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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES

NATHAN JONES

Abstract. Using a multidimensional large sieve inequality, we obtain a bound
for the mean-square error in the Chebotarev theorem for division fields of
elliptic curves that is as strong as what is implied by the Generalized Riemann
Hypothesis. As an application we prove that, according to height, almost all
elliptic curves are Serre curves, where a Serre curve is an elliptic curve whose
torsion subgroup, roughly speaking, has as much Galois symmetry as possible.

1. Introduction

Let E be an elliptic curve defined over Q and denote by

φN,E : GQ → Aut(E[N ])

the representation of GQ := Gal (Q/Q) on the N -torsion E[N ] of E. Fixing a
Z/NZ-basis of E[N ], we identify Aut(E[N ]) with GL2(Z/NZ) and write

φN,E : GQ → GL2(Z/NZ).

The image φN,E(GQ) is exactly the Galois group of the N th division field of E over
Q, i.e. the field obtained by adjoining to Q the x and y coordinates of the N -torsion
of a given Weierstrass model of E, which we will denote by Q(E[N ]). Taking the
inverse limit over all N ≥ 1 with the bases chosen compatibly, we obtain the full
torsion representation

φE : GQ → GL2(Ẑ) := lim
←

GL2(Z/NZ).

It is natural to wonder how large the image of φE in GL2(Ẑ) is.

Definition 1. The integer N is said to be exceptional for E if φN,E is not
surjective.

To wonder about the size of the image of φE in GL2(Ẑ) is simply to wonder
about which numbers N are exceptional for E, and about “how exceptional each
N is”, i.e. about the index [GL2(Z/NZ) : φN,E(GQ)].

When E has complex multiplication, Q(E[N ]) is always an abelian extension of
the CM field (Kronecker’s “Jugendtraum”; see [24, Theorem 2.3, p. 108]), from
which it follows that every N except possibly N = 2 is exceptional, so that the
image φE(GQ) has infinite index in GL2(Ẑ). On the other hand, when E does

not have CM, Serre [20] has shown that the index [GL2(Ẑ) : φE(GQ)] is finite.
Equivalently, there exists an integer mE so that

(1) φE(GQ) = π−1(φmE,E(GQ)),
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1548 NATHAN JONES

where π : GL2(Ẑ) → GL2(Z/mEZ) is the natural projection. In particular, this
implies that any fixed non-CM elliptic curve E has only finitely many exceptional
primes, since any such exceptional prime must divide mE . One might wonder
how the integer mE (chosen minimally so that (1) still holds) depends on the
curve E. Various results exist which bound the largest possible exceptional prime
for E. For example, Mazur [17] proves that if E is semistable, then no prime
N ≥ 11 can be exceptional for E. Other authors have bounded the largest possible
exceptional prime in terms of invariants of the elliptic curve, such as the height [16]
and conductor ([21], [15], and [2]).

Results also exist which count the number of elliptic curves with no exceptional
primes. Let Er,s denote the plane curve given by the equation

(2) Er,s : y2 = x3 + rx+ s.

For a varying parameter x let R(x) and S(x) be a given length and width (under-
stood to grow with x) and define

C(x) := {Er,s : (r, s) ∈ Z2, |r| ≤ R(x), |s| ≤ S(x) and 4r3 + 27s2 �= 0}.
Duke [8] takes R(x) = x2 and S(x) = x3 (which are the choices defining naive
height) and shows that if ε(x) is the set of Er,s ∈ C(x) which have at least one
exceptional prime, then

(3) lim
x→∞

|ε(x)/ � |
|C(x)/ � | = 0,

where Er,s � Er′,s′ if the two models are isomorphic over Q. Using a two-
dimensional large sieve inequality, he shows that

|ε(x)/ � | � x4 logB x,

with an absolute (but ineffective) constant. Since

|C(x)/ � | = 4

ζ(10)
x5 +O(x3)

(see [1]), this implies (3). Cojocaru and Hall [3] prove a similar result for elliptic
curves in one-parameter families.

In [12], Grant obtains an asymptotic formula for |ε(x)/ � |. He shows that the
curves which are exceptional at the primes 2 and 3 contribute the main term of
|ε(x)/ � | and that, for an explicit constant C,

|ε(x)/ � | = Cx3 +Oε(x
2+ε)

for all ε > 0.
This paper gives a different generalization. The statement that an elliptic curve

E has no exceptional primes may be viewed as saying that the Galois representation
φE has “large image”. In this paper we extend (3) to a result that almost all elliptic
curves have φE(GQ) “as large as possible”.

2. Statement of results

Our main result is a theorem bounding the mean-square error in the Chebotarev
theorem for division fields of elliptic curves. Fix a positive integer level N and a
subset

A ⊂ GL2(Z/NZ)
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1549

which is closed under conjugation by GL2(Z/NZ) and represents only one deter-
minant value, i.e. which satisfies

(4) ∀g ∈ GL2(Z/NZ), gAg−1 = A and ∀a, b ∈ A, det a = det b

(for instance, we could take A to be a conjugacy class). Denote by

πE(x;N,A) := |{p ≤ x : φN,E(Frobp) ⊆ A}|
the function which counts the number of primes up to x which are unramified in
Q(E[N ]) and whose Frobenius class is contained in A, and as usual let

π(x;N, d) := |{p ≤ x : p ≡ d mod N}|.

Theorem 2. For x ≥ 1 and min{R(x), S(x)} ≥ x2, one has

1

|C(x)|
∑

E∈C(x)

(
πE(x;N,A)− |A|ϕ(N)

|GL2(Z/NZ)|π(x;N, d)

)2

� |A|2x,

where d := detA, ϕ(N) denotes the Euler-phi function, and the implied constant
is absolute.

In [8], Duke proves this (without the |A|2 factor) for prime level N and where
A has the specific form

A = GL2(Z/NZ)t,d := {A ∈ GL2(Z/NZ) : trA = t, detA = d}.
Such sets are unions of conjugacy classes. For example, even when N is prime, the
set GL2(Z/NZ)2λ,λ2 contains two conjugacy classes, represented by the matrices(

λ 0
0 λ

)
and

(
λ 1
0 λ

)
,

respectively. Theorem 2 distinguishes between these two cases.
Our second result is an application of Theorem 2 to the problem of counting

elliptic curves E for which φE(GQ) is as large as possible. First of all, how large
can this image be? Does there exist an elliptic curve E with φE surjective? In
other words, is there a curve E with mE = 1? Serre [20] answers no. For each

elliptic curve E over Q, there is an index two subgroup HE ⊂ GL2(Ẑ) (for a precise
definition, see Section 4) such that

(5) φE(GQ) ⊆ HE .

Definition 3. We call an elliptic curve E a Serre curve when equality holds in
(5).

Our second theorem is

Theorem 4. Let CSerre(x) denote the set

{Er,s ∈ C(x) : Er,s is a Serre curve }.
Assuming that min{R(x), S(x)} ≥ x2, one has

|C(x)− CSerre(x)| �
|C(x)| logB x

x
,

where B is an explicit constant. Thus, in particular,

lim
x→∞

|CSerre(x)|
|C(x)| = 1.
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1550 NATHAN JONES

In order to obtain this result that “almost all elliptic curves are Serre curves”,
we prove an algebraic lemma which gives a sufficient condition for an elliptic curve
E to be a Serre curve.

Lemma 5. Suppose E over Q is an elliptic curve such that:

1. E has no exceptional primes; and
2. E is not exceptional at 72.

Then, E is a Serre curve.

