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Abstract. Silverman and Stange define the notion of an aliquot cycle of length L for a fixed elliptic curve
E over Q, and conjecture an order of magnitude for the function which counts such aliquot cycles. In the
present note, we combine heuristics of Lang-Trotter with those of Koblitz to refine their conjecture to a
precise asymptotic formula by specifying the appropriate constant. We give a criterion for positivity of the
conjectural constant, as well as some numerical evidence for our conjecture.

1. Introduction

Let E be an elliptic curve over Q and fix a positive integer L ≥ 2. In analogy with the classical notion of an
aliquot cycle, Silverman and Stange [10] define an L-tuple (p1, p2, . . . , pL) of distinct positive integers to be
an aliquot cycle of length L for E if each pi is a prime number of good reduction for E and

pi+1 = |E(Fpi)| ∀i ∈ {1, 2, . . . , L− 1} and p1 = |E(FpL)|,

which may be more succinctly written as

pi+1 = |E(Fpi)|, ∀i ∈ Z/LZ. (1)

When L = 2, an aliquot cycle is also referred to as an amicable pair for E. As observed in [10, Remark
1.5], there is an intimate connection between aliquot cycles for E and elliptic divisibility sequences, which
relate to generalizations of classical index divisibility questions about Lucas sequences. Thus, it is of interest
to know how common such aliquot cycles are, so we consider the function which counts aliquot cycles of
fixed length for a fixed elliptic curve E over Q. More precisely, define an aliquot cycle (p1, p2, . . . , pL) to be
normalized if p1 = min{pi : 1 ≤ i ≤ L}, and then write

πE,L(x) := |{p1 ≤ x : ∃ a normalized aliquot cycle (p1, p2, . . . , pL) for E}|.

Conjecture 1.1. (Silverman-Stange) Let E be an elliptic curve over Q and L ≥ 2 a fixed integer, and

assume that there are infinitely many primes p such that |E(Fp)| is prime. Then, as x → ∞, one has

πE,L(x)

�
�

√
x

(log x)L if E has no CM

∼ AE
x

(log x)2 if E has CM and L = 2,

where the implied constants in � are both positive and depend only on E and L, and AE is a precise positive

constant.

Remark 1.2. We may interpret the L = 1 case of (1) as describing primes p1 for which p1 = |E(Fp1)|.
Such primes are called anomalous primes and have been considered by Mazur [7]. The asymptotic count
for anomalous primes up to x is a special case of a conjecture of Lang and Trotter [6].

In [10], Silverman and Stange focus on the intricacies of the CM case, proving that if E has CM, jE �= 0
and L ≥ 3, then E any normalized aliquot cycle (p1, p2, . . . , pL) for E must have p1 < 5 (so in particular,
πE,L(x) = O(1)). The case jE = 0 is apparently more complicated, and no proof is given that πE,L(x) = O(1)
when jE = 0 and L > 3.

In this note, we refine Conjecture 1.1 to an asymptotic formula in the non-CM case. Heuristics will be
developed which lead to the following conjecture.
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E x = 106 x = 108 x = 1010 x = 1012

E1 : y2 + y = x3 − x 0 1 16 115
E2 : y2 = x3 + 6x− 2 0 5 32 208
E3 : y2 = x3 − 3x+ 4 0 0 0 0

Table 1: Values of πE,2(x)

Conjecture 1.3. Let E be an elliptic curve over Q without complex multiplication and L ≥ 2 a fixed integer.

Then there is a non-negative real constant CE,L ≥ 0 (see (7) below) so that, as x −→ ∞,

πE,L(x) ∼ CE,L

� x

2

1

2
√
t(log t)L

dt. (2)

Remark 1.4. It is possible for the constant CE,L to be zero, in which case limx→∞ πE,L(x) is provably
finite. Thus, in case CE,L = 0, let us interpret the above asymptotic to mean that limx→∞ πE,L(x) < ∞.

Remark 1.5. By integration by parts, one has
� x

2

1

2
√
t(log t)L

dt =

√
x

(log x)L
+O

� √
x

(log x)L+1

�
.

Thus, Conjecture 1.3 is consistent with Conjecture 1.1. In practice, the error term

����πE,L(x)− CE,L

� x

2

1

2
√
t(log t)L

dt

����

should be smaller than

����πE,L(x)− CE,L

√
x

(log x)L

����, just as in the case of the prime number theorem.

Consider Table 1, which lists the values of πE,2(x) for a few non-CM curves E and various magnitudes x.
Note that πE2,2(x) is larger than πE1,2(x). This difference is explained by the associated constants appearing
in Conjecture 1.3. Indeed, a computation shows that

CE2,2

CE1,2
≈ 1.714.

Also note that πE3,2(10
12) = 0. The additional fact that |{p ≤ 106 : |E3(Fp)| is prime}| = 3236 indicates

that there probably are infinitely many primes p for which |E3(Fp)| is prime, in which case the above data
suggests that E3 might be a counterexample to Conjecture 1.1. We will later see that CE3,2 = 0, and that
E3 is indeed a counterexample, assuming a conjecture of Koblitz on the primality of |E(Fp)|.

Remark 1.6. The heuristics which lead to Conjecture 1.3 are in the style of Koblitz and Lang-Trotter, whose
conjectures have been proven “on average over elliptic curves E” (see [1] and [2]). It might be interesting to
see if one could also prove an average version of Conjecture 1.3.

1.1. Positivity of CE,L and a directed graph GE. In the interest of characterizing the elliptic curves
which have infinitely many aliquot cycles of length L, we will state a graph-theoretic criterion for positivity
of CE,L. Recall that a directed graph G is a pair (V, E), where V = V(G) is an arbitrary set of vertices
and E = E(G) ⊆ V × V is a subset of directed edges. Finally, the sequence of vertices (v1, v2, v3, . . . , vn)
is a closed walk of length n if and only if (vi, vi+1) ∈ E , for each i ∈ Z/nZ = {1, 2, 3, . . . , n}. Note that
closed walks may have repeated vertices. For instance, if (v, v) ∈ E for some vertex v (i.e. if G has a loop at
a vertex v), then G has closed walks of any length.

We will associate to an elliptic curve E a directed graph GE . First, consider the n-th division field Q(E[n]) of
E, obtained by adjoining to Q the x and y-coordinates of the n-torsion E[n] of a given Weierstrass model of
E. The extension Q(E[n]) is Galois over Q, and once we fix a basis over Z/nZ of E[n], we may view

Gal(Q(E[n])/Q) ⊆ GL2(Z/nZ). (3)

We will now attach to Gal(Q(E[n])/Q) a directed graph GE(n). Viewing Galois automorphisms as 2 × 2
matrices via (3), the vertex set V(n) of our graph GE(n) is

V(n) := {(t, d) ∈ Z/nZ× (Z/nZ)× : ∃g ∈ Gal(Q(E[n])/Q) with tr g = t, det g = d}.
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We define the edge set E(n) by declaring that (v1, v2) ∈ E if and only if d1+1− t1 = d2, where vi = (ti, di) ∈
V(n).

