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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES

NATHAN JONES

ABSTRACT. Using a multidimensional large sieve inequality, we obtain a bound
for the mean-square error in the Chebotarev theorem for division fields of
elliptic curves that is as strong as what is implied by the Generalized Riemann
Hypothesis. As an application we prove that, according to height, almost all
elliptic curves are Serre curves, where a Serre curve is an elliptic curve whose
torsion subgroup, roughly speaking, has as much Galois symmetry as possible.

1. INTRODUCTION

Let E be an elliptic curve defined over Q and denote by
onE :Gg — Aut(E[N])
the representation of Gg := Gal (Q/Q) on the N-torsion E[N] of E. Fixing a
Z/NZ-basis of E[N], we identify Aut(E[N]) with GLy(Z/NZ) and write
onE: Gg = GLo(Z/NZ).
The image ¢n r(Gq) is exactly the Galois group of the Nth division field of E over
Q, i.e. the field obtained by adjoining to Q the x and y coordinates of the N-torsion
of a given Weierstrass model of E, which we will denote by Q(E[N]). Taking the

inverse limit over all NV > 1 with the bases chosen compatibly, we obtain the full
torsion representation

ér : Go — GLy(Z) == lim GL»(Z/NZ).

It is natural to wonder how large the image of ¢p in GL, (Z) is.

Definition 1. The integer N is said to be exceptional for E if ¢n g is not
surjective.

To wonder about the size of the image of ¢p in GLQ(Z) is simply to wonder
about which numbers N are exceptional for F, and about “how exceptional each
N is”, i.e. about the index [GL2(Z/NZ) : ¢n,5(Gg)]-

When E has complex multiplication, Q(E[N]) is always an abelian extension of
the CM field (Kronecker’s “Jugendtraum”; see [24] Theorem 2.3, p. 108]), from
which it follows that every N except possibly N = 2 is exceptional, so that the
image ¢p(Gg) has infinite index in GLy(Z). On the other hand, when E does
not have CM, Serre [20] has shown that the index [GLy(Z) : ¢r(Gg)] is finite.
Equivalently, there exists an integer mg so that

(1) ¢5(Go) = 1 (¢my,(Go)),
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1548 NATHAN JONES

where 7 : GLy(Z) — GLy(Z/mpZ) is the natural projection. In particular, this
implies that any fixed non-CM elliptic curve F has only finitely many exceptional
primes, since any such exceptional prime must divide mg. One might wonder
how the integer mp (chosen minimally so that () still holds) depends on the
curve E. Various results exist which bound the largest possible exceptional prime
for E. For example, Mazur [I7] proves that if F is semistable, then no prime
N > 11 can be exceptional for E. Other authors have bounded the largest possible
exceptional prime in terms of invariants of the elliptic curve, such as the height [16]
and conductor ([21], [I5], and [2]).

Results also exist which count the number of elliptic curves with no exceptional
primes. Let E, s denote the plane curve given by the equation

(2) E.o:y?=a2%+re+s.
For a varying parameter z let R(z) and S(z) be a given length and width (under-
stood to grow with x) and define

C(x) :={E,s: (r,s) € Z* |r| < R(z),|s| < S(x) and 4r® + 27s% # 0}.

Duke [§] takes R(x) = 2% and S(z) = z® (which are the choices defining naive
height) and shows that if e(x) is the set of E,; € C(x) which have at least one
exceptional prime, then

o @y =]
® A1) = |

where E,, ~ E. o if the two models are isomorphic over Q. Using a two-
dimensional large sieve inequality, he shows that

207

le(2)/ = | < a*log” z,
with an absolute (but ineffective) constant. Since

T 3
C@)/ = | = 757" +0(")
(see [I]), this implies [@B]). Cojocaru and Hall [3] prove a similar result for elliptic
curves in one-parameter families.
In [12], Grant obtains an asymptotic formula for |e(z)/ ~ |. He shows that the
curves which are exceptional at the primes 2 and 3 contribute the main term of
le(x)/ ~ | and that, for an explicit constant C,

le(z)/ ~ | = Cz® + O (2*7°)

for all € > 0.

This paper gives a different generalization. The statement that an elliptic curve
F has no exceptional primes may be viewed as saying that the Galois representation
¢p has “large image”. In this paper we extend (@) to a result that almost all elliptic
curves have ¢g(Gg) “as large as possible”.

2. STATEMENT OF RESULTS

Our main result is a theorem bounding the mean-square error in the Chebotarev
theorem for division fields of elliptic curves. Fix a positive integer level N and a
subset

A C GL2(Z/NZ)
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1549

which is closed under conjugation by GLo(Z/NZ) and represents only one deter-
minant value, i.e. which satisfies

(4) Vg € GLy(Z/NZ), gAg ' =A and Va,b€ A, deta=detb
(for instance, we could take A to be a conjugacy class). Denote by
mg(z; N, A) = [{p < 2 : ¢n g(Frob,) C A}

the function which counts the number of primes up to x which are unramified in
Q(FE[N]) and whose Frobenius class is contained in A, and as usual let

m(x;N,d):={p<z:p=d mod N}|
Theorem 2. For x > 1 and min{R(z), S(z)} > 2%, one has

1 vy - AR 0N
C(x”Eezc:(x)( e(z; N, A) (GLo(Z/NZ)| (,N,d)) < | A,

where d := det A, ¢(N) denotes the Euler-phi function, and the implied constant
is absolute.

In [8], Duke proves this (without the |A|? factor) for prime level N and where
A has the specific form

A=GLy(Z/NZ)q = {A € GLy(Z/NZ) : tr A =t, det A = d}.

Such sets are unions of conjugacy classes. For example, even when N is prime, the
set GLa(Z/N7Z)sy x> contains two conjugacy classes, represented by the matrices

A0 Al
(0 3) = (5 3)
respectively. Theorem [2] distinguishes between these two cases.

Our second result is an application of Theorem [2] to the problem of counting
elliptic curves E for which ¢r(Gq) is as large as possible. First of all, how large
can this image be? Does there exist an elliptic curve F with ¢p surjective? In
other words, is there a curve E with mg = 1?7 Serre [20] answers no. For each
elliptic curve E over Q, there is an index two subgroup Hg C G Lo (Z) (for a precise
definition, see Section H)) such that

(5) ¢r(Go) C He.
Definition 3. We call an elliptic curve E a Serre curve when equality holds in
@D.
Our second theorem is
Theorem 4. Let Cgerre(x) denote the set
{E,s € C(z): E,, is a Serre curve }.
Assuming that min{R(z), S(z)} > x°, one has

1 B
10(2) — Cserre()] < W%7

where B is an explicit constant. Thus, in particular,

lim |CSerrc(x) |

=1.
z=oo |C(z)]
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1550 NATHAN JONES

In order to obtain this result that “almost all elliptic curves are Serre curves”,
we prove an algebraic lemma which gives a sufficient condition for an elliptic curve
FE to be a Serre curve.

Lemma 5. Suppose E over Q is an elliptic curve such that:

1. E has no exceptional primes; and
2. E is not exceptional at 72.

Then, E is a Serre curve.

This lemma is used together with Theorem 2] to give Theorem @l In [14], we use
Theorem El to compute the average value over elliptic curves of the Lang-Trotter
constants, answering a question of David and Pappalardi [6].

