
GEOMETRY AND ARITHMETIC OF VERBAL DYNAMICAL
SYSTEMS ON SIMPLE GROUPS
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WITH AN APPENDIX BY NATHAN JONES

Abstract. We study dynamical systems arising from word maps on simple
groups. We develop a geometric method based on the classical trace map
for investigating periodic points of such systems. These results lead to a
new approach to the search of Engel-like sequences of words in two variables
which characterize finite solvable groups. They also give rise to some new
phenomena and concepts in the arithmetic of dynamical systems.
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1. Introduction

The initial goal of the present paper was to get deeper understanding of what
is behind recent results achieved in describing the class of finite solvable groups
by identities in two variables [BGGKPP1], [BGGKPP2], [BWW]. Although the
results were purely group-theoretic, it was clear that the key role is played by
geometry and dynamics. Byproducts of this investigation seem to us not less
interesting than the initial problem.

We reformulated the original problem in the language of a verbal dynamical
system on an algebraic group G (the notion of its own interest). We study these
systems for the case G = SL(2), the most important for the initial group-theoretic
problem. Towards this end, we

• prove several surjectivity theorems for the classical trace map over finite
fields;

• introduce a new method based on the trace map and these theorems.
This allowed us not only to explain the mechanism of the proofs from the above

cited papers but to obtain a method for producing more sequences of the same
nature.

These arithmetic-geometric considerations led us to a new notion of residual
periodicity of a dynamical system which reflects its local-global behaviour. This
concept will hopefully yield new results in the arithmetic of dynamical systems
on algebraic varieties. Here we present some primary examples and propose some
conjectures.

To be more precise, let Fr+s be the free group with basis x1, . . . , xs, u1, . . . , ur,
and let

W =






w1(x1, . . . , xs, u1, . . . , ur),
. . . ,

wr(x1, . . . , xs, u1, . . . , ur)





(1)

be an r-tuple of words in Fr+s. Thus for any group G we obtain a self-map:

DW : Gr+s
→ Gr+s, (2)

(g1, . . . , gs, v1, . . . , vr) �→ (g1, . . . , gs, w1(g1, . . . , vr), . . . , wr(g1, . . . , vr).
Choosing G to be a linear algebraic group defined over some field k, we thus

find a polynomial self-map of the underlying affine variety Gr+s attached to W.
A set M ⊂ Gr+s is called invariant if DW(M) ⊂ M.



VERBAL DYNAMICAL SYSTEMS ON SIMPLE GROUPS 3

For our purposes it is important to introduce initial conditions and, for every
group G, a so-called forbidden set. Let J = (f1(x1, . . . , xs), . . . , fr(x1, . . . , xs))
be words in Fs. Then given G and (g1, . . . , gs) ∈ Gs we have an iterative sequence
of r-tuples of elements of G:

e0 = (f1(g1, . . . , gs), . . . , fr(g1, . . . , gs)), . . . ,

en+1 = (w1(g1, . . . , gs, en), . . . , wr(g1, . . . , gs, en)), . . .
We are interested in finding (g1, . . . , gs) such that the sequence e0, e1, . . . has
certain properties. To find such (g1, . . . , gs), we regard them as s extra variables
and obtain a self-map as in (2).

Then given W, G and J , we have an iterative sequence:

e�0 = (g1, . . . , gs, f1(g1, . . . , gs), . . . , fr(g1, . . . , gs)), . . . ,
e�n+1 = DW(e�n), . . .

The forbidden set is defined as the choice of an invariant set IG ⊂ Gr+s for
every group G.

We call the triple D = (W,J , IG) a verbal dynamical system. We are interested
in invariant sets disjoint from IG.

Remark 1.1. It is sometimes convenient to modify this general setup as follows.
(i) It may happen that the r-tuple W depends on less than r + s variables (say,

of x1, . . . , xs only x1, . . . , xt, t < s, show up in W whereas the rest of the xi only
appear in the initial conditions J ). In such a case, we will restrict our dynamical
system to Gr+t (in particular, the forbidden set is also chosen inside Gr+t). See
Example 1.4 below.

(ii) One can fix an s-tuple (g◦ := (g◦1 , . . . , g◦s ) ∈ Gs and consider the corre-
sponding “fibre” of our dynamical system D0

W
: Gr → Gr defined by

D0

W((v1, . . . , vr)) = (w1(g◦1 , . . . , g◦s , v1, . . . , vr), . . . , wr(g◦1 , . . . , g◦s , v1, . . . , vr)).

In particular, for r = 1 we arrive at a self-map G → G. This simplified system
will be largely used in what follows.

Example 1.2. Take s = 2, r = 1 and consider a triple D1 consisting of

W = ([xux−1, yuy−1]),
J = (x−2y−1x),

IG = {G×G× {1}}.
The corresponding map is

DW(x, y, u) = (x, y, [xux−1, yuy−1]).

The associated iterative sequence is

e0 = x−2y−1x, e1 = [x−1y−1, yx−2y−1xy−1], e2 = [xe1x
−1, ye1y

−1], . . .

We can now reformulate a key step in our characterization of finite solvable
groups [BGGKPP1], [BGGKPP2] as follows:

Theorem 1.3. For G = SL(2, q) the dynamical system D1 has a fixed point

outside IG for every q > 3.



4 BANDMAN, GRUNEWALD , KUNYAVSKĬI, JONES

A key step to the characterization obtained in [BWW] can be reformulated in
a similar way:

Example 1.4. Take s = 2, r = 1, W = ([y−1uy, u−1]), J = (x). As the vari-
able x does not show up in W but only appears in J (and so t = 1), we pro-
ceed as in Remark 1.1(i) and consider the restricted system G2 → G2, (y, u) �→
(y, [y−1uy, u−1]), with the forbidden set IG := {G× {1}}. Denote this system by
D2.

The associated iterative sequence is

e0 = x, e1 = [y−1xy, x−1], e2 = [y−1e1y, e−1

1
], . . .

The main result of [BWW] can now be read off as follows:

Theorem 1.5. For G = SL(2, q) the dynamical system D2 has a periodic point

outside IG for every q > 3.

In the present paper we mostly restrict ourselves to considering the most impor-
tant case G = SL(2, k) (though in Section 4 we also consider the Suzuki groups).

In the case G = SL(2, k) we introduce a new method based on classical results
of Klein, Fricke, Vogt, Magnus from which it follows (see, e.g., [Pe2]) that there is
a polynomial map ψ : AN (k) → AN (k) making the diagram

Gs+r DW
−−−−→ Gs+r

π

� π

�

AN (k) ψ
−−−−→ AN (k)

(3)

commutative. Here π is defined using the traces of products as in Theorem 3.1
below.

In the case r = 1, t = 1 the projection π : SL(2, k)2 → A3(k) is defined as

π(x, y) = (tr(x), tr(xy), tr(y)).

In the case r = 1, s = 2 the map π : SL(2, k)3 → A7(k) is defined as

π(x, y, u) = (tr(x), tr(y), tr(u), tr(xy), tr(xu), tr(yu), tr(xyu)),

and the image of π is contained in a hypersurface Z ⊂ A7 (see (13) below for an
explicit equation of Z).

We prove the following surjectivity theorems (see Theorems 3.4 and 3.10 below).

Surjectivity Theorem 1. For any point a = (s0, u0, t0) ∈ A3(Fq) the set π−1(a) ⊂
SL(2, q)2 is nonempty.

Surjectivity Theorem 2. For any point y ∈ Z(Fq) the set π−1(y) ⊂ SL(2, q)3
is nonempty.

These surjectivity theorems allow us to obtain sufficient conditions for the ex-
istence of fixed points of the reduced (modulo p) dynamical system, uniformly in
p, and treat concrete examples arising from [BGGKPP1], [BGGKPP2], [BWW].

On the other hand, the above dynamical reinterpretation of our group-theoretic
problem leads to some interesting “local-global” properties of dynamical systems
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on algebraic varieties. By an AG dynamical system (AG stands for arithmetic-
geometric) we mean a triple D = (X,V, ϕ), where

• either X is an algebraic variety defined over a global field K, ϕ : X → X
is a dominant endomorphism and V ⊂ X(K) is a subset invariant under
ϕ;

• or X is an O-scheme (O stands for the ring of integers in K), ϕ : X → X
is dominant and V ⊂ X(O) is a ϕ-invariant subset.

A periodic point is a fixed point of an iteration ϕ(n) of ϕ. Together with the
system D = (X,V, ϕ), we consider its reductions Dp = (Xp, Vp, ϕp), where p ranges
over all but finitely many places of K (see Section 6 for precise definitions). For
each reduction, we consider the length �p of the shortest orbit Op which does not
intersect the “forbidden” set Vp ⊂ Xp. If such an orbit does not exist, we set
�p = ∞. We are interested in the distribution of �p’s. More specifically, let M ⊂ N
be the set of all primes p such that �p = ∞. Let N = {�p : p �∈ M}.

• If M is infinite, we call the system residually aperiodic.
• If M is finite, we call the system residually periodic.
• If both M and N are finite, we call the system strongly residually

periodic.
Precise definitions, examples and discussion of these notions are the subject of
Section 6.

Remark 1.6. According to a theorem of Hrushovski [Hr], ϕ has a periodic point
in X(Fp)\V (Fp) provided X is an affine Fp-variety and V is a proper affine subset
of X (Fp stands for the algebraic closure of Fp). In contrast, we are interested in
periodic points in X(Fp).

In this language our approach to the problem of characterization of finite solv-
able groups looks as follows. We consider word maps of groups G = SL(2, q). For
every word map ϕ : Gm → G, m = 2, 3 (and an additional word f : G2 → G
in the case m = 3) we define a verbal dynamical system (see, e.g., Examples
1.2, 1.4). Regarding the group as an affine variety, we obtain from a verbal
dynamical system an AG dynamical system on an affine Z-scheme. (In Ex-
ample 1.2 we have X = SL(2) × SL(2) × SL(2), V = SL(2) × SL(2) × {1},
ϕ(x, y, u) = (x, y, [xux−1, yuy−1]), in Example 1.4 we have X = SL(2) × SL(2),
V = SL(2) × {1}, ϕ(y, u) = (y, [y−1uy, u−1]).) The word map is a “good” can-
didate if and only if that system is residually periodic. Using the trace map we
simplify the AG system by including it into a commutative diagram

X
ϕ̃

−−−−→ X

π

� π

�

Y
ψ

−−−−→ Y

(4)

where π is a surjective projection, defined over Z, and ψ is the trace map (see
Subsections 3.1, 3.2 for more details). Moreover, the dynamical system D� =
(Y, π(V ), ψ) has special geometric properties allowing us to find out when it is
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strongly residually periodic. Note that π is surjective, therefore if D� is strongly
residually periodic then D is residually periodic.

It is an interesting question what arithmetic or geometric conditions can guar-
antee residual periodicity (or aperiodicity) of a given dynamical system. Certainly,
if the forbidden set V is empty then the system is residually periodic.

The role of arithmetic may be demonstrated by the following example.

Example 1.7. Let a and b denote distinct integers, and let H(x) = (x2−a)(x2−

b)(x2 − ab) + x. The polynomial H(x) defines a morphism H : A1

Z → A1

Z.
For every p the reduced morphism Hp has fixed points. Indeed, if p|a or p|b,

we have Hp(0) = 0. If none of a and b is divisible by p, we can use the fact that
the Legendre symbol is a multiplicative function and conclude that at least one
of three numbers: a, b, ab, is a square modulo p. A square root of this number is
then a fixed point of Hp, so we have �p = 1.

On the other hand, the morphism H : A1

Z → A1

Z may have no periodic points.
Indeed, according to [Na], the period of a rational point for a monic polynomial
cannot exceed 2, and Magma computations show that for a = 2, b = 3 there is no
rational solution to the equation H(H(x))− x = 0.

This example shows that one of the reasons for residual periodicity may be the
existence of periodic points defined over a splitting field. Polynomials of that kind
were studied in [BB], [Br], [BBH], [So].

As to geometric conditions, the dynamical system under consideration may
happen to be residually periodic because of the existence of invariant functions
(say, when there is an “extra” coordinate on which ϕ acts trivially) as in the
following simple example.

Example 1.8. Let D = (X,V, ϕ), where X = A2, V = {(a, b) ∈ X : a =
±1 or b = ±1 or a = 0 or b = 0}, and ϕ(a, b) = (a2b, b). Consider the integral
model D = (X ,V,Φ) where X = A2

Z, V = {(a, b) ∈ X(Z) : a = ±1 or b =
±1 or a = 0 or b = 0} and Φ(a, b) = (a2b, b). We have M = {2, 3}. The variety of
fixed points of Φ is a curve C = {(a, b) : ab = 1}, C

�
V = {±(1, 1)}. Nevertheless,

for any prime p > 3 we have Cp \ Vp �= ∅, i.e. �p = 1.

