ELLIPTIC ALIQUOT CYCLES OF FIXED LENGTH

NATHAN JONES

ABSTRACT. Silverman and Stange define the notion of an aliquot cycle of length L for a fixed elliptic curve
FE over Q, and conjecture an order of magnitude for the function which counts such aliquot cycles. In the
present note, we combine heuristics of Lang-Trotter with those of Koblitz to refine their conjecture to a
precise asymptotic formula by specifying the appropriate constant. We give a criterion for positivity of the
conjectural constant, as well as some numerical evidence for our conjecture.

1. INTRODUCTION

Let E be an elliptic curve over Q and fix a positive integer L > 2. In analogy with the classical notion of an
aliquot cycle, Silverman and Stange [10] define an L-tuple (p1, po,...,pr) of distinct positive integers to be
an aliquot cycle of length L for F if each p; is a prime number of good reduction for £ and

pit1 = |E[F,,)| Vie{l,2,...,L—1} and p=|E([,,)],
which may be more succinctly written as
pi1 = |B(F,)|, Vi€ Z/LZ, (1)

When L = 2, an aliquot cycle is also referred to as an amicable pair for F. As observed in [10, Remark
1.5], there is an intimate connection between aliquot cycles for F and elliptic divisibility sequences, which
relate to generalizations of classical index divisibility questions about Lucas sequences. Thus, it is of interest
to know how common such aliquot cycles are, so we consider the function which counts aliquot cycles of
fixed length for a fixed elliptic curve E over Q. More precisely, define an aliquot cycle (p1,p2,...,pr) to be
normalized if p; = min{p; : 1 <i < L}, and then write

7g.L(z) = |{p1 <z : 3 anormalized aliquot cycle (p1,p2,...,pr) for E}|.

Conjecture 1.1. (Silverman-Stange) Let E be an elliptic curve over Q and L > 2 a fized integer, and
assume that there are infinitely many primes p such that |E(F,)| is prime. Then, as x — 0o, one has

xi\/‘;L if E has no CM
WEL(-T) (log ) ,
’ NAEW if E has CM and L = 2,

where the implied constants in < are both positive and depend only on E and L, and Ag is a precise positive
constant.

Remark 1.2. We may interpret the L = 1 case of (1) as describing primes p; for which p; = |E(F,,)|.
Such primes are called anomalous primes and have been considered by Mazur [7]. The asymptotic count
for anomalous primes up to x is a special case of a conjecture of Lang and Trotter [6].

In [10], Silverman and Stange focus on the intricacies of the CM case, proving that if E has CM, jg # 0
and L > 3, then F any normalized aliquot cycle (p1,p2,...,pr) for E must have p; < 5 (so in particular,
g, .(z) = O(1)). The case jg = 0 is apparently more complicated, and no proof is given that 7 1, (z) = O(1)
when jg =0 and L > 3.

In this note, we refine Conjecture 1.1 to an asymptotic formula in the non-CM case. Heuristics will be
developed which lead to the following conjecture.
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By:y?=2% -3z +4 0 0 0 0

Table 1: Values of mg o(x)

Conjecture 1.3. Let E be an elliptic curve over Q without complex multiplication and L > 2 a fixed integer.
Then there is a non-negative real constant Cg.r > 0 (see (7) below) so that, as x — oo,
x
1
i x)~C ——dt. 2
5@~ Con | ooy ©)
Remark 1.4. It is possible for the constant Cg 1 to be zero, in which case lim,_,o 7g 1 (x) is provably
finite. Thus, in case Cg 1, = 0, let us interpret the above asymptotic to mean that lim, .., 7g 1(z) < co.

Remark 1.5. By integration by parts, one has

/2 Qﬁ(logt)Ldt ~ (logz)" O ((IOgCﬂ)LH).

Thus, Conjecture 1.3 is consistent with Conjecture 1.1. In practice, the error term

z 1
-C —dt
.1 () BL /2 2v/t(logt)L ‘

should be smaller than , just as in the case of the prime number theorem.

X
me.L(®) = O L s e

Consider Table 1, which lists the values of mg o(x) for a few non-CM curves E and various magnitudes z.
Note that g, o(x) is larger than g, o(z). This difference is explained by the associated constants appearing
in Conjecture 1.3. Indeed, a computation shows that

Also note that 7g, 2(10'2) = 0. The additional fact that |{p < 10° : |E5(F,)| is prime}| = 3236 indicates
that there probably are infinitely many primes p for which |E5(F,)| is prime, in which case the above data
suggests that E's might be a counterexample to Conjecture 1.1. We will later see that Cg, 2 = 0, and that
Fj3 is indeed a counterexample, assuming a conjecture of Koblitz on the primality of |E(F,)|.

Remark 1.6. The heuristics which lead to Conjecture 1.3 are in the style of Koblitz and Lang-Trotter, whose
conjectures have been proven “on average over elliptic curves E” (see [1] and [2]). It might be interesting to
see if one could also prove an average version of Conjecture 1.3.

1.1. Positivity of Cg ; and a directed graph Gg. In the interest of characterizing the elliptic curves
which have infinitely many aliquot cycles of length L, we will state a graph-theoretic criterion for positivity
of Cg, . Recall that a directed graph G is a pair (V,€), where V = V(G) is an arbitrary set of vertices
and &€ = £(G) CV x V is a subset of directed edges. Finally, the sequence of vertices (vy,v2,v3,...,0,)
is a closed walk of length n if and only if (v;,v;y1) € &, for each i € Z/nZ = {1,2,3,...,n}. Note that
closed walks may have repeated vertices. For instance, if (v,v) € £ for some vertex v (i.e. if G has a loop at
a vertex v), then G has closed walks of any length.

We will associate to an elliptic curve E a directed graph Gg. First, consider the n-th division field Q(E[n]) of
E, obtained by adjoining to Q the x and y-coordinates of the n-torsion E[n] of a given Weierstrass model of
E. The extension Q(E[n]) is Galois over Q, and once we fix a basis over Z/nZ of E[n|, we may view

Gal(Q(E[n])/Q) € GLy(Z/nZ). 3)
We will now attach to Gal(Q(E[n])/Q) a directed graph Gg(n). Viewing Galois automorphisms as 2 x 2
matrices via (3), the vertex set V(n) of our graph Gg(n) is

V(n) :={(t,d) € Z/nZ x (Z/nZ)* : Ig € Gal(Q(E[n])/Q) with trg =t, det g = d}.
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We define the edge set £(n) by declaring that (v1,v2) € € if and only if d; +1 — 1 = da, where v; = (¢;,d;) €
V(n).
Let mg denote the torsion conductor of E, which is defined as the smallest positive integer m for
which

Y € Zxo, Gal(Q(E[n])/Q) = 7~ (Gal(Q(Elged(m, n)])/Q)),

where m : GLy(Z/nZ) — GL2(Z/ ged(m,n)Z) is the canonical projection. (The existence of a torsion
conductor mp for a non-CM elliptic curve E is a celebrated theorem of Serre [9].) Finally, we define the
directed graph Gg to be the above graph at level mg:

G :=Gg(mg).