Let mE denote the torsion conductor of E, which is defined as the smallest positive integer m for
which

∀n ∈ Z>0, Gal(Q(E[n])/Q) = π−1(Gal(Q(E[gcd(m,n)])/Q)),

where π : GL2(Z/nZ) → GL2(Z/ gcd(m,n)Z) is the canonical projection. (The existence of a torsion
conductor mE for a non-CM elliptic curve E is a celebrated theorem of Serre [9].) Finally, we define the
directed graph GE to be the above graph at level mE :

GE := GE(mE).

The following version of Conjecture 1.3 states a criterion for positivity of CE,L in terms of the directed graph
GE .

Conjecture 1.7. Let E be an elliptic curve over Q without complex multiplication and L ≥ 2 a fixed integer.

Suppose that the directed graph GE has a closed walk of length L. Then there are infinitely many aliquot

cycles of length L for E. More precisely, there is a positive constant CE,L > 0 so that, as x −→ ∞,

πE,L(x) ∼ CE,L

� x

2

1

2
√
t(log t)L

dt.

Remark 1.8. If GE does not have a closed walk of length L, then CE,L = 0 and there are at most finitely
many aliquot cycles of length L for E (see Proposition 2.6 below).

In Section 2, we will write down the constant CE,L explicitly as an “almost Euler product” and discuss its
positivity in terms of the graph GE . In Section 3, we will develop the heuristics which lead to Conjecture
1.3. In Section 4, we will provide some numerical evidence for Conjecture 1.3 by examining the order of

magnitude of πE,L(x)− CE,L

� x

2

1

2
√
t logL t

dt for various elliptic curves E and L = 2.

2. The constant

We now describe in detail the constant CE,L. The following lemma allows us to interpret (1) in terms of the
Frobenius automorphisms1 FrobQ(E[n])(pi) ∈ Gal(Q(E[n])/Q) attached to the various primes pi. Recall the
trace of Frobenius ap(E) ∈ Z, which is defined by

|E(Fp)| =: p+ 1− ap(E).

Lemma 2.1. For any positive integer n and any prime p of good reduction for E which does not divide n,
p is unramified in Q(E[n]) and for any Frobenius automorphism FrobQ(E[n])(p) ∈ Gal(Q(E[n])/Q), we have

tr(FrobQ(E[n])(p)) ≡ aE(p) mod n

and

det(FrobQ(E[n])(p)) ≡ p mod n.

Proof. See [8, IV-4–IV-5]. �

For any subset G ⊆ GL2(Z/nZ), define
GL

ali-cycle :=
�
(g1, g2, . . . , gL) ∈ GL : ∀i ∈ Z/LZ, det(gi+1) = det(gi) + 1− tr(gi)

�
. (4)

Note that, by Lemma 2.1, if (p1, p2, . . . , pL) is an aliquot cycle of length L for E, then

(FrobQ(E[n])(p1),FrobQ(E[n])(p2), . . . ,FrobQ(E[n])(pL)) ∈ Gal(Q(E[n])/Q)Lali-cycle. (5)

1The Frobenius automorphism in Gal(Q(E[n])/Q) attached to an unramified rational prime p is only defined up to conju-
gation in Gal(Q(E[n])/Q). Here and throughout the paper, we understand FrobQ(E[n])(p) to be any choice of such a Frobenius

automorphism.
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Next, let φ(x) :=
2

π

�
1− x2 be the distribution function of Sato-Tate, which (assuming E has no CM)

conjecturally2 satisfies

lim
x→∞

|{p ≤ x : ap(E)
2
√
p ∈ I ⊆ [−1, 1]}|

|{p ≤ x}| =

�

I
φ(x)dx.

In other words, φ is the density function of ap(E)/2
√
p, viewed as a random variable. Denote by φL :=

φ∗φ∗· · ·∗φ the L-fold convolution of φ with itself, which is the density function of the random variable
L�

i=1

api(E)

2
√
pi

,

provided the various terms api(E)/2
√
pi are statistically independent. Finally, for a positive integer k,

put

nk :=
�

p≤k

pk. (6)

In Section 3, we will develop heuristics which predict Conjecture 1.3, with

CE,L :=
φL(0)

L
· lim
k→∞

nL
k |Gal(Q(E[nk])/Q)Lali-cycle|

|Gal(Q(E[nk])/Q)L| . (7)

2.1. The constant as a product. We will presently prove the following proposition, which gives a more
explicit expression of CE,L as a convergent Euler product. Recall that mE denotes the torsion conductor of
E, i.e. the smallest positive integer m for which

∀n ∈ Z>0, Gal(Q(E[n])/Q) = π−1(Gal(Q(E[gcd(m,n)])/Q)),

where π : GL2(Z/nZ) → GL2(Z/ gcd(m,n)Z) is the canonical projection.

Proposition 2.2. For a positive integer k, let nk :=
�

p≤k

pk. Then one has

lim
k→∞

nL
k |Gal(Q(E[nk])/Q)Lali-cycle|

|Gal(Q(E[nk])/Q)L| =
mL

E |Gal(Q(E[mE ])/Q)Lali-cycle|
|Gal(Q(E[mE ])/Q)L| ·

�

��mE

�L|GL2(F�)Lali-cycle|
|GL2(F�)L|

Furthermore,

0 <
�L|GL2(F�)Lali-cycle|

|GL2(F�)L|
= 1 +OL

�
1

�2

�
, (8)

so the infinite product

�

��mE

�L|GL2(F�)Lali-cycle|
|GL2(F�)L|

converges absolutely.

The proof of Proposition 2.2 involves the following two lemmas.

Lemma 2.3. Let n1 and n2 be relatively prime positive integers, and pick any subgroups G1 ⊆ GL2(Z/n1Z)
and G2 ⊆ GL2(Z/n2Z). Then, viewing G1 ×G2 ⊆ GL2(Z/n1n2Z), one has

(G1 ×G2)
L
ali-cycle = (G1)

L
ali-cycle × (G2)

L
ali-cycle.

Proof of Lemma 2.3. Let ι : GL2(Z/n1Z) × GL2(Z/n2Z) → GL2(Z/n1n2Z) be the isomorphism of the
chinese remainder theorem, and set G := ι(G1 ×G2). For each L-tuple (gi)i ∈ GL, we have

∀i ∈ Z/LZ det gi+1 ≡ det gi+1−tr gi (mod n1n2) ⇐⇒ ∀i ∈ Z/LZ det gi+1 ≡ det gi + 1− tr gi (mod n1)
det gi+1 ≡ det gi + 1− tr gi (mod n2).

