
A RIGIDITY PHENOMENON FOR POWER MAPS

N. JONES

Abstract. Fix a number field K which is normal over Q and let f : K −→ K be a function. We call f a
global power map if there exists an integer exponent k so that f(α) = αk for every α ∈ K. We call f a local

power map at the prime ideal p ⊆ OK if f induces a well-defined group homomorphism on the multiplicative
group (OK/p)×. We conjecture that if f is a local power map at an infinite number of prime ideals p, then

f must be a global power map. Our main theorem implies that if f is a local power map at every prime

ideal p in a set with positive upper density relative to the set of all prime ideals of K, then f must be a
global power map. In particular, for K = Q this represents progress towards a conjecture of Fabrykowski

and Subbarao.

1. Introduction

Broadly speaking, we refer to a collection of objects as rigid if every element in the collection is uniquely
determined by less information than expected. In this paper, we consider the collection of power maps{

f : N −→ N; f(n) = nk, k ∈ {0, 1, 2, . . . }
}
,

which exhibits rigidity in various aspects. Indeed, a theorem of Erdős [2] implies that if f : N −→ N is
multiplicative and non-decreasing, then f is a power map. Fabrykowski and Subbarao [3, Theorem 2.1]
proved that if f : N −→ Z is multiplicative and satisfies

∀n ∈ N, f(n+ p) ≡ f(n) (mod p) (1)

for each prime number p, then either f is identically zero or f is a power map. They further conjectured the
following stronger rigidity property for power maps.

Conjecture 1.1. (Fabrykowski-Subbarao) Suppose f : N −→ Z is multiplicative and satisfies (1) for infinitely
many primes p. Then either f is identically zero or there exists a non-negative integer k for which f(n) = nk

for every n ∈ N.

This conjecture is open. The main result of the present paper represents progress towards its resolution.
Our results are valid over more general number fields, and we formulate the problem in slightly different
terms, as follows.

Let K be a number field which is Galois over Q, let OK denote its ring of integers, and let us set

PK := {prime ideals p ⊆ OK}.

For any p ∈ PK , let OK,(p) ⊆ K denote the localization of OK at p and O×K,(p) its unit group. Explicitly,

OK,(p) := {α ∈ K : ordp(α) ≥ 0} ,
O×K,(p) = {α ∈ K : ordp(α) = 0} .

As is well-known, OK,(p) is a local ring with maximal ideal pOK,(p), and one has an isomorphism

OK,(p)
pOK,(p)

' OK
p

=: Fp.
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For α, β ∈ K, we write α ≡ β (mod p) exactly when α − β ∈ pOK,(p). Here and throughout this paper, let
A be a set satisfying

N ⊆ A ⊆ K
and which is closed under multiplication, so that for any prime p, the subset

A×(p) := A ∩ O×K,(p)
is also closed under multiplication. Let us denote by PK,1 ⊆ PK the subset of prime ideals of inertial degree
one:

PK,1 := {p ∈ PK : |OK/p| is prime}.
Given a function

f : A −→ K,

we consider the set Sf ⊆ PK,1 defined by

Sf := {p ∈ PK,1 : ∃kp ∈ Z/(Np− 1)Z such that ∀α ∈ A×(p), f(α) ≡ αkp (mod p)}.

Equivalently, Sf is the set of prime ideals p ⊆ OK of inertial degree one for which

f(A×(p)) ⊆ O
×
K,(p)

and for which there exists a multiplicative group homomorphism fp : F×p −→ F×p so that the diagram

A×(p)
f−−−−→ O×K,(p)

redp

y redp

y
F×p

fp−−−−→ F×p

(2)

commutes.

Definition 1.2. Let p ∈ PK,1. A function f : A −→ K is a local power map at p if p ∈ Sf .

Definition 1.3. A function f : A −→ K is called a global power map if there is an exponent k ∈ Z such
that, for each α ∈ A one has f(α) = αk.

In these terms, we conjecture the following strong rigidity property for global power maps.