We remark that there are differences between authors as to how to count “elliptic
curves over Q”. Some authors count isomorphism classes of elliptic curves over Q,
while others count models E,. ;. We choose to count models, but in our results the
distinction is only technical: the statements of Theorem 2] and Theorem [ are seen
without difficulty to hold if one replaces “C(z)” with “C(z)/ ~”, and vice versa
with the results we have quoted. In particular the work of [8] shows also that

B
(6) min{R(z),S(z)} > 2> = |e(2)| < %.

It is interesting to consider what the situation might look like for elliptic curves
over a general number field K, as well as to refine the upper bound of Theorem
M to an asymptotic in the style of Grant. The study of these problems is recent
doctoral work in progress by D. Zywina and V. Radhakrishnan, respectively.

The paper is organized as follows. In Section Bl we prove Theorem 2l Section Hl
gives the complete definition of a Serre curve, and Section [l is devoted to a proof
of Lemma/[Bl Finally in Section [l we prove Theorem [ and in Section [[] we produce
an example of a one-parameter family of elliptic curves which are exceptional at
N =4 but not at N = 2.

3. BOUNDING MEAN-SQUARE CHEBOTAREV ERROR

In this section we prove Theorem 2l We first remark that although the result
gives a bound as strong as the appropriate Generalized Riemann Hypothesis would,
its proof is unconditional. It employs the following large sieve inequality of Gal-
lagher [11l Lemma A] and proceeds along the same lines as the proof of [8, Theorem
2].

Lemma 6. Let k be a positive integer and for each prime number p let Q(p) C
(Z/pZ)¥ be any subset. For each fived m € Z* we define
P(xym)=[{p<z:m modpe Qp)}|

and

Pz) = Y [Qp)lp".

p<z
Let B be a boz in R* whose sides are parallel to the coordinate planes and which
has minimum width W (B) and volume V (B). If W(B) > z2, then
> (P(x;m) — P(x))* < V(B)P(),
meBNZF
where the implied constant depends only on k.

Licensed to Univ of lllinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1551
We recall the setting of Theorem [ for a pair of integers (r,s) let E,. s be the
curve defined by (). Let N be a positive integer and fix a subset
A C GL2(Z/NZ)

satisfying (). We will proceed to define the set Q(p) = Q4(p) in such a way that
P(x;(r,s)) and P(x) will satisfy

(7) P(x;(r,s)) = mg, . (z; N, A) + O(1)
and
My 12

respectively, where the implied constants are absolute. Applying Lemma [6 and
observing that (A + B)? < A% + B2, we conclude the result of Theorem

3.1. Defining the set Q4(p) C (Z/pZ)?. We begin by quoting a result of Duke
and Téth [9] which describes explicitly the conjugacy class in Gal (Q(E[N])/Q) of
the Frobenius automorphism at a prime p which is unramified in Q(E[N]). The
description is given purely in terms of data attached to F,, the reduction of E
modulo p.

In our context, their result may be stated as follows: let IF, denote the finite
field of p elements and E, any elliptic curve defined over F,. Let

a=a(Ey) :=p+1—|E(F,)
be the trace of the Frobenius endomorphism ¢, of E, and b = b(E,) the index
in the ring of Fp-endomorphisms of E, of the subring generated by the Frobenius
endomorphism, i.e.
b= [Endr, (Ep) : Z[op]]-
In any case (including the supersingular case), the ring End g, (E),) is isomorphic

to an imaginary quadratic order (see [25, Theorem 4.2]), whose discriminant we
denote by A = A(E),). The comparison of discriminants yields

(9) AV = a? — 4p.

We associate to £, the following matrix of trace a and determinant p:

_ ((a+bd)/2 b
(10) o(Bp) = (b(A —6)/4 (a— bé)/2) ’

where for a discriminant A we have 6 = 0 or 1 according to whether A =0 or 1
mod 4. Note that, because of ([@), o has integer entries.

Theorem 7. Let E be an elliptic curve over Q and let N be any positive integer. If
p is a prime of good reduction for E which does not divide N, then p is unramified
in Q(E[N]). Furthermore, denoting by E,, the reduction of E modulo p, the integral
matriz o(E,) defined in ([I0), when reduced modulo N, represents the class of the
Frobenius automorphism at p in Gal (Q(E[N])/Q).

Now suppose p > 3 is a prime number. For (r,s) € ]FI%7 let E, s denote the
curve over F, given by equation @) and A, s = —16(4r3 + 27s?) its associated
discriminant. We define Q4(p) = 0 if p | 6N, and for p{ 6N,

Qulp) :={(r,s) € IFZQ) :A,s#0and 0(E,s) mod N € A}
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1552 NATHAN JONES
Observe that for (r,s) € Z?2, the discriminant A, 4 of an elliptic curve E, 5 over
Q is related to its minimal discriminant A by
A= e2A
for some e dividing 6. Thus, Theorem [1l implies that ([7) holds. We now turn to
verifying (&).

3.2. The asymptotic in p of |Q4(p)|. The goal of this section is to give the
asymptotic of |Q24(p)| as p ranges through the set of prime numbers for which
Q4(p) # 0. Our proof will show that, in fact,

Qalp) #0 < p=det. A mod N.

Theorem 8. For p prime congruent to det A modulo N we have

_ |AleN) 9
14(p)| = Wp +O(\A|p3/ )s

where the implied constant is absolute.

We observe that () follows from this asymptotic. Thus, Theorem [ will follow
from Theorem [ together with Lemma

In order to prove Theorem Bl we first express |Q4(p)| in terms of a weighted
class number. Define the set

Talp) :={A € May2(Z): det A=p, A mod N € A}
and the subset of elliptic matrices
T5(p) :={A € Talp): (trA)* —4det A < 0}.

Since A is stable by SLs(Z/NZ)-conjugation, both of the above sets are stable by
S Lo (Z)-conjugation.
Note: Throughout the rest of this paper we will use the standard notation

(1) := SLy(Z).
The following two auxiliary results will imply Theorem [’

Proposition 9.

p—1 1
Q24(p)| = —— > :
2 ) IT(1)al
a€TK(p) //T(1)

where T4(p) //T(1) is the set of I'(1)-conjugation orbits in T§(p) and
F(Da ={y€l'(1): ya=ay}
Lemma 10. If p =det A mod N, then

> = p+ O(JA]p'/?),
I'(1)a| [SLy(Z/NZ
actiyra Tl [SL2(Z/NZ)]

with an absolute constant.

Proof of Lemma [IQ. This is [13], Corollary 5]. O
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1553

The remainder of this section is devoted to proving Proposition First, by
writing A as a disjoint union of GLo(Z/NZ)-conjugacy classes,

n
A=| A,
i=1

and observing that
7 7
Qa(p) = |Qu(p) and  Ti) = | |74 0),
i=1 i=1
we may (and will henceforth) assume that A is a GL2(Z/NZ)-conjugacy class.
Note that
Qa(p) ={(r.s) € (Z/pZ)2 i Aps #0 and o(Ers) € T4(p)}-

At this point we must give a finer description of the conjugacy class A. For any
divisor M of N and integers T', D modulo N/M, define

T (T, D) = {A € Mauo(Z/(N/M)Z) : (tr A,det A) = (T,D) mod N/M}
and
’TJ\"}/M(T, D) ={A € Ty/mu(T,D): Ais non-scalar mod each prime | | N/M}.

The following lemma describes the structure of conjugacy classes in the group
GL2(Z/NZ).

Lemma 11. Any conjugacy class
A C GLy(Z/NZ)
has the form
(11) A=+ MTy, (T, D),
where M divides N and X is an integer satisfying 0 < A < M.