This implies the conclusion of Lemma 2.3. ✷

2Assuming E has non-integral j-invariant, the Sato-Tate conjecture is now a theorem of L. Clozel, M. Harris, N. Shepherd-
Barron, and R. Taylor (see [11] and the references therein).
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Lemma 2.4. Let n be a positive integer and n� any multiple of n such that, for every prime numbur �,
� | n� ⇒ � | n. Let π : GL2(Z/n�Z) → GL2(Z/nZ) denote the canonical projection and let G ⊆ GL2(Z/nZ)
be any subgroup. Then one has

(n�)L|(π−1(G))Lali-cycle|
|π−1(G)L| =

nL|GL
ali-cycle|
|GL| . (9)

Proof of Lemma 2.4. By induction, it suffices to check the case n� = �n, where � is some prime dividing n.
In this case, since |π−1(G)| = �4|G|, (9) is equivalent to

|(π−1(G))Lali-cycle| = �3L|GL
ali-cycle|, (10)

which we now show. Fix an element g = (g1, g2, . . . , gL) ∈ GL
ali-cycle, and note that any element g� ∈ π−1(g)

has the form

g� = (g�1, g
�
2, . . . , g

�
L) = (g̃1(I + nA1), g̃2(I + nA2), . . . , g̃L(I + nAL)) ∈ π−1(g),

where for each i, g̃i is any fixed lift to GL2(Z/�nZ) of gi, and Ai ∈ M2×2(F�) is arbitrary. We will presently
determine the exact conditions on the Ai which force (g�1, g

�
2, . . . , g

�
L) ∈ (π−1(G))Lali-cycle. First note that,

since (g1, g2, . . . , gL) ∈ GL
ali-cycle, we must have

∀i ∈ Z/LZ, gi (mod �) /∈ {0, I}, (11)

and furthermore, the quantity

γi :=
det g̃i+1 − det g̃i − 1 + tr g̃i

n
∈ F�

is well-defined. One checks that

det g�i+1 ≡ det g�i + 1− tr g�i mod �n ⇐⇒ γi ≡ − det gi+1 · trAi+1 + det gi · trAi − tr(giAi) mod �. (12)

The condition on the right-hand side is (affine) linear in the coefficients of Ai+1 and Ai. We consider the
linear transformation

T : F4L
� � M2×2(F�)

L → FL
�

(Ai) �→ (− det gi+1 · trAi+1 + det gi · trAi − tr(giAi)).

In light of (12), the condition (10) will follow from the surjectivity of the above linear transformation, which
we now verify. Writing coordinates as

gi =:

�
xi yi
zi wi

�
and Ai =:

�
ai bi
ci di

�
,

we have

T ((Ai)) = ((det gi − xi)ai + (det gi − wi)di − yici − zibi − det gi+1ai+1 − det gi+1di+1).

By (11), at least one of det gi − xi, det gi − wi, yi and zi must be non-zero modulo �, and so

T ({0}× · · ·× {0}×M2×2(F�)× {0}× · · ·× {0}) = {0}× · · ·× {0}× F� × {0}× · · ·× {0},
where the non-zero entries correspond to the same index i. In particular, the linear transformation in
question is surjective and we have verified (10), finishing the proof of Lemma 2.4. ✷

Proof of Proposition 2.2. Choose k large enough so that mE | nk, and write nk = n(1)
k · n(2)

k , where n(1)
k is

divisible by primes dividing mE and gcd(mE , n
(2)
k ) = 1. By definition of mE , we then have

Gal(Q(E[nk])/Q) � π−1(Gal(Q(E[mE ])/Q))×
�

�k�nk

��mE

GL2(Z/�kZ),

where π : GL2(Z/n(1)
k Z) → GL2(Z/mEZ) is the canonical projection. By Lemmas 2.3 and 2.4, we have

nL
k |Gal(Q(E[nk])/Q)Lali-cycle|

|Gal(Q(E[nk])/Q)L| =
mL

E |Gal(Q(E[mE ])/Q)Lali-cycle|
|Gal(Q(E[mE ])/Q)L| ·

�

�|nk

��mE

�L|Gal(Q(E[�])/Q)Lali-cycle|
|Gal(Q(E[�])/Q)L| .
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Taking the limit as k → ∞, we arrive at the product representation of CE,L stated in Proposition 2.2. We
leave the verification of (8) as an exercise. ✷

2.2. Positivity of the constant. We will now discuss the positivity of CE,L. The following corollary of
Proposition 2.2 is immediate.

Corollary 2.5. One has

CE,L > 0 ⇐⇒ Gal(Q(E[mE ])/Q)Lali-cycle �= ∅. (13)

We will now prove the following proposition, which allows one to deduce Conjecture 1.7 from Conjecture
1.3.

Proposition 2.6. For any non-CM elliptic curve E over Q, one has

CE,L > 0 ⇐⇒ GE has a closed walk of length L. (14)

Furthermore, if GE has no closed walks of length L, then there are only finitely many aliquot cycles (p1, p2, . . . , pL)
of length L for E.

Proof. First we prove (14). By Corollary 2.5, we are reduced to showing that

Gal(Q(E[mE ])/Q)Lali-cycle �= ∅ ⇐⇒ GE has a closed walk of length L. (15)

The mapping

Gal(Q(E[mE ])/Q) → V(GE)

g �→ (tr g, det g)

induces a mapping Gal(Q(E[mE ])/Q)Lali-cycle −→ {closed walks of length L in GE}. Thus, if
Gal(Q(E[mE ])/Q)Lali-cycle �= ∅ then GE has a closed walk of length L. Conversely, suppose GE has a closed
walk (v1, v2, v3, . . . , vL) of length L. Recall that V = Z/mEZ× (Z/mEZ)× and write vi = (ti, di). Choosing
any element gi ∈ Gal(Q(E[mE ])/Q) with tr gi = ti and det gi = di, we have then constructed an element
(g1, g2, . . . , gL) ∈ Gal(Q(E[mE ])/Q)Lali-cycle, so that Gal(Q(E[mE ])/Q)Lali-cycle �= ∅. By Corollary 2.5, we
conclude the proof of (14).

To see why the nonexistence of closed walks of length L in GE implies that limx→∞ πE,L(x) < ∞, note first
that, by (15), one has that Gal(Q(E[mE ])/Q)Lali-cycle = ∅. But then (5) implies that limx→∞ πE,L(x) < ∞,
and the proof of Proposition 2.6 is complete. �

3. Heuristics

We will construct a probabilistic model in the style of Koblitz [5] and Lang-Trotter [6]. We shall call the L-
tuple (p1, p2, . . . , pL) of distinct prime numbers an aliquot sequence of length L for E if it satisfies

pi+1 = |E(Fpi)| ∀i ∈ {1, 2, . . . L− 1}.
Thus, an aliquot cycle of length L is an aliquot sequence of length L which additionally satisfies p1 = |E(FpL)|.
Suppose that (p1, p2, . . . , pL) is an aliquot sequence of length L for E. By substituting p2 = p1 + 1− ap1(E)
into the equation p3 = p2 + 1 − ap2(E), one finds that p3 = p1 + 2 − (ap1(E) + ap2(E)), and continuing in
this manner one obtains

p1 = |E(FpL)| ⇐⇒
L�

j=1

apj (E) = L. (16)

Thus, a given L-tuple (p1, p2, . . . , pL) of positive integers is an aliquot cycle of length L for E if and only if
the following conditions hold:

(1L) The L-tuple (p1, p2, . . . , pL) is an aliquot sequence of length L for E.

(2L) One has
L�

j=1

apj (E) = L.
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Consider the following condition, which generalizes condition (2L) above by replacing L with an arbitrary
fixed integer r:

(2�L) One has
L�

j=1

apj (E) = r.

We will now develop the heuristic “probability” that a given L-tuple (p1, p2, . . . , pL) of positive integers
satisfies (1L) and (2�L). First, we must gather some notation. Fix a positive integer n and elements a, b ∈
Z/nZ. For any subset S ⊆ GL2(Z/nZ), let

SN=a := {g ∈ S : det(g) + 1− tr(g) = a}
Sdet=b := {g ∈ S : det(g) = b}
Sdet=b
N=a := SN=a ∩ Sdet=b.