These examples show that there are at least two general reasons for a dynamical
system to be strongly residually periodic. The first one is purely arithmetic as
in Example 1.7. Our first observations show that even in the simplest cases of
one-dimensional systems, arising questions are related to nontrivial arithmetical
problems. In the case of elliptic curves, one of such problems has been solved
by N. Jones by establishing a weakened version of the long-standing Koblitz’s
conjecture (see the appendix to the present paper).

The second one is of geometric nature as for the trace map above. This map has
an invariant function which leads to the dimension jump for the variety of fixed
points. Once we can prove that this variety W is absolutely irreducible (or at
least contains an absolutely irreducible component), we can apply the Lang–Weil
estimates [LW] to conclude that there exists a fixed point on the reduction Wq for
q big enough. (Of course, if dim W = 1, classical Weil’s estimates (see, e.g., [FJ])
are quite enough.)
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We believe that residually periodic dynamical systems is an object worthy of
investigation. The following particular case seems to be especially interesting.
Consider a Z-scheme X, a dominant endomorphism ϕ of X, and define V as the
union of all finite ϕ-orbits in X(Z). Then Vp is the union of orbits of the reductions
of all preperiodic points of ϕ. In simple words, this means that in this case we are
interested in the distribution of the smallest periods of the maps ϕp not coming
from preperiodic points of ϕ. To the best of our knowledge, such a classification of
dynamical systems according to their “hidden” periodicity did not appear in the
literature.

The structure of the paper is as follows.
Section 3 contains a general framework of our method for the most important

case G = PSL(2, q). The Suzuki groups are treated in Section 4. Applications to
concrete sequences are contained in Section 5. Section 6 is completely devoted to
the new notion of residually periodic dynamical systems. We give basic definitions,
consider simple examples and state some conjectures. The appendix contains a
theorem of N. Jones answering one of the questions posed in Section 6.

2. Notation and preliminaries

Recall that in [BGGKPP1], [BGGKPP2], [BWW] there have been exhibited
explicit families αn(x, y), βn(x, y) of words in F2 allowing one to characterize the
class S of finite solvable groups in the class of all finite groups as follows:

A finite group G belongs to S if and only if there exists n such that G satisfies the

identity γn(x, y) := [αn(x, y), βn(x, y)] ≡ 1.

Here [a, b] = aba−1b−1 denotes the commutator.
As in the introduction, we produce these recurrence formulas using the dynam-

ical viewpoint. We consider the dynamical systems D1 and D2 from Examples 1.2
and 1.4, respectively, and consider their fibres as in Remark 1.1(ii). This means
that for any group G we introduce the maps G → G: ρu,v(w) := [uwu−1, vwv−1],
σu(w) := [u−1wu, w−1]. Then the n-th term of the characterizing sequence can be
written as the n-th iteration of the map ρ (resp. σ):

γn(x, y) = ρ(n)

x,y(γ0(x, y)) (5)

(resp.
γn(x, y) = σ(n)

y (γ0(x, y))), (6)

where γ0(x, y) = x−2y−1x (resp. γ0(x, y) = x).
Suppose that S is a solvable group of derived length n. Then the recursive

structure of the above formulas shows that γn(x, y) ≡ 1 in S. To establish the
converse statement, it is enough to show that the identity γn(x, y) ≡ 1 does not
hold in any finite minimal simple non-solvable group G. (That is precisely what
was done in [BGGKPP1], [BGGKPP2], [BWW].)

To establish this fact in the case of sequences of type (6), it is enough to show
that there exists u = y0 ∈ G such that the map σu has a (non-identity) periodic
point, i.e. there exist a positive integer m and an element 1 �= g ∈ G such that g

can be written in the form g = γ(x, y0) and σ(m)

y0 (g) = σy0(g). (For sequence (6),
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that is precisely what was done in [BWW].) It is important to note here that every
point has a finite orbit (i.e. is preperiodic in the sense of [Si1]) but a priori it can
happen that all these orbits contain identity, which is a fixed point. In this case
identity would be the only periodic point. We need an orbit that never hits the
identity and therefore contains another periodic point. This explains our choice of
the forbidden set in Examples 1.2 and 1.4.

Let us recall the list of minimal simple non-solvable groups [Th]:
(1) G = PSL(2, p), p = 5 or p ≡ ±2 (mod 5), p �= 3,
(2) G = PSL(2, 2p),
(3) G = PSL(2, 3p), p is an odd prime,
(4) G = Sz(2p), p is an odd prime,
(5) G = PSL(3, 3).
Here Sz stands for the Suzuki group (twisted form of B2, see, e.g., [HB] for

details).
To obtain a characterization of finite solvable groups, we wish to find a word

ϕ ∈ F2(x, y) with the following properties:
(i) for any finite solvable group S there exists an integer n such that for every

y ∈ S the map ϕ(n)

y : S → S is the identity map (here ϕy(x) := ϕ(x, y));
(ii) for each finite simple non-solvable group G from the above list, there exists

y ∈ G such that the self-map ϕy : G → G has a non-identity periodic point. For
the PSL(2) case, this fits into the approach described in Section 1: we consider
the dynamical system (PSL(2, Z), {1}, ϕy) and all its reductions. (Note that in
our context, the difference between SL and PSL is negligible, see Remark 3.22
below.)

In order to satisfy condition (i), one has to impose some restrictions on ϕ. We
shall discuss this matter in Section 6.

In the sequel, we shall consider two separate cases: G = PSL(2, q) and G =
Sz(q) (the case of the single group G = PSL(3, 3) is usually easy to handle). In
each case we will show that the corresponding dynamical system D gives rise to a
dynamical system D� in the space of traces (the trace map) as in diagram (4). The
trace map has special geometry: the set of its fixed points (or of periodic points of
bounded period) has positive dimension. This allows us to formulate a geometric
sufficient condition on ϕ in order to get a periodic point in every reduction. (See
Section 6 where we dare formulate some general conjectures.)

Further on we denote by An
x1,...,xn

the affine space with coordinates x1, . . . , xn.

For brevity, we denote �G = SL(2, q).
We will repeatedly use expressions of the form “a rational curve with n punc-

tures” (even if our curve lies in an affine space) referring to an open subset of a
projective curve of genus zero whose complement consists of n points (e.g., the
curve xy = 1 in the affine plane will be referred to as a rational curve with two
punctures).

3. Case G = PSL(2, q)

In this section we show how every word map gives rise to a dynamical system.
Then we prove that this dynamical system may be included into a commutative
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diagram of type (4) (namely, diagrams (8) and (14) below). The idea is that it
is sufficient to look for periodic points of the trace map ψ. Indeed, if a point a
is ψ-periodic, then all the points in the fibre over a are ϕ-periodic. The problem
is to show that this fibre is not empty. We first show how to construct the trace
map, then we show that the projection is a surjective morphism for every reduc-
tion (Theorems 3.4 and 3.10). Specific geometry of the trace map allows us to
give sufficient conditions for the corresponding dynamical system to be residually
periodic (Theorems 3.6 and 3.21).

Our method is based on the following classical fact ([Vo], [Fr], [FK], [Ma1])
quoted here from the paper [Ho] (see also [Ma2], [Go] for a nice modern exposition
of these results).

Theorem 3.1. Let F = �a1, . . . , an� denote the free group on n generators. Let

us embed F into SL(2, Z) and denote by tr the trace character. If u is an arbitrary

element of F , then the character of u can be expressed as a polynomial

tr(u) = P (t1, . . . , tn, t12, . . . , t12...n)

with integer coefficients in the 2n − 1 characters ti1i2...iν = tr(ai1ai2 . . . aiν ), 1 ≤
ν ≤ n, 1 ≤ i1 < i2 < · · · < iν ≤ n. �

Note that the theorem remains true for the group �G = SL(2, q) (and, more
generally, for SL(2, R) where R is any commutative ring, see [CMS]).

We shall use this theorem in two different situations: for maps arising from
formulas of type (6), called two-variable maps, and for those arising from formulas
of type (5), called three-variable maps. These situations will be described in the
next two subsections respectively.

3.1. Two-variable maps. In this section we focus on the underlying affine al-
gebraic variety of the algebraic group �G. Consider a morphism ϕ : �G × �G → �G
satisfying the property (needed for descending to G = PSL(2)):

ϕ(±x,±y) = ±ϕ(x, y).

For example, any word map provides such a morphism. Namely, for any x, y ∈ �G
denote s = tr(x), t = tr(y), and u = tr(xy), and define a morphism π : �G × �G →

A3
s,u,t by

π(x, y) := (s, u, t).
Then in view of Theorem 3.1 there exists a map ψ : A3

s,u,t → A3
s,u,t such that

ψ(π(x, y)) = π(ϕ(x, y), y). (7)

This map is called a “trace map” and is widely used (see, e.g., [Pe2]).
Define ϕ̃ = (ϕ, id) : �G× �G → �G× �G by ϕ̃(x, y) = (ϕ(x, y), y). Then the following

diagram commutes:
�G× �G ϕ̃

−−−−→ �G× �G

π

� π

�

A3
s,u,t

ψ
−−−−→ A3

s,u,t

(8)



10 BANDMAN, GRUNEWALD , KUNYAVSKĬI, JONES

Here ψ(s, u, t) := (f1(s, u, t), f2(s, u, t), t), where f1(s, u, t) = tr(ϕ(x, y)) and
f2(s, u, t) = tr(ϕ(x, y)y).

Lemma 3.2. For any word map ϕ(x, y) the variety

Φ : {f1(s, u, t) = s, f2(s, u, t) = u} ⊂ A3

s,u,t

of fixed points of ψ has positive dimension.

Proof. Since the variety Φ is defined by two equations in A3
s,u,t, it is sufficient to

show that it is not empty. But for any word ω(x, y) we have: ω(1, 1) = 1, thus
ψ(2, 2, 2) = (2, 2, 2), hence Φ �= ∅. �

Lemma 3.3. Let Q = (s0, u0, t0) be a fixed point of ψ defined over Fq. Let

(x, y) ∈ π−1(Q). Then (ϕ(x, y), y) ∈ π−1(Q) as well.

Proof. Indeed, (7) gives π(ϕ(x, y), y) = ψ(Q) = Q. �

Theorem 3.4. For every Fq-rational point Q = (s0, u0, t0) ∈ A3
s,u,t the fibre

H = π−1(Q) has an Fq-rational point.

Proof. We will look for an element of H among pairs of matrices of the form
��

0 1
−1 s0

�
,

�
a b
c −a + t0

��
. (9)

To lie in H, the entries of these matrices must satisfy the equations

a(−a + t0)− bc = 1, c− b + s0(−a + t0) = u0.

On eliminating b, we arrive at the following equation in a and c:

a2 + c2
− s0ac− t0a + (s0t0 − u0)c + 1 = 0, (10)

which has a solution for every q. Of course, this can be proved using the Chevalley–
Warning theorem, but for the reader’s convenience we present here an elementary
proof.

Case 1. q is odd.
The discriminant D of the quadratic part of the left-hand side of (10) equals

s2
0 − 4. If D = 0, i.e. s0 = ±2, we exhibit an explicit point in H:

��
±1 u0 ∓ t0
0 ±1

�
,

�
1 t0 − 2
1 t0 − 1

��
, (11)

so we may assume D �= 0. First, by a linear change of variables over Fq, let us
bring (10) to the form

ã2 + εc̃2 = r.

If r is a square, r = v2, we can put ã = v, c̃ = 0, so we may assume that r is not a
square. If ε is not a square, then r/ε is a square, r/ε = v2, and we can put ã = 0,
c̃ = v, so we may assume ε is a square, ε = v2. In Fq there are (q + 1)/2 squares
and (q − 1)/2 nonsquares, thus among (q + 1)/2 elements r − ã2, when ã ranges
over Fq, there is a square w2. We then put c̃ = w/v.

Case 2. q is even.
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If s0 = 0, then we get a point in H from (11), so we may assume s0 �= 0. Then
on putting ã = a + (s0t0 + u0)/s0, c̃ = c + t0/s0, we bring (10) to the form

ã2 + c̃2 + s0ãc̃ = r.

As every element of Fq is a square, we have r = v2 and we can put ã = v, c̃ = 0. �

Corollary 3.5. Consider the following “conjugation” equivalence relation ∼ on

SL(2, Fq)2:

(x, y) ∼ (x�, y�) iff ∃g ∈ SL(2, Fq) | x� = gxg−1, y� = gyg−1.

Then every absolutely irreducible component of the set of conjugacy classes of ϕ̃-

periodic points is positive dimensional.

Proof. Indeed, (SL(2, Fq)2 \ V (Fq))/∼ can be identified with F3
q. The corollary is

valid because the periodic set of the trace map is positive dimensional. �

We can now obtain a sufficient condition for the existence of periodic points.
Consider the maps ϕ : �G × �G → �G and ψ : A3

s,u,t → A3
s,u,t as in diagram (8), and

denote by Φ ⊂ A3
s,u,t the variety of fixed points of ψ. As in Section 2, for a fixed

y denote by ϕy : �G → �G the map x �→ ϕ(x, y).
Note that Φ contains a line

L1 = {s = 2, u = t}.