Proof of Lemma [l Since the set AI + MTA*,/M(T, D) is stable by GLy(Z/NZ)-
conjugation, it suffices to show that for any matrix A € Ty ), (T, D), we can find
B € GLy(Z/(N/M)Z) with

BAB™! = (0 __D>.

1 T

To this end, let v = (;) € (Z/(N/M)Z)? be a variable vector and notice that the
linear transformation L4 on (Z/(N/M)Z)? given by left multiplication by A has

the form .
0 -D
[Lalfo, a0y = <1 T )

when written with respect to the ordered basis {v, Av} of (Z/(N/M)Z)?. This
verifies the claim, provided that we can find a vector v so that the change of basis

matrix
[z ar+by _fa b
B_<y chrdy) (A_<c d))
belongs to GLo(Z/(N/M)Z), i.e. so that
det B = ca® 4 (d — a)xy — by* € (Z/(N/M)Z)*.
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1554 NATHAN JONES

By the Chinese Remainder Theorem and the fact that A is non-scalar modulo each
prime [ dividing N/M, we may take
(1,0) ifitec
(z,y) =4 (0,1) ififd
(1,1) ifl|bandl]|ec,
which finishes the proof of Lemma [Tl O

Let us henceforth assume that our conjugacy class A is of the form (II). We
would like to partition 7§(p) into subsets which are stable by I'(1)-conjugation.
Let T*(T, D, f) denote the set

{A: <”C‘ Z) € Mas(Z): trA=T,det A= D, ged(b,d — a,c) :f}.

We note then that the trace ¢t and determinant d of any matrix in the set A\I + M -
T*(T, D, ) satisty

(12) t=2X\+MT, d=X+ M+ M?D, and t*—4d=M?*(T*-4D).
Thus, from Lemma [[I] we see that
Tip) = || L] O +M-THT,D, ),

TP cailiimn=1
where (T, D) runs over integer pairs satisfying

(T,D)=(T,D) mod N/M, p=X>+ MAT + M?D, and (2\+ MT)? < 4p.
Defining Q*(\, M, T, D, f) by

{(r,s) € (Z/pZ)?* : Ars#0and o(E,s) € X[+ M -T*(T, D, f)},

Proposition [@ is reduced to showing that

(13) Q"M T,D, f)| = p%l >

a€(M+M-T*(T,D,f))//T(1)
Lemma 12. We have that Q*(A\, M, T, D, f) is equal to
{(r,s) € (Z/pZ)?: Ary #0, b(E, ) =Mf and a(E,,) =2\+ MT}.

INOME

Proof. The containment “Q*(\,M,T, D, f) C ...” is immediate from (I0) and
([@2). The reverse containment comes from the fact that, for fixed ¢ and p, the two
equations

t=2 4+ MT and p=\+ MNT + M?*D
have a unique solution (A, T,D) € {0,1,...,M — 1} x Z?, if they have one at
all. This fact is immediate when M is odd. If M is even, we see from the first
equation that the only way two distinct solutions can exist is if one solution looks
like (A\,T,D) with A € {0,1,...,M/2 — 1} and the other solution has the form
(A+ M/2,T —1,D’) for some integer D’. But then the second equation gives us

the contradiction that
M2
M4EMAT —p=0 mod M?> and N +MNT —p= T(l_QT) mod M?2.

O
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1555

We now summarize some fundamental facts about imaginary quadratic orders.
More details may be found, for example, in [4, §7]. An imaginary quadratic or-
der O is a subring (containing 1) of an imaginary quadratic field K which contains
a basis of K over Q and has rank 2 as a free abelian group. For each negative
integer A satisfying

A=0or1l mod 4,
there is a unique imaginary quadratic order of discriminant A, which we will denote
by O(A). Orders O(A’) which contain a given order O(A) are exactly those orders
whose discriminant A’ satisfies

A=A, =0 0)
Every imaginary quadratic order O is contained in a unique maximal imaginary
quadratic order,
(@) - Omax = OK C K;
which is the ring of integers of K. The ideal class group C(O) is the group of
invertible fractional ideals of O modulo the subgroup of principal fractional ideals.
This is a finite group whose size we denote by h(O).

Lemma 13. Suppose p > 5 is prime and t is any integer satisfying t> < 4p. Let
O be any imaginary quadratic order containing the order of discriminant t? — 4p.
The number of elliptic curves E, s over Fy, of the form @) which satisfy

a(Ers)=t and FEndg,(E.s) =0

is given by .
p—
——h(0),
|O*| ©)

where O is the group of units of O.

Proof. The following theorem restates [25, Theorems 4.2 and 4.5], specialized to
our situation. See also [I8], which corrects a small error in the proof. The original
work is due to Deuring [7].

Theorem 14. Let t be any integer satisfying t2 < 4p. Then the following are
precisely the rings which occur as rings of Fp,-endomorphisms of some elliptic curve
E, over F, satisfying a(E,) = t:
o ift #0, all complex quadratic orders containing O(t*> — 4p);
e ift =0, all complex quadratic orders O satisfying
O(—4p) O  and pt[Omax: O).
Furthermore, given such an order O, the number of F,-isomorphism classes of
elliptic curves F, over I, satisfying
a(Ep) =t and Endp,(E,) =0
is equal to h(O).
Note that, since p > 5, every [Fp-isomorphism class contains an elliptic curve
of the form (). By the theorem, the proof of Lemma [[3 is reduced to showing
that whenever E,. is of the form () with a(E, ) =t and End,(E, ;) = O, the

number of elliptic curves of the same form which are isomorphic over F,, to E, , is
(p —1)/|O*|. Such elliptic curves are exactly those given by the equations

Bt gus : Y2 =2 +rute + su®, we (Z/pZ)*.
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1556 NATHAN JONES

In the case where |O*| = 2, neither r nor s can be equal to zero (see [23, Theorem
10.1, p. 103]). In this case, E,ys sus = Epuys suys if and only if u = v’ and
we count exactly (p — 1)/2 distinct E, 4 g,6’s. The case of |O*| = 4 occurs exactly
when O = O(—4) = Z[i] is the ring of Gaussian integers, and this happens only if
s = 0. Since
O(t? — 4p) C O(—4),

we see by relating the discriminants that ¢ must be even and that p = 1 mod 4.
Choosing i, € (Z/pZ)* satisfying if, = —1, we note that in this case E,,1 ou6 =
E,(uys sy if and only if u/u" € {£ip,, £1}, and so there are again exactly (p —
1)/|0*| elliptic curves of the form (2)) isomorphic over F,, to E,.,. The |O*| =6
case is quite similar, so we omit it. This finishes the proof of Lemma [I3] O

Returning to the verification of (I3), we see by the two lemmas and (2] that

. 1 T2—4D>>
(LT D, f) ‘O(Wf#)*‘h(O(fQ |

Now we use a theorem which equates the counting of weighted I'(1)-orbits of ma-
trices of a fixed trace and determinant (of negative discriminant) with the counting
of weighted ideal classes in the imaginary quadratic order of the same discriminant.
We denote by Q*(A) the set of primitive integral binary quadratic forms of dis-
criminant A (for a definition, see [4]) and by Q% (A) the subset of positive definite
forms, both acted on by the classical I'(1)-action

£ (8 0) o) = fla+ by -+ dy),

By Q*(A)//T(1) and Q% (A)//T'(1) we denote the corresponding orbit spaces
under this action.

Theorem 15. Let T and D be integers and f a positive integer satisfying

T2—4DEZ T? — 4D

2
T —4D <0 and f2 5 T

=0orl mod 4.

Then there are set bijections
T? — 4D
f2

@ (F52) 10 e (o(752)).