Finally, for L ≥ 1 and G ⊆ GL2(Z/nZ), put

GL
ali-sequence :=

�
(g1, g2, . . . , gL) ∈ GL : ∀i ∈ {1, 2, . . . , L− 1}, det(gi+1) = det(gi) + 1− tr(gi)

�
.

Note that if L = 1, the defining conditions become empty and we have GL=1
ali-seqence = G. For a general L ≥ 1,

note that any aliquot sequence (p1, p2, . . . , pL) for E will satisfy

(FrobQ(E[n])(p1),FrobQ(E[n])(p2), . . .FrobQ(E[n])(pL)) ∈ Gal(Q(E[n])/Q)Lali-sequence.

Finally, for a fixed integer r, define

GL,
�

tr=r
ali-sequence :=

�
(g1, g2, . . . , gL) ∈ GL

ali-sequence :
L�

i=1

tr(gi) ≡ r mod n

�
.

We will presently derive an expression for the probability

P(1L),(2�L)(t) := Prob ((p1, p2, . . . , pL) satisfies (1L) and (2�L), given that p1 ≈ t) ,

Putting P(1L)(t) for the probability that (p1, p2, . . . , pL) satisfies (1L) above, and P given (1L)
(2�L) (t) for the con-

ditional probability that (p1, p2, . . . , pL) satisfies (2�L), given that it satisfies (1L), we have

P(1L),(2�L)(t) = P(1L)(t) · P
given (1L)
(2�L) (t). (17)

In Section 3.1 below, we will derive the probability formula

P(1L)(t) ≈
nL−1 · |Gal(Q(E[n])/Q)Lali-sequence|

|Gal(Q(E[n])/Q)L| · 1

(log t)L
. (18)

Following this, in Section 3.2, we will derive

P given (1L)
(2�L) (t) ≈ φL

�
r

2
√
t

�
n · |Gal(Q(E[n])/Q)L,

�
tr=r

ali-sequence|
|Gal(Q(E[n])/Q)Lali-sequence|

· 1

2
√
t
. (19)

Before deriving (18) and (19), we will now observe that, taken together, they lead to Conjecture 1.3. Indeed,
using (17), (18) and (19), one concludes

P(1L),(2�L)(t) ≈ φL

�
r

2
√
t

�
·
nL|Gal(Q(E[n])/Q)L,

�
tr=r

ali-sequence|
|Gal(Q(E[n])/Q)L| · 1

2
√
t(log t)L

Just as with (16), one verifies that, for each (g1, g2, . . . , gL) ∈ GL2(Z/nZ)Lali-sequence, one has

det(gL) + 1− tr(gL) = det g1 ⇐⇒
L�

i=1

tr(gi) ≡ L mod n.
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It follows that Gal(Q(E[n])/Q)Lali-cycle = Gal(Q(E[n])/Q)L,
�

tr=L
ali-sequence. Thus, putting r = L, n = nk and taking

the limit as k → ∞, one arrives at

P(1L),(2L)(t) ≈ φ

�
L

2
√
t

�
· lim
k→∞

nL
k |Gal(Q(E[nk])/Q)Lali-cycle|

|Gal(Q(E[nk])/Q)L| · 1

2
√
t(log t)L

.

Thus, using

πE,L(x) ≈
1

L

� x

2
P(1L),(2L)(t) dt,

one arrives at Conjecture 1.3. The reason for the extra factor of L in the denominator above is that πE,L(x)
counts normalized aliquot cycles, whereas the heuristic probabilities above do not take normalization into
account. Also, since L is fixed, one verifies that the estimation φ(L/(2

√
t)) ≈ φ(0) does not affect the

asymptotic.

3.1. The probability that (p1, p2, . . . , pL) satisfies (1L). We will now derive a refined probability formula
which implies (18). Fix a vector a = (a2, a3, . . . , aL) ∈ ((Z/nZ)×)L−1, and consider the probability

Pa
(1L)(t) := Prob((p1, p2, . . . pL) satisfies (1L) and ∀i ∈ {2, 3, . . . , L}, pi ≡ ai mod n)

and (for any subset G ⊆ GL2(Z/nZ)) the subset

GL, a
ali-sequence := {(g1, g2, . . . , gL) ∈ GL

ali-sequence : ∀i ∈ {2, 3, . . . , L}, det(gi) = ai}.

In case L = 1, the vector a ∈ ((Z/nZ)×)0 is non-existent, and as before we interpret the empty condition as
G1, a

ali-sequence = G. Also note the decomposition

GL, a
ali-sequence = GN=a2 ×Gdet=a2

N=a3
×Gdet=a3

N=a4
× · · ·×Gdet=aL−1

N=aL
×Gdet=aL . (20)

Finally, note that if a1 �= a2, then GL, a1

ali-sequence ∩GL, a2

ali-sequence = ∅, and so we have a disjoint union

GL
ali-sequence =

�

a∈((Z/nZ)×)L−1

GL, a
ali-sequence.

For similar reasons, we have

P(1L)(t) =
�

a∈((Z/nZ)×)L−1

Pa
(1L)(t).

Thus, (18) will follow from

Pa
(1L)(t) ≈

nL−1 · |Gal(Q(E[n])/Q)L, a
ali-sequence|

|Gal(Q(E[n])/Q)L| · 1

(log t)L
, (21)

which we will now derive by induction on L.

Base case: L = 1. Suppose that p1 is a positive integer of size about t. One may interpret the prime number
theorem as the probabilistic statement that

P(1L=1)(t) = Prob(p1 is prime) ≈ 1

log t
,

which is base case L = 1 of (21).

Induction step. Assume now that (21) holds for some fixed L ≥ 1, and fix any vector a = (a2, a3, . . . , aL+1) ∈
((Z/nZ)×)L. Since the statement

“(p1, p2, . . . pL+1) satisfies (1L+1) and ∀i ∈ {2, 3, . . . , L+ 1}, pi ≡ ai mod n”

is equivalent to
(p1, p2, . . . pL) satisfies (1L) and ∀i ∈ {2, 3, . . . , L}, pi ≡ ai mod n

and

pL+1 := pL + 1− apL(E) is prime, and pL+1 ≡ aL+1 mod n,
8



we see that

P(a2,a3,...,aL,aL+1)
(1L+1)

(t) = P(a2,a3,...,aL)
(1L) (t) · P(t), (22)

where P(t) is the conditional probability that pL+1 := pL + 1 − apL(E) is prime, and that pL+1 ≡ aL+1

mod n, given that (1L) holds. To estimate P(t), let us assume that (1L) holds. First note that, by the Hasse
bound |ap(E)| ≤ 2

√
p, one has

pL+1 = p1 + L−
L�

i=1

api(E) ∈ [p1 + L− 2L
√
pmax, p1 + L+ 2L

√
pmax],

where pmax := max{pi : i = 1, 2, . . . , L}. By induction we have pmax = t + OL(
√
t), and so pL+1 ≈ t,

with an error of OL(
√
t). Now, if pL+1 were a positive integer of size about t selected independently of