Since Φ is a complete intersection, all its irreducible components have dimension
at least one.

Theorem 3.6. Write Φ =
k�

i=1

Wi ∪ L1, where Wi are irreducible Fq-components

of Φ. Suppose q is big enough. If at least one of Wi’s is absolutely irreducible, then

there exists a pair (x, y) ∈ G×G such that x �= 1, y �= 1 and x is a periodic point

of ϕy.

Proof. Let Wi be an absolutely irreducible component of W , W �= L1. By the
Lang–Weil theorem [LW], there is a point Q = (s0, u0, t0) �= (±2, t,±t) ∈ Wi(Fq).
According to Theorem 3.4, we have HQ(Fq) �= ∅, where HQ = π−1(Q). It follows
that there exists a pair (x, y) ∈ �G× �G such that s0 = tr(x), u0 = tr(xy), t0 = tr(y).
By Lemma 3.3, (ϕy(x), y) ∈ HQ(Fq) as well. Since the set HQ(Fq) is finite, there
are numbers n < m ∈ N such that ϕ(m)

y (x) = ϕ(n)

y (x). Thus, x̃ = ϕ(n)

y (x) is a
periodic point of ϕy. Moreover, the image of x̃ in G = PSL(2, q) is non-identity
since Q = (s0, u0, t0) �= (±2, t,±t). �

Remark 3.7. If there is a component Wi ⊂ Φ defined over Z and irreducible
over Q, then, by [Gr, Theorem IV, 9, 7.7(i)], the assumptions of the theorem are
satisfied for any prime p big enough.

Remark 3.8. Suppose q = p > 3 is a prime number. Note that all the maps in
diagram (8) are defined over Z, and it can thus be viewed as the special fibre at p
of the following diagram of morphisms of Z-schemes (denoted by the same letters):



12 BANDMAN, GRUNEWALD , KUNYAVSKĬI, JONES

G × G
ϕ̃

−−−−→ G × G

π

� π

�

A3

Z
ψ

−−−−→ A3

Z

(12)

where G = SL(2, Z).

3.2. Three-variable maps. Let here �G denote SL(2, K) where K is an arbitrary
field. Consider a morphism ϕ : �G× �G× �G → �G such that

ϕ(±x,±u,±y) = ±ϕ(x, u, y).

The modified map ϕ̃ : �G × �G × �G → �G × �G × �G is defined by ϕ̃(x, u, y) =
(x, ϕ(x, u, y), y).

As above, we consider a representation ρ of the free group F3 in SL(2, Z) and
assume that ϕ is defined by a word w = w(x, u, y). The trace of ρ(w) can be
expressed as a polynomial in 7 variables a1 = tr(x), a2 = tr(y), a3 = tr(u),
a12 = tr(xy), a13 = tr(xu), a23 = tr(yu), a123 = tr(xyu). These variables are
dependent (see, e.g., [Ma1] or formulas (2.3)–(2.5) in [Ho]):

a2

123 − a123(a12a3 + a13a2 + a23a1 − a1a2a3) + (a2

1 + a2

2 + a2

3 + a2

12

+ a2

13 + a2

23 − a1a2a12 − a1a3a13 − a2a3a23 + a12a13a23 − 4) = 0.
(13)

Let a = (a1, a2, a3, a12, a13, a23, a123) ∈ A7, let Z ⊂ A7 be an absolutely irre-
ducible set defined by (13). Let π(x, u, y) = a ∈ Z be the trace projection. Then
the following diagram is commutative:

�G× �G× �G ϕ̃
−−−−→ �G× �G× �G

π

� π

�

Z(K) ψ
−−−−→ Z(K)

(14)

where ψ(a) = (a1, a2, l1(a), a12, l2(a), l3(a), l4(a)),

l1 = tr(ϕ(x, u, y)), l2 = tr(ϕ(x, u, y)x),

l3 = tr(ϕ(x, u, y)y), l4 = tr(ϕ(x, u, y)xy).
The variety F (ϕ) ⊂ Z of fixed points of ψ is defined by the equations

l1(a) = a3, l2(a) = a13, l3(a) = a23, l4(a) = a123,

and, since it is nonempty, its dimension is at least 3.
Let us now consider diagram (14) more carefully.

Lemma 3.9. Let F be any algebraically closed field. Then the set Z is an irre-

ducible hypersurface over F .

Proof. Assume the contrary. Let p denote the natural projection of A7 to A6,
forgetting the coordinate a123. Let L ⊂ A6 be an irreducible curve not contained
in the branch locus of the restriction of p to Z. Then the set p−1(L)

�
Z is

reducible.
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Case 1. char(F ) �= 2.
Let c �= ±2. Consider the curves L = {a1 = a2 = a13 = a23 = 0, a12 = c} ⊂ A6

and M = p−1(L) = {a1 = a2 = a13 = a23 = 0, a12 = c} ⊂ A7. Then from (13) it
follows that M � = Z

�
M is defined by the following equations:

(a123 − a3c/2)2 − (c2
− 4)(a2

3 − 4)/4 = 0, a1 = a2 = a13 = a23 = 0, a12 = c.

Therefore M � is a branched double cover of L, hence it is irreducible. Contradic-
tion.

Case 2. char(F ) = 2. We now consider the curve L = {a1 = a2 = a13 = a23 =
0, a12 = a3 + 1} ⊂ A6. In the notation of Case 1, M � is defined by the equations

a2

123 − a3(a3 + 1)a123 + 1 = 0, a1 = a2 = a13 = a23 = 0, a12 = a3 + 1.

Thus it is irreducible. Contradiction.

Hence Z is irreducible. �
Theorem 3.10. Let Z ⊂ A7

a1,a2,a3,a12,a13,a23,a123
be defined by equation (13). Then

for all q the map π : SL(2, q)× SL(2, q)× SL(2, q) → Z(Fq) is surjective.

Proof. The result will follow from identities between certain polynomials in the
polynomial ring

R := Z[x1, x2, x3, x12, x13, x23, x123, α1, γ1, α2, γ2].

Denote
L :=x2

123 − x123(x12x3 + x13x2 + x23 + x1 − x1x2x3)

+ x2

1 + x2

2 + x2

3 + x2

12 + x2

13 + x2

23

− x1x2x12 − x1x3x13 − x2x3x23 + x12x13x23 − 4,

(15)

L12 := x2

1 + x2

2 + x2

12 − x1x2x12 − 4, L13 := x2

1 + x2

3 + x2

13 − x1x3x13 − 4,

L23 := x2

2 + x2

3 + x2

23 − x2x3x23 − 4
(all viewed as elements of R).

We start with the following lemma (skipping an elementary proof).

Lemma 3.11. Let K be a finite field, and let r, s, t, a ∈ K be such that the

equation in x, y
x2 + y2 + rxy + sx + ty = a

is not solvable in K. Then the characteristic of K is 2 and r = 0, s = t hold. �
We now define two more polynomials in the ring R (the reason will become

clear later on):

D1 := −α2

1 + α1γ1x3 + α1x1 − γ2

1 − γ1x1x3 + γ1x13 − 1,

D2 := −α2

2 + α2γ2x3 + α2x2 − γ2

2 − γ2x2x3 + γ2x23 − 1.
Our argument will also need the following two by two matrix over R:

A =

�
2α2 − γ2x3 − x2 −α2x3 + 2γ2 + x2x3 − x23

α2x3 − 2γ2 − x2x3 + x23 −α2x2
3 + 2α2 + γ2x3 + x2x2

3 − x2 − x3x23

�
. (16)

Define further Ã to be the adjoint matrix of A, that is Ã is A with the diagonal
entries permuted and the off-diagonal entries multiplied by −1. The product ÃA
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is the scalar matrix corresponding to the determinant of A. We further consider
the vector

b :=
�

α2x1 − γ2x1x3 + γ2x13 − x1x2 + x12

α2x13 − γ2x1 − x2x13 + x123

�
∈ R2

and define r, s ∈ R by �
r
s

�
:= Ãb.

Multiply now D1 by L2
23 and replace y1 := L2

23α1, y2 := L2
23γ1, obtaining the

polynomial

F (y1, y2) := −y2

1 + y1y2x3 + y1L23x1 − y2

2 − y2L23x1x3 + y2L23x13 − L2

23

in the variables y1, y2.
We need one more lemma.

Lemma 3.12. Let D2 be the ideal of R generated by D2 and D the ideal generated

by D2 and L. Then the following hold:

(i) det(A)− L23 is in D2;

(ii) F (r, s) is in D.

The proof of this lemma amounts to certain simple computations which are best
done using a computer algebra system. The first item follows for example from
the identity:

det(A)− L23 = (x2

3 − 4)D2.

For the second item, the formula is more complicated. We skip the details. �

We can now go over to the proof of the theorem.
Let K be any field. Let x = (x1, x2, x3, x12, x13, x23, x123) ∈ Z(K). As we are

working with traces and are thus allowed to make simultaneous conjugation, we
start our search of solutions to π(B1, B2, B3) = x by considering the following
triples of two by two matrices over the polynomial ring K[α1, γ1, α2, γ2]:

B1 =

�
α1 −α1x3 + γ1 + x1x3 − x13

α1 x1 − α1

�
, B2 =

�
α2 −α2x3 + γ2 + x2x3 − x23

γ2 x2 − α2

�
,

(17)

B3 =

�
0 1
−1 x3

�
. (18)

The condition that B1, B2, B3 satisfy π(B1, B2, B3) = x and have determinant
1 is equivalent to the four equations:

D1 = −α2

1 + α1γ1x3 + α1x1 − γ2

1 − γ1x1x3 + γ1x13 − 1 = 0, (19)

D2 = −α2

2 + α2γ2x3 + α2x2 − γ2

2 − γ2x2x3 + γ2x23 − 1 = 0, (20)

α1(2α2 − γ2x3 − x2) + γ1(−α2x3 + 2γ2 + x2x3 − x23)

− α2x1 + γ2x1x3 − γ2x13 + x1x2 − x12 = 0,
(21)

α1(α2x3 − 2γ2 − x2x3 + x23) + γ1(−α2x
2
3 + 2α2 + γ2x3 + x2x

2
3 − x2 − x3x23)

− α2x13 + γ2x1 + x2x13 − x123 = 0.
(22)
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Notice that the first equation is quadratic in α1, γ1 only and the second is quadratic
in α2, γ2 only. The third and fourth equations are written as a linear system in
α1, γ1. Defining the vectors

y :=
�

α1

γ1

�
, b :=

�
α2x1 − γ2x1x3 + γ2x13 − x1x2 + x12

α2x13 − γ2x1 − x2x13 + x123

�
,

the third and fourth of the above equations can be schematically written as

Ay = b

with the matrix A defined in (16) evaluated at our point x.
We now assume that K is a finite field. We shall now write L23(x) for the

polynomial L23 defined above evaluated at our point x ∈ Z(K), that is L23(x) =
x2

2+x2
3+x2

23−x2x3x23−4. We use a similar notation for all the other polynomials.
Case 1: At least one of the values L12(x), L13(x), L23(x) is nonzero.

Assume, say, L23(x) �= 0 (the other cases are similar).
First we show that (20), viewed as an equation in the indeterminates α2, γ2,

has a solution. Assume the contrary. Then by Lemma 3.11 we conclude that the
characteristic of K is two, x3 = 0 and x2 = x23. This contradicts the assumption
L23 �= 0.

We shall now fix a solution (α2, γ2) ∈ K2 of equation (20) and put these into
the above matrix A getting a two by two matrix over K. Similarly we get a vector
b in K2. By Lemma 3.12 we find

det(A) = L23(x) �= 0

which is guaranteed by our assumption. We now define (α1, γ1) ∈ K2 by
�

α1

γ1

�
:= A−1b.

By Lemma 3.12(ii), we have found three matrices B1, B2, B3 ∈ SL(2, K) satisfying
π(B1, B2, B3) = x.

If now L23(x) = 0, we have either L12(x) �= 0 or L13(x) �= 0. These cases are
treated in a similar way. �
Remark 3.13. The above proof remains true if K is any quadratically closed
field (cf. also [Pe1]).

Case 2: L12(x) = L13(x) = L23(x) = 0.
Loosely speaking, our strategy in this case is to use automorphisms of the free

group F3 to get from x another point of Z(K) such that not all three values of
Lij vanish at that point, and then use the result of Case 1. Let us make this more
precise.

We start with an obvious lemma.

Lemma 3.14. Let n ≥ 2, let Fn denote the free group on n generators X1,. . . ,

Xn, and let Gn
be the product of n copies of a group G. The map

Aut(Fn) → Sym(Gn), ϕ �→ ϕ̂,

defined by

ϕ̂(T ) = (ϕ(X1)T , . . . , ϕ(Xn)T ),
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is a group homomorphism.