Proof. We first observe that whenever 7*(T, D, f) # @ (which is equivalent to the
second two given conditions), there are unique integers 77, D" and A € {0,1,..., f—
1} such that

THT.D. ) //T() < Q° ( ) /1)

and

T*(I.D, f) = X[ + fT*(T", D', 1).

Since T? — 4D = f2((T")? — 4D’), the first bijection in the theorem is induced by
the bijection

TH(T', D', 1) «— Q* ((I")> — 4D")
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ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES 1557

given by sending the matrix <Z Z) to the form cz? + (d —a)zy — by? and the form

. ((T—p)/2 — .
ax? + By + yy? to the matri (( . The second bijection is
By +y X o (T — B)/2 ]
classical (see e.g. [, Theorem 7.7]). O
We observe that for any matrix a € T*(T, D, f), we have
T? —4D\"
rwal=|o (Z52) .

and the common value can be greater than 2 only when Tzf_—;lD € {-3,—4}, in

which case h ((’) (szf—;w)) = 1. We conclude the following:

Corollary 16.

2 T2 — 4D ) 1
r2-4p " ( ( f? >) T (1)al
O = a€(M+M-T*(T,D,f))// (1)

From the corollary, (I3]) follows and we have proved Proposition [@ from which
Theorem [{ follows.
4. THE DEFINITION OF A SERRE CURVE

We now describe the subgroup Hg mentioned in Definition[3] following the proof
of [20, Proposition 22]. Suppose that F is given by the equation

v =2 treds=(z—e)(r—er)(x —e3).

Then {e1,ez2,e3} is the set of z-coordinates of the nontrivial 2-torsion of E. The
discriminant A of this model of F is given by

(14) A = ((ey —ez)(e1 —e3)(ez — e3))?.
Thus, one has
Q(VA) C Q(E[2]).

Because of the action of Aut E[2] ~ GL2(Z/27) on the e;’s, we have a group
isomorphism between GL2(Z/27) and the symmetric group on three letters:

GLy(Z/2Z) ~ Ss.
By (@) we see that for any Galois automorphism 7 € Gal (Q(E[2])/Q) C Ss,
(15) VA = e(T)VA,
where e denotes the signature character on Ss. If VA € Q, then
Gal (Q(F[2])/Q) C A3 = the alternating group on 3 letters.
In this case, we define the Serre number A/; and the Serre subgroup H,;, by
My :=2 and Hy, :=As C GLy(Z/27).

Suppose now that Q(vA) # Q is a quadratic extension, which in particular is
abelian. Since each abelian extension of QQ is contained in a cyclotomic extension,
one may choose a positive integer D so that

Q(VA) C Q(¢p) € Q(E[D]),
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1558 NATHAN JONES

where as usual (p denotes a primitive D-th root of unity and the second contain-
ment comes from the Weil pairing (see [23], IIT §8], for example).
Lemma 17. Let W be any square-free integer and define the positive integer Dy,
by

L4 fW=1 mod 4

C4W|  otherwise.
Then we have

Q(vVW) C Q(¢{p) & Dw divides D.

Furthermore, for such a D and T € Gal (Q(E[D])/Q) C GL2(Z/DZ), we have

(16) T:W%W)\/W

det T

w
Here we use the Kronecker symbol (—)

Proof. These are standard results from algebraic number theory. The assertion ([IG])
follows from [22, Proposition 6.3, p. 135]. O

By the lemma we see that
(17) Q(VA) € Q(¢p) & Da,, divides D,
where Ayp = Agp(E) is the square-free part of the discriminant A of E. For any

square-free integer W we define the Serre number

{2|W if W=1 mod4

4W|  otherwise,

to be the least common multiple of 2 and Dy,. Thus, in particular, Q(E[Ma,])
is the compositum of Q(£[2]) and Q(E[Da,,]). We furthermore define the Serre
subgroup H), by

Hap,, = ker (<detw(_)) 5(-)) C GLo(Z/MwZ),

where here we have extended the definition of the signature character € in the
natural way to any even level:

(18) e: GLy(Z/2mZ) — GLy(Z/27) — {£1}.

Later in the paper we will casually refer to “ker e”, hoping that in each instance its

domain will be clear from context.

By virtue of (3] and (I€]), we see that
Gal (Q(E[Ma,,]/Q) € Huy,, -

In either case (VA € Q or vA ¢ Q), the subgroup Hg of GLy(Z) referred to in
@) is simply

HE = ’ﬂ'IT/[lASf (HMAsf ),
where TMa,, : GLQ(Z) — GLy(Z/Mn,,Z) is the natural projection. Hp is evi-
dently an index 2 subgroup of GLQ(Z) and
¢r(Gg) € Hg.
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An elliptic curve E is a Serre curve if ¢p(Gg) = Hg. In other words, an elliptic

curve is a Serre curve exactly when, for every integer m, we have
2 if MAsf(E) | m
1 otherwise.

[GLo(Z/mZ) : m,6(Go)] = {

We will refer to Hps, s C GL2(Z/Ma,;(£yZ) (and by abuse of notation, also to

Hp C GLy(Z)) as the Serre subgroup associated to E.

Note that if /Ar € Q, one may replace the field Q(v/Ag) in the preceding
argument with the abelian extension Q(E[2]) and conclude that E is not a Serre
curve in this case.

5. A CRITERION FOR DISTINGUISHING SERRE CURVES
If N is exceptional for E (see Definition [I]), then so is any multiple of N.

Definition 18. We call a positive integer N minimal exceptional for F if it is
exceptional for F and none of its proper divisors are exceptional for FE.

For example, if E is a Serre curve, then the Serre number Ma (k) (see Section
M) is a minimal exceptional number for E. Also, any exceptional prime p of F is
minimal exceptional.

The proof of Lemma [l uses only the theory of the groups GL2(Z/NZ) (espe-
cially for N divisible by 2 and 3, complementing [19]) as well as a few facts about
cyclotomic fields. The arguments are similar to those given in Kani’s appendix to
[2]. Two separate issues arise: (1) which numbers N can actually occur as minimal
exceptional numbers for an elliptic curve and (2) the stability of the Serre number
MAp,;(m). We treat them in that order.

5.1. Lemmas from group theory. In this section we state and prove several
technical lemmas needed for the proof of Lemma Bl First, we will need

Lemma 19. The commutator subgroup (GLy(Z/p"Z))" of GLo(Z/p"7Z) is given by

SLy(Z/p"Z) ifp#2

(GL2(Z/p"2Z)) = {ker(e) NSLy(Z/2"Z)  if p=2

(see [@R)). For p > 5, the group SLo(Z/p™7Z) is equal to its own commutator:
(SLo(Z/p"Z)) = SLo(Z/p"Z)  (p = 5).

(.00 - smo

we see that for any = € (Z/p"7Z)*,

<((1) T)Cc (1)>> = SLy(Z/p"Z).

Denoting by 2* any inverse of 2 modulo p™, we compute

EDCDE DG DY wr

We see that

Proof. First, since

(6 1)< snemy.
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and similarly for <i1’> ?), which proves the last assertion in the lemma. If p = 3,

we compute

a0 b )6 D6 D6 D=61)

and similarly for G (1)), which proves that

p> 3= (GL:(Z/p"Z)) = SL2(Z/p"Z).
Finally, if p = 2, the equation

0 -1\ '/1 1\/0 -1\ (1 0
1 0 0 1 1 0/) \-1 1)
taken together with (I9), implies that

1 1

(GLy(Z/2"Z)) U (0 1) (GLy(Z)2" 7)) = SLy(Z/2"7).