This lemma is used together with Theorem 2 to give Theorem 4. In [14], we use
Theorem 4 to compute the average value over elliptic curves of the Lang-Trotter
constants, answering a question of David and Pappalardi [6].

We remark that there are differences between authors as to how to count “elliptic
curves over Q”. Some authors count isomorphism classes of elliptic curves over Q,
while others count models Er,s. We choose to count models, but in our results the
distinction is only technical: the statements of Theorem 2 and Theorem 4 are seen
without difficulty to hold if one replaces “C(x)” with “C(x)/ �”, and vice versa
with the results we have quoted. In particular the work of [8] shows also that

(6) min{R(x), S(x)} ≥ x2 =⇒ |ε(x)| � |C(x)| logB x

x
.

It is interesting to consider what the situation might look like for elliptic curves
over a general number field K, as well as to refine the upper bound of Theorem
4 to an asymptotic in the style of Grant. The study of these problems is recent
doctoral work in progress by D. Zywina and V. Radhakrishnan, respectively.

The paper is organized as follows. In Section 3 we prove Theorem 2. Section 4
gives the complete definition of a Serre curve, and Section 5 is devoted to a proof
of Lemma 5. Finally in Section 6 we prove Theorem 4, and in Section 7 we produce
an example of a one-parameter family of elliptic curves which are exceptional at
N = 4 but not at N = 2.

3. Bounding mean-square Chebotarev error

In this section we prove Theorem 2. We first remark that although the result
gives a bound as strong as the appropriate Generalized Riemann Hypothesis would,
its proof is unconditional. It employs the following large sieve inequality of Gal-
lagher [11, Lemma A] and proceeds along the same lines as the proof of [8, Theorem
2].

Lemma 6. Let k be a positive integer and for each prime number p let Ω(p) ⊆
(Z/pZ)k be any subset. For each fixed m ∈ Zk we define

P (x;m) = |{p ≤ x : m mod p ∈ Ω(p)}|
and

P (x) =
∑
p≤x

|Ω(p)|p−k.

Let B be a box in Rk whose sides are parallel to the coordinate planes and which
has minimum width W (B) and volume V (B). If W (B) ≥ x2, then∑

m∈B∩Zk

(P (x;m)− P (x))2 � V (B)P (x),

where the implied constant depends only on k.
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1551

We recall the setting of Theorem 2: for a pair of integers (r, s) let Er,s be the
curve defined by (2). Let N be a positive integer and fix a subset

A ⊂ GL2(Z/NZ)

satisfying (4). We will proceed to define the set Ω(p) = ΩA(p) in such a way that
P (x; (r, s)) and P (x) will satisfy

(7) P (x; (r, s)) = πEr,s
(x;N,A) +O(1)

and

(8) P (x) =
|A|ϕ(N)

|GL2(Z/NZ)|π(x;N, d) +O(|A|x1/2),

respectively, where the implied constants are absolute. Applying Lemma 6 and
observing that (A+B)2 � A2 +B2, we conclude the result of Theorem 2.

3.1. Defining the set ΩA(p) ⊆ (Z/pZ)2. We begin by quoting a result of Duke
and Tóth [9] which describes explicitly the conjugacy class in Gal (Q(E[N ])/Q) of
the Frobenius automorphism at a prime p which is unramified in Q(E[N ]). The
description is given purely in terms of data attached to Ep, the reduction of E
modulo p.

In our context, their result may be stated as follows: let Fp denote the finite
field of p elements and Ep any elliptic curve defined over Fp. Let

a = a(Ep) := p+ 1− |Ep(Fp)|
be the trace of the Frobenius endomorphism φp of Ep and b = b(Ep) the index
in the ring of Fp-endomorphisms of Ep of the subring generated by the Frobenius
endomorphism, i.e.

b = [End Fp
(Ep) : Z[φp]].

In any case (including the supersingular case), the ring End Fp
(Ep) is isomorphic

to an imaginary quadratic order (see [25, Theorem 4.2]), whose discriminant we
denote by ∆ = ∆(Ep). The comparison of discriminants yields

(9) ∆b2 = a2 − 4p.

We associate to Ep the following matrix of trace a and determinant p:

(10) σ(Ep) =

(
(a+ bδ)/2 b
b(∆− δ)/4 (a− bδ)/2

)
,

where for a discriminant ∆ we have δ = 0 or 1 according to whether ∆ ≡ 0 or 1
mod 4. Note that, because of (9), σ has integer entries.

Theorem 7. Let E be an elliptic curve over Q and let N be any positive integer. If
p is a prime of good reduction for E which does not divide N , then p is unramified
in Q(E[N ]). Furthermore, denoting by Ep the reduction of E modulo p, the integral
matrix σ(Ep) defined in (10), when reduced modulo N , represents the class of the
Frobenius automorphism at p in Gal (Q(E[N ])/Q).

Now suppose p > 3 is a prime number. For (r, s) ∈ F2
p, let Er,s denote the

curve over Fp given by equation (2) and ∆r,s = −16(4r3 + 27s2) its associated
discriminant. We define ΩA(p) = ∅ if p | 6N , and for p � 6N ,

ΩA(p) := {(r, s) ∈ F2
p : ∆r,s �= 0 and σ(Er,s) mod N ∈ A}.
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1552 NATHAN JONES

Observe that for (r, s) ∈ Z2, the discriminant ∆r,s of an elliptic curve Er,s over
Q is related to its minimal discriminant ∆ by

∆r,s = e12∆

for some e dividing 6. Thus, Theorem 7 implies that (7) holds. We now turn to
verifying (8).

3.2. The asymptotic in p of |ΩA(p)|. The goal of this section is to give the
asymptotic of |ΩA(p)| as p ranges through the set of prime numbers for which
ΩA(p) �= ∅. Our proof will show that, in fact,

ΩA(p) �= ∅ ⇐⇒ p ≡ detA mod N.

Theorem 8. For p prime congruent to detA modulo N we have

|ΩA(p)| =
|A|ϕ(N)

|GL2(Z/NZ)|p
2 +O(|A|p3/2),

where the implied constant is absolute.

We observe that (8) follows from this asymptotic. Thus, Theorem 2 will follow
from Theorem 8 together with Lemma 6.

In order to prove Theorem 8, we first express |ΩA(p)| in terms of a weighted
class number. Define the set

TA(p) := {A ∈ M2×2(Z) : detA = p, A mod N ∈ A}

and the subset of elliptic matrices

T e
A(p) := {A ∈ TA(p) : (trA)2 − 4 detA < 0}.

Since A is stable by SL2(Z/NZ)-conjugation, both of the above sets are stable by
SL2(Z)-conjugation.

Note: Throughout the rest of this paper we will use the standard notation

Γ(1) := SL2(Z).

The following two auxiliary results will imply Theorem 8.

Proposition 9.

|ΩA(p)| =
p− 1

2

∑
α∈T e

A(p) //Γ(1)

1

|Γ(1)α|
,

where T e
A(p) //Γ(1) is the set of Γ(1)-conjugation orbits in T e

A(p) and

Γ(1)α := {γ ∈ Γ(1) : γα = αγ}.

Lemma 10. If p ≡ detA mod N , then∑
α∈T e

A(p) //Γ(1)

1

|Γ(1)α|
=

2|A|
|SL2(Z/NZ)|p+O(|A|p1/2),

with an absolute constant.