Here T is an n-tuple of elements of G and ϕ(Xi)T is the element of G obtained

by substitution of the elements of T instead of the Xi’s appearing in the expression

of ϕ(Xi) in the basis {X1, . . . ,Xn}. �
The following constructions are described in [Ho] (see also [Ma1], [Pe2]), some-

times with details omitted. For the reader’s convenience and sake of completeness
we now focus on the case n = 3 giving some more details. Fix a basis {X,Y, Z}
of F3.

Definition 3.15. For every ϕ ∈ Aut(F3) define a map Fϕ : A7 → A7 by the
formula

Fϕ(u) := (Pϕ(X)(u), Pϕ(Y )(u), . . . , Pϕ(XY Z)(u)),
where Pw is the integer polynomial in 7 variables corresponding to the word w (cf.
Theorem 3.1).

Lemma 3.16. For every ϕ ∈ Aut(F3) and every T ∈ SL(2, K)3 we have

π(ϕ̂(T )) = Fϕ(π(T )).

Proof. Obvious. �

Lemma 3.17. For every ϕ ∈ Aut(F3) and every field K we have the inclusion

Fϕ(Z(K)) ⊆ Z(K).

Proof. We first prove that Fϕ(Z(K)) ⊆ Z(K), where K is an algebraic closure of
K. From this the needed inclusion will follow as soon as Fϕ is defined over K. In
Case 1 we have proven that the map π is surjective onto an open subset

U(K) = {L12 �= 0, L13 �= 0, L23 �= 0} ⊆ Z(K),

since the proof was valid for any algebraically closed field (see Remark 3.13).
Let u ∈ U(K), u = π(T ), T ∈ SL(2,K)3. Then Fϕ(u) = Fϕ(π(T )) = π(ϕ̂(T )) ∈

Z(K). Hence, Fϕ(U(K)) ⊆ Z(K). Since U is open in Z and Z is irreducible, the
same inclusion is valid for Z. Since Fϕ is defined over Z, the inclusion for K-points
follows as well. �

Lemma 3.18. (i) Fid = id;

(ii) For every ϕ, ψ ∈ Aut(F3) and every u ∈ Z(K) we have

Fϕ◦ψ(u) = Fϕ ◦ Fψ(u).

Proof. The first item is obvious, so let us prove the second one. Once again,
similarly to Lemma 3.17, it is sufficient to prove it over an open subset U considered
in Lemma 3.17, and over the algebraically closed field K).

Let us take u ∈ U(K), u = π(T ), T ∈ SL(2,K)3. Using Lemmas 3.14 and 3.16,
we get

Fϕ◦ψ(u) = π( �ϕ ◦ ψ(T )) = π(ϕ̂ ◦ ψ̂(T )),

Fϕ ◦ Fψ(u) = Fϕ(π(ψ̂(T )) = π(ϕ̂(ψ̂(T ))),
so the needed equality is proved. �
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Corollary 3.19. The correspondence ϕ �→ Fϕ defines a group homomorphism

Aut(F3) → Aut(Z) where Aut(Z) is the group of Z-defined polynomial automor-

phisms of the variety Z. �

We can now go over to the proof of the theorem in Case 2.
Let, as above, x ∈ Z(K) be such that L12(x) = L13(x) = L23(x) = 0.

Case 2a. Let first assume that there exists ϕ ∈ Aut(F3) such that u := Fϕ(x)
is such that not all three values L12(u), L13(u), L23(u) are zero. By Case 1, there
exists T ∈ SL(2, K)3 such that π(T ) = u. Define T � := ϕ̂−1(T ). By Lemma 3.16
and Corollary 3.19, we have π(T �) = Fϕ−1(π(T )) = Fϕ−1(u) = F−1

ϕ (u) = x, and
we are done.

Case 2b. Assume that there is no such ϕ as in Case 2a.
Denote by Lϕ

ij (where i, j stand for distinct numbers from the set {1, 2, 3})
the polynomials in 7 variables obtained after applying Fϕ to Lij . The needed
contradiction immediately follows from the following proposition.

Proposition 3.20. Denote the automorphisms of F3 sending the basis {X, Y ,

Z} to the bases {XY, Y, Z}, {X,Y Z,Z}, {X,Y,XZ}, {XY −1, Y, Z}, {X,Y, Y Z},
{XY 2, Y, Z}, {X,ZY Z−1, Z}, {X,Y,XZX−1}, by ϕ1, . . . , ϕ8, respectively. De-

note by a the ideal in Z[x1, . . . , x123] generated by the functions Lϕm
ij where, as

above, i, j stand for distinct numbers from the set {1, 2, 3}, and k = 1, . . . , 8, and

let

Za(K) = {x ∈ A7(K) : f(x) = 0 for all f ∈ a}.

Then for any field K of characteristic different from 2 we have

Za(K) ={(2, 2, 2, 2, 2, 2, 2), (0,−2,−2, 0, 0, 2, 0), (0,−2, 2, 0, 0,−2, 0),
(0, 2,−2, 0, 0,−2, 0), (0, 2, 2, 0, 0, 2, 0), (0, 0, 0,−2,−2,−2, 0),
(0, 0, 0,−2, 2, 2, 0), (0, 0, 0, 2,−2, 2, 0), (0, 0, 0, 2, 2,−2, 0)},

and for any field of characteristic 2 we have

Za(K) = {(0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 1, 0, 1)}.

Proof. MAGMA computation. �

For each of the points x appearing in Proposition 3.20 one can easily ex-
hibit an explicit triple of matrices T such that π(T ) = x. Say, π(Id, Id, Id) =
(2, 2, 2, 2, 2, 2, 2),

π

��
0 −1
1 0

�
,

�
−1 0
0 −1

�
,

�
−1 0
0 −1

��
= (0,−2,−2, 0, 0, 2, 0),

and so on.
Theorem 3.10 is proved. �

Coming back to the map ϕ̃, let us consider an additional condition:

u = w(x, y), (23)
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where x ∈ �G, y ∈ �G and w ∈ F2. Let
g3(a1, a2, a12) = tr(w(x, y)), g13(a1, a2, a12) = tr(w(x, y)x),
g23(a1, a2, a12) = tr(w(x, y)y), g123(a1, a2, a12) = tr(w(x, y)xy).

Then (23) defines a three-dimensional variety W (w) ⊂ Z:

W (w) = Z
�






a3 = g3(a1, a2, a12),
a13 = g13(a1, a2, a12),
a23 = g23(a1, a2, a12),

a123 = g123(a1, a2, a12)





. (24)

We can now formulate a result which treats the SL(2, q)-case for three-variable
maps and thus makes a crucial step towards getting a sufficient condition for a
given sequence of type (5) to characterize finite solvable groups.

Theorem 3.21. Let v(x, u, y) and w(x, y) be words in the free groups with three

and two generators, respectively. Define a sequence un(x, y) by the following re-

currence relations:

u0(x, y) = w(x, y), un+1(x, y) = v(x, un(x, y), y).

Let ϕ : �G× �G× �G → �G be the map defined by (x, u, y) �→ v(x, u, y), let F (ϕ) be

the variety of fixed points of the trace map ψ induced by ϕ (see diagram (14)), and

let W (w) be defined by (24). With the notation of Theorem 3.10, let V = {a2 =
2, a1 = a12, a3 = a23, a13 = a123}.

Assume that F (ϕ)
�

W (w) contains a positive dimensional, absolutely irre-

ducible Q-subvariety Φ such that Φ� := Φ \ (Φ
�

V ) is an open subset of Φ.
Then there is q0 such that for every q > q0 there exists a pair (x, y) ∈ �G × �G

with un(x, y) �= 1 for all n ∈ N.

Proof. Let q0 be such that Φ�(Fq) �= ∅. Let a ∈ Φ�(Fq). By Theorem 3.10, there is a
triple (x, u, y) ∈ �G× �G× �G such that π(x, u, y) = a. Moreover, since a ∈ W (w), we
may take u = w(x, y). Since a ∈ Φ, we have ψ(a) = a, hence π(x, u1(x, y), y) = a.
Similarly, π(x, un(x, y), y) = a for all n ∈ N.

Since a2 = trun(x, y) �= 2, we have un(x, y) �= 1. �

Remark 3.22. Although this section was completely devoted to considering the
group SL(2) (until now PSL(2) only appeared in its title), the obtained results (in
particular, Theorems 3.6 and 3.21) are also applicable to the PSL(2)-case. (In the
two-variable case, this is explicitly explained at the end of the proof of Theorem
3.6, the case of Theorem 3.21 is similar).

4. Case G = Sz(q)

In this section we consider a map ϕ : G × G → G where G is a Suzuki group,
Sz(q), q = 22m+1, m ≥ 1. As above, for a fixed y ∈ G we denote by ϕy : G → G
the map (x, y) �→ ϕ(x, y). There is no trace map in this case. Nevertheless there
is a factorization (see diagram (27)) which simplifies the picture. This leads to a
sufficient condition (Theorem 4.3) for the existence of periodic points. Although
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the condition is not that simple, we have an example in Subsection 5.1 when it
works.

Recall that according to the Bruhat decomposition, G = U1 ∪ U2, where the
first Bruhat cell U1 = B consists of all lower-triangular matrices of the form
x = T (a, b)D(k) with

T (a, b) =





1 0 0 0
a 1 0 0

a1+s + b as 1 0
a2+s + ab + bs b a 1



 ,

D(k) =





ks/2+1 0 0 0
0 ks/2 0 0
0 0 k−s/2 0
0 0 0 k−s/2−1



 ,

and the second Bruhat cell U2 consists of the matrices

x = T (a, b)D(k)wT (c, d), (25)
where

w =





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 .

Here a, b ∈ Fq, k ∈ F∗q , s = 2m+1.
Recall the following properties of these matrices:

(i) T (0, 1)T (a, b) = T (a, b)T (0, 1);
(ii) D(k)w = wD(k−1);
(iii) T (a, b)T (c, d) = T (a + b, acs + b + d);
(iv) wT (0, t)w = T (t1−s, t−1)D(t2s/(s+2))wT (t1−s, 0);
(v) T (0, 1)−1 = T (0, 1);
(vi) D(k)−1T (a, b)D(k) = T (ak, bk1+s).
For x = T (a, b)D(k)wT (c, d) ∈ U2 define

x� = κ(x) = T (c, d)xT (c, d)−1 = T (c, d)T (a, b)D(k)w
= T (a + c, cas + b + d)D(k)w.

Note that for any z = T (α, β) we have

κ(zxz−1) = κ(T (α, β)T (a, b)D(k)wT (c, d)T (α, β)−1)

= T (c, d)T (α, β)−1T (α, β)T (a, b)D(k)w
= T (c, d)T (a, b)D(k)w = κ(x).

Lemma 4.1. If for any y, x, h ∈ G we have

ϕy(hxh−1) = hϕhyh−1(x)h−1, (26)

then for y = T (0, t) we have

ϕy(κ(x)) = κ(ϕy(x)).
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Proof. For z = T (c, d) we have

ϕy(zxz−1) = zϕz−1yz(x)z−1.

Since the matrices T (0, t) commute with any z, it follows that

ϕy(zxz−1) = zϕy(x)z−1,

i.e.
ϕy(κ(x)) = κ(zϕy(x)z−1) = κ(ϕy(x)).

�
From now on until the end of this section we only consider elements x from the

second Bruhat cell.

Corollary 4.2. For x ∈ U2 denote π1(x) = a + c, π2(x) = cas + b + d, k(x) = k.
Then for y = T (0, t) there exist functions f, g and h such that if ϕy(x) �= 1 then

π1(ϕy(x)) = f(π1(x), π2(x), k(x)),

π2(ϕy(x)) = g(π1(x), π2(x), k(x)),
k(ϕy(x)) = h(π1(x), π2(x), k(x)).

Proof. Indeed, by construction κ(x) = T (π1(x), π2(x))D(k(x))w. By Lemma 4.1,
we thus have

T (π1(ϕy(x)), π2(ϕy(x))D(k(ϕy(x))w = κ(ϕy(x)) = ϕy(κ(x))
= ϕy(T (π1(x), π2(x))D(k(x))w).

It follows that π1(ϕy(x)), π2(ϕy(x)) and k(ϕy(x)) are determined uniquely by the
values of π1(x), π2(x) and k(x). �

Corollary 4.2 may be expressed by the following commutative diagram of Fq-
morphisms:

A2

a,b × A∗k × A2

c,d ⊇ U
ϕy

−−−−→ A2

a,b × A∗k × A2

c,d

π

� π

�

A2

a,b × A∗k
ψ

−−−−→ A2

a,b × A∗k

(27)

where U denotes the set of x ∈ U2 such that ϕy(x) �= 1.
This corollary provides the following sufficient condition for the existence of

periodic points which can be viewed as an analogue of Theorem 3.6:

Theorem 4.3. Let G = Sz(q), let y = T (0, 1) ∈ G, and suppose that the map ϕy

satisfies the following conditions:

• equality (26) holds for any x, y, h ∈ G;

• the morphism ψ : A2

a,b×A∗k → A2

a,b×A∗k induced by ϕy (see diagram (27))
has an invariant set V (i.e. ψ(V ) ⊂ V ).