(Note that (é }) ¢ (GLo(Z/2"Z)) since 5<<(1) D) = —1). We are then

finished, since clearly
(GLy(Z/2"Z))" C ker(e) N SLy(Z/2"7)
and the indices inside SLy(Z/2"Z) match. O

We will also use

Lemma 20. If Ny and Na are relatively prime positive integers, then the groups
GLy(Z/N17Z) and GLy(Z/N>Z) have no common simple nonabelian quotient, and
neither do the groups SL2(Z/N1Z) and SLo(Z/N2Z).

Proof. Any simple nonabelian quotient of a group occurs as a factor in its Jordan-
Holder series. Whenever
1-G1=-G—=Gy—1

is an exact sequence of abelian groups, we have

{ Jordan-Hélder factors of G } = U { Jordan-Hélder factors of G; }.

i=1,2
Applying this observation to the exact sequences
1 — GLo(Z/p;"Z) — GLo(Z/N;Z) — GLo(Z/(N;/(p;*))Z) — 1
(where j = 1,2 and N; =: [[, p;"*),
1 — I +p" "Mayo(Z/pZ) -GL2(Z/p"Z) — GLo2(Z/p" ' Z) — 1,
1= SLy(Z/pZ) -G Ly(Z/pZ) — (Z/pZ)* — 1,

and
1 — {xI} = SLo(Z/pZ) — PSLy(Z/pZ) — 1,
and using the fact that

simple ifp>5

PSLy(Z/p7) i
2(Z/p2) is {solvable otherwise
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and that I + p"~*Mayyo(Z/pZ) C GLo(Z/p™7Z) is an abelian subgroup (n > 2), we

see that
{ simple nonabelian quotients of GL2(Z/N;Z) } C{PSLy(Z/pZ)}p|N,; p>5
(and likewise with SL9(Z/N;Z)), finishing the proof. O

Finally, we will have need of

Lemma 21. Let N > 1 be any even integer which is divisible by some prime p > 3.
Write

N =N;- Ny
where N1 > 1 is not divisible by any prime p > 3 and No > 1 is not divisible by
any prime p < 3. Suppose that G, C GL2(Z/NZ) is a subgroup such that

GoNSLy(Z/NZ) = (GL(Z/NZ))'.
Finally, assume Gy, C G, is a subgroup for which the canonical maps
(20) Gy — GL2(Z/N1Z) and Gy — GLy(Z/N27Z)
as well as the determinant map

det : G, —» (Z/NZ)*
are surjections. Then Gy = G,.
Proof. By (20), we find by taking commutators that
G}, — (GL2(Z/N17Z))" = ker(e) N SLy(Z/N17Z)

and

G}, — (GLy(Z/N3Z)) = SLo(Z/NoZ)
are also surjections. We are now in a position to apply the Goursat Lemma:
Lemma 22. Let G1 and Gy be groups. Denote by m; : G1 X G2 — G; (i = 1,2) the

projection map. Suppose that G C G1 X G is a subgroup such that m;(G) = G; for
1=1,2 and define
H, = 7T1(Gﬂ (Gy % {62})) and Hy = 7T2(Gﬂ ({61} x G3)).
Then,
Gl/Hl ~ GQ/HQ

and the graph of this isomorphism is induced by G.

We apply the lemma with Gy = ker(e) N SLy(Z/N1Z), Go = SLy(Z/N>Z), and
G = G}, and conclude that ker(e) N SLyo(Z/N1Z) and SLy(Z/N2Z) have a common
quotient group Q. If @ is nontrivial, then it has a nontrivial simple quotient Q.
By Lemmal20] Qs must be abelian. By Lemmal[I9l (SL2(Z/N2Z)) = SLy(Z/N2Z),
and so we must have Qs = 1. This shows that () was trivial to begin with. We
conclude that G; = H; and G5 = Hs, i.e. that

(GLy(Z/N1Z)) x {1} ¢ G, and {1} x (GLo(Z/N2Z)) C Gy,
which implies that
G, = (GL2(Z/N7Z))".
But now from the exact sequence
1 — (GL2(Z/NZ)) = G, — (Z/NZ)* — 1
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and

det: G, - (Z/NZ)*
we conclude that (GL2(Z/NZ))'Gy = G,. So since (GL2(Z/NZ)) C Gy, we have
Gy = G. O

5.2. Minimal exceptional numbers of elliptic curves. The following lemma
gives us a restriction on which positive integers N can occur as a minimal excep-
tional number of an elliptic curve. Throughout the remainder of the paper we will
sometimes use the abbreviation

Gy = Gal (Q(E[N])/Q),
suppressing the dependence on the elliptic curve E.
Lemma 23. Let E be an elliptic curve over Q. Suppose that N € N is minimal
exceptional for E. Then,

N € { prime numbers } U{Ma_,(g)} U {4,8,9}.

If 8 is a minimal exceptional number for E, then there exists a real primitive char-
acter § : (Z/8Z)* — {£1} and

Ggs(E) = ker (¢ - (§ o det)).
Proof. Let us assume that IV is not prime. If N is exceptional for F, then we have

GNn C GLy(Z/NZ).

If N is minimal exceptional, we have G4 = GLo(Z/dZ) for each proper divisor d
of N. Therefore the canonical map
(21) Gn — GLy(Z/d7)
is a surjection for each d dividing N. By the surjectivity of the Weil pairing, we
also see that the determinant map
(22) det : Gy — (Z/NZ)*
is surjective. We consider the question: for which composite numbers N does there
exist a proper subgroup Gy of GLy(Z/NZ) satistying conditions [ZI) and (22)?
We divide the investigation into cases according to whether N is a prime power or
not. We tackle the latter case first.
Case 1. N is not a prime power. Let p be the smallest prime divisor of N. Suppose
that p™ || N (i.e. that p™ | N and p"*!{ N) and write M := N/p"™ (# 1). By Galois
theory we must have

Q & Q(E[P"]) NQ(E[M]).
Let F':= Q(E[p"]) NQ(E[M]) and H := Gal (F/Q). If H is not simple, replace it
by any nontrivial simple quotient, and replace F' by the corresponding field. Since
H is a common simple quotient of the groups

Gal (Q(E[M])/Q) = GLy(Z/MZ) and  Gal(Q(E[p"])/Q) = GLy(Z/p"Z),

we conclude by Lemma 0] that H is abelian. From this and Lemma [I9 it follows
that

If p > 2, then we must similarly have F' C Q((pn). Since
(23) Q(Cm) NQ(Gn) = Q,
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we conclude that F' = Q, contradicting the assumption that H is nontrivial. There-
fore we must have p = 2. But then using Lemma [19 we similarly conclude that

Q# F CQ(VAER, () NQ(Car)-

If n <1, then we must have F' = Q(v/Ag), and we see that N is a multiple of the
Serre number Mx _,(g). If n > 2, then we reason as follows: since the Galois group

Gal(Q(vAEg,(2n)/Q) has order a power of two, F' must be a quadratic field. By
[23), we conclude that if n = 2, then F must be one of the fields

Q(VAg), Q(v/~Ap),

and if n > 3, then F must be one of the fields

Q(VAg), Q(V—=Ag), Q(V2AR), Qv —2A%).

Thus in any case, by (1), N is a multiple of the Serre number of E, which implies
that NV is the Serre number of E, since N is assumed to be minimal exceptional.
We have shown that the Serre number of E is the only possible minimal exceptional
number which is not a prime power.