(p1, p2, . . . , pL), then

Prob(pL+1 is prime and pL+1 ≡ aL+1 mod n) ≈ 1

ϕ(n) log t
, (23)

by the prime number theorem in arithmetic progressions. If the positive integer pL+1 were chosen ran-
domly and independently of the previous primes, then the probability that pL+1 ≡ aL+1 mod n would
be 1/n. However, pL+1 is not chosen independently of (p1, p2, . . . , pL); it is related to pL by the for-
mula pL+1 = pL + 1 − apL(E). Thus, the congruence pL+1 ≡ aL+1 mod n is really the demand that
FrobQ(E[n])(pL) ∈ Gal(Q(E[n])/Q)N=aL+1 . Since we assume that (1L) holds, we know that FrobQ(E[n])(pL) ∈
GL2(Z/nZ)det=aL . It is thus natural to multiply (23) by the correction factor

|Gal(Q(E[n])Q)det=aL
N=aL+1

|/|Gal(Q(E[n])/Q)det=aL |
1/n

,

obtaining

P(t) ≈
|Gal(Q(E[n])Q)det=aL

N=aL+1
|/|Gal(Q(E[n])/Q)det=aL |
1/n

· 1

ϕ(n) log t
=

n|Gal(Q(E[n])/Q)det=aL
N=aL+1

|
|Gal(Q(E[n])/Q)| · 1

log t
.

(24)
By (20), we may re-write (21) as

Pa
(1L)(t) ≈ nL−1· |Gal(Q(E[n])/Q)N=a2 |

|Gal(Q(E[n])/Q)| ·
�

L−1�

i=2

|Gal(Q(E[n])/Q)det=ai
N=ai+1

|
|Gal(Q(E[n])/Q)|

�
· |Gal(Q(E[n])/Q)det=aL |

|Gal(Q(E[n])/Q)| · 1

(log t)L
.

Plugging this expression and (24) into (22), and using the fact that

|Gal(Q(E[n])/Q)det=aL | = |Gal(Q(E[n])/Q)det=aL+1 |,

one concludes the induction step, completing the derivation of (21), and thus of (18).

As a byproduct of our analysis, we have motivated the following conjecture, wherein

πL-ali-sequence
E (x) := |{p1 ≤ x : ∃ an aliquot sequence (p1, p2, . . . , pL) for E}|

and

CL-ali-sequence
E := lim

k→∞

nL−1
k · |Gal(Q(E[nk])/Q)Lali-sequence|

|Gal(Q(E[nk])/Q)L| .

Conjecture 3.1. Let E be an elliptic curve over Q without complex multiplication and L ≥ 2 a fixed integer.

Then as x −→ ∞, one has

πL-ali-sequence
E (x) ∼ CL-ali-sequence

E

� x

2

1

(log t)L
dt. (25)

Similarly to Proposition 2.6, one has

CL-ali-sequence
E > 0 ⇐⇒ GE has a (directed) walk of length L.

9



3.2. The conditional probability that (p1, p2, . . . , pL) satisfies (2�L). We will now derive (19), complet-
ing the heuristic derivation of Conjecture 1.3. Suppose that (p1, p2, . . . , pL) is an aliquot sequence of length

L for E, i.e. that it satisfies (1L). What is the conditional probability that
L�

i=1

api(E) = r? In the case

L = 1, condition (1L) is empty, and our question becomes identical to the Lang-Trotter conjecture for fixed
Frobenius trace. In what follows, we will develop a probabilistic model in the same style as theirs.

Fixing a level n, the number fn(r, p) ≥ 0 will estimate the probability of the event that
L�

i=1

api(E) = r, given

that (p = p1, p2, . . . , pL) is an aliquot sequence of length L for E. We will model the situation by assuming
that the vector

(FrobQ(E[n])(p1),FrobQ(E[n])(p2), . . .FrobQ(E[n])(pL)) ∈ Gal(Q(E[n])/Q)Lali-sequence (26)

is randomly distributed according to counting measure, and we will assume that the various
api(E)

2
√
pi

are

independent at infinity, i.e. that φL is the distribution function for
L�

i=1

api(E)

2
√
pi

. We will also assume

independence of the random variables
L�

i=1

api(E)

2
√
pi

and (26). Finally, in order to simplify our model, we

will also regard all of the various primes pi as having the same size, namely p. These considerations lead us
to the following assumptions about the probabilities fn(r, p):

fn(r, p) = 0 if |r| > 2L
√
p

fn(r, p) = φL

�
r

2
√
p

�
·
n|Gal(Q(E[n])/Q)L,

�
tr=r

ali-sequence|
|Gal(Q(E[n])/Q)Lali-sequence|

· cp if |r| ≤ 2L
√
p,

(27)

where cp is some constant chosen so that
�

r∈Z
fn(r, p) = 1. Then, similarly to [6, pp. 31–32], one concludes

that cp ∼ 1

2
√
p
, as p → ∞. This leads to (19), completing the derivation of Conjecture 1.3.

4. Examples

We will now give some numerical evidence for Conjecture 1.3.

4.1. Elliptic curves with CE,2 > 0. Table 2 displays some data for four elliptic curves. The column

labelled “Predicted” lists the values of CE,2

� 1012

2

dt

2
√
t(log t)2

; “Actual” lists the values of πE,2(1012); “%

error” lists as a percentage the values of

CE,2

� 1012

2
dt

2
√
t(log t)2

− πE,2(1012)

CE,2

� 1012

2
dt

2
√
t(log t)2

.

The first and third curves were already considered in [10], and are included here largely to show the contrast
with the second curve. A detailed list of all of the amicable pairs for each of these curves may be found in
the appendix.

The elliptic curves E appearing in Table 2 satisfy the property that, for each n ≥ 1,

[GL2(Z/nZ) : Gal(Q(E[n])/Q)] ≤ 2 (29)

(See [8, pp. 309–311] and [6, p. 51]). As shown in [8, pp. 310–311], this is the smallest index that one can
have for general n when the elliptic curve E is defined over Q. We call any elliptic curve E satisfying (29) a

10



E Predicted Actual % error

y2 + y = x3 − x 120.445 115 4.52%
y2 = x3 + 6x− 2 206.464 208 −0.74%
y2 + y = x3 + x2 120.442 117 2.86%

y2 + xy + y = x3 − x2 120.437 112 7.01%

(28)

Table 2: Data on πE,2(1012) for various E

E CE,2 ∆sf (E)

y2 + y = x3 − x ≈ 0.077093219 37
y2 = x3 + 6x− 2 ≈ 0.132151070 −3
y2 + y = x3 + x2 ≈ 0.077091320 −43

y2 + xy + y = x3 − x2 ≈ 0.077088124 −53

Table 3: Values of CE,2 and ∆sf (E)

Serre curve. Serre curves are thus elliptic curves for which Gal(Q(E[n])/Q) is “as large as possible for all
n,” and it has been shown that, when ordered by height, almost all elliptic curves are Serre curves (see [3]).
One can show that for any Serre curve E, one has CE,L > 0. In fact, if we define the constant CL by

CL :=
φL(0)

L
· lim
k→∞

nL
k |GL2(Z/nkZ)Lali-cycle|

|GL2(Z/nkZ)L|
=

φL(0)

L
·

�

� prime

�L|GL2(F�)Lali-cycle|
|GL2(F�)L|

,

then for any Serre curve E one has that

CE,L = CL · fL(∆sf (E)),

where ∆sf (E) denotes the square-free part of the discriminant of any Weierstrass model of E and fL is a
positive function which approaches 1 as |∆sf (E)| approaches infinity. When L = 2 one has

C2 =
φ2(0)

2
·

�

� prime

�2|GL2(F�)2ali-cycle|
|GL2(F�)2|

=
8

3π2
·

�

� prime

�2(�4 − 2�3 − 2�2 + 3�+ 3)

[(�2 − 1)(�− 1)]2
≈ 0.077088124.