Then the map ϕy : G → G has a non-identity periodic point.

Proof. Indeed, the cell U2 does not contain the identity matrix. �
Remark 4.4. In view of (26), the statement of Theorem 4.3 holds for any y =
T (0, t).
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5. Examples

In this section we want to demonstrate how the trace map works. In Sub-
section 5.1 we consider the two-variable case and give another proof of the main
theorem of [BWW] characterizing finite solvable groups. In Subsection 5.2 we com-
pute the trace map for the three-variable sequence from [BGGKPP1], [BGGKPP2]
(that also characterizes finite solvable groups). In Subsection 5.3 we apply our
method for finding a modified sequence having the same property. Subsection 5.4
contains an illustration of the method for a simple case where the word under
consideration is commutator.

5.1. The sequence of Bray–Wilson–Wilson. The sequence sn(x, y) of [BWW]
is defined as follows:

s1 = x, s2 = [y−1xy, x−1], . . . , sn = [y−1sn−1y, s−1

n−1
], . . . ,

Recall the main result of [BWW].

Theorem 5.1. [BWW] A finite group G is solvable if and only if

(∃ n ∈ N) (∀(x, y) ∈ G×G) sn(x, y) = 1.

The proof reduces to the following:

Theorem 5.2. [BWW] Let G = PSL(2, Fq), q > 3, or G = Sz(22m+1). Then

there exists a pair (x, y) ∈ G×G such that sn(x, y) �= 1 for all n ∈ N.

We want to give another proof of Theorem 5.2 using the trace map and other
geometric considerations.

For technical reasons we will change notation and consider a sequence en(x, y)
which differs from sn(x, y) only by replacing y with y−1. Since in [BWW] the
element y was supposed to be an involution, this does not matter. We define

e1 = x, e2 = [yxy−1, x−1], . . . , en = [yen−1y
−1, e−1

n−1
], . . . ,

i.e. in this example
ϕ(x, y) = ϕy(x) = [yxy−1, x−1]

(see Section 3).

Case of PSL As explained in Remark 3.22, we can freely apply the results of
Subsection 3.1 obtained for �G = SL(2, q) to the case G = PSL(2, q).

We are going to compute the variety Φ of fixed points of the corresponding trace
map ψ : A3 → A3 (see diagram (8)). We maintain the notation of Subsection 3.1.
In particular, we denote s = tr(x), u = tr(xy), t = tr(y), and r = u2+s2+t2−ust.
Then (see [CMS, Lemma 5.2.4]),

f1(s, u, t) = 2s2 + (tr(yxy−1x−1))2 − s2(tr(yxy−1x−1))− 2,

tr[y, x] = r − 2.

Direct computations give
f1(s, u, t) = 2s2 + (r − 2)2 − s2(r − 2)− 2 = s2(4− r) + r2

− 4r + 2

= (r − 4)(r − s2) + 2,
(28)

f2(s, u, t) = f1(s, u, t) · t + s(st− u)(r − 4)− t(r − 3). (29)
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The variety Φ ⊂ A4 is now defined by the following system:

Φ =






s =(r − 4)(r − s2) + 2,

u =st + s(st− u)(r − 4)− t(r − 3),

r =u2 + t2 + s2
− ust.





(30)

This curve contains a trivial component L1:

s = 2, r = 4, u = t.

To eliminate this component, we consider a curve Φ̃ in the space A5 with coordi-
nates (s, u, t, r, z) which is isomorphic to Φ \ L1:

Φ̃ =






r = u2 + t2 + s2 − ust,

s = (r − 4)(r − s2) + 2,

u = st + s(st− u)(r − 4)− t(r − 3),
z(r − 4) = 1.





(31)

Lemma 5.3. The plane curve A ⊂ A2
given by the equation (s−2) = (r−4)(r−s2)

is a smooth irreducible genus 1 curve with two punctures.

Proof. Assume the ground field is algebraically closed. Let Ã be the closure of A
in the projective space. One can check that Ã has no singular points.

As a plane smooth curve, Ã is irreducible. Moreover, it is a double cover of P1

and by Hurwitz’s formula has genus 1. �
Magma computations show that the curve Φ̃ has two components:

W1 =






z + t + s = 0,

u− t− s + r − 1 = 0,

ts− 2t− 2s + r = 0,

tr − 4t + sr − 4s + 1 = 0,

s2r − 4s2 + s− r2 + 4r − 2 = 0,






(32)

W2 =






z − t + s = 0,

u− t + s− r + 1 = 0,

ts− 2t + 2s− r = 0,

tr − 4t− sr + 4s− 1 = 0,
s2r − 4s2 + s− r2 + 4r − 2 = 0,






(33)

both defined over the ground field and isomorphic to A \ {r = 4, s = 2}, i.e. to
a genus 1 irreducible curve with 3 punctures. Therefore both W1 and W2 are
absolutely irreducible.

From Theorem 3.6 it follows that if q is big enough, then there exists a pair
(x, y) ∈ PSL(2, q)× PSL(2, q) such that x is a periodic point of the map ϕy.

Remark 5.4. Since W1, W2 are curves of genus 1 with 3 punctures, they contain
Fq-points for all q ≥ 7. Since each fibre contains a rational curve with at most two
punctures, q “big enough” means q ≥ 7 in this example. Small fields have been
handled in a straightforward manner.
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Case of Sz(2n)
We keep the notation of Section 4. We have to show that the map ϕy meets

all the conditions of Theorem 4.3. Condition (26) is obviously satisfied. Let us
find an invariant set V of the map ψ (see diagram (27)). A direct computation of
f(0, b, k), g(0, b, k) and h(0, b, k) for x = T (0, b)D(k)w and y = T (0, 1) gives

k(0, b, k) = k2β
2s

s+2 = k2(b + 1)
2s

s+2 · k
(1+s)2s

s+2 = k4(b + 1)
2s

s+2 ,

f(0, b, k) = 0,

g(0, b, k) = (β1−sk−1)1+s + (β + 1/β)k−(1+s)

= k−(1+s)(β1−s2
+ β + 1/β) = k−(1+s)β = b + 1.

Thus for b �= 0, 1 the function g has period 2.
After the second iteration, we get

f(f(0, b, k), g(0, b, k), h(0, b, k)) = 0,

g(f(0, b, k), g(0, b, k), h(0, b, k)) = b,

h(f(0, b, k), g(0, b, k), h(0, b, k)) = k16(b + 1)
8s

s+2 b
2s

s+2 .

Therefore, the set V = {x ∈ U2 : π1(x) = 0, π2(x) = b �= 0, 1} is invariant under
the second iteration of ϕy and does not contain 1.

Theorem 5.2 is proved.

5.2. Three-variable sequence. In this subsection we consider another sequence
characterizing solvable groups which was introduced in [BGGKPP1], [BGGKPP2]:

u0 = x−2y−1x, . . . , un+1 = [xunx−1, yuny−1], . . .
In the notation of Subsection 3.2 we have

v(x, u, y) = [xux−1, yuy−1], w(x, y) = x−2y−1x,

and a stands for the point a = (a1, a2, a3, a12, a13, a23, a123) ∈ A7.
We need some additional notation:

a213 = tr(yxu) = a12a3 + a13a2 + a23a1 − a1a2a3,

b12 = tr(x−1y) = a1a2 − a12,

b13 = tr(x−1u) = a1a3 − a13,

b23 = tr(y−1u) = a2a3 − a23,

b123 = tr(x−1yu) = a1a23 − a123,

b213 = tr(y−1xu) = a2a13 − a213,

c12 = tr(xy2) = a12a2 − a1,

cm12 = tr(x−1y2) = b12a2 − a1,

d12 = tr(x2y) = a12a1 − a2,

dm12 = tr(x−2y) = b12a1 − a2,

g12 = tr(xu2) = a13a3 − a1,

fm23 = tr(u2y−1) = b23a3 − a2,

p1 = tr(ux−1yuy−1x) = a3b12b123 − b2

12 − b2

123 + 2,
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p2 = b23p1 − b13{a3b213 − b12}+ a1b213 − b23,

p3 = b12(a2p1 − b13b213 + dm12)− b213a23 + cm12,

p4 = b2

12 + a2

3 + b2

123 − b12a3b123 − 2,

p5 = b2

12 + a2

3 + b2

213 − b12a3b213 − 2,

l1(a) = 2a2

3 + p2

1 − p1a
2

3 − 2,

l2(a) = a1l1 − b213p2 + p3,

l3(a) = b213(b13p1 − (b123fm23 − b12b23 + b13))−
− b12(p1a1 − b123b23 + cm12) + a13b123 − dm12.

A direct computation shows that

tr([xux−1, yuy−1]) = l1(a), (34)

tr([xux−1, yuy−1]x) = l2(a), (35)
tr([xux−1, yuy−1]y) = l3(a). (36)

In the following paragraph we compute

tr([xux−1, yuy−1]xy) = l4(a) :

Y = b13b213 − dm12, p6 = b2
12 + a2

3 + b2
123 − b12a3b123 − 2, G = b213b12a3 − b2

12 −

b2
213 + 2, U = a2G − Y , V = b213a23 − cm12, E = b12U − V , Q = b213a1 − b23,

R = a3b213− b12, H = b13R−Q, D = b23G−H, B = b123D−E, C = b12(p6− 1),
A = a2B − C, l4 = a12l1 −A.

Furthermore,

tr(u0) = tr(x−2y−1x) = tr(x−1y−1) = a12,

tr(u0x) = tr(x−2y−1x2) = tr(y) = a2,

tr(u0y) = tr(x−2y−1xy) = tr(x) tr([x, y])− tr(y−1xy)

= a1(a2

1 + a2

2 + a2

12 − a1a2a12 − 3),

tr(u0xy) = tr(x−2y−1x2y) = tr([x2, y])

= (a1 − 2)2 + a2

2 + d2

12 − (a1 − 2)a2d12 − 2.

Therefore the variety C = Φ
�

W (w) is defined by equation (13) and the following
system of equations:

l1(a) = a3, (37)
l2(a) = a13, (38)
l3(a) = a23, (39)
l4(a) = a123, (40)

a3 = a12, (41)
a13 = a2, (42)

a23 = a1(a2

1 + a2

2 + a2

12 − a1a2a12 − 3), (43)
a123 = (a1 − 2)2 + a2

2 + d2

12 − (a1 − 2)a2d12 − 2. (44)
Magma computations show that C contains two components, C1 and Φ: C1 cor-
responds to the trivial solution u0 = 1, x = y−1, and Φ is an irreducible curve
intersecting the set V (see Theorem 3.21) at a finite number of points (at most
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31 as MAGMA computations give). Moreover, this curve is a projection of the
solution of the equation u0 = u1 computed in [BGGKPP2].

5.3. A new sequence. In this subsection we produce a new sequence character-
izing finite solvable groups. It is a modification of the sequence en considered in
Subsection 5.1. We keep the notation of that subsection.

Let θn(x, y) = sn(x, y2). Denote θ(x, y) = ϕ(x, y2), i.e.

θy(x) = [y2xy−2, x−1].

Theorem 5.5. The map θ(x, y) : SL(2, q) → SL(2, q) has nontrivial periodic

points for all q.

Proof. For a pair (x, y) ∈ SL(2, q), let s = tr(x), t1 = tr(y), u1 = tr(xy), t =
tr(y2) = t21 − 2, u = tr(xy2) = u1t1 − s.

Consider the following maps:

κ : A3

s,u1,t1 −→ A3

s,u,t, κ(s, u1, t1) = (s, u1t1 − s, t21 − 2);

ψ : A3

s,u,t −→ A3

s,u,t, ψ(s, u, t) = (f1(s, u, t), f2(s, u, t), t),
where the functions f1 and f2 are defined in (28) and (29), respectively;

ψθ : A3

s,u1,t1 → A3

s,u1,t1 ,

ψθ(s, u1, t1) = (tr θy(x), tr(θy(x) · y), tr y).
We obtain the following commutative diagram:

SL(2)× SL(2)
(θ,id)

−−−−→ SL(2)× SL(2)

π

� π

�

A3
s,u1,t1

ψθ
−−−−→ A3

s,u1,t1

κ
� κ

�

A3
s,u,t

ψ
−−−−→ A3

s,u,t

(45)

As shown above, the variety Φ of fixed points of ψ has three irreducible Fq-
components L1, W1, W2, all absolutely irreducible for any q.

Lemma 5.6. The curve Z2 := κ−1(W2) is absolutely irreducible.

Proof. Consider the curve B defined in P3 with homogeneous coordinates (s̃ : r̃ :
t̃ : w̃) by the equations:

s̃t̃− 2t̃w̃ + 2s̃w̃ − r̃w̃ = 0, (46)
t̃r̃ − 4t̃w̃ − s̃r̃ + 4s̃w̃ − w̃2 = 0, (47)

(s̃− 2w̃)w̃2 = (r̃w̃ − s̃2)(r̃ − 4w̃). (48)
Since equations (33) are linear in u and z, the curve B is isomorphic (or at least
birational and one-to-one) to the projective closure of W2.