The following version of Conjecture 1.3 states a criterion for positivity of Cg r, in terms of the directed graph

GE.

Conjecture 1.7. Let E be an elliptic curve over Q without complex multiplication and L > 2 a fixed integer.
Suppose that the directed graph Gg has a closed walk of length L. Then there are infinitely many aliquot
cycles of length L for E. More precisely, there is a positive constant Cg 1 > 0 so that, as x — oo,
x
1
e L(x) ~C —dt
wale) o |5 gy

Remark 1.8. If Gg does not have a closed walk of length L, then Cg 1 = 0 and there are at most finitely
many aliquot cycles of length L for E (see Proposition 2.6 below).

In Section 2, we will write down the constant C'g ; explicitly as an “almost Euler product” and discuss its
positivity in terms of the graph Gg. In Section 3, we will develop the heuristics which lead to Conjecture
1.3. In Section 4, we will provide some numerical evidence for Conjecture 1.3 by examining the order of

magnitude of z)—C / ————— dt for various elliptic curves £ and L = 2.
g g,L(z) = CEL ) 2ilogk 1 p

2. THE CONSTANT

We now describe in detail the constant Cg 1. The following lemma allows us to interpret (1) in terms of the
Frobenius automorphisms® Frobg g (pi) € Gal(Q(E[n])/Q) attached to the various primes p;. Recall the
trace of Frobenius a,(E) € Z, which is defined by

|E(Fp)| =:p+1—ay(E).

Lemma 2.1. For any positive integer n and any prime p of good reduction for E which does not divide n,
p is unramified in Q(E[n]) and for any Frobenius automorphism Frobg gy (p) € Gal(Q(E[n])/Q), we have

tr(Frobggp)) (p)) = ap(p) mod n

and
det(Frobg(gn))(p)) =p mod n.

Proof. See [8, IV-4-1V-5]. O

For any subset G C GLy(Z/nZ), define

G:f,li—cyclc = {(gl,gg, o gL) €GY Vi€ Z/LZ, det(giy1) = det(g;) + 1 — tr(gi)} . (4)
Note that, by Lemma 2.1, if (p1,pe,...,pr) is an aliquot cycle of length L for F, then
(Frobg(gpm)) (p1), Frobg(spm) (p2), - - -, Frobg gy (pr)) € Gal(Q(E[n])/Q) i cycie- (5)

LThe Frobenius automorphism in Gal(Q(E[n])/Q) attached to an unramified rational prime p is only defined up to conju-
gation in Gal(Q(E[n])/Q). Here and throughout the paper, we understand Frobg(g(,))(p) to be any choice of such a Frobenius
automorphism.

3



2
Next, let ¢(x) := —+/1 — 22 be the distribution function of Sato-Tate, which (assuming F has no CM
g
T

conjecturally? satisfies

{p<az: 2B erc[-1,1]}
lim 2vP = /(b(x)dx
o0 {p <} !

In other words, ¢ is the density function of a,(E)/2./p, viewed as a random variable. Denote by ¢, :=
¢*px---x¢p the L-fold convolution of ¢ with itself, which is the density function of the random variable
L
3 ap, (E)
2k

provided the various terms a,, (E)/2./p; are statistically independent. Finally, for a positive integer k,

put
ng = H P~ (6)
p<k
In Section 3, we will develop heuristics which predict Conjecture 1.3, with

PR /7 () B, ng| Gal(Q(E[n&])/Q) biceyerel
BLT D 5 | Gal(Q(E[ng])/Q)T]

(7)

2.1. The constant as a product. We will presently prove the following proposition, which gives a more
explicit expression of Cg 1 as a convergent Euler product. Recall that mg denotes the torsion conductor of
E i.e. the smallest positive integer m for which

Vn € Zo, Gal(Q(E[n])/Q) = 7~ (Gal(Q(E[ged(m, n)])/Q)),
where 7 : GLa(Z/nZ) — GLo(Z/ ged(m,n)Z) is the canonical projection.

Proposition 2.2. For a positive integer k, let ny := H pk. Then one has

p<k
im n£| Gal(Q(E[nk])/Q)ili-cycle| _ m%' Ga‘l(Q(E[mE])/Q)ili-cyclel . H EL‘GLQ(FZ>£li-cycle|
k—oo | Gal(Q(E[nk])/Q)"| | Gal(Q(E[mEg])/Q)*| dmy |GL2(Fe)"]
Furthermore,
EL‘GLQ(IFZ)gZi—c cle| o 1
err =1+ 0 (), )

(H|GLy(F,) L |

ali-cycle

|GLa(Fe)¥|

so the infinite product H converges absolutely.

Um g

The proof of Proposition 2.2 involves the following two lemmas.

Lemma 2.3. Let ny and ns be relatively prime positive integers, and pick any subgroups G1 C GLo(Z/n1Z)
and Gy C GLy(Z/n2Z). Then, viewing G1 X Go € GLa(Z/ninsZ), one has

L
(Gl X GQ)ali—cycle = (Gl)gli—cycle X (Gz)gli—cycle'

Proof of Lemma 2.3. Let ¢ : GLo(Z/n1Z) X GLy(Z/n2Z) — GLo(Z/n1neZ) be the isomorphism of the
chinese remainder theorem, and set G := (G x Gg). For each L-tuple (g;); € G, we have

. o L . det giy1 =detg; +1 —trg; (mod ny)
Vi € Z/LZ det gi11 = det g;+1—trg; (mod niny) < VieZ/LZ det guy = det g + 1 —trg; (mod ny).
This implies the conclusion of Lemma 2.3. O

2Assuming E has non-integral j-invariant, the Sato-Tate conjecture is now a theorem of L. Clozel, M. Harris, N. Shepherd-
Barron, and R. Taylor (see [11] and the references therein).
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Lemma 2.4. Let n be a positive integer and n' any multiple of n such that, for every prime numbur £,
Cln' = L|n. Let 7 : GLy(Z/n'Z) — GLo(Z/n7Z) denote the canonical projection and let G C GLo(Z/nZ)
be any subgroup. Then one has

(n/)L|(7T_1(G))£li-cycle| o nL‘Ggli—cycle‘ (9)

[T (G)"] 16"

Proof of Lemma 2.4. By induction, it suffices to check the case n’ = ¢n, where £ is some prime dividing n.
In this case, since |[771(G)| = 4G, (9) is equivalent to