Table 3 gives the values of CE,2 and ∆sf (E) for each of the curves in (28). The reason the second curve has
a larger value of CE,2 is that |∆sf (E)| is smaller for this curve than for the others.

4.2. An elliptic curve with CE,L = 0. We will now discuss briefly the elliptic curve

E : y2 = x3 − 3x+ 4 (30)

which was mentioned in the introduction, for which πE,L(x) ≡ 0 since the associated graph GE contains
no closed walks at all. We will presently describe the Galois group Gal(Q(E[4])/Q), which is an index 4
subgroup of GL2(Z/4Z). First, define the subgroup H(4) ⊆ GL2(Z/4Z) by

H(4) :=

��
1 0
0 1

�
,

�
0 1
−1 −1

�
,

�
−1 −1
1 0

�
,

�
−1 −1
0 1

�
,

�
1 0
−1 −1

�
,

�
0 1
1 0

��
.

We then have

Gal(Q(E[4])/Q) = H(4) ·
�
I + 2

��
0 0
0 0

�
,

�
1 1
0 1

�
,

�
1 0
1 1

�
,

�
0 1
1 0

���
. (31)

(To see that the right-hand expression defines a subgroup of GL2(Z/4Z), note that
��

0 0
0 0

�
,

�
1 1
0 1

�
,

�
1 0
1 1

�
,

�
0 1
1 0

��
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is closed under addition and under GL2(Z/2Z)-conjugation.)

Since Gal(Q(E[4])/Q) is a proper subgroup of GL2(Z/4Z) (even though Gal(Q(E[2])/Q) = GL2(Z/2Z)) one
has 4 | mE , and the restriction map Gal(Q(E[mE ])/Q) � Gal(Q(E[4])/Q) induces a graph morphism

GE = GE(mE) � GE(4), (32)

which is surjective in the sense that it carries the vertex set V(mE) onto V(4) and likewise carries E(mE)
onto E(4).

On the other hand, using (31), one finds that the directed graph GE(4) is as follows.

(2, 1) (2,−1) (−1, 1) (0,−1) (33)

4.2.1. Infinitely many primes p for which E(Fp) is prime. The non-CM case of a conjecture of Koblitz (see
[5] and also [12]) expresses (in our terminology) that for any non-CM elliptic curve E, the existence of a single
directed edge in GE implies the existence of infinitely many primes p for which |E(Fp)| is prime. Taking E
to be the elliptic curve given by (30) we see by the surjectivity of (32) together with (33) that GE contains
at least one directed edge. Thus, assuming Koblitz’s conjecture, there are infinitely many primes p for which
|E(Fp)| is prime.

4.2.2. Finitely many amicable pairs (p1, p2) for E. Continuing with the example (30), by the surjectivity
of (32) together with (33), we see that GE contains no closed walks at all. By Proposition 2.6, there are
only finitely many amicable pairs (p1, p2) for E. In this particular example, the reason is that, whenever
p2 = |E(Fp1)| for some prime p1, we see from (33) that (tr(FrobQ(E[4])(p1)), det(FrobQ(E[4])(p1))) = (−1, 1)
(otherwise, |E(Fp1)| would be even). But then (tr FrobQ(E[4])(p2), det FrobQ(E[4])(p2) ∈ {(0,−1), (2,−1)},
in which case |E(Fp2)| must be even. Thus, E has no aliquot cycles of length 2, except possibly one with
p1 = 2.

Remark 4.1. There is a modular curve X of level 4 whose Q-rational points correspond to j-invariants
of elliptic curves E for which −∆E is a perfect square. Above each such j-invariant, one may find an
appropriate twist E for which (31) holds, and thus for which π2−aliquot

E (x) = 0. The elliptic curve (30) is one
such example.
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6. Appendix: explicit lists of amicable pairs

The following tables list explicitly the aliquot cycles of length 2 up to 1012 for each elliptic curve in (28). As
mentioned before, the list for the first and third elliptic curves already appear in the literature.

E : y2 + y = x3 − x

(1622311, 1622471) (209051131, 209065277) (435197207, 435203627)
(1039959127, 1040001691) (1129509221, 1129533787) (1226864057, 1226882263)
(2352481871, 2352558343) (2611684883, 2611740823) (2948995759, 2949055441)
(3694651133, 3694724861) (3700382359, 3700422013) (5683068649, 5683159501)
(6349942217, 6349993721) (6914519077, 6914622391) (7780832797, 7780990501)
(7860919111, 7861056859) (11661099739, 11661236029) (13190078443, 13190190973)
(17715766063, 17715919189) (18474017909, 18474073067) (20141992589, 20142034597)
(27533596327, 27533695253) (30088680781, 30088865197) (30219540259, 30219626189)
(35165094271, 35165277859) (39781723027, 39781892179) (40193486233, 40193590513)
(53243937647, 53244180001) (66112307671, 66112681087) (75220327627, 75220824407)
(79547451029, 79547941961) (82972540933, 82973007269) (91481681563, 91481831167)

(135209380513, 135209499589) (136915494109, 136915595393) (157257407323, 157257693611)
(158984455501, 158984688949) (167039564669, 167040084401) (177684339499, 177684824747)
(180834082483, 180834577073) (220572066031, 220572215359) (222615955253, 222616408523)
(225553569541, 225554322289) (232147447429, 232147688077) (237450526301, 237450906587)
(242306352073, 242306848111) (254431324111, 254431871483) (266978335579, 266979154129)
(278362825919, 278362984259) (310815976057, 310816715611) (313411448689, 313411783339)
(337937547001, 337937666239) (346014872941, 346015802347) (349091231189, 349091456213)
(355874233339, 355875011273) (374395351147, 374395833101) (389045160211, 389046040597)
(410216001667, 410216487617) (425054768539, 425055365503) (433264475593, 433265271421)
(447995295149, 447995753581) (450962487379, 450963499751) (452460382313, 452460690173)
(458893417501, 458893876037) (459730791547, 459731977339) (467750074973, 467750803543)
(479317568749, 479317690799) (487450330357, 487451102659) (492300415627, 492300923243)
(492804132581, 492804306977) (495444691993, 495445905593) (512761175929, 512762306323)
(512831724641, 512832427781) (535685535181, 535685802473) (541205932447, 541206076321)
(542986795411, 542987777977) (543698127899, 543698612339) (548910506773, 548911500937)
(582293306269, 582294364021) (594593079499, 594593130487) (616357100551, 616357962947)
(621398107639, 621398159887) (637853583649, 637853929663) (662264439119, 662265469751)
(667090336879, 667090628623) (668446398773, 668446550483) (677386393447, 677387660891)
(691941147839, 691941897841) (715473741821, 715474531417) (716974038541, 716975043439)
(731061198019, 731061747727) (736836558559, 736836756037) (739367967629, 739368490373)
(747470186753, 747471096839) (747741940633, 747742621163) (787050974509, 787051054799)
(788049803507, 788050962247) (791043347177, 791043576221) (814883538661, 814884311611)
(828555018217, 828556059601) (829762693999, 829763438291) (834436212079, 834437146787)
(836460556301, 836460725687) (844964045659, 844965469009) (846341290477, 846341935993)
(855505476433, 855505945837) (875067239093, 875068051043) (880220286991, 880220771851)
(882103493123, 882104446687) (904777224133, 904777406573) (931427616797, 931428699827)
(941072287627, 941072777989) (947754240637, 947755837411) (975303777571, 975304270909)
(988356964733, 988357609933)
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E : y2 = x3 + 6x− 2