Conjecture 1.4. Let A be a set which satisfies N ⊆ A ⊆ K and which is closed under multiplication.
Suppose that f : A −→ K is a local power map at an infinite set of primes (i.e. suppose that |Sf | = ∞).
Then f must be a global power map.

Remark 1.5. Conjecture 1.4 implies Conjecture 1.1. This connection will be discussed in more detail in
Section 3.

Remark 1.6. It is essential that we consider primes of inertial degree one in the definition of Sf , for
otherwise there are counterexamples to Conjecture 1.4. For instance, let f : Q(i) −→ Q(i) be the restriction
of complex conjugation. For each prime p ≡ 3 (mod 4), the ideal pZ[i] is prime in Q(i), and f induces the
Frobenius automorphism x 7→ xp on (Z[i]/pZ[i])×. Thus, f is a local power map at an infinite set of primes
(each of inertial degree two), but is not a global power map.

In the present paper, we will prove the following weakened version of Conjecture 1.4, in which “Sf is
infinite” is replaced by “Sf has positive upper density in the primes.” For any set S of prime ideals of K,
define

S(x) := {p ∈ S : Np ≤ x}
and the upper density

δ(S) := lim sup
x→∞

|S(x)|
πK(x)

.

We will prove the following theorem.
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Theorem 1.7. Suppose K is a number field which is Galois over Q and A is a set which satisfies N ⊆ A ⊆ K
and which is closed under multiplication. Let f : A −→ K be any function which is not a global power map.
Then there exist real constants bf , cf > 0 so that for x ≥ cf , the bound

|Sf (x)| � log log log x

log log x
· Li(x) + bf

holds, with an absolute implied constant. In particular, if f : A −→ K is a function for which δ(Sf ) > 0,
then f is a global power map.

Our proof of this theorem applies an effective version of the Chebotarev density theorem of Lagarias and
Odlyzko to certain Kummer extensions attached to the function f . In Section 3, we deduce the following
corollary, which details our progress towards Conjecture 1.1. For any function f : N −→ Z, we define

Tf := {p prime : ∀n ∈ N, f(n+ p) ≡ f(n) (mod p)}. (3)

Thus, Conjecture 1.1 states that if f : N −→ Z is not identically zero or a global power map, then Tf is
finite.

Corollary 1.8. Let f : N −→ Z be a multiplicative function and let Tf be defined by (3). Then either f is
identically zero, or f is a global power map, or there exist real constants bf , cf > 0 so that, for x ≥ cf , the
bound

|Tf (x)| � log log log x

log log x
· π(x) + bf

holds, with an absolute implied constant. In particular, if f : N −→ Z is a multiplicative function for which
δ(Tf ) > 0, then either f is identically zero or f is a global power map.

Remark 1.9. In fact, Fabrykowski and Subbarao work with more general quasi-multiplicative functions (see
Definition 3.1 below), but as we shall see, if f is quasi-multiplicative and |Tf | = ∞, then f is completely
multiplicative. Thus, [3, Conjecture 3.1] is equivalent to Conjecture 1.1 and [3, Theorem 2.1] is equivalent
to our formulation in the first paragraph of the present paper.

2. Notation

Throughout the paper, in addition to that already introduced, we will use the following notation. For a
number field K, if γ ∈ K× and p is prime ideal of K, then there is a unique integer n for which γOK = pna,
where a is a fractional ideal of K and p - a. We then define ordp(γ) := n. Also, we define the ideal numerator
num(γ) ⊆ OK and denominator of den(γ) ⊆ OK by

num(γ) :=
∏

p∈PK
ordp(γ)>0

pordp(γ), den(γ) :=
∏

p∈PK
ordp(γ)<0

pordp(γ).

Thus one has

γOK = num(γ)den(γ)−1.