Proof of Lemma 10. This is [13, Corollary 5]. �
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The remainder of this section is devoted to proving Proposition 9. First, by
writing A as a disjoint union of GL2(Z/NZ)-conjugacy classes,

A =

η⊔
i=1

Ai,

and observing that

ΩA(p) =

η⊔
i=1

ΩAi
(p) and T e

A(p) =

η⊔
i=1

T e
Ai

(p),

we may (and will henceforth) assume that A is a GL2(Z/NZ)-conjugacy class.
Note that

ΩA(p) = {(r, s) ∈ (Z/pZ)2 : ∆r,s �= 0 and σ(Er,s) ∈ T e
A(p)}.

At this point we must give a finer description of the conjugacy class A. For any
divisor M of N and integers T , D modulo N/M , define

TN/M (T ,D) = {A ∈ M2×2(Z/(N/M)Z) : (trA, detA) ≡ (T ,D) mod N/M}
and

T ∗
N/M (T ,D) = {A ∈ TN/M (T ,D) : A is non-scalar mod each prime l | N/M}.

The following lemma describes the structure of conjugacy classes in the group
GL2(Z/NZ).

Lemma 11. Any conjugacy class

A ⊂ GL2(Z/NZ)

has the form

(11) A = λI +MT ∗
N/M (T ,D),

where M divides N and λ is an integer satisfying 0 ≤ λ < M .

Proof of Lemma 11. Since the set λI + MT ∗
N/M (T ,D) is stable by GL2(Z/NZ)-

conjugation, it suffices to show that for any matrix A ∈ T ∗
N/M (T ,D), we can find

B ∈ GL2(Z/(N/M)Z) with

BAB−1 =

(
0 −D
1 T

)
.

To this end, let v =

(
x
y

)
∈ (Z/(N/M)Z)2 be a variable vector and notice that the

linear transformation LA on (Z/(N/M)Z)2 given by left multiplication by A has
the form

[LA]{v,Av} =

(
0 −D
1 T

)
when written with respect to the ordered basis {v,Av} of (Z/(N/M)Z)2. This
verifies the claim, provided that we can find a vector v so that the change of basis
matrix

B =

(
x ax+ by
y cx+ dy

) (
A =

(
a b
c d

))
belongs to GL2(Z/(N/M)Z), i.e. so that

detB = cx2 + (d− a)xy − by2 ∈ (Z/(N/M)Z)∗.

Licensed to Univ of Illinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1554 NATHAN JONES

By the Chinese Remainder Theorem and the fact that A is non-scalar modulo each
prime l dividing N/M , we may take

(x, y) ≡

⎧⎪⎨
⎪⎩
(1, 0) if l � c

(0, 1) if l � b

(1, 1) if l | b and l | c,
which finishes the proof of Lemma 11. �

Let us henceforth assume that our conjugacy class A is of the form (11). We
would like to partition T e

A(p) into subsets which are stable by Γ(1)-conjugation.
Let T ∗(T,D, f) denote the set{

A =

(
a b
c d

)
∈ M2×2(Z) : trA = T, detA = D, gcd(b, d− a, c) = f

}
.

We note then that the trace t and determinant d of any matrix in the set λI +M ·
T ∗(T,D, f) satisfy

(12) t = 2λ+MT, d = λ2 +MλT +M2D, and t2 − 4d = M2
(
T 2 − 4D

)
.

Thus, from Lemma 11 we see that

T e
A(p) =

⊔
(T,D)

⊔
f≥1

gcd(f,N/M)=1

(λI +M · T ∗(T,D, f)) ,

where (T,D) runs over integer pairs satisfying

(T,D) ≡ (T ,D) mod N/M, p = λ2 +MλT +M2D, and (2λ+MT )2 < 4p.

Defining Ω∗(λ,M, T,D, f) by

{(r, s) ∈ (Z/pZ)2 : ∆r,s �= 0 and σ(Er,s) ∈ λI +M · T ∗(T,D, f)},
Proposition 9 is reduced to showing that

(13) |Ω∗(λ,M, T,D, f)| = p− 1

2

∑
α∈(λI+M ·T ∗(T,D,f)) //Γ(1)

1

|Γ(1)α|
.

Lemma 12. We have that Ω∗(λ,M, T,D, f) is equal to

{(r, s) ∈ (Z/pZ)2 : ∆r,s �= 0, b(Er,s) = Mf and a(Er,s) = 2λ+MT}.

Proof. The containment “Ω∗(λ,M, T,D, f) ⊆ . . . ” is immediate from (10) and
(12). The reverse containment comes from the fact that, for fixed t and p, the two
equations

t = 2λ+MT and p = λ2 +MλT +M2D

have a unique solution (λ, T,D) ∈ {0, 1, . . . ,M − 1} × Z2, if they have one at
all. This fact is immediate when M is odd. If M is even, we see from the first
equation that the only way two distinct solutions can exist is if one solution looks
like (λ, T,D) with λ ∈ {0, 1, . . . ,M/2 − 1} and the other solution has the form
(λ + M/2, T − 1, D′) for some integer D′. But then the second equation gives us
the contradiction that

λ2 +MλT − p ≡ 0 mod M2 and λ2 +MλT − p ≡ M2

4
(1− 2T ) mod M2.

�

Licensed to Univ of Illinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1555

We now summarize some fundamental facts about imaginary quadratic orders.
More details may be found, for example, in [4, §7]. An imaginary quadratic or-
der O is a subring (containing 1) of an imaginary quadratic field K which contains
a basis of K over Q and has rank 2 as a free abelian group. For each negative
integer ∆ satisfying

∆ ≡ 0 or 1 mod 4,

there is a unique imaginary quadratic order of discriminant ∆, which we will denote
by O(∆). Orders O(∆′) which contain a given order O(∆) are exactly those orders
whose discriminant ∆′ satisfies

f2∆′ = ∆, f = [O(∆′) : O(∆)].

Every imaginary quadratic order O is contained in a unique maximal imaginary
quadratic order,

O ⊆ Omax = OK ⊂ K,

which is the ring of integers of K. The ideal class group C(O) is the group of
invertible fractional ideals of O modulo the subgroup of principal fractional ideals.
This is a finite group whose size we denote by h(O).

Lemma 13. Suppose p ≥ 5 is prime and t is any integer satisfying t2 < 4p. Let
O be any imaginary quadratic order containing the order of discriminant t2 − 4p.
The number of elliptic curves Er,s over Fp of the form (2) which satisfy

a(Er,s) = t and End Fp
(Er,s) = O

is given by
p− 1

|O∗| h(O),

where O∗ is the group of units of O.

Proof. The following theorem restates [25, Theorems 4.2 and 4.5], specialized to
our situation. See also [18], which corrects a small error in the proof. The original
work is due to Deuring [7].

Theorem 14. Let t be any integer satisfying t2 < 4p. Then the following are
precisely the rings which occur as rings of Fp-endomorphisms of some elliptic curve
Ep over Fp satisfying a(Ep) = t:

• if t �= 0, all complex quadratic orders containing O(t2 − 4p);
• if t = 0, all complex quadratic orders O satisfying

O(−4p) ⊂ O and p � [Omax : O].

Furthermore, given such an order O, the number of Fp-isomorphism classes of
elliptic curves Ep over Fp satisfying

a(Ep) = t and End Fp
(Ep) = O

is equal to h(O).