(1548181, 1549957) (8418001, 8420869) (27020971, 27023203)
(41099887, 41102779) (55475983, 55485487) (103188703, 103189183)

(103560409, 103562257) (247178983, 247205683) (311333227, 311334547)
(313230349, 313253617) (356804113, 356827567) (422576281, 422601397)
(519858049, 519859897) (532921261, 532948789) (695441821, 695470429)
(909516679, 909537679) (1041003277, 1041034381) (1285610191, 1285666111)
(1323964627, 1324003501) (1460968087, 1460999563) (1573023853, 1573036789)
(2228730391, 2228739319) (2856670207, 2856729307) (2884015957, 2884076497)
(3487502743, 3487556353) (3637904731, 3637909417) (3698023993, 3698087053)
(5738542567, 5738600821) (6133051201, 6133153483) (6752045479, 6752144557)
(7132897549, 7132989307) (7856869717, 7856980249) (10651831501, 10651905937)
(11245617703, 11245732123) (11895069451, 11895081379) (12556864459, 12556881829)
(12961854553, 12961959823) (14028936853, 14028997627) (17819373163, 17819395123)
(19374492091, 19374504559) (20002813219, 20002997401) (20043073867, 20043079489)
(21309214687, 21309268879) (21365073151, 21365086591) (21392159689, 21392351269)
(21634673911, 21634735261) (23716596619, 23716760269) (25262268439, 25262298301)
(25588885939, 25588919803) (28359161143, 28359242143) (34599021349, 34599359077)
(34992582463, 34992729643) (35528890741, 35529091189) (35994010963, 35994101401)
(36220685653, 36220823053) (37203130933, 37203226117) (38998338619, 38998409209)
(39895808779, 39896029939) (43060037287, 43060236229) (45077531659, 45077823727)
(45996173803, 45996256021) (48663034831, 48663094723) (50138991919, 50139094801)
(50274637603, 50274713833) (61616410483, 61616553619) (62645351809, 62645575891)
(69076161499, 69076484017) (75420226099, 75420328603) (91815723319, 91815916921)
(95856852841, 95857110871) (97300695241, 97300912453) (101838416089, 101838631711)

(104860147387, 104860414207) (105129527617, 105129547609) (110933234197, 110933366851)
(113007291079, 113007693451) (118034554213, 118034711017) (121458837607, 121459013983)
(122121727729, 122122035571) (123043281511, 123043417417) (127164399319, 127164716047)
(129776642731, 129777043213) (130375783231, 130376242357) (134543151409, 134543156239)
(136033853041, 136034432371) (139803425491, 139803584803) (140398380691, 140398878517)
(141371775949, 141372134119) (143625540313, 143625910663) (146984081467, 146984107561)
(154455052183, 154455447337) (154558154293, 154558266547) (154589048881, 154589146171)
(160477931953, 160478402197) (169100913031, 169101408187) (170157172567, 170157425161)
(176093570269, 176093594137) (180683118661, 180683512459) (180918695641, 180919056559)
(181661826109, 181662063151) (193624195909, 193624275049) (197728432483, 197728647073)
(200346558421, 200346908953) (206169275317, 206169892651) (208532319661, 208532649307)
(209288525629, 209288889991) (214444029871, 214444663267) (218963657833, 218964291703)
(223263181027, 223263280729) (230300519569, 230300669971) (241404945073, 241405363681)
(251761334491, 251761616599) (253721388703, 253721923513) (257773331401, 257773671427)
(258262219483, 258262725001) (258290107969, 258291005671) (263287907227, 263288596171)
(264118967857, 264119109511) (267424290457, 267424717363) (271213201957, 271213641901)
(281252697337, 281252884639) (281308871953, 281309112493) (282505134739, 282505672369)
(286455303427, 286455801883) (290995669561, 290996513623) (295016767207, 295017062383)

(continued on next page)
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(E : y2 = x3 + 6x− 2, continued)

(304611562393, 304611905011) (316426926331, 316427396851) (320194228441, 320194439881)
(323392992001, 323393683099) (323759613889, 323759796799) (338730801697, 338731733731)
(339933813691, 339933979057) (369205061077, 369205230841) (370101477787, 370101545599)
(372063948853, 372064610173) (377383236409, 377383778599) (381651061711, 381651855967)
(385133497741, 385134282067) (387439552267, 387439963693) (394584712183, 394585469767)
(416569428133, 416569871587) (419068686397, 419069355931) (427471260409, 427472032921)
(432809199301, 432810098419) (438923378953, 438923590843) (452117698771, 452118519019)
(480996157987, 480996939901) (491663527261, 491663719213) (493862867191, 493863140227)
(496495770301, 496496069977) (497423088763, 497423596921) (503412302287, 503412574603)
(508725587593, 508726001809) (509175117817, 509176307413) (514535068759, 514535497039)
(523540389637, 523541126389) (523542025147, 523543103947) (529110442891, 529110568849)
(530665482229, 530665688353) (534353032483, 534353959813) (549968382823, 549968390329)
(550105241731, 550106356699) (554960009509, 554960226913) (583282615459, 583283214121)
(588292030849, 588292139647) (601289295913, 601289609563) (618553274137, 618553734361)
(627259045531, 627259840177) (641812301983, 641813638393) (658785056563, 658786238197)
(675907216669, 675907700131) (676669802719, 676670932747) (684967404067, 684968499517)
(685269294349, 685269771181) (685573828441, 685574444917) (691921122031, 691921263751)
(695361639307, 695362458157) (724138195909, 724139642449) (745941844117, 745942115407)
(751323994363, 751324293919) (759503735437, 759503759251) (764977801831, 764979218077)
(771520756183, 771521557333) (777427080589, 777427099777) (785945109151, 785946501919)
(797321303083, 797322101827) (800217573139, 800218603939) (800232048799, 800233233139)
(807079605733, 807080354401) (810955125037, 810955878367) (838120137769, 838120638049)
(844929845209, 844930800097) (854376423709, 854377562827) (878892886021, 878893049557)
(901292660053, 901293027631) (901938239287, 901938376201) (903067276537, 903067840579)
(924895719301, 924896722261) (947036364709, 947037146329) (951922236313, 951922594213)
(957843151099, 957844425523) (959131543543, 959132519413) (961955322421, 961955801899)
(962692820833, 962693488201) (966784833601, 966785085457) (971826907483, 971828106541)
(988941171109, 988942616029)
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E : y2 + y = x3 + x2