The curve C ⊂ P4, isomorphic (or at least birational and one-to-one) to the
closure of Z2, can be defined in P4 with coordinates (t̃1 : s̃ : r̃ : t̃ : w̃) by the same
system (46), (47), (48), together with the additional equation

t̃21 = w̃(t̃ + 2w̃). (49)
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The projection τ : C → B,

τ(t̃1 : s̃ : r̃ : t̃ : w̃) = (s̃ : r̃ : t̃ : w̃),

is a morphism which represents C as a ramified double cover of B (this can be
checked by a direct computation). Since B is absolutely irreducible, so is C. �

From diagram (45) it follows that at least the second iteration of ψθ has a non-
trivial absolutely irreducible component in the variety of its fixed points. Formula
(49) shows that C is a double cover of B with at most three ramification points
(all at infinity). It follows that the genus is at most 2. Since B has 3 punctures
and over at least one of them C is ramified, C has at most 5 punctures. Therefore
for q ≥ 13 there are points in Z2 rational over Fq.

The case q < 13 was checked by straightforward computations. �
Corollary 5.7. A finite group G is solvable if and only if

(∃n ∈ N) (∀(x, y) ∈ G×G) θn(x, y) = 1.

Proof. We argue as in the proof of Theorem 5.1. Theorem 5.5 settles the PSL(2, q)
case. In the case Sz(2n) no new proof is needed because T (0, 1) = T (1, 1)2.
Periodic points of ϕy with y = T (0, 1) are periodic points of θy1 with y1 = T (1, 1).
The case G = PSL(3, 3) is straightforward: for the matrices

x =




2 0 0
0 0 1
0 1 2



 , y =




0 2 2
1 2 1
0 2 0





we have s1(x, y) = s4(x, y). �
Remark 5.8. The proof of [BWW] does not work for the sequence from Theorem
5.7. It is proved in [BWW] that for

y0 =
�

0 −1
1 0

�

there exists a periodic point of ϕy0 in SL(2, q) for every q. But y0 �= z2 in SL(2, q)
if 2 is not a square in Fq.

Remark 5.9. We believe that the statement of Theorem 5.7 remains true if one
takes yn, with any n ≥ 2, instead of y2 (at least for even n) but this requires more
subtle analysis.

5.4. Commutator. In the following example we want to show how useful the
trace method can be. We present a very simple proof of the following statement
(which is a very special case of a theorem of Borel [Bo], see also [La]):

Example 5.10. Let G = SL(2, q). Then the map F : G × G → G defined by
F (x, y) = [x, y] is a dominant morphism of the underlying algebraic Fq-varieties.

Proof. In the notation of Subsection 3.1, consider the corresponding map ψ : A3
s,u,t →

A3: if tr(x) = s, tr(y) = t, tr(xy) = u, then

ψ(s, u, t) = (f1(s, u, t), f2(s, u, t), t).

Here f1(s, u, t) = tr(F (x, y)) = s2 + t2 + u2 − ust− 2, f2(s, u, t) = t.
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Let z ∈ G, and suppose that a = tr(z) �= ±2. We want to show that there exist
x, y ∈ G with [x, y] = z.

For any t ∈ Fq consider the inverse image Γa,t,t := ψ−1(a, t, t) ⊂ A3
s,u,t. We

have
Γa,t,t = {(s, u, t) ∈ A3 : s2 + t2 + u2

− ust− 2− a = 0}.
For a fixed value t0 �= ±2, this is a quadratic equation in (s, u) which has a

solution (s0, u0) over every finite field (cf. the proof of Theorem 3.4). Thus we
have a point Q := (s0, u0, t0) ∈ Γa,t0,t0 .

By Theorem 3.4, π−1(Q) �= ∅, so take (x, y) ∈ π−1(Q). We have tr(F (x, y)) =
a = tr(z). If a �= ±2 (i.e. z is semisimple), F (x, y) is conjugate to z, i.e. [x, y] =
wzw−1. We get [w−1xw,w−1yw] = z, as required. �

The map F : G × G → G provides a dynamical system on SL(2, q) × SL(2, q)
with φ̃(x, y) = ([x, y], y). It corresponds to the Engel sequence e1 = [x, y],. . . ,
en+1 = [en, y], . . .

Let us show that this dynamical system has nontrivial periodic points for every
q. The cases q = 2, 3 are treated by a direct computation, so assume q > 3. In
view of Theorem 3.4, it is sufficient to find a fixed point of the trace map

ψ(s, u, t) = (s2 + t2 + u2
− ust− 2, t, t)

with s2 �= 4, t2 �= 4. The point (s, t, t) is fixed if s = s2 + 2t2 − st2 − 2. If q = 2n,
then any pair (s = 1 + t2, t) is a needed solution of this equation. If q �= 2n, then
for a fixed t we get s1 = 2 (forbidden), s2 = t2 − 1. Thus, any pair (t2 − 1, t),
t2 �= −1, 3, 4 provides a needed fixed point.

6. Possible generalizations

Here we present some more general problems arising from concrete calculations
of the preceding sections. In Subsection 6.1 we consider AG systems introduced in
Section 1 making this notion more precise. In particular, we want to distinguish
between the cases when the underlying geometric object is defined over a global
field or its ring of integers. We define residually periodic dynamical systems,
propose some relevant conjectures and give several examples. In Subsection 6.2
we discuss in more detail verbal dynamical systems defined in the introduction.
By combining the notions of AG dynamical system and verbal dynamical system,
we define systems carrying both structures.

6.1. Residually periodic dynamical systems. We start with AG dynamical
systems.

Let K be a global field, and let O stand for the ring of integers in K.

Definition 6.1. A triple D = (X,V, ϕ) is called a K-dynamical system if
• X is an algebraic K-variety;
• ϕ : X → X is a dominant K-morphism;
• V ⊂ X(K) is a ϕ-invariant subset.

Definition 6.2. A triple D = (X ,V,Φ) is called an O-dynamical system if
• X is an O-scheme of finite type;
• Φ: X → X is a dominant O-morphism;
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• V ⊂ X (O) is a Φ-invariant subset.

We say that an O-dynamical system D = (X ,V,Φ) is an integral model of
D = (X,V, ϕ) if

• X ×O K = X;
• the restriction of Φ to the generic fibre coincides with ϕ;
• R(V) = V, where R : X → X is the restriction to the generic fibre.

Consider a K-dynamical system D = (X,V, ϕ) and its integral model D =
(X ,V,Φ). For a place p of K let

• κp be the residue field of p;
• Xp the special fibre of X at p;
• Rp : X → Xp the reduction map (restriction to the special fibre);
• ϕp : Xp → Xp the reduction of Φ viewed as a morphism of κp-schemes;
• Xp = Xp(κp) the set of rational points;
• Vp = Rp(V) ⊂ Xp the reduction of V.

Assume that for all but finitely many places p the scheme Xp is integral. One can
deduce from [Gr, 9.6.1(ii)] that for all but finitely many p’s the reduced morphism
ϕp is dominant. Let z ∈ Xp \Vp be a periodic point of ϕp. Let �(z) be the number
of distinct points in the orbit of z. Set �p := min{�(z)} where the minimum is taken
over all z’s as above. If there are no periodic points in Xp \ Vp, we set �p = ∞.
Let M denote the collection of primes p such that �p = ∞. Let N = {�p}p�∈M .

Definition 6.3. With the above notation, we say that a K-dynamical system
D = (X,V, ϕ) or an O-dynamical system D = (X ,V,Φ) is residually aperiodic

if the set M is infinite, residually periodic if M is finite, and strongly residually

periodic if the sets M and N are both finite.

For example, in Subsection 5.1 for a map ψ : A3

Z → A3

Z we had X = A3, κp = Fp,
V = {(±2,±t, t)}, N = {1} and M = ∅.

We believe that the following special case is particularly interesting. Let V ⊂
X (O) be the set of all preperiodic integer points (i.e. points having a finite or-
bit). Let Vp = Rp(V) ⊂ Xp be its reduction mod p. Residual periodicity of
D = (X ,V,Φ) means that ϕp has periodic points outside Vp for all but finitely
many p’s. In simple words, we are looking for periodic points of ϕp not coming
from preperiodic integer points of Φ. Note that according to [Si2], cycles coming
from a fixed nonperiodic integer point cannot be too short (their length, as a func-
tion of the cardinality of the residue field, tends to infinity). Thus our approach
to studying cycles of reduced systems is, in a sense, complementary to [Si2].

As mentioned in the introduction, there may be different reasons for a dynamical
system to be residually periodic. For higher-dimensional systems one can look
for geometric conditions. The next notion captures the phenomenon of extra
coordinates, or more generally invariant functions, as in Example 1.8.

Definition 6.4. We say that a dynamical system D = (X,V, ϕ) is of fibred type
if there exists a regular function f on X such that f ◦ ϕ(n) = f for some iteration
ϕ(n) of ϕ.
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Question 6.5. Assume that a dynamical system D = (X,V, ϕ) is of fibred type.
Assume that the endomorphism ϕ is not birational. Under what conditions on ϕ
is D strongly residually periodic?

Question 6.5 is essentially higher-dimensional. In one-dimensional situations
the main role, of course, belongs to arithmetic. To get a better feeling of the
problem, it is useful to consider one-dimensional examples which are, in a sense,
opposite to Example 1.7 from the introduction.

Example 6.6. Let T = Gm,Z = Spec(Z[x, y]/(xy − 1)) be the trivial one-dimen-
sional torus. Fix a positive integer d, and let Φ: T → T denote the power map:
t → td. The set of integer points R = T (Z) consists of two points, 1 and −1,
both fixed under Φ (i.e. periodic with period one). We choose the forbidden set
V = R. If d = 2, then �p = ∞ for every Fermat prime p = 2m + 1. Thus the
system is residually periodic or aperiodic depending on whether there are finitely
or infinitely many Fermat primes. Assume now that d is odd.

Proposition 6.7. The dynamical system (T ,R,Φ) of Example 6.6 is residually

periodic but is not strongly residually periodic.

Proof. We have Xp = F∗p, and for any t ∈ F∗p we have ϕ(n)(t) = td
n
. Assume

(p, d) = 1. We are looking for t �= ±1 such that

td
n
−1
≡ 1 (mod p). (50)

To find such a t with minimal possible n, let us first introduce some notation. For
any prime � such that (d, �) = 1 denote by s� the order of d in F∗� . Denote by
Q(p) = {qi} the set of all odd primes appearing in the prime decomposition of
p− 1 and coprime to d. Set a(p) := minq∈Q sq. If p ≡ 1 (mod 4), we have �p ≤ 2.
We claim that for p ≡ −1 (mod 4) we have �p = a(p). Indeed, suppose that the
minimum is achieved at some q ∈ Q, so dsq − 1 = qm for some integer m. If g is
a primitive element of Fp, one can take t = g(p−1)/q and n = sq to satisfy (50).
On the other hand, if n < sq, then by the definition of sq we have n < s� for all
� ∈ Q, and hence for all such � we have

dn
�≡ 1 (mod �).

The above also holds for all � dividing d, so we conclude that (dn−1, p−1) = 2. If
(50) holds for some t, then the order of t must divide both dn− 1 and p− 1, hence
it is equal to 2. Thus t = −1 and belongs to the reduction of the forbidden set R.
We conclude that (50) does not hold for any n < sq. This means that sq = a(p) is
the minimal possible length of the orbit of ϕp, i.e. �p = a(p).

To finish the proof of the proposition, it is enough to establish the following
simple lemma (we thank Z. Rudnick for an elementary proof):

Lemma 6.8. The set A = {a(p)}, where p runs over all prime numbers congruent

to −1 modulo 4, is infinite.

Proof of the Lemma. Assume the contrary:

A = {sq1 , . . . , sqt}. (51)

To get a contradiction, we wish to find p ≡ −1 (mod 4) with a(p) /∈ A.
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First note that there are at most finitely primes q with a given value of sq, and
denote by B the set of all q such that sq ∈ A. It follows that B is finite. Thus we
have to find a prime p such that p− 1 is not divisible by any q ∈ B. We want to
find a prime number p satisfying the system of congruences

x ≡ −1 (mod 4),
x ≡ −1 (mod q)

for all q ∈ B. By the Chinese Remainder Theorem, the solutions of this system
form an arithmetic progression. By Dirichlet’s Prime Number Theorem, this pro-
gression contains infinitely many primes. If now p is such a prime, we have p �≡ 1
(mod q) for any q ∈ B. Thus the order of d in F∗p is not equal to any of sqi ’s, and
so p /∈ A, contradiction.