We use the symbols O(·) and � in the usual ways, namely if f, g : [γ,∞) → C are complex functions then
we write

f = O(g), or equivalently f � g

if there is a positive constant C for which |f(x)| ≤ C|g(x)| for all x ∈ [γ,∞). In case there is an auxiliary
parameter y upon which the implied constant C depends, we will indicate this with a subscript, so that

f = Oy(g) or equivalently f �y g

is used to indicate that |f(x)| ≤ C(y)|g(x)|, where the C(y) may depend on y but not on x. We write f(x) ∼
g(x) as x → ∞ to mean that f(x) is asymptotic to g(x) as x → ∞, i.e. to mean that lim

x→∞
f(x)/g(x) = 1.

When used as variables, the letters p and ` will denote prime numbers unless otherwise indicated, and

π(x) := #{p ≤ x : p is prime}
π(x; a, q) := #{p ≤ x : p is prime and p ≡ a mod q},
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for any q ∈ N and a ∈ Z. We will often denote the reduction modulo p map by

OK,(p) → Fp

n 7→ n.

3. Previous related results

In this section, we survey previous results in the literature towards Conjecture 1.1. We also clarify the
connection between Conjectures 1.4 and 1.1. The following definition of quasi-multiplicative is used in [3];
we recall here two more common definitions for comparison.

Definition 3.1. A function f : N −→ C is called completely multiplicative if for each α, β ∈ N,

f(αβ) = f(α)f(β). (4)

If (4) is satisfied whenever gcd(α, β) = 1 then f is called multiplicative. We call f quasi-multiplicative
if, for any n ∈ N and any prime p not dividing n, one has

f(pn) = f(p)f(n).

Lemma 3.2. Suppose that f : A −→ K is a function for which Sf is infinite. Then

f(A ∩K×) ⊆ K×, (5)

and f is completely multiplicative, i.e. (4) holds for any α, β ∈ A.

Proof. To prove (5), fix α ∈ A ∩K×. If f(α) = 0 then for each prime ideal p,

ordp(α) = 0 =⇒ p /∈ Sf , (6)

implying that Sf is finite, a contradiction. Thus, (5) holds. To prove (4), fix α, β ∈ K× and note that

∀p ∈ Sf , ordp(α) = ordp(β) = 0 =⇒ p | f(αβ)− f(α)f(β).

Since Sf is infinite, there are infinitely many such primes p, and so f(αβ) = f(α)f(β). �

By the Lemma 3.2, one may as well add “f is completely multiplicative” to the hypothesis of Conjecture
1.4. The next lemma shows that Conjecture 1.1 is implied by Conjecture 1.4. Note that, for any p ∈ Tf ,
there is a well-defined function

fp : Fp −→ Fp, fp(n) := f(n).

Lemma 3.3. Suppose that f : N −→ Z is quasi-multiplicative and that Tf is infinite. Then either f is
identically zero or Sf is infinite. (In either case, f is completely multiplicative.)

Proof. Fix any prime p ∈ Tf and note that p ∈ Sf ∩ Tf if and only if

fp(F×p ) ⊆ F×p (7)

holds and fp is a multiplicative homomorphism. Choose g ∈ N so that 〈g〉 = F×p . Suppose that (7) does

not hold, i.e. that fp(g
n) = 0 for some positive integer n. By Dirichlet’s theorem on primes in arithmetic

progressions, one may find n prime numbers q1, q2, . . . , qn for which

∀i ∈ {1, 2, . . . , n}, qi ≡ g (mod p).

It follows from Definition 3.1 that

0 = fp (gn) = fp

(
n∏
i=1

qi

)
=

n∏
i=1

fp(qi) = (fp(g))
n
, (8)

and so we conclude that, for any prime p ∈ Tf ,

condition (7) fails =⇒ fp(Fp) = {0}.
Furthermore, if we set

T0 := {p ∈ Tf : fp(Fp) = {0}},
then for each n ∈ N, f(n) is divisible by every prime p ∈ T0. Thus,

|T0| =∞ =⇒ ∀n ∈ N, f(n) = 0.
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Assuming f is not identically zero, we have that T0 is finite, and putting S := Tf −T0, we see that (7) holds
for each p ∈ S. Furthermore, using Dirichlet’s theorem on primes in arithmetic progressions and reasoning
as in (8), one sees that the restriction of fp to F×p is a multiplicative homomorphism for each p ∈ S. In
particular, S = Tf ∩ Sf , which concludes the proof. �

The main result of [4] implies that, if the set {all primes} − Tf is finite, then either f is identically zero
or f is a global power map. A somewhat stronger result may be found in [8, Proposition 1, p. 329] (whose
proof appeals to [1, Theorem 1]), which implies that if Tf has density one in the set of primes, then either
f is identically zero or f is a global power map.

We end by mentioning two other related rigidity results, each of which may be seen as generalizing our
present context. I. Ruzsa [11] proved that, if f : N −→ Z satisfies (1) for each p ∈ N together with an upper
bound

|f(n)| � (e− 1)αn

for some α < 1, then f is a polynomial map. Ruzsa also conjectured that the same result should hold with
e−1 replaced by e, and some progress on this conjecture has been made by Zannier [17]. On the other hand,
for a higher-dimensional analogue, the main theorems in [8] articulate rigidity results for maps of abelian
varieties.

4. Outline of the proof of Theorem 1.7

The rest of the paper is devoted to a proof of Theorem 1.7. We begin by reducing to the case A = N.

Lemma 4.1. Let f : A −→ K and suppose that |Sf | =∞. Then the following implication holds.

f |N is a global power map =⇒ f is a global power map.

Proof. If f(n) = nk for all n ∈ N, then kp = k for each p ∈ Sf (this uses that Sf ⊆ PK,1). Thus, for each
α ∈ A, p | f(α)− αk for infinitely many prime ideals p, so f is a global power map. �

Since clearly Sf ⊆ Sf |N , we obtain the following corollary.

Corollary 4.2. If Theorem 1.7 (resp. Conjecture 1.4) holds for A = N, then it holds in general.

We will now prove Theorem 1.7 for the case A = N. First observe that, for any parameters 0 ≤ Y < Z,
one may bound the quantity |Sf (x)| by two sums:

|Sf (x)| ≤
∑

p∈PK,1(x)
∀`∈[Y,Z),

Np6≡1 (mod `)

1 +
∑

Y≤`<Z

∑
p∈Sf (x)

Np≡1 (mod `)

1. (9)

We will eventually choose Y = Y (x) and Z = Z(x) appropriately so as to optimally bound each of these
quantities.

The first sum is dealt with quickly as an application of the Brun-Titchmarsh Theorem and Merten’s
Theorem. The former states that, for q < x, one has

π(x; a, q) ≤ 2x

ϕ(q) log(x/q)
, (10)

while the latter states that ∏
p≤x

(
1− 1

p

)
∼ e−γ 1

log x
(11)

as x −→∞.

Proposition 4.3. Assume that

2 ≤ Y ≤ Z ≤ 1

3
· log x.

Then for Z sufficiently large, one has ∑
p∈PK,1(x)
∀`∈[Y,Z),

Np6≡1 (mod `)

1 � log Y

logZ
· x

log x
,
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with an absolute implied constant.

Proof. We will apply (10) with

q :=
∏

Y≤`<Z

`,

which, by the prime number theorem, satisfies q ≤ e(1+o(1))Z as Z −→ ∞. In particular, since Z ≤ 1
3 log x

we have

Z � 1 =⇒ q ≤ x1/2. (12)

Consider the set C ⊆ Z/qZ, defined by

C := {a ∈ Z/qZ : gcd(a(a− 1), q) = 1}.
For Z ≤ 1

3 log x, we have∑
p∈PK,1(x)
∀`∈[Y,Z),

Np6≡1 (mod `)

1 ≤
∑
p≤x

∀`∈[Y,Z),
p 6≡1 (mod `)

1 ≤
∑
a∈C

π(x; a, q) + π(Z)

� |C|
ϕ(q)

· x

log x
+

Z

logZ

=
∏

Y≤`<Z

(
1− 1

`− 1

)
· x

log x
+

Z

logZ

� log Y

logZ
· x

log x
,

by (10), (11) and (12). This proves Proposition 4.3. �

It remains to bound the second sum in (9). Our key tool for doing so is an effective version of the
Chebotarev density theorem, which was first proved by Lagarias and Odlyzko [9] and further refined by
Serre [12]. We will now describe the theorem precisely in the form we will use it.

