . . , γl) = α± δ.

Proof. Clearly 2) implies 1) since we may consider γi that take only 0-1 values. We now prove that

1) implies 2). Suppose that w is (α, δ)-uniform and |d(γ1, . . . , γl) − α| > δ. Assume by symmetry

that d(γ1, . . . , γl) > α + δ. We will transform γi to βi such that for each i

i) |βi| = |γi|,

ii) βi is a 0-1 function,

iii) d(β1, . . . , βl) ≥ d(γ1, . . . , γl) > α + δ.

Now letting A′
i = {z ∈ Ai : βi(z) = 1} we have that |A′

i| = |βi| ≥ δn and

d(A′
1, . . . , A

′
l) = d(β1, . . . , βl) > α + δ.

This contradicts 1).

We now show how to create βi for which i), ii), iii) hold. For x ∈ A1, let

d(x) =
∑

{w(x, a2, . . . al)
l∏

i=2

γi(ai) : (x, a2, . . . , al) ∈ A1 × . . . Al}.

Suppose that there are x, x′ ∈ A1 with neither γ1(x) nor γ1(x′) being an integer. We will transform

γ1 to γ′1 such that

i’) |γ′1| = |γ1|,

ii’) at least one of γ′1(x) or γ′1(x
′) is an integer,

iii’) d(γ′1, γ2, . . . , γl) ≥ d(γ1, . . . , γl).

Assume without loss of generality that d(x) ≤ d(x′). Let ε = min{1 − γ1(x′), γ1(x)}. Set γ′1(x) =

γ1(x)− ε, γ′1(x
′) = γ1(x′) + ε, and γ′1(z) = γ1(z) for z 6∈ {x, x′}. Clearly i’) holds and by the choice
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of ε, either γ′1(x) = 0 or γ′1(x
′) = 1 so ii’) holds. Since d(x) ≤ d(x′),

γ′1(x)d(x) + γ′1(x
′)d(x′) = γ1(x)d(x) + γ1(x′)d(x′) + ε(d(x′)− d(x)) ≥ γ1(x)d(x) + γ1(x′)d(x′).

Consequently,

d(γ′1, γ2, . . . , γl) =

∑
z∈A1

γ′1(z)d(z)
|γ′1||γ2| · · · |γl|

≥
∑

z∈A1
γ1(z)d(z)

|γ1||γ2| · · · |γl|
= d(γ1, γ2, . . . , γl),

which proves iii’).

We repeat such a transformation to γ′1 until the resulting function takes on only integer values.

Since |γ1| is an integer, the resulting function cannot have only one non integer value, and this

process therefore terminates to form β1. Repeating this for each i yields i), ii), and iii) as required.

Recall the following set up: Let A = {a1, . . . , an}, B = {b1, . . . , bn} and w : A×B → [0, 1]. Let

wi,j = w(ai, bj), and let ~wi = (wi,1, . . . , wi,n). Set α = (1/n2)
∑

i,j wi,j . Consider the following two

statements:

UNI(δ): w is (α, δ)-uniform

DPC(δ′): The dot product ~wi · ~wi′ = (α± δ′)2n for all but δ′n2 pairs i, i′.

Proposition 6.6: The statements UNI(δ) and DPC(δ′) are equivalent in the following sense:

1) ∀δ,∃δ′, n0, such that ∀n > n0, DPC(δ′) ⇒ UNI(δ)

2) ∀δ′,∃δ, n0, such that ∀n > n0, UNI(δ) ⇒ DPC(δ′)

Proof. The proofs of both 1) and 2) are similar to Lemmas 3.1 and 3.2 in [2]. Here we only prove

2), since 1) follows by extending the ideas of [2] in a similar fashion.

Suppose that UNI(δ) holds and let A′ ⊂ A be the set of vertices ai for which

d(ai) =
n∑

j=1

wi,j > (α + δ)n.

Then

d(A′, B) =

∑
ai∈A′

∑
bj∈B wi,j

|A′||B|
=

∑
ai∈A′ d(ai)
|A′||B|

> α + δ.

Since w is (α, δ)-uniform we conclude that |A′| < δn. Arguing similarly for vertices with d(ai) <

(α− δ)n, we obtain that for at least (1− 2δ)n vertices ai ∈ A, we have d(ai) = (α± δ)n. We now

show that for each such ai, the dot product ~wi · ~wi′ = (α± δ)2n for all but at most 2δn of the ai′s.
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Fixing i, let A′′ ⊂ A be the set of those ai′ for which ~wi · ~wi′ > (α + δ)2n. Define γ1(x) = 1

for x ∈ A′′ and 0 for x 6∈ A′′, and define γ2(bj) = wi,j for all bj ∈ B. Then |γ1| = |A′′|, and

|γ2| = d(ai) = (α± δ)n. Consequently,

d(γ1, γ2) =

∑
ai′∈A′′

∑
bj∈B wi′,jγ1(ai′)γ2(bj)

|γ1||γ2|
=

~wi · ~wi′

|γ2|
>

(α + δ)2n
(α + δ)n

= α + δ.