Case 2. N = p" is a prime power. If p is odd, then we reason as follows. Suppose,
for the sake of contradiction, that

2 ifp>5
n >
=13 ifp=3.
Taking commutators of (ZI]), we have a surjection
(Gpn(E))' — SLa(Z/p" ' Z) = (GLo(Z/p" ' Z))"

By [19, Lemma 3, p. IV-23] and [I9, Exercise 1, p. IV-27], this implies that
(Gpn(E)) = SLy(Z/p"Z). But now since

SLy(Z/p"Z) C Gpn (E)

we conclude by (22) that Gyn (E) = GL2(Z/p™Z), contradicting the fact that p™ is
exceptional. Thus, the only composite odd prime power which could possibly occur
as a minimal exceptional number is 9.

Suppose now that N = 2" (n > 2) and consider the exact sequence

1 — K NGon — Gon — GLo(Z/2" 7)) — 1,
where K = I + 2" 1 Myy9(Z/27Z). First we show that if n > 3, then
(24) T+2"" YA€ Myyo(Z/2Z) : tr A =0} C K N Gan.

This is seen by choosing any preimage

n—2
@ 21>+T1A€G%

n—2

0 1

127172 o1 2_ 1 21171 n
(0 57) e a) = (7)o

of the matrix (1 ) € GLy(Z/2""17Z) and observing that, if n > 3,
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0 1 a b
0 0 € KNGyn. Now let <c d> be any

matrix in GLo(Z/2Z) and choose a matrix A € Gan(E) with

_f(a b
A = (C d> mOd 2.
We then have

1 1 —ac a?
A <I+ gn-1 <8 0)) AT =T (-ZZC ZC> € KN Gan(E).

b) vary modulo 2, we see that (24) holds. From this we see

which shows that the matrix I + 271

Letting the matrix (Z

d
that Ga» must be an index 2 subgroup of GLs(Z/2"Z). Thus, there is a character
(25) X : GLy(Z/)2"Z) — {£1} with Gan(E) = ker x.

Lemma [[9 says that either x or e - x restricted to SLo(Z/2"Z) must be trivial. But
if y is trivial on SLo(Z/2"Z), then SLy(Z/2"Z) C Gan, a contradiction. Thus we
must have

(26) X =€ - (6 odet),

where ¢ : (Z/2"Z)* — {£1} is a primitive character (or else 2" is not minimal

exceptional). Now pick X = ((1) 1) + 2714 € Gyn. We have det X = 1 or
1+ 271, One checks that for n > 3,
1+271=52" mod 2",

so for n > 3 we must have §(det X) = 1, contradicting (25). Thus, the only
composite powers of 2 which could possibly occur as minimal exceptional numbers
are 4 and 8. This concludes the proof of Lemma 231 O

5.3. Stability of the Serre number Mx_,(r). We will now finish the proof of
Lemma [B] by showing that under the assumptions stated therein and for each posi-
tive integer N, we have

1 .
s H if M N
(27) Gn(E) = Nta,, (Hos, ) A |
GL2(Z/NZ) otherwise,

where TN.Ma.,, denotes the natural projection
GLy(Z/NZ) — GLy(Z/Ma,,Z).

To see this, first suppose that Ma,, t N. If Gn(E) € GL2(Z/NZ), then E has
some minimal exceptional number d dividing N. Clearly d cannot be equal to the
Serre number Ma ., so again by Lemma 23] and the assumptions on F from Lemma
we arrive at a contradiction. Thus, if Ma,, t N we have

GN(FE) = GLy(Z/NZ).
Now suppose Ma,, | N. We will apply Lemma 21l with G, = W&}MAsf (HMASf)

and G, = Gy (E). To verify the hypotheses of the lemma, note that under the
assumptions stated in Lemma Bl we have that

(28) 3p >3 which divides Ma_,(g)-
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Thus we may write N = Nj - Ny as in Lemma 2Tl The condition
TN A (Huy )N SLy(Z/NZ) =kere N SLy(Z/NZ)

follows immediately from the definition of H Ma,,- We next verify the surjectivity
conditions

If the first map is not surjective, then F has some minimal exceptional number
d which divides N;. By Lemma 23, we conclude that d € {2,3,4,6,8,9,12,24},
contradicting the assumptions on E in Lemmal[5 Therefore G (E) - GL2(Z/N17)
is surjective. Similarly, if Gn (E) — GL2(Z/N2Z) is not surjective, then E has some
minimal exceptional d dividing Ny. By Lemma 23] we must have that d is an odd

prime number greater than 3, again contradicting the assumptions of Lemma Bl
We have verified the conditions ([29). Finally, the surjectivity of

det : Gy — (Z/NZ)*
follows from the surjectivity of the Weil pairing. By Lemma 21 we conclude that
GN(E> = 7TJ:I,IMASf (HMAsf )a

and our proof of Lemma [l is now complete.

6. ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES
We now show how Lemma [ and Theorem 2] together imply Theorem [l For
N € {4,6,8,9,12,24} define
{F € C(X) : F is minimal exceptional at N}  if N € {4,9}
en(X) = {FeC(X):Gs(E)=kery, for xasin 20) } if N =38
{FeC(X):Gy(E)C Hy} if N e {6,12,24}.

By Lemmas [B and 23] we have that the set of non-Serre curves satisfies

C(z) — Cserre(x) C e(x) U U en(z) |,
N€e{4,6,8,9,12,24}
where ¢(z) is as in ([B)). Thus, to prove Theorem M it suffices to estimate the sets
EN (:c)
Definition 24. Let W be any integer and let (t,d) € (Z/WZ)? be any pair of
integers modulo W with d € (Z/WZ)*. Suppose that G C GL2(Z/WZ) is any
subgroup. We say that G represents the pair (¢,d) if there is a matrix g € G
satisfying
tr(g) =t, det(g) =d.
The next two lemmas guarantee that when an elliptic curve fails to be a Serre

curve by being minimal exceptional at N, there must be some pair (¢, d) not repre-
sented by Gy (E).

Lemma 25. Let W > 1 be any even integer,
§:(Z/Wwz)" — {£1}
any nonprincipal real character and
G Cker(e- (0 odet)) C GLy(Z/WZ)

Licensed to Univ of lllinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1566 NATHAN JONES
any subgroup. Then there exists a pair of integers (t,d) € Z/WZ x (Z/WZL)* which
is not represented by G.
Proof. Choose any f € (Z/WZ)* satistying
6(f) =—1
and set (t,d) = (1, f). O

Lemma 26. Let p = 2 or 3 and suppose G C GLy(Z/p*Z) is a subgroup which
represents every trace-determinant pair (t,d) € (Z/p*Z) x (Z/p*Z)* and which
surjects onto GLa(Z/pZ). Then, G = GLy(Z/p*Z).

Proof. We consider the intersection
GNK
of G with K, the kernel of the projection
GLy(Z)p*7) — GLy(Z/p7Z).

Our goal is to show that G actually contains K. From here we divide the argument
into cases, according to whether p is 2 or 3.

Case p = 3. Under the given hypothesis, we may find a matrix ¢ € G with trg = 3
and det g = 1. Such a matrix must have the form

oo xef(s o) (00)G )G 2 GG

with the (mod 3) coefficients of the matrix ¥ = ( ) satisfying the conditions

0 1

a+d=1,b—c=1if X = (2 0)

0 2

a+d=1, b—c-21fX—<1 0)

11

a+d=0,a+b+c—d= 01fX<1 2)
1 2
a+d=0,a-b—c—d=2if X = (2 2)
a+d=0,a-b—c—d=0if X = (2 1)
11

2
a+d=0,a+b+c—d=1if X = <2 1).