‘(ﬂ—_l(G))éli-cyclel = £3L|G£1i-cycle|7 (10)
which we now show. Fix an element g = (g1, 92,...,91) € Géh_cyclc, and note that any element ¢’ € 7—1(g)

has the form

gl = (9/1791% s vg/L) = (gl(l + nA1)7g2(I + nAQ)a N agL(I + nAL)) € ﬂ-_l(g)7
where for each i, g; is any fixed lift to GLo(Z/¢nZ) of g;, and A; € Mayo(Fy) is arbitrary. We will presently

determine the exact conditions on the A; which force (g, 95,...,97) € (77" (G)) i eycle- First note that,
since (91,92, -+, 91) € Gljicyerer We must have
Vi€ Z/LZ, g; (mod?¢)¢ {0,1}, (11)

and furthermore, the quantity

o det§i+1 —detgi -1 —|—tr§2 c

Vi :

F,
n
is well-defined. One checks that
detgj,, =detg; +1—trg; mod ln <= ~; = —detgit1-trAipq +detg; - trA; —tr(g;A;) mod £. (12)

The condition on the right-hand side is (affine) linear in the coefficients of A;;1 and A;. We consider the
linear transformation

T :F}E ~ Myyo(Fy)L — FE
(Ai) = (—det git1 - tr Ajpq +detg; - tr A; — tr(g:4i)).

In light of (12), the condition (10) will follow from the surjectivity of the above linear transformation, which
we now verify. Writing coordinates as

(T v (e b
gi =: (Zz wi) and A; =: <Ci di>7

T((Ai)) = ((det g; — x;)a; + (det g; — w;)d; — yic; — zib; — det gip1ai11 — det giy1diyq).
By (11), at least one of det g; — x;, det g; — w;, y; and z; must be non-zero modulo ¢, and so
T({0} x -+ x {0} x Maxa(Fy) x {0} x -+ x{0}) = {0} x --- x {0} x Fp x {0} x --- x {0},

where the non-zero entries correspond to the same index i. In particular, the linear transformation in
question is surjective and we have verified (10), finishing the proof of Lemma 2.4. O

Proof of Proposition 2.2. Choose k large enough so that mg | ng, and write ng = ng) . n,(f), where n,(cl) is

we have

divisible by primes dividing mg and ged(mg, nff)) = 1. By definition of mpg, we then have

Gal(Q(E[ni])/Q) =~ 7~} (Gal(Q(Elmg))/Q) x [] GLa2(Z/*2),

e|Ing
@me

where 7 : GLQ(Z/TL](CI)Z) — GL3(Z/mgZ) is the canonical projection. By Lemmas 2.3 and 2.4, we have

nls‘ Gal(@(E[nk])/Q)gli—cycle| mg| Gal(Q(E[mE])/Q)éﬁ-cyclJ . H KL‘ Gal(@(E[g])/Q)gli—cyclJ

[GalQERD/QF  — [Gal(Q(Ems])/Q)F] | Gal(Q(E])/Q)*|

Umg
5



Taking the limit as k¥ — oo, we arrive at the product representation of Cg j, stated in Proposition 2.2. We
leave the verification of (8) as an exercise. a

2.2. Positivity of the constant. We will now discuss the positivity of Cg ;. The following corollary of
Proposition 2.2 is immediate.

Corollary 2.5. One has
OE,L >0 = Ga'l(Q(E[mE])/Q)gli—cycle 7é (Z) (13)

We will now prove the following proposition, which allows one to deduce Conjecture 1.7 from Conjecture
1.3.

Proposition 2.6. For any non-CM elliptic curve E over Q, one has
Cg,1 >0 <= Gg has a closed walk of length L. (14)

Furthermore, if Gg has no closed walks of length L, then there are only finitely many aliquot cycles (p1,p2, ..., L)
of length L for E.

Proof. First we prove (14). By Corollary 2.5, we are reduced to showing that
Gal(@(E[mE])/Q)jﬁ_cydC # () <= Gg has a closed walk of length L. (15)

The mapping

Gal(Q(E[mE])/Q) — V(GE)
g (trg,detg)

induces a mapping Gal(Q(E[mg])/Q) 5 cyee — {closed walks of length L in Gp}. Thus, if

Gal(Q(E[mg])/Q) L cyere # ¥ then G has a closed walk of length L. Conversely, suppose Gg has a closed
walk (v1,v9,v3,...,vp) of length L. Recall that V = Z/mgZ x (Z/mgZ)* and write v; = (t;,d;). Choosing
any element g; € Gal(Q(E[mg])/Q) with trg; = t; and det g; = d;, we have then constructed an element

(91,92,---,91) € Gal(Q(E[mE])/@),fh_cycle, so that Gal(Q(E[mED/Q)gli—cycle # (). By Corollary 2.5, we
conclude the proof of (14).

To see why the nonexistence of closed walks of length L in Gg implies that lim,_, . 7, () < 00, note first
that, by (15), one has that Gal(Q(E[mg])/Q) % cyere = 0. But then (5) implies that lim, . 75 1(2) < o0,
and the proof of Proposition 2.6 is complete. O

3. HEURISTICS

We will construct a probabilistic model in the style of Koblitz [5] and Lang-Trotter [6]. We shall call the L-
tuple (p1,p2, ..., pr) of distinct prime numbers an aliquot sequence of length L for F if it satisfies

Pi+1 = |E(Fpl) VZG{l,Q,L*l}
Thus, an aliquot cycle of length L is an aliquot sequence of length L which additionally satisfies p1 = |E(F,, )|.
Suppose that (p1,p2,...,pr) is an aliquot sequence of length L for E. By substituting ps = p1 +1 — a,, (E)

into the equation ps = pa + 1 — ap, (E), one finds that p3 = p1 + 2 — (ap, (E) + ap,(F)), and continuing in
this manner one obtains

L
pl:lE(F;DL” — Zapj(E):L' (16)
j=1
Thus, a given L-tuple (p1,ps,...,pr) of positive integers is an aliquot cycle of length L for F if and only if
the following conditions hold:
(1) The L-tuple (p1,p2,...,pr) is an aliquot sequence of length L for E.

L
(21) One has Z ap,(E) = L.

j=1



Consider the following condition, which generalizes condition (2;,) above by replacing L with an arbitrary
fixed integer r:

L
(2%) One has Z ap,(E) =r.

j=1

We will now develop the heuristic “probability” that a given L-tuple (p1,pa,...,pr) of positive integers
satisfies (11) and (27). First, we must gather some notation. Fix a positive integer n and elements a,b €
Z/nZ. For any subset S C GLy(Z/nZ), let

Sneai=9{g € S :det(g) +1—1tr(g) =a}
Gdet=b.— f5 € S : det(g) = b}
Sdei:b = SNf 0 Sdet:b.
Finally, for L > 1 and G C GLo(Z/nZ), put
Gﬁli_sequence = {(gl,gg, ..., gL) € GE . Vie {1,2,...,L — 1}, det(gi+1) = det(g;) + 1 — tr(gi)} .