Note that, since p ≥ 5, every Fp-isomorphism class contains an elliptic curve
of the form (2). By the theorem, the proof of Lemma 13 is reduced to showing
that whenever Er,s is of the form (2) with a(Er,s) = t and End Fp

(Er,s) = O, the
number of elliptic curves of the same form which are isomorphic over Fp to Er,s is
(p− 1)/|O∗|. Such elliptic curves are exactly those given by the equations

Eru4,su6 : y2 = x3 + ru4x+ su6, u ∈ (Z/pZ)∗.
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In the case where |O∗| = 2, neither r nor s can be equal to zero (see [23, Theorem
10.1, p. 103]). In this case, Eru4,su6 = Er(u′)4,s(u′)6 if and only if u = ±u′ and
we count exactly (p− 1)/2 distinct Eru4,su6 ’s. The case of |O∗| = 4 occurs exactly
when O = O(−4) = Z[i] is the ring of Gaussian integers, and this happens only if
s = 0. Since

O(t2 − 4p) ⊂ O(−4),

we see by relating the discriminants that t must be even and that p ≡ 1 mod 4.
Choosing ip ∈ (Z/pZ)∗ satisfying i2p = −1, we note that in this case Eru4,su6 =
Er(u′)4,s(u′)6 if and only if u/u′ ∈ {±ip,±1}, and so there are again exactly (p −
1)/|O∗| elliptic curves of the form (2) isomorphic over Fp to Er,s. The |O∗| = 6
case is quite similar, so we omit it. This finishes the proof of Lemma 13. �

Returning to the verification of (13), we see by the two lemmas and (12) that

|Ω∗(λ,M, T,D, f)| = p− 1∣∣∣O (
T 2−4D

f2

)∗∣∣∣h
(
O
(
T 2 − 4D

f2

))
.

Now we use a theorem which equates the counting of weighted Γ(1)-orbits of ma-
trices of a fixed trace and determinant (of negative discriminant) with the counting
of weighted ideal classes in the imaginary quadratic order of the same discriminant.
We denote by Q∗(∆) the set of primitive integral binary quadratic forms of dis-
criminant ∆ (for a definition, see [4]) and by Q∗

+(∆) the subset of positive definite
forms, both acted on by the classical Γ(1)-action

f ·
(
a b
c d

)
(x, y) = f(ax+ by, cx+ dy).

By Q∗(∆) //Γ(1) and Q∗
+(∆) //Γ(1) we denote the corresponding orbit spaces

under this action.

Theorem 15. Let T and D be integers and f a positive integer satisfying

T 2 − 4D < 0 and
T 2 − 4D

f2
∈ Z,

T 2 − 4D

f2
≡ 0 or 1 mod 4.

Then there are set bijections

T ∗(T,D, f) //Γ(1) ←→ Q∗
(
T 2 − 4D

f2

)
//Γ(1)

and

Q∗
+

(
T 2 − 4D

f2

)
//Γ(1) ←→ C

(
O
(
T 2 − 4D

f2

))
.

Proof. We first observe that whenever T ∗(T,D, f) �= ∅ (which is equivalent to the
second two given conditions), there are unique integers T ′, D′ and λ ∈ {0, 1, . . . , f−
1} such that

T ∗(T,D, f) = λI + fT ∗(T ′, D′, 1).

Since T 2 − 4D = f2((T ′)2 − 4D′), the first bijection in the theorem is induced by
the bijection

T ∗(T ′, D′, 1) ←→ Q∗ ((T ′)2 − 4D′)
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given by sending the matrix

(
a b
c d

)
to the form cx2+(d−a)xy−by2 and the form

αx2 + βxy + γy2 to the matrix

(
(T − β)/2 −γ

α (T − β)/2

)
. The second bijection is

classical (see e.g. [4, Theorem 7.7]). �

We observe that for any matrix α ∈ T ∗(T,D, f), we have

|Γ(1)α| =
∣∣∣∣O

(
T 2 − 4D

f2

)∗∣∣∣∣ ,
and the common value can be greater than 2 only when T 2−4D

f2 ∈ {−3,−4}, in
which case h

(
O
(

T 2−4D
f2

))
= 1. We conclude the following:

Corollary 16.

2∣∣∣O (
T 2−4D

f2

)∗∣∣∣h
(
O
(
T 2 − 4D

f2

))
=

∑
α∈(λI+M ·T ∗(T,D,f)) //Γ(1)

1

|Γ(1)α|
.

From the corollary, (13) follows and we have proved Proposition 9, from which
Theorem 8 follows.

4. The definition of a Serre curve

We now describe the subgroup HE mentioned in Definition 3, following the proof
of [20, Proposition 22]. Suppose that E is given by the equation

y2 = x3 + rx+ s = (x− e1)(x− e2)(x− e3).

Then {e1, e2, e3} is the set of x-coordinates of the nontrivial 2-torsion of E. The
discriminant ∆ of this model of E is given by

(14) ∆ = ((e1 − e2)(e1 − e3)(e2 − e3))
2.

Thus, one has

Q(
√
∆) ⊂ Q(E[2]).

Because of the action of AutE[2] � GL2(Z/2Z) on the ei’s, we have a group
isomorphism between GL2(Z/2Z) and the symmetric group on three letters:

GL2(Z/2Z) � S3.

By (14) we see that for any Galois automorphism τ ∈ Gal (Q(E[2])/Q) ⊂ S3,

(15) τ :
√
∆ �→ ε(τ )

√
∆,

where ε denotes the signature character on S3. If
√
∆ ∈ Q, then

Gal (Q(E[2])/Q) ⊂ A3 = the alternating group on 3 letters.

In this case, we define the Serre number M1 and the Serre subgroup HM1
by

M1 := 2 and HM1
:= A3 ⊂ GL2(Z/2Z).

Suppose now that Q(
√
∆) �= Q is a quadratic extension, which in particular is

abelian. Since each abelian extension of Q is contained in a cyclotomic extension,
one may choose a positive integer D so that

Q(
√
∆) ⊂ Q(ζD) ⊂ Q(E[D]),
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where as usual ζD denotes a primitive D-th root of unity and the second contain-
ment comes from the Weil pairing (see [23, III §8], for example).

Lemma 17. Let W be any square-free integer and define the positive integer DW

by

DW =

{
|W | if W ≡ 1 mod 4

4|W | otherwise.

Then we have

Q(
√
W ) ⊂ Q(ζD) ⇔ DW divides D.

Furthermore, for such a D and τ ∈ Gal (Q(E[D])/Q) ⊆ GL2(Z/DZ), we have

(16) τ :
√
W �→

(
W

det τ

)√
W.

Here we use the Kronecker symbol

(
W

·

)
.

Proof. These are standard results from algebraic number theory. The assertion (16)
follows from [22, Proposition 6.3, p. 135]. �

By the lemma we see that

(17) Q(
√
∆) ⊂ Q(ζD) ⇔ D∆sf

divides D,

where ∆sf = ∆sf (E) is the square-free part of the discriminant ∆ of E. For any
square-free integer W we define the Serre number

MW =

{
2|W | if W ≡ 1 mod 4

4|W | otherwise,

to be the least common multiple of 2 and DW . Thus, in particular, Q(E[M∆sf
])

is the compositum of Q(E[2]) and Q(E[D∆sf
]). We furthermore define the Serre

subgroup HMW
by

HMW
= ker

((
W

det(·)

)
ε(·)

)
⊂ GL2(Z/MWZ),

where here we have extended the definition of the signature character ε in the
natural way to any even level:

(18) ε : GL2(Z/2mZ) −→ GL2(Z/2Z) −→ {±1}.
Later in the paper we will casually refer to “ker ε”, hoping that in each instance its
domain will be clear from context.