In each case, the first equation comes from the trace condition on g and the second
one comes from the determinant condition. One computes that

(X +3Y)'=71+3X mod 9.

Since in this case the discriminant t2 —4d = 5 is nonzero modulo 3 we see by Lemma
[T that all six of the matrices X, when reduced modulo 3, are G Ly(Z/3Z)-conjugate
to one another. Proceeding as in the argument which showed (24]) and using the
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fact that the various X span the Z/3Z-vector space Max2(Z/3Z), we conclude that
GNK =1+ 3Mays(Z/37).
Thus we have K C G, and so G = GL2(Z/9Z) in this case.

Case p = 2. The proof in this case is similar. Pick ¢ € G with trg = 2 and
det g = —1. Then g must have the form

oo e {(1o) o) G ()

where the (mod 2) coefficients of the matrix Y satisfy the conditions

. 0 1
a+d1,b+001fX<1 O>

a+d=0,a+c+d=1if X = <(1) 1)

at+d=0,a+btd=1if X = G ?)

(The possibility X = I + 2Y is eliminated since the conditions on the coefficients
of Y in that case read a +d =0, a + d = 1.) One computes that

(X +2Y)? =1+2X mod 4.
After conjugating by preimages of elements of GLo(Z/27), one concludes that

oonafivs e} )0 )}

Proceeding in the same way with ¢ = 0 and d = 1, one sees that in fact
GNKD {A S MQXQ(Z/QZ) itrA= 0}

Now G is a subgroup of GL2(Z/4Z) of index < 2. However, if G is indeed a
subgroup of index 2, we may apply Lemma 28] and arrive at a contradiction. This
concludes the proof in this case. (I

Lemmas 28] and 26l imply the following corollary.

Corollary 27. For N € {4,6,8,9,12,24}, we have
en(z) = U EN,(t,d) (z),
(t,d)e(Z/NZ)x (Z/NZ)*
where
EN,(t,d) ‘= 1E €en(x) : (t,d) is not represented by Gn(E)}.
Lemma 28. For each N € {4,6,8,9,12,24}, we have
len(z)] < N8z|C(x)| mgxw(x;N, d)~2,

with an absolute implied constant.

Proof. This lemma and its proof are analogous to [8, Lemma 5], the statement
of which contains a typo: the “< X67(X;N,d)~2” should be replaced by “<
N*XS%maxy 7(X; N,d)~2”. Theorem ] implies that

(|GL2(Z/NZ)t,d|90
|GLy(Z/NZ)|

(N)> m(z; N, d)2|aN)(t)d) (z)| < |GLa(Z/NZ)s 4*x|C(2)),
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where GLy(Z/NZ),q := {g € GLy(Z/NZ) : trg = t,detg = d}. Summing over
(t,d) proves the lemma. O

By the prime number theorem in arithmetic progressions, we see that Lemma
28 together with (6]), implies Theorem @l We note that because the N in Lemma
belongs to a finite set, there is no need here to use the Siegel-Walfisz theorem,
as was necessary in [§]. However, since Theorem M depends on [8, Theorem 1],
which does use the Siegel-Walfisz theorem, the constant implied by the < symbol
in Theorem Ml is ineffective.

7. N =4 OCCURS AS A MINIMAL EXCEPTIONAL NUMBER

If N =4 or 9, the argument given in Section is invalid since we may not
conclude that ([24) holds. In fact, there is a subgroup H C GL2(Z/4Z) of index
four which satisfies conditions ([2I) and ([22]). We now describe H and demonstrate
an infinite family of non-isomorphic elliptic curves E for which G4(F) = H. Elkies
[10] has recently exhibited similar examples for N = 9.

First, we give a geometric description of H: Let L be a complex lattice and let
L[4] denote the 4-torsion of C/L. By choosing a basis, we may identify L[4] with
(Z/47)?. Define

L[4]" .= {x € L[4] — L[2]}
and let [1,l5...,lg denote the lines through the origin in L[4]*. More precisely,
define the equivalence relation on L[4]* by declaring u ~ v’ exactly if v’ = Au
for some A\ € (Z/4Z)* = {£1}, and denote the resulting equivalence classes by
l1,l2...,lg. Since the Weierstrass p-function is even, the association l; = [u] — p(u)
identifies PL(Z/AZ) := {l1,1a,...,lg} with

E[4]; :={x(P): P € E[4] - E[2]},

the set of z-coordinates of the set of 4-torsion points of F = E7,, the elliptic curve
associated to the lattice L, which are not 2-torsion points. This identification allows
one to view the Galois group of Q(E[4],) over Q as a subgroup of PGLy(Z/4Z).

We may extend the natural action of PGLo(Z/4Z) on PL(Z/AZ) to obtain a
PGL2(Z/AZ) action on the set

S = {{{lil,li2,li3}, {li4ali5ali6}} :all ij € {1, 2,.. ,6} are diStiI’lCt}.

This action is not transitive. The size 10 set S decomposes into two orbits S; and
So of sizes 4 and 6, respectively. To describe these sets, we will define an “addition
relation” on PL(Z/4Z). If 11, ls, and I3 are lines in PL(Z/4Z), we say that

lh+la=1;5
exactly when, for some choice of representatives u; € l;, we have
U] + Uy = usg.

(Note: This is a relation, not a well-defined operation. For example, [(1,0)] +
[(0,1)] =[(1,1)] and [(1,—1)].) Then the two orbits are defined by

Sy = {{{li17li27li3}7 {li47li5ali6}} €5l +1i, = 113}

and S3 = S—S;. Fixing any element r € Sy, we define H, = H,(r) C PGLy(Z/A7)
to be the stabilizer of r. Finally, we define H = H(r) to be the preimage of H,
under the natural projection GLy(Z/47) — PGL2(Z/AZ).
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To find elliptic curves E with G4(E) = H, we reason as follows: let 1, xo, ...
xe be the elements of E[4]%. If E is given in the form
E: y* =42 — gz — g3,

then the minimal polynomial for z1, xo, ..., xg is given by

16 4 bt 64

The set Sy defined above corresponds to the set of numbers

X1 = {(l‘“ + Ty + xi3)(xi4 + Ty + xie‘.) : (:Cil ) yil) D (xiw yiz) = (-’131'3, yi3)}’
where @ refers to the addition law on E. X is a set of four complex numbers which
satisfy the (generically irreducible) polynomial

27932 ~37g3
t) = t* t3 242 2 4 108g2)t + —22.
J1,E(1) + 3gat° + 5 +( T 08g3)t + 556

We note that G4(F) C some H(r) whenever f1 g(t) has a linear factor over Q. Let
s € Q and denote by F the elliptic curve given by the equation

5 593 3 — 3242
fe(t) =1t°— %t‘* —5gatd — 29242 9293, J2 = 9905

8193

1652 +56s +81  (16s? + 565 + 81)%(—1 + 4s)
2 3
=4 .
yri= e 35 T 86152
It may be checked that for each s, fi g, (t) is divisible by ¢ 4+ 27 + 335 4 1842 and

that
Gal(Q(s)(Es[4])/Q(s)) ~ H.
The discriminant is computed to be
(1652 + 565 + 81)3(4s + 3)*
2764851 ’

A(ES) = -

and the j-invariant is
. 17694725
J(Es) = ——=1-
(4s +3)
In particular, if we apply the Hilbert irreducibility criterion, we see that there are
infinitely many non-isomorphic curves F; over QQ, each with Galois group G4 ~ H.