Note that if L = 1, the defining conditions become empty and we have Géli:_sleqeme = @. For a general L > 1,
note that any aliquot sequence (p1, pa,...,pr) for E will satisfy

(Frobg(gpu)) (p1), Frobg(siu)) (p2), - - - Frobg(gy (b)) € Gal(Q(E[n])/Q) S cequence-

Finally, for a fixed integer r, define

L
L, > tr= L —
Gali—%t:eqflerrce = {(glaQQa s 7gL) € Gali—sequence : Ztr(gi) =r mod TL} :

i=1

We will presently derive an expression for the probability

P(ip),2;,)(t) :=Prob ((p1,p2,...,pr) satisfies (11) and (2}.), given that p; ~ t),

Putting Py, )(t) for the probability that (p1,p2,...,pr) satisfies (11) above, and P(gQi,v;en (1L)(t) for the con-
L

ditional probability that (pi,ps,...,pr) satisfies (2}), given that it satisfies (1), we have

Plio)(t) = Pagy(t) - PES M (). (17)

In Section 3.1 below, we will derive the probability formula

~ anl ) ‘ Gal(@(E[n])/Q)éli-sequence| 1
P(lL)(t) ~ |Gal(Q(E[n])/Q)L\ . (logt)L’ (18)

Following this, in Section 3.2, we will derive

) n - | Gal(Q(E[)/Qsi Zivenmcel 1
2\/;5 | Gal(Q(E[n])/Q)gli—sequence| 2\/%

PET D0 ~ o (19

Before deriving (18) and (19), we will now observe that, taken together, they lead to Conjecture 1.3. Indeed,
using (17), (18) and (19), one concludes

) nf| Gal(Q(E])/Q)mimeneel 1
2Vt | Gal(Q(E[n])/Q)*| 2V/t(logt)-
Just as with (16), one verifies that, for each (g1, 92,...,91) € GL2(Z/nZ)k one has

ali-sequence’

Py (t) = oL (

L
det(gr) +1 —tr(gr) =det gy <= Ztr(gi) =L modn.
i=1
7



It follows that Gal(Q(E[n])/Q) & cyere = Gal(Q(E[n])/Q)jl’i_szé;:iC. Thus, putting r = L, n = nj, and taking
the limit as kK — oo, one arrives at

L | Gal(Q(E[n])/Q) siiceyee] 1
P(IL),(2L)(t) ~ d) —= | - 1 i : "
2Vt) koo |Gal(Q(E[n])/Q)F| 2v/t(log)

Thus, using
1 xr
WE,L(CC) ~ Z/ ,P(lL),(QL)(t) dt,
2

one arrives at Conjecture 1.3. The reason for the extra factor of L in the denominator above is that 7g 1, (z)
counts normalized aliquot cycles, whereas the heuristic probabilities above do not take normalization into
account. Also, since L is fixed, one verifies that the estimation ¢(L/(2v/t)) =~ ¢(0) does not affect the
asymptotic.

3.1. The probability that (p1,po,...,ps) satisfies (1;). We will now derive a refined probability formula
which implies (18). Fix a vector a = (ag, as,...,ar) € ((Z/nZ)*)F~1, and consider the probability
P(i,)(t) == Prob((p1,p2,...pr) satisfies (11) and Vi € {2,3,..., L}, p; =a; mod n)
and (for any subset G C GL2(Z/nZ)) the subset
Gi’l’i:equence ={(91,92,---,9L) € Géli_sequence Vi€ {2,3,..., L}, det(g;) = a;}.
In case L = 1, the vector a € ((Z/nZ)*)° is non-existent, and as before we interpret the empty condition as

1,a _ ..
alisequence = G. Also note the decomposition

L,a _ det=as det=as det=ar 1 det=ar,
Gali—sequence - GN:C“A’ X GN=(13 X G/\/=a4 Koo X GN:aL x G . (20)
3 : L,a1 L,ag _ . e . .
Finally, note that if a; # as, then Gali_scqucnCC N Gali-scqucncc = (), and so we have a disjoint union
L _ L,a
Gali—scqucncc - |_| Gali—sequence'

a€((z/nz)* )"~
For similar reasons, we have
Pan(t) = > PhL(0)-
ac((Z/nz)* )1
Thus, (18) will follow from
Ot L 11,00V oW B o
() | Gal(Q(E([n])/Q)*| (logt)™’

which we will now derive by induction on L.

Base case: L = 1. Suppose that p; is a positive integer of size about ¢. One may interpret the prime number
theorem as the probabilistic statement that

1
Pe1,_,)(t) = Prob(p; is prime) ~ Togt’
which is base case L =1 of (21).

Induction step. Assume now that (21) holds for some fixed L > 1, and fix any vector a = (ag, as,...,ar+1) €
((Z/nzZ)*)L. Since the statement
“(p1,p2,-..pL+1) satisfies (1541) and Vi € {2,3,..., L+ 1}, p; =a; modn”
is equivalent to
(p1,p2,...pr) satisfies (1) and Vi € {2,3,...,L}, p; =a; mod n
and

pr+1:=pr +1—ay, (E) is prime, and pry1 = ary1  mod n,
8



we see that

Pl enara) () = Pl ) (1) p(), (22)

where P(t) is the conditional probability that pr4+1 := pr +1 — ap, (E) is prime, and that pr41 = arpq1
mod n, given that (1) holds. To estimate P(t), let us assume that (1) holds. First note that, by the Hasse
bound |a,(E)| < 2,/p, one has

L
pryr=pi+L =Y ap(E) € [pr+ L —2Ly/Dmax, Pt + L + 2L+/Prnasd;
1=1

where ppax = max{p; : i = 1,2,...,L}. By induction we have ppax = t + Or(Vt), and so pry1 ~ t,
with an error of Or(v/t). Now, if pr41 were a positive integer of size about t selected independently of
(p1,p2,--.,pL), then
1

o(n)logt’
by the prime number theorem in arithmetic progressions. If the positive integer pr1 were chosen ran-
domly and independently of the previous primes, then the probability that pry1 = ary1 mod n would
be 1/n. However, pr41 is not chosen independently of (p1,pe,...,pr); it is related to py by the for-
mula pry1 = pr + 1 — ap, (E). Thus, the congruence pr11 = ar4+1 mod n is really the demand that
Frobg(gm) (pr) € Gal(Q(E[n])/Q)ar=ar,,- Since we assume that (11) holds, we know that Frobg g (pr) €
GLo(Z/nZ)%t=a% Tt is thus natural to multiply (23) by the correction factor

| Gal(Q(E[n))Q)5ek | |/] Gal(Q(E[n])/Q)der=ex |

Prob(pry1 is prime and pr 11 =apy1 mod n) ~ (23)