By virtue of (15) and (16), we see that

Gal (Q(E[M∆sf
]/Q) ⊆ HM∆sf

.

In either case (
√
∆ ∈ Q or

√
∆ /∈ Q), the subgroup HE of GL2(Ẑ) referred to in

(5) is simply

HE = π−1
M∆sf

(HM∆sf
),

where πM∆sf
: GL2(Ẑ) −→ GL2(Z/M∆sf

Z) is the natural projection. HE is evi-

dently an index 2 subgroup of GL2(Ẑ) and

φE(GQ) ⊆ HE .
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An elliptic curve E is a Serre curve if φE(GQ) = HE . In other words, an elliptic
curve is a Serre curve exactly when, for every integer m, we have

[GL2(Z/mZ) : φm,E(GQ)] =

{
2 if M∆sf (E) | m
1 otherwise.

We will refer to HM∆sf (E)
⊂ GL2(Z/M∆sf (E)Z) (and by abuse of notation, also to

HE ⊂ GL2(Ẑ)) as the Serre subgroup associated to E.
Note that if

√
∆E ∈ Q, one may replace the field Q(

√
∆E) in the preceding

argument with the abelian extension Q(E[2]) and conclude that E is not a Serre
curve in this case.

5. A criterion for distinguishing Serre curves

If N is exceptional for E (see Definition 1), then so is any multiple of N .

Definition 18. We call a positive integer N minimal exceptional for E if it is
exceptional for E and none of its proper divisors are exceptional for E.

For example, if E is a Serre curve, then the Serre number M∆sf (E) (see Section
4) is a minimal exceptional number for E. Also, any exceptional prime p of E is
minimal exceptional.

The proof of Lemma 5 uses only the theory of the groups GL2(Z/NZ) (espe-
cially for N divisible by 2 and 3, complementing [19]) as well as a few facts about
cyclotomic fields. The arguments are similar to those given in Kani’s appendix to
[2]. Two separate issues arise: (1) which numbers N can actually occur as minimal
exceptional numbers for an elliptic curve and (2) the stability of the Serre number
M∆sf (E). We treat them in that order.

5.1. Lemmas from group theory. In this section we state and prove several
technical lemmas needed for the proof of Lemma 5. First, we will need

Lemma 19. The commutator subgroup (GL2(Z/p
nZ))′ of GL2(Z/p

nZ) is given by

(GL2(Z/p
nZ))′ =

{
SL2(Z/p

nZ) if p �= 2

ker(ε) ∩ SL2(Z/2
nZ) if p = 2

(see (18)). For p ≥ 5, the group SL2(Z/p
nZ) is equal to its own commutator:

(SL2(Z/p
nZ))′ = SL2(Z/p

nZ) (p ≥ 5).

Proof. First, since 〈(
1 1
0 1

)
,

(
1 0
1 1

)〉
= SL2(Z),

we see that for any x ∈ (Z/pnZ)∗,〈(
1 x
0 1

)
,

(
1 0
x 1

)〉
= SL2(Z/p

nZ).

Denoting by 2∗ any inverse of 2 modulo pn, we compute(
2 0
0 2∗

)(
1 1
0 1

)(
2∗ 0
0 2

)(
1 −1
0 1

)
≡

(
1 3
0 1

)
mod pn.

We see that (
1 3
0 1

)
∈ (SL2(Z/p

nZ))
′
,

Licensed to Univ of Illinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1560 NATHAN JONES

and similarly for

(
1 0
3 1

)
, which proves the last assertion in the lemma. If p = 3,

we compute

(19)

(
1 0
0 −1

)(
1 −1
0 1

)(
1 0
0 −1

)(
1 1
0 1

)
=

(
1 2
0 1

)
,

and similarly for

(
1 0
2 1

)
, which proves that

p ≥ 3 =⇒ (GL2(Z/p
nZ))

′
= SL2(Z/p

nZ).

Finally, if p = 2, the equation(
0 −1
1 0

)−1 (
1 1
0 1

)(
0 −1
1 0

)
=

(
1 0
−1 1

)
,

taken together with (19), implies that

(GL2(Z/2
nZ))

′ �
(
1 1
0 1

)
(GL2(Z/2

nZ))
′
= SL2(Z/2

nZ).

(Note that

(
1 1
0 1

)
/∈ (GL2(Z/2

nZ))
′
since ε

((
1 1
0 1

))
= −1). We are then

finished, since clearly

(GL2(Z/2
nZ))

′ ⊆ ker(ε) ∩ SL2(Z/2
nZ)

and the indices inside SL2(Z/2
nZ) match. �

We will also use

Lemma 20. If N1 and N2 are relatively prime positive integers, then the groups
GL2(Z/N1Z) and GL2(Z/N2Z) have no common simple nonabelian quotient, and
neither do the groups SL2(Z/N1Z) and SL2(Z/N2Z).

Proof. Any simple nonabelian quotient of a group occurs as a factor in its Jordan-
Hölder series. Whenever

1 → G1 → G → G2 → 1

is an exact sequence of abelian groups, we have

{ Jordan-Hölder factors of G } =
⋃

i=1,2

{ Jordan-Hölder factors of Gi }.

Applying this observation to the exact sequences

1 → GL2(Z/p
ni
i Z) → GL2(Z/NjZ) → GL2(Z/(Nj/(p

ni
i ))Z) → 1

(where j = 1, 2 and Nj =:
∏

i p
ni
i ),

1 → I + pn−1M2×2(Z/pZ) →GL2(Z/p
nZ) → GL2(Z/p

n−1Z) → 1,

1 → SL2(Z/pZ) →GL2(Z/pZ) → (Z/pZ)∗ → 1,

and

1 → {±I} → SL2(Z/pZ) → PSL2(Z/pZ) → 1,

and using the fact that

PSL2(Z/pZ) is

{
simple if p ≥ 5

solvable otherwise
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and that I + pn−1M2×2(Z/pZ) ⊂ GL2(Z/p
nZ) is an abelian subgroup (n ≥ 2), we

see that

{ simple nonabelian quotients of GL2(Z/NjZ) } ⊆ {PSL2(Z/pZ)}p|Nj ,p≥5

(and likewise with SL2(Z/NjZ)), finishing the proof. �

Finally, we will have need of

Lemma 21. Let N > 1 be any even integer which is divisible by some prime p > 3.
Write

N = N1 ·N2

where N1 > 1 is not divisible by any prime p > 3 and N2 > 1 is not divisible by
any prime p ≤ 3. Suppose that Ga ⊂ GL2(Z/NZ) is a subgroup such that

Ga ∩ SL2(Z/NZ) = (GL2(Z/NZ))′.

Finally, assume Gb ⊂ Ga is a subgroup for which the canonical maps

(20) Gb � GL2(Z/N1Z) and Gb � GL2(Z/N2Z)

as well as the determinant map

det : Gb � (Z/NZ)∗

are surjections. Then Gb = Ga.