ACKNOWLEDGMENT

This paper contains results of the author’s Ph.D. dissertation. The author is
grateful to his advisor, William Duke, for his guidance.

REFERENCES

[1] A. Brumer, The average rank of elliptic curves I, Invent. Math. 109 (1992), 445-472.
MR1176198|/(93g:11057)

[2] A. C. Cojocaru, On the surjectivity of the Galois representations associated to non-CM
elliptic curves, with an appendix by Ernst Kani, Canad. Math. Bull. 48 (2005), no. 1, 16-31.
MR2118760 (2005k:11109)

[3] A. C. Cojocaru and C. Hall, Uniform results for Serre’s theorem for elliptic curves, Int.
Math. Res. Not. 50 (2005), 3065-3080. MR2189500//(2006g:11107)

[4] D. A. Cox, Primes of the Form x2 + ny?, Wiley, New York, 1989. MR1028322/(90m:11016)

[5] H. Davenport, Multiplicative Number Theory, Springer, New York-Berlin, 1980. MR606931
(82m:10001)

[6] C. David and F. Pappalardi, Average Frobenius distributions of elliptic curves, Int. Math.
Res. Not. 4 (1999), 165-183. MR1677267](2000g:11045)

[7] M. Deuring, Die typen der Multiplikationenringe der elliptischen Funktionenkdrper, Abh.
Math. Sem. Univ. Hamburg 14 (1941), 197-272. MRO0005125/(3:104f)

Licensed to Univ of lllinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=1176198
http://www.ams.org/mathscinet-getitem?mr=1176198
http://www.ams.org/mathscinet-getitem?mr=2118760
http://www.ams.org/mathscinet-getitem?mr=2118760
http://www.ams.org/mathscinet-getitem?mr=2189500
http://www.ams.org/mathscinet-getitem?mr=2189500
http://www.ams.org/mathscinet-getitem?mr=1028322
http://www.ams.org/mathscinet-getitem?mr=1028322
http://www.ams.org/mathscinet-getitem?mr=606931
http://www.ams.org/mathscinet-getitem?mr=606931
http://www.ams.org/mathscinet-getitem?mr=1677267
http://www.ams.org/mathscinet-getitem?mr=1677267
http://www.ams.org/mathscinet-getitem?mr=0005125
http://www.ams.org/mathscinet-getitem?mr=0005125

1570 NATHAN JONES

[8] W. D. Duke, Elliptic curves with no exceptional primes, C. R. Math. Acad. Sci. Paris Sér. I
325 (1997), 813-818. MR1485897 /(99b:11059)
[9] W. Duke and A. Téth, The splitting of primes in division fields of elliptic curves, Experiment.

Math. 11 (2003), 555-565. MR 1969646  (2004c:11087)

[10] N. Elkies, Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9,
preprint (2006). Available at http://arxiv.org/abs/math/0612734

[11] P. X. Gallagher, The large sieve inequality and probabilistic Galois theory, in: Analytic
Number Theory (St. Louis Univ., St. Louis, 1972), Proc. Sympos. Pure Math., Vol. IV,
91-101. Amer. Math. Soc., Providence, 1973. MR0332694 |(48:11020)

[12] D. Grant, A formula for the number of elliptic curves with exceptional primes, Compos.
Math. 122 (2000), 151-164. MR1775416 (2001;:11033)

[13] N. Jones, Trace formulas and class number sums, Acta Arith. 132 (2008), no. 4, 301-313.
MR2413354(2009g:11149)

[14] N. Jones, Averages of elliptic curve constants, to appear in Mathematische Annalen.

[15] A. Kraus, Une remarque sur les points de torsion des courbes elliptiques, C. R. Acad. Sci.
Paris, Sér. I, 321 (1995), 1143-1146. MR1360773|/(97a:11085)

[16] D. Masser and G. Wiistholz, Galois properties of division fields of elliptic curves, Bull.
London Math. Soc. 25 (1993), 247-254. MR1209248 (94d:11036)

[17] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162. MR482230
(80h:14022)

[18] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46
(1986), 183-211. MR914657|/(88k:14013)

[19] J. P. Serre, Abelian l-Adic Representations and Elliptic Curves, Benjamin, New York-
Amsterdam, 1968. MR0263823|/(41:8422)

, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.

15 (1972), 259-331. MR0387283|(52:8126)

, Quelques applications du théoréme de densité de Chebotarev, Inst. Hautes Etudes
Sci. Publ. Math. 54 (1981), 123-201

[22] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton
University Press, Princeton, 1971. MR0314766, (47:3318)

[23] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986.
MR817210|/(87g:11070)

, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York,
1994. MR1312368|(96b:11074)

[25] E. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. 2 (1969),
521-560. MR0265369//(42:279)

[20]

21]

24]

CENTRE DE RECHERCHES MATHEMATIQUES, UNIVERSITE DE MONTREAL, P.O. Box 6128, CEN-
TREVILLE STATION, MONTREAL, QUEBEC, CANADA H3C 3J7

Current address: Department of Mathematics, University of Mississippi, Hume Hall 305, P.O.
Box 1848, University, Mississippi 33677-1848

E-mail address: ncjones@olemiss.edu

Licensed to Univ of lllinois at Chicago. Prepared on Wed May 20 15:02:28 EDT 2015 for download from IP 131.193.178.221.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=1485897
http://www.ams.org/mathscinet-getitem?mr=1485897
http://www.ams.org/mathscinet-getitem?mr=1969646
http://www.ams.org/mathscinet-getitem?mr=1969646
http://www.ams.org/mathscinet-getitem?mr=0332694
http://www.ams.org/mathscinet-getitem?mr=0332694
http://www.ams.org/mathscinet-getitem?mr=1775416
http://www.ams.org/mathscinet-getitem?mr=1775416
http://www.ams.org/mathscinet-getitem?mr=2413354
http://www.ams.org/mathscinet-getitem?mr=2413354
http://www.ams.org/mathscinet-getitem?mr=1360773
http://www.ams.org/mathscinet-getitem?mr=1360773
http://www.ams.org/mathscinet-getitem?mr=1209248
http://www.ams.org/mathscinet-getitem?mr=1209248
http://www.ams.org/mathscinet-getitem?mr=482230
http://www.ams.org/mathscinet-getitem?mr=482230
http://www.ams.org/mathscinet-getitem?mr=914657
http://www.ams.org/mathscinet-getitem?mr=914657
http://www.ams.org/mathscinet-getitem?mr=0263823
http://www.ams.org/mathscinet-getitem?mr=0263823
http://www.ams.org/mathscinet-getitem?mr=0387283
http://www.ams.org/mathscinet-getitem?mr=0387283
http://www.ams.org/mathscinet-getitem?mr=0314766
http://www.ams.org/mathscinet-getitem?mr=0314766
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=0265369
http://www.ams.org/mathscinet-getitem?mr=0265369

	1. Introduction
	2. Statement of results
	3. Bounding mean-square Chebotarev error
	3.1. Defining the set A(p) (Z/pZ)2
	3.2. The asymptotic in p of |A(p)|

	4. The definition of a Serre curve
	5. A criterion for distinguishing Serre curves
	5.1. Lemmas from group theory
	5.2. Minimal exceptional numbers of elliptic curves
	5.3. Stability of the Serre number Msf(E)

	6. Almost all elliptic curves are Serre curves
	7. N=4 occurs as a minimal exceptional number
	Acknowledgment
	References