1/n
obtaining
pio) ~ | CAQUERIQREL, /| GaQEED/Q™ 7] 1 el GAQUED/ QNS 1
- 1/n p(n)logt | Gal(Q(E[n])/Q)] logt’

(24)
By (20), we may re-write (21) as

o it | GA(QER)/ Q)| (5 | GAIQED QR
P t) = | Gal(Q(E[n])/Q)] (H | Gal(Q(E[n])/Q)|

Plugging this expression and (24) into (22), and using the fact that
| Gal(QUE[])/Q)%=| = | Gal(Q(E[n]) /@)=,

one concludes the induction step, completing the derivation of (21), and thus of (18).

| Gal(Q(ER)/Q) =] 1
[Gal(@Q(E[])/Q)  (logh)E

=2

As a byproduct of our analysis, we have motivated the following conjecture, wherein

L-ali-sequence
™

o () :=|{p1 <z : T an aliquot sequence (p1,p2,...,pr) for E}|

and

CL-ali-sequence -— lim né_l ’ ‘Gal(Q(E[nk])/Q)éi_sequence|
g T koo | Gal(Q(E[n4])/ Q)|

Conjecture 3.1. Let E be an elliptic curve over Q without complex multiplication and L > 2 a fixed integer.
Then as x —> oo, one has

1

T
L-ali-sequence L-ali-sequence
™ (x) ~C /
E E L
2 (logt)

(25)
Similarly to Proposition 2.6, one has

Clalisequence o () Gp has a (directed) walk of length L.

9



3.2. The conditional probability that (pi,ps,...,pr) satisfies (27). We will now derive (19), complet-
ing the heuristic derivation of Conjecture 1.3. Suppose that (p1,ps,...,pr) is an aliquot sequence of length
L

L for E, i.e. that it satisfies (11). What is the conditional probability that Zam (E) = r? In the case
i=1
L =1, condition (1) is empty, and our question becomes identical to the Lang-Trotter conjecture for fixed
Frobenius trace. In what follows, we will develop a probabilistic model in the same style as theirs.
L
Fixing a level n, the number f, (r,p) > 0 will estimate the probability of the event that Z ap,(E) =1, given
i=1
that (p = p1,p2,...,pr) is an aliquot sequence of length L for E. We will model the situation by assuming
that the vector

(FrObQ(E[n]) (p1)7 FrObQ(E[n])(p2)7 s FrObQ(E[n]) (pL)) € Gal(@(E[”])/Q)éﬁ—sequence (26)

o,
is randomly distributed according to counting measure, and we will assume that the various ——— are

E
independent at infinity, i.e. that ¢ is the distribution function for Z i )

= 2

We will also assume

L

(E
independence of the random variables g LU and (26). Finally, in order to simplify our model, we
; bi
=1

will also regard all of the various primes p; as having the same size, namely p. These considerations lead us
to the following assumptions about the probabilities f,(r, p):

fa(r,p) =0 if |r| >2L\/p
r\ nGal(QER)/QLEST | (27)
(m) TGalQEN]) Qs T 1S VP

where ¢, is some constant chosen so that Z fn(r,p) = 1. Then, similarly to [6, pp. 31-32], one concludes
reZ

fn(r,p) = oL

1
that ¢, ~ ——, as p — 0o. This leads to (19), completing the derivation of Conjecture 1.3.

2\/p
4. EXAMPLES
We will now give some numerical evidence for Conjecture 1.3.

4.1. Elliptic curves with Cg, > 0. Table 2 displays some data for four elliptic curves. The column

1012
dt
labelled “Predicted” lists the values of Cg o ——————; “Actual” lists the values of mg 2(10'%); “%

2 2V1(logt)?

error” lists as a percentage the values of

Coo [ it 5 (1012)
E2 2 2f(10gt) E,Q
1012 d ’
Cealo” Tmtioare

The first and third curves were already considered in [10], and are included here largely to show the contrast
with the second curve. A detailed list of all of the amicable pairs for each of these curves may be found in
the appendix.

The elliptic curves E appearing in Table 2 satisfy the property that, for each n > 1,
[GL2(Z/nZ) : Gal(Q(E[n])/Q)] < 2 (29)

(See [8, pp. 309-311] and [6, p. 51]). As shown in [8, pp. 310-311], this is the smallest index that one can
have for general n when the elliptic curve E is defined over Q. We call any elliptic curve E satisfying (29) a
10



E H Predicted \ Actual \ % error ‘

v ry=2°—x 120.445 115 | 4.52%
y? =% + 6z —2 206.464 208 | —0.74% (28)
v +y =2+ a2 120.442 117 | 2.86%

v 4+ ay+y=a° —2? || 120437 112 7.01%

Table 2: Data on mg (10'2) for various E

v ry=2°—x ~ 0.077093219 37
> =23+ 6z —2 ~0.132151070 | -3

Yy =a +2° =~ 0.077091320 —43
v +ay+y=a°—2° || ~0077088124 | —53

Table 3: Values of Cg o and Ay (E)

Serre curve. Serre curves are thus elliptic curves for which Gal(Q(E[n])/Q) is “as large as possible for all

n,” and it has been shown that, when ordered by height, almost all elliptic curves are Serre curves (see [3]).
One can show that for any Serre curve E, one has Cg , > 0. In fact, if we define the constant C'r, by

¢L (0) . n% |GL2 (Z/nk'Z)gli-cycl(J (bL (0) eL |GL2 (Fe)éli—cycle‘
= - lim — . H ,
L e T GL(Z )] L GLa(F )]

£ prime

then for any Serre curve E one has that
Cer=Cr- fr(Asp(E)),

where A ¢(E) denotes the square-free part of the discriminant of any Weierstrass model of E and fz, is a
positive function which approaches 1 as |A;¢(E)| approaches infinity. When L = 2 one has

o, = $2(0) H C|GLy(Fo) 2 eyeel
2 ¢ prime |GL2 (]FZ)2|

_ 8 (0 — 203 — 202 + 30+ 3)
32 11 (2 —1)(¢—1)]2

£ prime

~ 0.077088124.

Table 3 gives the values of Cg 2 and A,y(E) for each of the curves in (28). The reason the second curve has
a larger value of Cg o is that |Agf(F)| is smaller for this curve than for the others.

4.2. An elliptic curve with Cg ; = 0. We will now discuss briefly the elliptic curve
E:y?=2%-3x+4 (30)

which was mentioned in the introduction, for which g 1(z) = 0 since the associated graph Gg contains
no closed walks at all. We will presently describe the Galois group Gal(Q(E[4])/Q), which is an index 4
subgroup of GLy(Z/47Z). First, define the subgroup H(4) C GLy(Z/AZ) by

o= {00000 1) GGG )LD

We then have
caeeu/ -aw-(r+2{(3 0).(5 1) 1) 0)}): @)

(To see that the right-hand expression defines a subgroup of GLy(Z/47), note that

(o 0) 616G

11



is closed under addition and under G Ly (Z/27Z)-conjugation.)