Proof. By (20), we find by taking commutators that

G′
b � (GL2(Z/N1Z))

′ = ker(ε) ∩ SL2(Z/N1Z)

and

G′
b � (GL2(Z/N2Z))

′ = SL2(Z/N2Z)

are also surjections. We are now in a position to apply the Goursat Lemma:

Lemma 22. Let G1 and G2 be groups. Denote by πi : G1×G2 → Gi (i = 1, 2) the
projection map. Suppose that G ⊆ G1 ×G2 is a subgroup such that πi(G) = Gi for
i = 1, 2 and define

H1 = π1(G ∩ (G1 × {e2})) and H2 = π2(G ∩ ({e1} ×G2)).

Then,

G1/H1 � G2/H2

and the graph of this isomorphism is induced by G.

We apply the lemma with G1 = ker(ε) ∩ SL2(Z/N1Z), G2 = SL2(Z/N2Z), and
G = G′

b and conclude that ker(ε)∩ SL2(Z/N1Z) and SL2(Z/N2Z) have a common
quotient group Q. If Q is nontrivial, then it has a nontrivial simple quotient Qs.
By Lemma 20, Qs must be abelian. By Lemma 19, (SL2(Z/N2Z))

′ = SL2(Z/N2Z),
and so we must have Qs = 1. This shows that Q was trivial to begin with. We
conclude that G1 = H1 and G2 = H2, i.e. that

(GL2(Z/N1Z))
′ × {1} ⊂ G′

b and {1} × (GL2(Z/N2Z))
′ ⊂ G′

b,

which implies that

G′
b = (GL2(Z/NZ))′.

But now from the exact sequence

1 → (GL2(Z/NZ))′ → Ga → (Z/NZ)∗ → 1
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and
det : Gb � (Z/NZ)∗

we conclude that (GL2(Z/NZ))′Gb = Ga. So since (GL2(Z/NZ))′ ⊂ Gb, we have
Gb = Ga. �
5.2. Minimal exceptional numbers of elliptic curves. The following lemma
gives us a restriction on which positive integers N can occur as a minimal excep-
tional number of an elliptic curve. Throughout the remainder of the paper we will
sometimes use the abbreviation

GN := Gal (Q(E[N ])/Q),

suppressing the dependence on the elliptic curve E.

Lemma 23. Let E be an elliptic curve over Q. Suppose that N ∈ N is minimal
exceptional for E. Then,

N ∈ { prime numbers } ∪ {M∆sf (E)} ∪ {4, 8, 9}.
If 8 is a minimal exceptional number for E, then there exists a real primitive char-
acter δ : (Z/8Z)∗ → {±1} and

G8(E) = ker (ε · (δ ◦ det)) .

Proof. Let us assume that N is not prime. If N is exceptional for E, then we have

GN � GL2(Z/NZ).

If N is minimal exceptional, we have Gd = GL2(Z/dZ) for each proper divisor d
of N . Therefore the canonical map

(21) GN � GL2(Z/dZ)

is a surjection for each d dividing N . By the surjectivity of the Weil pairing, we
also see that the determinant map

(22) det : GN � (Z/NZ)∗

is surjective. We consider the question: for which composite numbers N does there
exist a proper subgroup GN of GL2(Z/NZ) satisfying conditions (21) and (22)?
We divide the investigation into cases according to whether N is a prime power or
not. We tackle the latter case first.

Case 1. N is not a prime power. Let p be the smallest prime divisor of N . Suppose
that pn || N (i.e. that pn | N and pn+1 � N) and write M := N/pn ( �= 1). By Galois
theory we must have

Q � Q(E[pn]) ∩Q(E[M ]).

Let F := Q(E[pn]) ∩Q(E[M ]) and H := Gal (F/Q). If H is not simple, replace it
by any nontrivial simple quotient, and replace F by the corresponding field. Since
H is a common simple quotient of the groups

Gal (Q(E[M ])/Q) = GL2(Z/MZ) and Gal (Q(E[pn])/Q) = GL2(Z/p
nZ),

we conclude by Lemma 20 that H is abelian. From this and Lemma 19 it follows
that

F ⊂ Q(ζM ).

If p > 2, then we must similarly have F ⊂ Q(ζpn). Since

(23) Q(ζM ) ∩Q(ζpn) = Q,
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we conclude that F = Q, contradicting the assumption that H is nontrivial. There-
fore we must have p = 2. But then using Lemma 19 we similarly conclude that

Q �= F ⊂ Q(
√

∆E , ζ2n) ∩Q(ζM ).

If n ≤ 1, then we must have F = Q(
√
∆E), and we see that N is a multiple of the

Serre number M∆sf (E). If n ≥ 2, then we reason as follows: since the Galois group

Gal(Q(
√
∆E , ζ2n)/Q) has order a power of two, F must be a quadratic field. By

(23), we conclude that if n = 2, then F must be one of the fields

Q(
√
∆E), Q(

√
−∆E),

and if n ≥ 3, then F must be one of the fields

Q(
√
∆E), Q(

√
−∆E), Q(

√
2∆E), Q(

√
−2∆E).

Thus in any case, by (17), N is a multiple of the Serre number of E, which implies
that N is the Serre number of E, since N is assumed to be minimal exceptional.
We have shown that the Serre number of E is the only possible minimal exceptional
number which is not a prime power.

Case 2. N = pn is a prime power. If p is odd, then we reason as follows. Suppose,
for the sake of contradiction, that

n ≥
{
2 if p ≥ 5

3 if p = 3.

Taking commutators of (21), we have a surjection

(Gpn(E))′ � SL2(Z/p
n−1Z) = (GL2(Z/p

n−1Z))′.

By [19, Lemma 3, p. IV-23] and [19, Exercise 1, p. IV-27], this implies that
(Gpn(E))′ = SL2(Z/p

nZ). But now since

SL2(Z/p
nZ) ⊂ Gpn(E)

we conclude by (22) that Gpn(E) = GL2(Z/p
nZ), contradicting the fact that pn is

exceptional. Thus, the only composite odd prime power which could possibly occur
as a minimal exceptional number is 9.

Suppose now that N = 2n (n ≥ 2) and consider the exact sequence

1 → K ∩G2n → G2n → GL2(Z/2
n−1Z) → 1,

where K = I + 2n−1M2×2(Z/2Z). First we show that if n ≥ 3, then

(24) I + 2n−1{A ∈ M2×2(Z/2Z) : trA = 0} ⊆ K ∩G2n .

This is seen by choosing any preimage(
1 2n−2

0 1

)
+ 2n−1A ∈ G2n

of the matrix

(
1 2n−2

0 1

)
∈ GL2(Z/2

n−1Z) and observing that, if n ≥ 3,

((
1 2n−2

0 1

)
+ 2n−1A

)2

≡
(
1 2n−1

0 1

)
mod 2n,
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which shows that the matrix I +2n−1

(
0 1
0 0

)
∈ K ∩G2n . Now let

(
a b
c d

)
be any

matrix in GL2(Z/2Z) and choose a matrix A ∈ G2n(E) with

A ≡
(
a b
c d

)
mod 2.

We then have

A

(
I + 2n−1

(
0 1
0 0

))
A−1 = I +

1

ad− bc
2n−1

(
−ac a2

−c2 ac

)
∈ K ∩G2n(E).

Letting the matrix

(
a b
c d

)
vary modulo 2, we see that (24) holds. From this we see

that G2n must be an index 2 subgroup of GL2(Z/2
nZ). Thus, there is a character

(25) χ : GL2(Z/2
nZ) → {±1} with G2n(E) = kerχ.