This finishes the proof of the lemma and hence of Proposition 6.7. �
Example 6.9. Let now E be a CM elliptic curve defined over Q by the equation
y2 = x3 − x, and let E denote its minimal Weierstrass model. Let Φ: E → E

be the multiplication-by-d map (d stands for a positive odd integer). There are
four 2-torsion points: (0,0), (1,0), (-1,0) and ∞, all belonging to E(Z). Denote
this collection by V. If p ≡ −1 (mod 4), the reduction of E is supersingular, i.e.
|E(Fp)| = p + 1. We can now denote by b(p) the smallest prime factor of the
number |E(Fp)|/4 and by the argument similar to that of the previous example
show that the set B = {b(p)}, where p runs over all p ≡ −1 (mod 4), is infinite.
This leads to

Proposition 6.10. The dynamical system D = (E ,V,Φ) is residually periodic but

is not strongly residually periodic. �
The interested reader is invited to complete the details of the proof as well as

to develop more examples of arithmetical interest.
To go beyond CM elliptic curves, one needs more efforts. A natural question

to ask is the following one:

Question 6.11. Let E be an elliptic curve over Q, and let D denote the order of
its rational torsion. For each place p of good reduction, denote by c(p) the smallest
prime divisor of the number |E(Fp)|/D. Can the set C = {c(p)}, where p runs
over all places of good reduction of E, be finite? Can the system (E , E(Q)tors,Φ)
be strongly residually periodic?

At the first glance, the conjectures by Lang–Trotter [LT] and Koblitz [Ko], pre-
dicting (for most elliptic curves) infinitely many p’s with |E(Fp)| of prime order,
give little hope to find an example of an elliptic curve such that the dynami-
cal system defined by the multiplication-by-d map is strongly residually periodic.
However, the following example (due to N. Jones) prevents from making hasty
conclusions. Consider the curve E0 given over Q by the Weierstrass equation

y2 = x3 + 75x + 125.

N. Jones proved that although E0 has no rational torsion, the order of E0(Fp)
is divisible either by 2 or by 3 for all p > 5. The curve E0 is of Mordell–Weil
rank 1, so the multiplication-by-d map Φ induces a nontrivial dynamical system
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D = (E0,∞,Φ). Taking, say, d = 7, we conclude that D is strongly residually
periodic in the strongest possible sense: it has no periodic points but the residual
system Dp has a fixed point for all p > 5 (compare with Example 1.7).

On the other hand, N. Jones proved (unconditionally on Koblitz’s conjectures)
that for a “typical” elliptic curve E over Q an analogue of Lemma 6.8 indeed holds
which implies that the dynamical system D is not strongly residually periodic for
such an E, i.e. typically the answer to Question 6.11 is negative. See the Appendix
for more details.

6.2. Verbal dynamical systems on group schemes. We view the calculations
of Section 3 as a first step in attacking one of the most important conceptual
questions left open after discovery of two-variable sequences characterizing finite
solvable groups: for a sequence of words in the free group on two generators, to
what extent the property to characterize the class of finite solvable groups is a
property of general position, and what type of the dynamic behaviour is typical?
Questions of such “nonbinary” type, which do not admit an answer of type “yes-
no”, have been considered by many mathematicians, from Poincaré to Arnold,
as the most interesting ones. Dynamics of word maps in free group, in spirit of
[LP], [La], [Sh], [LS], [GS], led to a breakthrough in some classical problems of
the theory of finite groups, and it may happen to play a crucial role in the above
mentioned problem as well. Namely, a possible goal is to prove (or disprove) that
for a sufficiently wide class of sequences the property to characterize the class of
finite solvable groups holds in “general position” and is determined by its dynamics
in the free group. In what follows Fr stands for the free group on r generators.

Question 6.12. Suppose that a sequence −→u = u1, u2, . . . , un, . . . of elements of
F2 satisfies the following conditions:

(i) un(a, 1) = un(1, g) = 1 for all sufficiently big n, every group G, and all
elements a, g ∈ G;

(ii) if G is any group and a, g are elements of G such that un(a, g) = 1, then for
every m > n we have um(a, g) = 1;

(iii) no element of −→u equals 1 in F2;
(iv) there exists N such that for all n > N the word un(x, y) belongs to the

n-th derived subgroup F (n)

2
of F2.

Is it true that if a finite group G satisfies an identity un(x, y) ≡ 1 for some n,
then it is solvable?

In connection with Question 6.12, it is natural to pose

Problem 6.13. To describe the words in F2 satisfying conditions (i)–(iv) of Ques-
tion 6.12.

Extensive MAGMA computations show strong numerical evidence of a positive
answer to Question 6.12, at least for the class of sequences −→u studied in [Ri]:
u0 := f ,. . . , un := [gung−1, hunh−1], . . . , where f, g, h stand for some words from
F2.
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One can put Question 6.12 into somewhat more general context. Towards this
end, we suggest to combine the notions of verbal and AG dynamical systems de-
fined in Section 1. For simplicity we restrict ourselves to considering Z-dynamical
systems.

Definition 6.14. A verbal dynamical Z-system consists of the following setup:
• positive integers r, s;
• an r-tuple W = (w1, . . . , wr) of words in the free group Fr+s;
• an r-tuple J = (f1, . . . , fs) of words in the free group Fs (optional);
• a group scheme G of finite type over Z;
• a set I ⊂ Gr+s(Z).

The following assumptions are to be satisfied.
(i) Let DW : Gr+s → Gr+s be a morphism of Z-schemes defined on the group

G = Gr+s(A) of A-points of Gr+s for every Z-algebra A by the formula

(g1, . . . , gs, v1, . . . , vr) �→ (g1, . . . , gs, w1(g1, . . . , vr), . . . , wr(g1, . . . , vr)).

Then we assume that DW is dominant.
(ii) The set I is invariant, i.e. DW(I) ⊂ I.

Our earlier considerations (cf. Examples 1.2 and 1.4) naturally fit into this
setting if G is a semisimple Chevalley group scheme over Z (e.g., G = SL(2, Z)
as in the present paper). Indeed, in that case by a theorem of Borel ([Bo], see
also [La]), the morphism DW is dominant, and we arrive at a verbal dynamical
Z-system in the sense of Definition 6.14. Remark 3.8 shows that the dynamical
systems on SL(2, p) relevant for our original problem can be viewed as special
fibres of the original verbal Z-system.

Remark 6.15. It would be interesting to formulate a word-theoretic condition
on W guaranteeing that for any Chevalley group scheme G the morphism DW is
dominant.

In connection with Question 6.5 one can pose

Problem 6.16. Given a verbal dynamical Z-system, that is not of fibred type,
find conditions under which it is (strongly) residually periodic.

In particular, it would be interesting to consider the system from Section 3.1
given by the map ϕy : SL(2, Z) → SL(2, Z) (y fixed) with I = {1}. This system
has an invariant rational function, but it is not regular. It was proven in [BWW]
that for

y =
�

0 −1
1 0

�

it is residually periodic. On the other hand, our numerical experiments give some
evidence that it is not strongly residually periodic.

We believe that verbal dynamical systems deserve more thorough study. To the
best of our knowledge, most arithmetically interesting questions, in spirit of the
monograph [Si1] (boundedness of periods, distributions of periods in reductions,
various local-global problems), are widely open (or even not yet posed at all).
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yavskĭı to MPIM (Bonn) in 2007 and 2009 and the visits of Grunewald to Bar-Ilan
University in 2008 and the Hebrew University of Jerusalem in 2009, and discussed
by all the coauthors during the international workshops (2007, 2009) hosted by the
Heinrich-Heine-Universität (Düsseldorf), and the Oberwolfach meeting “Profinite
and Geometric Group Theory” in 2008 (the visits were supported in part by the
Minerva Foundation through the Emmy Noether Research Institute of Mathemat-
ics). The appendix to the paper arose from questions posed by Kunyavskĭı to
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Appendix. Primes p for which #E(Fp) has only large prime factors

Nathan Jones

A1. Introduction

Let E be an elliptic curve over Q of conductor NE . For each prime p of good
reduction for E, consider the group E(Fp) of Fp-points of E. In 1988, Koblitz [3]
conjectured a precise asymptotic formula for the number of good primes p up to
x for which #E(Fp) is prime.
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Conjecture A1. There exists a precise constant SE ≥ 0 so that

#{p ≤ x : p � NE and #E(Fp) is prime} = SE ·
x

log2 x
+ o

�
x

log2 x

�
,

as x −→∞.

In particular, provided the constant SE > 0, Conjecture A1 implies that there
are infinitely many primes p for which #E(Fp) is prime. In case SE = 0, one can
prove (as a consequence of the Chebotarev density theorem) that #E(Fp) is prime
for only finitely many primes p.

Based on the precise form of the predicted constant SE , Koblitz further noted
that SE is positive if and only if every other elliptic curve E� over Q which is
Q-isogenous to E has no non-trivial rational torsion:

SE > 0 ⇐⇒ (E�
∼Q E ⇒ E�(Q)tors = {OE�}) . (A-1)

However, because of a technical error in the underlying heuristic, the constant
SE appearing in the original conjecture is incorrect. A refined conjecture, which in
particular corrects SE , has recently been given by D. Zywina [8]. In the interest of
consistency, let us henceforth understand the symbol SE appearing in Conjecture
A1 to refer to the corrected constant CE,1 appearing in [8, Conjecture 1.2] (we
will describe this constant in more detail in Section A2). Having thus replaced
SE , the interpretation (A-1) of exactly when SE is positive is no longer valid. We
will show this in Section A4 by exhibiting an elliptic curve E over Q for which the
right-hand side of (A-1) is true, but for which SE = 0 nevertheless.

In spite of various partial results (see for instance [1] and the references therein),
Conjecture A1 is still open. Our goal is to prove the following theorem, wherein
we relax “is prime” to “has only large prime factors.” Let us denote by

cE(p) := min{� prime : � | #E(Fp)}

the smallest prime divisor of #E(Fp).

Theorem A2. Suppose that

SE > 0,

where SE is the constant appearing in Conjecture A1. Then the set

{cE(p) : p � NE}

is unbounded.

In other words, Theorem A2 asserts that, for each x > 0, there exists a prime
number p = p(E, x) such that for any prime number � we have

� | #E(Fp) =⇒ � > x.

We remark that one could likely prove something stronger by employing the ap-
propriate tools. In the interest of brevity and simplicity, we content ourselves with
Theorem A2.

We will begin by describing precisely the constant SE , from which it will be
evident that the converse of Theorem A2 holds, i.e. for any elliptic curve E over
Q, one has

SE = 0 =⇒ {cE(p) : p � NE} is bounded. (A-2)
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We will then prove Theorem A2. Finally, we will discuss the issue of exactly when
one has SE > 0 and give an example of an elliptic curve E over Q for which
SE = 0 (and for which {cE(p) : p � NE} is bounded, thus illustrating (A-2)).
Throughout, � and p will always denote prime numbers.

A2. The heuristic of Conjecture A1 and the constant SE

The heuristic leading to Conjecture A1 is analogous to the one which leads to
the classical twin prime conjecture (see [3] and [8] for more details), and changes
slightly depending on whether or not E has complex multiplication (CM). As
usual, for p � NE , define the integer aE(p) by the formula

#E(Fp) =: p + 1− aE(p). (A-3)

By a theorem due originally to Hasse, we have that |aE(p)| ≤ 2√p, and so the
size of #E(Fp) is near the size of p. Thus, regarding p and #E(Fp) as two
independently chosen random positive integers of size x, the “probability” that
they are both prime should satisfy

P(p is prime and #E(Fp) is prime) ≈
1

(log x)2
, (A-4)

by the prime number theorem. However, this prediction fails to take into account
arithmetic information about the reductions of p and #E(Fp) modulo positive
integers. In order to describe how one corrects the situation, we begin by recalling
the division fields attached to E and Chebotarev density theorem.

A2.1. The division fields Q(E[n]) of E. For each positive integer n ≥ 1 denote
by

E[n] := {P ∈ E(Q) : [n](P ) = OE}

the n-torsion of E and by Q(E[n]) the n-th division field of E, i.e. the field
generated by the x and y coordinates of each P ∈ E[n]. The field Q(E[n]) is a
Galois extension of Q, and by fixing a Z/nZ-basis of E[n], we may (and henceforth
will) view Gal (Q(E[n])/Q) as a subgroup of GL2(Z/nZ):

Gal (Q(E[n])/Q) ⊆ GL2(Z/nZ).

The following proposition, which relates p and aE(p) with Q(E[n]) is well-
known. In its statement σQ(E[n])/Q(p) ⊂ Gal (Q(E[n])/Q) ⊆ GL2(Z/nZ) denotes
the conjugacy class of a Frobenius automorphism at p, which we view as a subset
of GL2(Z/nZ).

Proposition A3. For any positive integer n and any prime p of good reduction

for E which does not divide n, p is unramified in Q(E[n]). Furthermore,

tr(σQ(E[n])/Q(p)) ≡ aE(p) mod n

and

det(σQ(E[n])/Q(p)) ≡ p mod n.
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A2.2. The Chebotarev density theorem. Recall the Chebotarev density theo-
rem [7]. Let L/F be a (finite) Galois extension of number fields and C ⊆ Gal (L/F )
any subset which is stable by Gal (L/F )-conjugation. Denote by ΣF the set of
prime ideals of F and

ΣF (x) := {p ∈ ΣF : NF/Q(p) ≤ x}.