Since Gal(Q(E4])/Q) is a proper subgroup of GLy(Z/47Z) (even though Gal(Q(E[2])/Q) = GL2(Z/2Z)) one
has 4 | mg, and the restriction map Gal(Q(E[mg])/Q) — Gal(Q(E[4])/Q) induces a graph morphism

Gr =Gr(mg) - Gr(4), (32)

which is surjective in the sense that it carries the vertex set V(mpg) onto V(4) and likewise carries £(mg)
onto £(4).

On the other hand, using (31), one finds that the directed graph Gg(4) is as follows.

° [ <« ° > °
(2,1) (2,-1) (-1,1) (0,-1) (33)

4.2.1. Infinitely many primes p for which E(F,) is prime. The non-CM case of a conjecture of Koblitz (see
[5] and also [12]) expresses (in our terminology) that for any non-CM elliptic curve E, the existence of a single
directed edge in Gg implies the existence of infinitely many primes p for which |E(F,)| is prime. Taking E
to be the elliptic curve given by (30) we see by the surjectivity of (32) together with (33) that Gg contains
at least one directed edge. Thus, assuming Koblitz’s conjecture, there are infinitely many primes p for which
|E(F,)| is prime.

4.2.2. Finitely many amicable pairs (p1,p2) for E. Continuing with the example (30), by the surjectivity
of (32) together with (33), we see that Gg contains no closed walks at all. By Proposition 2.6, there are
only finitely many amicable pairs (p1,p2) for E. In this particular example, the reason is that, whenever
p2 = |E(Fp,)| for some prime p;, we see from (33) that (tr(Frobggp))(p1)), det(Frobgguy)(p1))) = (—1,1)
(otherwise, |E(F),)| would be even). But then (tr Frobg(ga))(p2), det Frobg(g)(p2) € {(0,-1),(2,-1)},
in which case |E(F,,)| must be even. Thus, E has no aliquot cycles of length 2, except possibly one with
p1=2.

Remark 4.1. There is a modular curve X of level 4 whose Q-rational points correspond to j-invariants
of elliptic curves E for which —Apg is a perfect square. Above each such j-invariant, one may find an
appropriate twist F for which (31) holds, and thus for which W?{ahqum (z) = 0. The elliptic curve (30) is one
such example.
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6. APPENDIX: EXPLICIT LISTS OF AMICABLE PAIRS

The following tables list explicitly the aliquot cycles of length 2 up to 102 for each elliptic curve in (28). As
mentioned before, the list for the first and third elliptic curves already appear in the literature.

E:y+y=23—2

(1622311, 1622471)
(1039959127, 1040001691)
(2352481871, 2352558343)
(3694651133, 3694724861)
(6349942217, 6349993721)
(7860919111, 7861056859)

(17715766063, 17715919189)
(27533596327, 27533695253)
(35165094271, 35165277859)
(53243937647, 53244180001)
(79547451029, 79547941961)
(135209380513, 135209499589)
(158984455501, 158984688949)
(180834082483, 180834577073)
(225553569541, 225554322289)
(242306352073, 242306848111)
(278362825919, 278362984259)
(337937547001, 337937666239)
(355874233339, 355875011273)
(410216001667,410216487617)
(447995295149, 447995753581)
(458893417501, 458893876037)
(479317568749, 479317690799)
(492804132581, 492804306977)
(512831724641, 512832427781)
(542986795411, 542987777977)
(582293306269, 582294364021)
(621398107639, 621398159887)
(667090336879, 667090628623)
(691941147839,691941897841)
(731061198019, 731061747727)
(747470186753, 747471096839)
(788049803507, 788050962247)
(828555018217, 828556059601 )
(836460556301, 836460725687)
(855505476433, 855505945837)
(882103493123, 882104446687)
(941072287627,941072777989)
(988356964733, 988357609933)

(209051131, 209065277)
(1129509221, 1129533787)
(2611684883, 2611740823)
(3700382359, 3700422013)
(6914519077, 6914622391)

(11661099739, 11661236029)
(18474017909, 18474073067)
(30088680781, 30088865197)
(39781723027, 39781892179)
(66112307671,66112681087)
(82972540933, 82973007269)
(136915494109, 136915595393)
(167039564669, 167040084401)
(220572066031, 220572215359)
(232147447429, 232147688077)
(254431324111, 254431871483)
(310815976057, 310816715611)
(346014872941, 346015802347)
(374395351147, 374395833101)
(425054768539, 425055365503)
(450962487379, 450963499751)
(459730791547, 459731977339)
(487450330357, 487451102659)
(495444691993, 495445905593)
(535685535181, 535685802473)
(543698127899, 543698612339)
(594593079499, 594593130487)
(637853583649, 637853929663)
(668446398773, 668446550483)
(715473741821, 715474531417)
(736836558559, 736836756037)
(747741940633, 747742621163)
(791043347177,791043576221)
(829762693999, 829763438291)
(844964045659, 844965469009)
(875067239093, 875068051043)
(904777224133,904777406573)
(947754240637, 947755837411)

(435197207, 435203627)
(1226864057, 1226882263)
(2948995759, 2949055441)
(5683068649, 5683159501)
(7780832797, 7780990501)
13190078443, 13190190973
20141992589, 20142034597
30219540259, 30219626189
40193486233, 40193590513
75220327627,75220824407
91481681563,91481831167
(157257407323, 157257693611)
(177684339499, 177684824747)
(222615955253, 222616408523)
(237450526301, 237450906587)
(266978335579, 266979154129)
(313411448689, 313411783339)
(349091231189, 349091456213)
(389045160211, 389046040597)
(433264475593, 433265271421)
(452460382313, 452460690173)
(467750074973, 467750803543)
(492300415627, 492300923243)
(512761175929, 512762306323)
(541205932447, 541206076321)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

NN N N S
—_ — — D —

548910506773, 548911500937
616357100551, 616357962947
662264439119, 662265469751
677386393447, 677387660891
716974038541, 716975043439
739367967629, 739368490373
787050974509, 787051054799
814883538661, 814884311611
834436212079, 834437146787
846341290477, 846341935993
880220286991, 880220771851
931427616797, 931428699827
975303777571,975304270909
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E:y?>=234+6x—2