If |γ1| ≥ δn, then by Proposition 6.5, this contradicts (α, δ)-uniformity of w. Hence |A′′| = |γ1| < δn.

Arguing similarly for those ai′ for which ~wi · ~wi′ < (α− δ)2n, we conclude that ~wi · ~wi′ = (α± δ)2n

for all but at most 2δn of the ai′s. Therefore the number of pairs i, i′ for which ~wi · ~wi′ 6= (α± δ)2n

is at most (2δn)n + (n− 2δn)2δn < 4δ2n. We conclude that for any δ′, there is a δ = δ(δ′, α) such

that UNI(δ) ⇒ DPC(δ′).

7.4 Proofs from Section 6.5

Proposition 4.5: Let G = (A,B) be a bipartite graph with n2/t edges and |A| = |B| = n. Let

B ⊂ E(G) be a set of size at most ε′n2/t. Let B′ ⊂ [E(G)]2 be a set size at most ε′n4/t2. Then the

following holds: For all ε′, t, there exist r, n0, such that if n > n0, then

for all but 6e−
√

r/2
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r,

|(Ã× B̃) ∩ E(G)| = r2

t
(1± 1/10) (34)

and in the graph spanned by Ã× B̃,

1) at most 2ε′r2/t edges lie in B, and

2) at most 2ε′r4/t2 pairs of edges lie in B′.

Proof. We first show that for all but 2e−
√

r/2
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r, (34) holds. For i ∈ A,

let xi = deg(i)/n. Then
∑

i∈A xi = n/t so by Lemma 4.3 all but e−
√

r/2
(
n
r

)
choices Ã ∈ [A]r have∑

i∈Ã

deg(i) = n
∑
i∈Ã

xi = (1/t± 1/10)rn.

Fix such an Ã, and for each j ∈ B, define yj = deg
Ã
(j)/r. Then

∑
j∈B yj =

∑
i∈Ã

deg(i)/r =

(1/t± 1/10)n. By Lemma 4.3, all but e−
√

r/2
(
n
r

)
choices B̃ ∈ [B]r have

e(Ã, B̃) =
∑
j∈B̃

deg
Ã
(j) = r

∑
j∈B̃

yj = (1/t± 1/10)r2.
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The total number of exceptions Ã, B̃ is at most e−
√

r/2
(
n
r

)2 +e−
√

r/2
(
n
r

)2 = 2e−
√

r/2
(
n
r

)2 as claimed.

Applying this argument to the graph with edge set B, we obtain that 1) holds for all but

2e−
√

r/2
(
n
r

)2 choices Ã ∈ [A]r, B̃ ∈ [B]r.

We now prove that 2) holds for all but 2e−
√

r/2
(
n
r

)2 exceptions. Define a weighted graph GA with

vertex set A (possibly with loops), where the weight w(uv) of edge uv is the number of {e, e′} ∈ B′

with u an endpoint of e and v an endpoint of e′. Then the sum of the weights of all edges in GA

is |B′| ≤ ε′n4/t2, the maximum weighted degree is at most n3, and the maximum edge weight is at

most n2. By Lemma 4.4, setting β = ε′/t2 and k = 4, all but 2e−
√

r/2
(
n
r

)
of the Ã ∈ [A]r have∑

u,v∈Ã

w(uv) < 2ε′
n4

t2
r2

n2
= 2ε′

n2r2

t2
.

Now define a weighted graph GB with vertex set B (possibly with loops), where the weight w(uv)

of edge uv is the number of {e, e′} ∈ B′ with e = au and e′ = a′v where a, a′ ∈ A. Then the sum

of the weights of all edges in GB is
∑

u,v∈Ã
w(uv) < 2ε′ n

2r2

t2
, the maximum weighted degree is at

most r2n, and the maximum edge weight is at most r2. Therefore by Lemma 4.4 (scaling down by

a factor of r2, setting β = 2ε′/t2, and k = 2), all but 2e−
√

r/2
(
n
r

)
of the B̃ ∈ [B]r have∑

u,v∈B̃

w(uv) < 2ε′
n2r2

t2
r2

n2
= 2ε′

r4

t2
.

Therefore the number of elements of B′ in the graph spanned by Ã× B̃ is at most 2εr4/t2, and this

holds for all but 2e−
√

r/2
(
n
r

)2 choices Ã, B̃.

We have argued that altogether the number of Ã, B̃ not satisfying (34), 1) or 2), is at most

6e−
√

r/2
(
n
r

)2, thereby completing the proof.
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[2] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, R. Yuster, The algorithmic aspects of the regularity

lemma. J. Algorithms 16 (1994), no. 1, 80–109.

[3] N. Alon, A. Shapira, Testing satisfiability, Proc. of the 13th Annual ACM-SIAM SODA, ACM

Press (2002), 645-654. Also: J. Algorithms, in press.

[4] N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski, Random Sampling and Approximation

of MAX-CSP Problems, Proc. of the 34 ACM STOC, ACM Press (2002) 232–239.
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[9] P. Erdős, M. Simonovits, A limit theorem in graph theory. Studia Sci. Math. Hungar 1 1966

51–57.
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