(853, 883) (77761, 77999) (1147339, 1148359)
(1447429, 1447561) (82459561, 82471789) (109165543, 109180121)

(253185307, 253194619) (320064601, 320079131) (794563993, 794571803)
(797046407, 797057473) (2185447367, 2185504261) (2382994403, 2383029443)
(4101180511, 4101190039) (4686466159, 4686510971) (5293671709, 5293749623)
(6677602471, 6677694539) (7074693823, 7074704971) (7806306133, 7806380963)
(9395537549, 9395559011) (9771430993, 9771433303) (9849225103, 9849306373)
(10574564857, 10574619851) (12657210407, 12657303353) (13003880317, 13003900901)
(13789895011, 13790023199) (14436076927, 14436180091) (14976551207, 14976590371)
(15597047659, 15597075937) (15679549877, 15679688491) (16322301811, 16322366867)
(17725049203, 17725142719) (17841395323, 17841406601) (20780607817, 20780797927)
(23338053773, 23338135543) (28358243743, 28358411071) (29859516131, 29859782089)
(31615097957, 31615194739) (33266376239, 33266419807) (33963999907, 33964128017)
(34525477799, 34525684639) (39287748091, 39287808559) (40136806357, 40137038941)
(46438194193, 46438453213) (51838270219, 51838493561) (51881025571, 51881167549)
(52011956957, 52012184953) (55823622193, 55823919169) (57920520199, 57920640709)
(62765305697, 62765625749) (62995853671, 62996152237) (66252308051, 66252349753)
(67177409329, 67177631771) (69449506103, 69449741239) (75002612911, 75002660263)
(77264683829, 77264993327) (77635421531, 77635670141) (79067605783, 79067881429)
(81263083703, 81263204563) (94248260597, 94248586591) (104544108049, 104544364087)

(111287830573, 111288274567) (118206158729, 118206360829) (120791219099, 120791323493)
(132962516737, 132962703661) (142574237383, 142574369533) (144750903551, 144751137469)
(155467666099, 155467836031) (161226480901, 161227124081) (173164057399, 173164630033)
(178633373617, 178633516081) (213013688359, 213013931239) (218475851959, 218475922267)
(222335132807, 222335345521) (225529688431, 225529987157) (232349609983, 232349658979)
(234896302009, 234896350369) (240677586449, 240678201091) (241352193611, 241352273849)
(265340194039, 265340401483) (277515892207, 277516507711) (287800715711, 287801137609)
(299486604371, 299487430807) (302166243187, 302166581251) (323643851647, 323644499221)
(356299878281, 356300493907) (378008294449, 378008508961) (383399841217, 383399894341)
(392864677427, 392865349441) (415381769743, 415381922953) (421953112561, 421953604103)
(425072615243, 425073437039) (438722917471, 438723215947) (475655912713, 475656729419)
(477171588461, 477171935243) (509779650181, 509780267947) (519205252403, 519205488493)
(580562183213, 580562489173) (605229610571, 605229758977) (614484897889, 614485486079)
(637355743513, 637356846673) (649999477469, 649999993999) (655455388397, 655456255439)
(658459698947, 658460090441) (662097699853, 662098655233) (705006602177, 705006769807)
(723299067853, 723299355619) (775857545861, 775859048443) (793725967891, 793727339077)
(794925473327, 794926023761) (811569419461, 811569591827) (838059794239, 838061257667)
(851273574199, 851274251683) (885227547847, 885227943451) (916134576373, 916134747943)
(948135054247, 948136458277) (954115635797, 954115645823) (977575750447, 977576865637)
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E : y2 + xy = y = x3 − x2

(15782639, 15784843) (190661353, 190664659) (502321091, 502327927)
(623231569, 623231993) (848089241, 848132891) (867592309, 867624829)
(3416538269, 3416597377) (3717074213, 3717173309) (4238113591, 4238209777)
(5152594561, 5152642949) (6089286341, 6089340407) (9570960601, 9571090813)
(10307814653, 10308007673) (12344104739, 12344173241) (12716284769, 12716356283)
(13176256817, 13176313231) (16346940559, 16347177017) (17446634749, 17446866277)
(17640097129, 17640202039) (17813465101, 17813616323) (20236386439, 20236522001)
(25399397321, 25399525139) (28962287951, 28962407993) (44498254369, 44498268181)
(44505831763, 44506130107) (46349770567, 46349853013) (46458108131, 46458263461)
(50111710081, 50111715697) (50358110393, 50358130913) (53101240499, 53101392913)
(53479634651, 53479832557) (58314298151, 58314604273) (61023254293, 61023633193)
(63927854251, 63928173559) (69324497167, 69324768649) (72719208101, 72719547421)
(74695294579, 74695303807) (77163314573, 77163565477) (87909792151, 87910126273)
(89232374177, 89232642671) (90765908473, 90765993701) (104578431757, 104578692593)

(106490241971, 106490439611) (117092369503, 117092709313) (119750886781, 119751206593)
(136259885981, 136260396247) (147752621281, 147752621473) (152386047371, 152386399289)
(159205542883, 159205941493) (162082190863, 162082739993) (162228888733, 162229099127)
(176417856691, 176418563047) (181356597949, 181356724279) (189892739581, 189893224141)
(203800207903, 203800471873) (211513919011, 211514727163) (220708027751, 220708595369)
(229639371653, 229639954039) (232087576949, 232087869109) (241147849703, 241148516573)
(244618491253, 244619163127) (257901424217, 257901714461) (261006203473, 261006566413)
(276349180903, 276349242947) (284018293907, 284018841541) (292321566133, 292322062051)
(303417636943, 303418534169) (330731874709, 330732406447) (335698096693, 335698400441)
(352360579243, 352360813999) (355468546691, 355469258233) (362673106891, 362673597557)
(370230266191, 370230703417) (378965271283, 378965623903) (380261411263, 380262381227)
(390135772571, 390136652989) (390799130147, 390800011621) (400024457279, 400025502673)
(402493970449, 402495159901) (414985447453, 414985542637) (418036669879, 418037202859)
(421489291187, 421489882091) (444533520989, 444534760079) (487236963173, 487237982267)
(520046808691, 520046846843) (526535611213, 526535898193) (542199064171, 542199898081)
(570305518229, 570306739627) (578863687643, 578864208623) (584693259547, 584694507781)
(604132829593, 604133190781) (612708244831, 612708811523) (633641436079, 633641528089)
(634237451317, 634237815037) (646610210237, 646611215177) (661780097659, 661780284409)
(662587649869, 662587671379) (675497678743, 675497762833) (707189418797, 707190256169)
(726804340441, 726804853387) (729011769121, 729011923819) (763258759231, 763259788957)
(780058611379, 780059712277) (789194123593, 789194848801) (792144114521, 792144583487)
(800068081357, 800068897333) (824682365453, 824683788449) (896499439369, 896500153051)
(897964354531, 897965047027) (910331668333, 910332505723) (938116069703, 938116887583)
(992075415607, 992076747499)
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