(1548181, 1549957)
(41099887, 41102779)
(103560409, 103562257)
(313230349, 313253617)
(519858049, 519859897)
(909516679, 909537679)
(1323964627, 1324003501)
(2228730391, 2228739319)
(3487502743, 3487556353)
(5738542567, 5738600821)
(7132897549, 7132989307)
(11245617703, 11245732123)
(12961854553, 12961959823)
(19374492091, 19374504559)
(21309214687, 21309268879)
(21634673911, 21634735261)
(25588885939, 25588919803)
(34992582463, 34992729643)
(36220685653, 36220823053)
(39895808779, 39896029939)
(45996173803, 45996256021)
(50274637603, 50274713833)
(69076161499, 69076484017)
(95856852841, 95857110871)
(104860147387, 104860414207)
(113007291079, 113007693451)
(122121727729, 122122035571)
(129776642731, 129777043213)
(136033853041, 136034432371)
(141371775949, 141372134119)
(154455052183, 154455447337)
(160477931953, 160478402197)
(176093570269, 176093594137)
(181661826109, 181662063151)
(200346558421, 200346908953)
(209288525629, 209288889991 )
(223263181027, 223263280729)
(251761334491, 251761616599)
(258262219483, 258262725001 )
(264118967857,264119109511)
(281252697337, 281252884639)
(286455303427, 286455801883)

(8418001, 8420869)
(55475983, 55485487)
(247178983, 247205683)
(356804113, 356827567)
(532921261, 532948789)
1041003277, 1041034381)
1460968087, 1460999563)
2856670207, 2856729307)
3637904731, 3637909417)
6133051201, 6133153483)
7856869717, 7856980249)

(11895069451, 11895081379)
(14028936853, 14028997627)
(20002813219, 20002997401)
(21365073151, 21365086591)
(23716596619, 23716760269)
(28359161143, 28359242143)
(35528890741, 35529091189)
(37203130933, 37203226117)
(43060037287, 43060236229)
(48663034831, 48663094723)
(61616410483,61616553619)
(75420226099, 75420328603)
(97300695241, 97300912453)
(105129527617, 105129547609)
(118034554213, 118034711017)
(123043281511, 123043417417)
(130375783231, 130376242357)
(139803425491, 139803584803)
(143625540313, 143625910663)
(154558154293, 154558266547)
(169100913031, 169101408187)
(180683118661, 180683512459)
(193624195909, 193624275049)
(206169275317, 206169892651)
(214444029871, 214444663267)
(230300519569, 230300669971)
(253721388703, 253721923513)
(258290107969, 258291005671)
(267424290457, 267424717363)
(281308871953, 281309112493)
(290995669561, 290996513623)

(27020971, 27023203)
(103188703, 103189183)
(311333227, 311334547)
(422576281, 422601397)
(695441821, 695470429)

(1285610191, 1285666111)
(1573023853, 1573036789)
(2884015957, 2884076497)
(3698023993, 3698087053)
(6752045479, 6752144557)
(10651831501, 10651905937)
(12556864459, 12556881829)
(17819373163, 17819395123)
(20043073867, 20043079489)
(21392159689, 21392351269)
(25262268439, 25262298301)
(34599021349, 34599359077)
(35994010963, 35994101401)
(38998338619, 38998409209)
(45077531659, 45077823727)
(50138991919, 50139094801)
(62645351809, 62645575891)
(91815723319,91815916921)
(101838416089, 101838631711)
(110933234197,110933366851)
(121458837607, 121459013983)
(127164399319, 127164716047)
(134543151409, 134543156239)
(140398380691, 140398878517)
(146984081467, 146984107561)
(154589048881, 154589146171)
(170157172567,170157425161)
(180918695641, 180919056559)
(197728432483,197728647073)
(208532319661, 208532649307)
(218963657833, 218964291703)
(241404945073, 241405363681)
(257773331401, 257773671427)
(263287907227, 263288596171)
(271213201957, 271213641901)
(282505134739, 282505672369)
(295016767207, 295017062383)

(continued on next page)
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(E : y* = 2® + 62 — 2, continued)

(304611562393, 304611905011)
(323392992001, 323393683099)
(339933813691, 339933979057)
(372063948853, 372064610173)
(385133497741, 385134282067)
(416569428133, 416569871587)
(432809199301, 432810098419)
(480996157987, 480996939901)
(496495770301, 496496069977)
(508725587593, 508726001809)
(523540389637, 523541126389)
(530665482229, 530665688353)
(550105241731, 550106356699)
(588292030849, 588292139647)
(627259045531, 627259840177)
(675907216669, 675907700131)
(685269294349, 685269771181)
(695361639307, 695362458157)
(751323994363, 751324293919)
(771520756183, 771521557333)
(797321303083, 797322101827)
(807079605733, 807080354401)
(844929845209, 844930800097)
(901292660053, 901293027631)
(924895719301, 924896722261 )
(957843151099, 957844425523)
(962692820833, 962693488201)
(988941171109, 988942616029)

(316426926331, 316427396851)
(323759613889, 323759796799)
(369205061077, 369205230841)
(377383236409, 377383778599)
(387439552267, 387439963693)
(419068686397, 419069355931)
(438923378953, 438923590843)
(491663527261, 491663719213)
(497423088763, 497423596921)
(509175117817, 509176307413)
(523542025147, 523543103947)
(534353032483, 534353959813)
(554960009509, 554960226913)
(601289295913, 601289609563)
(641812301983, 641813638393)
(676669802719, 676670932747)
(685573828441, 685574444917)
(724138195909, 724139642449)
(759503735437, 759503759251)
(777427080589, 777427099777)
(800217573139, 800218603939)
(810955125037, 810955878367)
(854376423709, 854377562827)
(901938239287,901938376201)
(947036364709, 947037146329)
(959131543543, 959132519413)
(966784833601, 966785085457)

(320194228441, 320194439881)
(338730801697, 338731733731)
(370101477787,370101545599)
(381651061711, 381651855967)
(394584712183, 394585469767)
(427471260409, 427472032921)
(452117698771, 452118519019)
(493862867191, 493863140227)
(503412302287, 503412574603)
(514535068759, 514535497039)
(529110442891, 529110568849)
(549968382823, 549968390329)
(583282615459, 583283214121)
(618553274137, 618553734361)
(658785056563, 658786238197)
(684967404067, 684968499517)
(691921122031, 691921263751)
(745941844117, 745942115407)
(764977801831, 764979218077)
(785945109151, 785946501919)
(800232048799, 800233233139)
(838120137769, 838120638049)
(878892886021, 878893049557)
(903067276537, 903067840579)
(951922236313, 951922594213)
(961955322421, 961955801899)
(971826907483, 971828106541)
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(853,883)
(1447429, 1447561)
(253185307, 253194619)
(797046407, 797057473)
(4101180511, 4101190039)
(6677602471, 6677694539)
(9395537549, 9395559011)
(10574564857, 10574619851)
(13789895011, 13790023199)
(15597047659, 15597075937)
(17725049203, 17725142719)
(23338053773, 23338135543)
(31615097957, 31615194739)
(34525477799, 34525684639)
(46438194193, 46438453213)
(52011956957, 52012184953)
(62765305697, 62765625749)
(67177409329, 67177631771)
(77264683829, 77264993327)
(81263083703, 81263204563)
(111287830573, 111288274567)
(132962516737, 132962703661)
(155467666099, 155467836031)
(178633373617, 178633516081)
(222335132807, 222335345521)
(234896302009, 234896350369)
(265340194039, 265340401483)
(299486604371, 209487430807)
(356299878281, 356300493907)
(392864677427, 302865349441)
(425072615243, 425073437039)
(477171588461, 477171935243)
(580562183213, 580562489173)
(637355743513, 637356846673)
(658459698947, 653460090441)
(723299067853, 723299355619)
(794925473327, 794926023761)
(851273574199, 851274251683)
(948135054247, 948136458277)