Lemma 19 says that either χ or ε ·χ restricted to SL2(Z/2
nZ) must be trivial. But

if χ is trivial on SL2(Z/2
nZ), then SL2(Z/2

nZ) ⊆ G2n , a contradiction. Thus we
must have

(26) χ = ε · (δ ◦ det),
where δ : (Z/2nZ)∗ → {±1} is a primitive character (or else 2n is not minimal

exceptional). Now pick X =

(
1 1
0 1

)
+ 2n−1A ∈ G2n . We have detX = 1 or

1 + 2n−1. One checks that for n ≥ 3,

1 + 2n−1 ≡ 52
n−3

mod 2n,

so for n > 3 we must have δ(detX) = 1, contradicting (25). Thus, the only
composite powers of 2 which could possibly occur as minimal exceptional numbers
are 4 and 8. This concludes the proof of Lemma 23. �

5.3. Stability of the Serre number M∆sf (E). We will now finish the proof of
Lemma 5 by showing that under the assumptions stated therein and for each posi-
tive integer N , we have

(27) GN (E) =

{
π−1
N,M∆sf

(HM∆sf
) if M∆sf

| N
GL2(Z/NZ) otherwise,

where πN,M∆sf
denotes the natural projection

GL2(Z/NZ) −→ GL2(Z/M∆sf
Z).

To see this, first suppose that M∆sf
� N . If GN (E) � GL2(Z/NZ), then E has

some minimal exceptional number d dividing N . Clearly d cannot be equal to the
Serre number M∆sf

, so again by Lemma 23 and the assumptions on E from Lemma
5 we arrive at a contradiction. Thus, if M∆sf

� N we have

GN (E) = GL2(Z/NZ).

Now suppose M∆sf
| N . We will apply Lemma 21 with Ga = π−1

N,M∆sf
(HM∆sf

)

and Gb = GN (E). To verify the hypotheses of the lemma, note that under the
assumptions stated in Lemma 5, we have that

(28) ∃ p > 3 which divides M∆sf (E).
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Thus we may write N = N1 ·N2 as in Lemma 21. The condition

π−1
N,M∆sf

(HM∆sf
) ∩ SL2(Z/NZ) = ker ε ∩ SL2(Z/NZ)

follows immediately from the definition of HM∆sf
. We next verify the surjectivity

conditions

(29) GN (E) � GL2(Z/N1Z) and GN (E) � GL2(Z/N2Z).

If the first map is not surjective, then E has some minimal exceptional number
d which divides N1. By Lemma 23, we conclude that d ∈ {2, 3, 4, 6, 8, 9, 12, 24},
contradicting the assumptions on E in Lemma 5. ThereforeGN (E) � GL2(Z/N1Z)
is surjective. Similarly, if GN (E) → GL2(Z/N2Z) is not surjective, then E has some
minimal exceptional d dividing N2. By Lemma 23, we must have that d is an odd
prime number greater than 3, again contradicting the assumptions of Lemma 5.
We have verified the conditions (29). Finally, the surjectivity of

det : GN � (Z/NZ)∗

follows from the surjectivity of the Weil pairing. By Lemma 21, we conclude that

GN (E) = π−1
N,M∆sf

(HM∆sf
),

and our proof of Lemma 5 is now complete.

6. Almost all elliptic curves are Serre curves

We now show how Lemma 5 and Theorem 2 together imply Theorem 4. For
N ∈ {4, 6, 8, 9, 12, 24} define

εN (X) :=

⎧⎪⎨
⎪⎩
{E ∈ C(X) : E is minimal exceptional at N} if N ∈ {4, 9}
{E ∈ C(X) : G8(E) = kerχ, for χ as in (26) } if N = 8

{E ∈ C(X) : GN (E) ⊆ HN} if N ∈ {6, 12, 24}.
By Lemmas 5 and 23, we have that the set of non-Serre curves satisfies

C(x)− CSerre(x) ⊆ ε(x) ∪

⎛
⎝ ⋃

N∈{4,6,8,9,12,24}
εN (x)

⎞
⎠ ,

where ε(x) is as in (3). Thus, to prove Theorem 4 it suffices to estimate the sets
εN (x).

Definition 24. Let W be any integer and let (t, d) ∈ (Z/WZ)2 be any pair of
integers modulo W with d ∈ (Z/WZ)∗. Suppose that G ⊆ GL2(Z/WZ) is any
subgroup. We say that G represents the pair (t, d) if there is a matrix g ∈ G
satisfying

tr (g) = t, det(g) = d.

The next two lemmas guarantee that when an elliptic curve fails to be a Serre
curve by being minimal exceptional at N , there must be some pair (t, d) not repre-
sented by GN (E).

Lemma 25. Let W > 1 be any even integer,

δ : (Z/WZ)∗ → {±1}
any nonprincipal real character and

G ⊆ ker(ε · (δ ◦ det)) ⊆ GL2(Z/WZ)
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1566 NATHAN JONES

any subgroup. Then there exists a pair of integers (t, d) ∈ Z/WZ× (Z/WZ)∗ which
is not represented by G.

Proof. Choose any f ∈ (Z/WZ)∗ satisfying

δ(f) = −1

and set (t, d) = (1, f). �

Lemma 26. Let p = 2 or 3 and suppose G ⊆ GL2(Z/p
2Z) is a subgroup which

represents every trace-determinant pair (t, d) ∈ (Z/p2Z) × (Z/p2Z)∗ and which
surjects onto GL2(Z/pZ). Then, G = GL2(Z/p

2Z).

Proof. We consider the intersection

G ∩K

of G with K, the kernel of the projection

GL2(Z/p
2Z) −→ GL2(Z/pZ).

Our goal is to show that G actually contains K. From here we divide the argument
into cases, according to whether p is 2 or 3.

Case p = 3. Under the given hypothesis, we may find a matrix g ∈ G with tr g = 3
and det g = 1. Such a matrix must have the form

X + 3Y, X ∈
{(

0 1
2 0

)
,

(
0 2
1 0

)
,

(
1 1
1 2

)
,

(
1 2
2 2

)
,

(
2 1
1 1

)
,

(
2 2
2 1

)}
,

with the (mod 3) coefficients of the matrix Y =

(
a b
c d

)
satisfying the conditions

a+ d = 1, b− c = 1 if X =

(
0 1
2 0

)

a+ d = 1, b− c = 2 if X =

(
0 2
1 0

)

a+ d = 0, a+ b+ c− d = 0 if X =

(
1 1
1 2

)

a+ d = 0, a− b− c− d = 2 if X =

(
1 2
2 2

)

a+ d = 0, a− b− c− d = 0 if X =

(
2 1
1 1

)

a+ d = 0, a+ b+ c− d = 1 if X =

(
2 2
2 1

)
.

In each case, the first equation comes from the trace condition on g and the second
one comes from the determinant condition. One computes that

(X + 3Y )4 ≡ I + 3X mod 9.

Since in this case the discriminant t2−4d = 5 is nonzero modulo 3 we see by Lemma
11 that all six of the matricesX, when reduced modulo 3, are GL2(Z/3Z)-conjugate
to one another. Proceeding as in the argument which showed (24) and using the
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1567

fact that the various X span the Z/3Z-vector space M2×2(Z/3Z), we conclude that

G ∩K = I + 3M2×2(Z/3Z).

Thus we have K ⊆ G, and so G = GL2(Z/9Z) in this case.