For each prime ideal p ∈ ΣF which is unramified in L, let σL/F (p) ⊆ Gal (L/F )
denote the conjugacy class of the Frobenius element attached to any prime P of
L lying over p.

Theorem A4. (The Chebotarev density theorem) We have

lim
x→∞

#{p ∈ ΣF (x) : p unramified in L and σL/F (p) ⊆ C}

#ΣF (x)
=

#C
#Gal (L/F )

.

In probabilistic terms, Theorem A4 says that the probability that a randomly
selected prime ideal p satisfies σL/K(p) ⊆ C is #C

#Gal (L/F )
.

A2.3. Correcting the naive heuristic (A-4). For any positive integer n and
subgroup G ⊆ GL2(Z/nZ), define the subset Ωn(G) ⊆ G by

Ωn(G) := {g ∈ G : det(g) + 1− tr(g) /∈ (Z/nZ)∗}. (A-5)

The probability that a large randomly chosen integer is coprime to n is
#(Z/nZ)∗

#(Z/nZ)
.

On the other hand, by (A-3), Proposition A3 and Theorem A4, the probability
that #E(Fp) is coprime with n is

#(Gal (Q(E[n])/Q)− Ωn(Gal (Q(E[n])/Q)))
#(Gal (Q(E[n])/Q))

.

Thus, it is natural to multiply (A-4) by the correction factor

#(Gal (Q(E[n])/Q)− Ωn(Gal (Q(E[n])/Q)))
#(Gal (Q(E[n])/Q))

#(Z/nZ)∗

#(Z/nZ)

. (A-6)

Noting that

Ωn(Gal (Q(E[n])/Q)) = π−1
�
Ωδ(n) (Gal (Q(E[δ(n)])/Q))

�
,

where δ(n) :=
�

�|n � denotes the square-free kernel of n and π : GL2(Z/nZ) �
GL2(Z/δ(n)Z) denotes the canonical projection, we see that (A-6) only depends
on δ(n), and so it suffices to consider square-free n. Defining

n = n(z) :=
�

�≤z

� (A-7)
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to be the square-free number supported on primes � ≤ z, we multiply (A-4) by
(A-6) and take the limit as z →∞, arriving at Conjecture 1 with

SE := lim
z→∞

�
1−

#Ωn(z)(Gal (Q(E[n(z)])/Q))
#Gal (Q(E[n(z)])/Q)

�

�

�|n(z)

(1− 1/�)
. (A-8)

Our next proposition describes SE in more detail. In particular, it implies that
the limit in (A-8) converges to a finite positive limit, provided it is non-zero for
each fixed z ≥ 2.

Proposition A5. Let E be an elliptic curve over Q and let SE be defined by

(A-8). There exist a positive square-free integer nE ≥ 1 and a real number λE > 0
so that

SE =

�
1−

#ΩnE (Gal (Q(E[nE ])/Q))
#Gal (Q(E[nE ])/Q)

�

�

�|nE

(1− 1/�)
· λE .

Proof. In the CM case, this follows from [4, Corollaire, p. 302] and in the non-CM
case from [4, (2), p. 260]. For more details, see [8]. �

Although it won’t be necessary in what follows, we remark that

λE =






1
2
·

�

��nE

�
1− χ(�)

�2 − �− 1
(�− χ(�))(�− 1)2

�
if E has CM by K,

�

��nE

�
1−

�2 − �− 1
(�− 1)3(� + 1)

�
if E has no CM,

where in the CM case, χ(�) ∈ {±1} denotes the Kronecker symbol giving the
splitting of � in the imaginary quadratic field K.

Corollary A6. We have SE = 0 if and only if there exists a square-free n0 such

that Ωn0(Gal (Q(E[n0])/Q)) = Gal (Q(E[n0])/Q).

In particular, if SE = 0, then by (A-3), Proposition A3 and Theorem A4, we
have

p � n0 ·NE =⇒ gcd(#E(Fp), n0) > 1. (A-9)

Since this in turn causes {cE(p) : p � NE} to be bounded, we have verified (A-2).

A3. Proof of Theorem A2

To prove Theorem A2, we will apply Theorem A4 with F = Q, L = Q(E[n]),
and

C = (Gal (Q(E[n])/Q)− Ωn(Gal (Q(E[n])/Q))) ,



VERBAL DYNAMICAL SYSTEMS ON SIMPLE GROUPS 39

with Ωn(G) as in (A-5) and n = n(z) as in (A-7). Fix any prime p > z which
doesn’t divide NE . By Proposition A3, p is unramified in Q(E[n(z)]) and further-
more we have the following equivalence:

(∀� ≤ z, � � #E(Fp)) ⇐⇒ σQ(E[n(z)])/Q(p) � Ωn(z)(Gal (Q(E[n(z)])/Q)).
(A-10)

Now consider the Chebotarev factor

Dz :=
#(Gal (Q(E[n(z)])/Q)− Ωn(z)(Gal (Q(E[n(z)])/Q)))

#(Gal (Q(E[n(z)])/Q))
.

By Corollary A6, we see that

SE > 0 =⇒ Dz > 0.

Thus, provided SE > 0, Theorem A4 implies the existence of a prime number
p1 = p1(E, z) for which

σQ(E[n(z)])/Q(p1) � Ωn(z)(Gal (Q(E[n(z)])/Q)).

By (A-10), we see that for each � ≤ z, � does not divide #E(Fp1), and so cE(p1) ≥
z. Since z was arbitrary, Theorem A2 follows.

A4. The positivity of SE

It is now natural to ask: under what conditions is the constant SE positive?
Because of the Weil Pairing (see [6], for example), for any level n, we have that
the determinant map restricts to a surjection

det : Gal (Q(E[n(z)])/Q) � (Z/n(z)Z)∗.

By Corollary A6, we are thus led to ask the following question.

Question A7. Let n ≥ 1 be a positive square-free integer, and let G ⊆ GL2(Z/nZ)
be a subgroup for which the determinant map restricts to a surjection:

det : G � (Z/nZ)∗.

Under which circumstances do we have Ωn(G) = G?

It is clear from the definitions that, for any � dividing n we have

Ω�(G mod �) = G mod � =⇒ Ωn(G) = G.

We join Serre [4, I-2] in leaving the following exercise up to the reader.

Exercise A8. Prove that, for any subgroup G� ⊆ GL2(Z/�Z), Ω�(G�) = G� if
and only if, up to GL2(Z/�Z)-conjugation, we have

G� ⊆

��
1 ∗

0 ∗

��
or G� ⊆

��
∗ ∗

0 1

��
.

Furthermore, Gal (Q(E[�])/Q) = G� as above if and only if E is isogenous over
Q to some elliptic curve E� over Q satisfying E�[�](Q) �= {OE�} (in the first case,
E� is simply E). We record this as

Remark A9. If E is Q-isogenous to some elliptic curve E� over Q for which
E�(Q)tors �= {OE�}, then SE = 0.
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It is tempting to expect (as Koblitz did) that the converse of Remark A9 also
holds, but the following example shows that this is not the case. Let � �= 2 be any
prime and consider the subgroup G ⊆ GL2(Z/2Z)×GL2(Z/�Z) defined by

G = {(g2, g�) ∈ GL2(Z/2Z)×G1(Z/�Z) : χ2(g2) = χ�(g�)}, (A-11)

where

G1(Z/�Z) :=
��

±1 ∗

0 ∗

��
⊆ GL2(Z/�Z) (A-12)

and the characters χ2 and χ� are defined by

χ2 : GL2(Z/2Z) −→ GL2(Z/2Z)/[GL2(Z/2Z), GL2(Z/2Z)] � {±1}

and

χ�

��
±1 ∗

0 ∗

��
= ±1. (A-13)

Notice that, even though

Ω2(G mod 2) � G mod 2 and Ω�(G mod �) � G mod �,

we have Ω2�(G) = G. Provided we can find an elliptic curve E over Q with
Gal (Q(E[2�])/Q) ⊆ G, then #E(Fp) will only be prime finitely often because
whenever it is not divisible by 2, it must be divisible by �, and vice versa.

A4.1. A counterexample to (A-1).

Proposition A10. Let E be the elliptic curve defined by the Weierstrass equation

y2 = x3 + 75x + 125.

For any elliptic curve E�
over Q which is Q-isogenous to E, one has E�(Q)tors =

{OE�}. Nevertheless, SE = 0. Furthermore, the Mordell–Weil group attached to

E is infinite:

#E(Q) = ∞.

Proof. Since NE = 22 · 33 · 52, we see that E has good reduction away from p ∈
{2, 3, 5}. One calculates that #E(F7) = 4 and #E(F17) = 21, from which it follows
that, for any E� over Q which is Q-isogenous to E, we have E�(Q)tors = {OE�}.
On the other hand, recall that Q(E[2]) = Q(the roots of x3 + 75x + 125), so that
√

∆E = 22 ·3 ·53
√
−15 ∈ Q(E[2]). Also, the point (−5, 5

√
−15) ∈ E[3](Q(

√
−15))

shows that
Q(

�
∆E) = Q(

√
−15) ⊆ Q(E[2])

�
Q(E[3]).

It follows that, taking � = 3 in (A-11), we have Gal (Q(E[6])/Q) ⊆ G, where χ2

and χ� correspond to the restriction map

Gal (Q(E[6])/Q) −→ Gal (Q(
�

∆E)/Q) � {±1}.

Taking n0 = 6 in Corollary A6, we see that SE = 0.
Finally, the point (5, 25) ∈ E(Q) is of infinite order, and so #E(Q) = ∞, as

claimed. �
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Furthermore, one can readily verify (A-9) with n0 = 6 and E as in Proposition
A10, as follows. For any rational prime p ≥ 7 and choice of Frobenius automor-
phism σ6(p) ∈ σQ(E[6])/Q(p), we have that

σ6(p)(
�

∆E) =
�

∆E ⇒ σQ(E[3])/Q(p) ⊆ Ω3(Gal (Q(E[3])/Q))
⇒ 3 | #E(Fp)

and
σ6(p)(

�
∆E) = −

�
∆E ⇒ σQ(E[2])/Q(p) ⊆ Ω2(Gal (Q(E[2])/Q))

⇒ 2 | #E(Fp).

Since
√

∆E = 22 · 3 · 53
√
−15, it follows that for p � 30, we have

�
−15
p

�
= 1 ⇒ 3 | #E(Fp)

and �
−15
p

�
= −1 ⇒ 2 | #E(Fp).

This verifies (A-9) and shows that

{cE(p) : p � NE} = {2, 3}.

More generally, we have

Remark A11. If E is Q-isogenous to some elliptic curve E� over Q for which
E�(Q(

√
∆E�))tors �= {OE�}, then SE = 0.

Have we covered all possible cases where SE = 0? We will now give an example
of a subgroup G ⊆ GL2(Z/3�Z) satisfying Ω3�(G) = G, where � ≥ 5 is some prime.
Let

N3 :=
�
±

�
1 0
0 1

�
,±

�
0 −1
1 0

��
�

�
±

�
1 0
0 −1

�
,±

�
0 1
1 0

��
⊆ GL2(Z/3Z),

and define
G := {(g3, g�) ∈ N3 ×G1(Z/�Z) : det g3 = χ�(g�)},

where G1(Z/�Z) and χ� are as in (A-12) and (A-13), respectively, and we are
regarding det(g3) ∈ F∗3 = {±1}. As before, we have

Ω3(G mod 3) � G mod 3 and Ω�(G mod �) � G mod �,

but Ω3�(G) = G. Perhaps there may also be an elliptic curve E over Q with
Gal (Q(E[3�])/Q) ⊆ G, though we haven’t explicitly exhibited one.

A4.2. Serre curves. A Serre curve is an elliptic curve E over Q for which

∀n ≥ 1, [GL2(Z/nZ) : Gal (Q(E[n])/Q)] ≤ 2.

(Intuitively, a Serre curve is an elliptic curve for which Gal (Q(E[n])/Q) is “as
large as possible” for each n ≥ 1.) We remark that, as shown in [8, Proposition
4.2], we have

E is a Serre curve =⇒ SE > 0.

When ordered according to naive height, almost all elliptic curves are Serre curves
(see [2]). Thus, for a “typical” elliptic curve E over Q one has SE > 0.
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A5. Concluding remarks

As mentioned in the introduction, one can likely prove stronger forms of The-
orem A2. For instance, one could probably use an effective version of the Cheb-
otarev density theorem to obtain a quantitative upper bound for the smallest prime
p for which cE(p) > x.

Since we have not completely resolved it, we record here

Question A12. Under what conditions do we have SE > 0?

The examples discussed in Section A4 seem to indicate that this question is
more delicate than it first may seem. Conjecture A1 has also been generalized to
the context where E is defined over a general number field K (see [8]), in which
case the answer to Question A12 may become even more delicate.
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