(77761, 77999)
(82459561, 82471789)
(320064601, 320079131)
2185447367, 2185504261)
4686466159, 4686510971)
7074693823, 7074704971)
9771430993, 9771433303)
(12657210407, 12657303353)
(14436076927, 14436180091)
(15679549877, 15679688491)
(17841395323, 17841406601)
(28358243743, 28358411071)
(33266376239, 33266419807)
(39287748091, 39287808559)
( )
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51838270219, 51838493561

55823622193, 55823919169

62995853671, 62996152237

69449506103, 69449741239

77635421531, 77635670141

94248260597, 94248586591
(118206158729, 118206360829)
(142574237383, 142574369533)
(161226480901, 161227124081)
(213013688359, 213013931239)
(225529688431, 225529987157)
(240677586449, 240678201091)
(277515892207, 277516507711)
(302166243187, 302166581251)
(378008294449, 378008508961 )
(415381769743, 415381922953)
(438722917471, 438723215947)
(509779650181, 509780267947)
(605229610571, 605229758977)
(649999477469, 649999993999)
(662097699853, 662098655233)
(775857545861, 775859048443)
(811569419461, 811569591827)
(885227547847, 885227943451)
(954115635797, 954115645823)

(1147339, 1148359)
(109165543, 109180121)
(794563993, 794571803)

(2382994403, 2383029443)
(5293671709, 5293749623)
(7806306133, 7806380963)
(9849225103, 9849306373)
(13003880317, 13003900901)
(14976551207, 14976590371)
(16322301811, 16322366867)
(20780607817, 20780797927)
(29859516131, 29859782089)
(33963999907, 33964128017)
(40136806357,40137038941)
(51881025571, 51881167549)
(57920520199, 57920640709)
(66252308051, 66252349753)
(75002612911, 75002660263)
(79067605783, 79067881429)
(104544108049, 104544364087)
(120791219099, 120791323493)
(144750903551, 144751137469)
(173164057399, 173164630033)
(218475851959, 218475922267)
(232349609983, 232349658979)
(241352193611, 241352273849)
(287800715711, 287801137609)
(323643851647, 323644499221)
(383399841217, 383399894341)
(421953112561, 421953604103)
(475655912713, 475656729419)
(519205252403, 519205488493)
(614484897889, 614485486079)
(655455388397, 655456255439)
(705006602177, 705006769807)
(793725967891, 793727339077)
(838059794239, 838061257667)
(916134576373,916134747943)
(977575750447,977576865637)
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(15782639, 15784843)
(623231569, 623231993)
(3416538269, 3416597377)
(5152594561, 5152642949)
10307814653, 10308007673
13176256817,13176313231
17640097129, 17640202039
25399397321, 25399525139
44505831763, 44506130107
50111710081, 50111715697
53479634651, 53479832557
63927854251, 63928173559
74695294579, 74695303807
89232374177,89232642671
(106490241971, 106490439611)
(136259885981, 136260396247)
(159205542883, 159205941493)
(176417856691, 176418563047)
(203800207903, 203800471873)
(229639371653, 229639954039)
(244618491253, 244619163127)
(276349180903, 276349242947)
(303417636943, 303418534169)
(352360579243, 352360813999)
(370230266191, 370230703417)
(390135772571, 390136652989)
(402493970449, 402495159901)
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421489291187, 421489882091
520046808691, 520046846843
570305518229, 570306739627
604132829593, 604133190781
634237451317, 634237815037
662587649869, 662587671379
726804340441, 726804853387
780058611379, 780059712277
800068081357, 800068897333
897964354531, 897965047027
992075415607, 992076747499

(190661353, 190664659)
(848089241, 848132891)
(3717074213, 3717173309)
(6089286341, 6089340407)
12344104739, 12344173241
16346940559, 16347177017
17813465101, 17813616323
28962287951, 28962407993
46349770567,46349853013
50358110393, 50358130913
58314298151, 58314604273
69324497167, 69324768649
77163314573, 77163565477
90765908473, 90765993701
(117092369503, 117092709313)
(147752621281, 147752621473)
(162082190863, 162082739993)
(181356597949, 181356724279)
(211513919011, 211514727163)
(232087576949, 232087869109)
(257901424217,257901714461)
(284018293907, 284018841541)
(330731874709, 330732406447)
(355468546691, 355469258233)
(378965271283, 378965623903)
(390799130147, 390800011621)
( )
( )
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( )
( )
( )
( )
( )
( )
( )
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414985447453, 414985542637
444533520989, 444534760079
526535611213, 526535898193
578863687643, 578864208623
612708244831, 612708811523
646610210237, 646611215177
675497678743, 675497762833
729011769121, 729011923819
789194123593, 789194848801
824682365453, 824683788449
910331668333, 910332505723

(502321091, 502327927)
(867592309, 867624829)
(4238113591, 4238209777)
(9570960601, 9571090813)
(12716284769, 12716356283)
(17446634749, 17446866277)
(20236386439, 20236522001 )
(44498254369, 44498268181)
(46458108131, 46458263461)
(53101240499, 53101392913)
(61023254293, 61023633193)
(72719208101, 72719547421)
(87909792151, 87910126273)
(104578431757,104578692593
(119750886781, 119751206593
(152386047371, 152386399289
(162228888733, 162229099127
(189892739581, 189893224141
(220708027751, 220708595369
(241147849703, 241148516573
(261006203473, 261006566413
(292321566133, 292322062051
(335698096693, 335698400441
(362673106891, 362673597557
(380261411263, 380262381227
(400024457279, 400025502673
(418036669879, 418037202859
(487236963173, 487237982267
(542199064171, 542199898081
(584693259547, 584694507781
(633641436079, 633641528089
(661780097659, 661780284409
(707189418797, 707190256169
(763258759231, 763259788957
(792144114521, 792144583487
(896499439369, 896500153051
(938116069703, 938116887583
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