Case p = 2. The proof in this case is similar. Pick g ∈ G with tr g = 2 and
det g = −1. Then g must have the form

g = X + 2Y, X ∈
{(

0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)}
, Y =

(
a b
c d

)
,

where the (mod 2) coefficients of the matrix Y satisfy the conditions

a+ d = 1, b+ c = 0 if X =

(
0 1
1 0

)

a+ d = 0, a+ c+ d = 1 if X =

(
1 1
0 1

)

a+ d = 0, a+ b+ d = 1 if X =

(
1 0
1 1

)
.

(The possibility X = I + 2Y is eliminated since the conditions on the coefficients
of Y in that case read a+ d = 0, a+ d = 1.) One computes that

(X + 2Y )2 ≡ I + 2X mod 4.

After conjugating by preimages of elements of GL2(Z/2Z), one concludes that

G ∩K ⊇
{
I + 2 · span

{(
1 1
0 1

)
,

(
1 0
1 1

)}}
.

Proceeding in the same way with t = 0 and d = 1, one sees that in fact

G ∩K ⊇ {A ∈ M2×2(Z/2Z) : trA = 0}.
Now G is a subgroup of GL2(Z/4Z) of index ≤ 2. However, if G is indeed a
subgroup of index 2, we may apply Lemma 25 and arrive at a contradiction. This
concludes the proof in this case. �

Lemmas 25 and 26 imply the following corollary.

Corollary 27. For N ∈ {4, 6, 8, 9, 12, 24}, we have

εN (x) =
⋃

(t,d)∈(Z/NZ)×(Z/NZ)∗

εN,(t,d)(x),

where
εN,(t,d) := {E ∈ εN (x) : (t, d) is not represented by GN (E)}.

Lemma 28. For each N ∈ {4, 6, 8, 9, 12, 24}, we have

|εN (x)| � N8x|C(x)|max
d

π(x;N, d)−2,

with an absolute implied constant.

Proof. This lemma and its proof are analogous to [8, Lemma 5], the statement
of which contains a typo: the “� X6π(X;N, d)−2” should be replaced by “�
N4X6 maxd π(X;N, d)−2”. Theorem 2 implies that(

|GL2(Z/NZ)t,d|ϕ(N)

|GL2(Z/NZ)|

)2

π(x;N, d)2|εN,(t,d)(x)| � |GL2(Z/NZ)t,d|2x|C(x)|,
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1568 NATHAN JONES

where GL2(Z/NZ)t,d := {g ∈ GL2(Z/NZ) : tr g = t, det g = d}. Summing over
(t, d) proves the lemma. �

By the prime number theorem in arithmetic progressions, we see that Lemma
28, together with (6), implies Theorem 4. We note that because the N in Lemma
28 belongs to a finite set, there is no need here to use the Siegel-Walfisz theorem,
as was necessary in [8]. However, since Theorem 4 depends on [8, Theorem 1],
which does use the Siegel-Walfisz theorem, the constant implied by the � symbol
in Theorem 4 is ineffective.

7. N = 4 occurs as a minimal exceptional number

If N = 4 or 9, the argument given in Section 5.2 is invalid since we may not
conclude that (24) holds. In fact, there is a subgroup H ⊂ GL2(Z/4Z) of index
four which satisfies conditions (21) and (22). We now describe H and demonstrate
an infinite family of non-isomorphic elliptic curves E for which G4(E) = H. Elkies
[10] has recently exhibited similar examples for N = 9.

First, we give a geometric description of H: Let L be a complex lattice and let
L[4] denote the 4-torsion of C/L. By choosing a basis, we may identify L[4] with
(Z/4Z)2. Define

L[4]∗ := {x ∈ L[4]− L[2]}
and let l1, l2 . . . , l6 denote the lines through the origin in L[4]∗. More precisely,
define the equivalence relation on L[4]∗ by declaring u ∼ u′ exactly if u′ = λu
for some λ ∈ (Z/4Z)∗ = {±1}, and denote the resulting equivalence classes by
l1, l2 . . . , l6. Since the Weierstrass ℘-function is even, the association li = [u] �→ ℘(u)
identifies P1

Z(Z/4Z) := {l1, l2, . . . , l6} with

E[4]∗x := {x(P ) : P ∈ E[4]− E[2]},
the set of x-coordinates of the set of 4-torsion points of E = EL, the elliptic curve
associated to the lattice L, which are not 2-torsion points. This identification allows
one to view the Galois group of Q(E[4]x) over Q as a subgroup of PGL2(Z/4Z).

We may extend the natural action of PGL2(Z/4Z) on P1
Z(Z/4Z) to obtain a

PGL2(Z/4Z) action on the set

S := {{{li1 , li2 , li3}, {li4 , li5 , li6}} : all ij ∈ {1, 2, . . . , 6} are distinct}.
This action is not transitive. The size 10 set S decomposes into two orbits S1 and
S2 of sizes 4 and 6, respectively. To describe these sets, we will define an “addition
relation” on P1

Z(Z/4Z). If l1, l2, and l3 are lines in P1
Z(Z/4Z), we say that

l1 + l2 = l3

exactly when, for some choice of representatives ui ∈ li, we have

u1 + u2 = u3.

(Note: This is a relation, not a well-defined operation. For example, [(1, 0)] +
[(0, 1)] = [(1, 1)] and [(1,−1)].) Then the two orbits are defined by

S1 := {{{li1 , li2 , li3}, {li4 , li5 , li6}} ∈ S : li1 + li2 = li3}
and S2 = S−S1. Fixing any element r ∈ S1, we define Hx = Hx(r) ⊂ PGL2(Z/4Z)
to be the stabilizer of r. Finally, we define H = H(r) to be the preimage of Hx

under the natural projection GL2(Z/4Z) → PGL2(Z/4Z).
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To find elliptic curves E with G4(E) = H, we reason as follows: let x1, x2, . . . ,
x6 be the elements of E[4]∗x. If E is given in the form

E : y2 = 4x3 − g2x− g3,

then the minimal polynomial for x1, x2, . . . , x6 is given by

fE(t) = t6 − 5g2
4

t4 − 5g3t
3 − 5g22

16
t2 − g2g3

4
t+

g32 − 32g23
64

.

The set S1 defined above corresponds to the set of numbers

X1 := {(xi1 + xi2 + xi3)(xi4 + xi5 + xi6) : (xi1 , yi1)⊕ (xi2 , yi2) = (xi3 , yi3)},
where ⊕ refers to the addition law on E. X1 is a set of four complex numbers which
satisfy the (generically irreducible) polynomial

f1,E(t) = t4 + 3g2t
3 +

27g22
8

t2 + (
−37g32
16

+ 108g23)t+
81g42
256

.

We note that G4(E) ⊆ some H(r) whenever f1,E(t) has a linear factor over Q. Let
s ∈ Q and denote by Es the elliptic curve given by the equation

y2 := 4x3 +
16s2 + 56s+ 81

3s
x+

(16s2 + 56s+ 81)2(−1 + 4s)

864s2
.

It may be checked that for each s, f1,Es
(t) is divisible by t + 27 + 56

3 s + 16
3 s2 and

that
Gal(Q(s)(Es[4])/Q(s)) � H.

The discriminant is computed to be

∆(Es) = − (16s2 + 56s+ 81)3(4s+ 3)4

27648s4
,

and the j-invariant is

j(Es) =
1769472s

(4s+ 3)4
.

In particular, if we apply the Hilbert irreducibility criterion, we see that there are
infinitely many non-isomorphic curves Es over Q, each with Galois group G4 � H.
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