The Chebotarev density theorem gives an asymptotic formula for the number of prime ideals p with
Np ≤ x for which the associated Frobenius automorphism has a prescribed action on a given fixed number
field. More precisely, let L/K be a Galois extension of number fields and let us denote by G := Gal(L/K)
the relative Galois group, nL := [L : Q] the degree of L over Q, and dL the absolute discriminant of L.
Furthermore, fix any subset C ⊆ G satisfying

∀σ ∈ G, σCσ−1 = C. (13)

For any prime ideal p ⊆ OK which doesn’t ramify in L, let Frobp ⊆ G denote the conjugacy class in G of
the Frobenius automorphism FrobP attached to any prime ideal P ⊆ OL lying over p ⊆ OK . By (13), either
Frobp ⊆ C or Frobp ∩C = ∅, and we consider the counting function

π(x;L/K, C) := |{p ∈ PK(x); p is unramified in L and Frobp ⊆ C}|.
The Chebotarev density theorem asserts that, as x −→∞, one has

π(x;L/K, C) ∼ |C|
|G|

Li(x).

We will require the following effective version, which bounds the error term in this asymptotic in terms of
data attached to the extension L/K. We will assume that

∃ a sequence of fields Q = L0 ⊆ L1 ⊆ · · · ⊆ Lm = L

so that ∀i ∈ {1, 2, . . . ,m}, Li is Galois over Li−1.
(14)

Theorem 4.4. (Effective Chebotarev Theorem) Assume that (14) holds. Then there exist absolute, effectively
computable positive constants c1, c2 and c3 such that, if x ≥ 2 and√

log x

nL
≥ c3 max

{
log |dL|, |dL|1/nL

}
, (15)
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then ∣∣∣∣π(x;L/K, C)− |C|
|G|

Li(x)

∣∣∣∣ ≤ c1|C| · x · exp

(
−c2

√
log x

nL

)
.

Proof. The zeta function ζL(s) is known to have at most one real zero β satisfying

1− 1

4 log |dL|
≤ β;

such a zero β is called exceptional. Theorem 1.3 of [9] (see also Théorème 2 of [12]) it is proved that there
exist absolute, effectively computable positive constants a1, a2 and a3 such that, for each x ≥ 2 satisfying
log x ≥ a3nL(log |dL|)2, one has∣∣∣∣π(x;L/K, C)− |C|

|G|
Li(x)

∣∣∣∣ ≤ |C||G| Li(xβ) + a1|C| · x · exp

(
−a2

√
log x

nL

)
,

where the term |C|
|G| Li(xβ) may be suppressed if an exceptional zero β does not exist. In [13, p. 148], it is

shown that, under the hypothesis (14), one has

1− 1

4 log |dL|
≤ β < max

{
1− 1

16 log |dL|
, 1− a4

|dL|1/nL

}
,

for an appropriately chosen effectively computable positive constant a4. Using this upper bound on β, one

finds that, provided (15) holds, the term Li(xβ) is bounded above by a constant times x exp
(
−a2

√
log x
nL

)
,

which gives Theorem 4.4. �

We will apply Theorem 4.4 in the context of certain Kummer extensions attached to f to deduce the
following proposition.

Proposition 4.5. Suppose that f : N −→ K× is not a global power map. There exists constants af , bf > 0
so that, provided

af ≤ Y ≤ Z ≤
(

log x

(6c3 log log x)2

)1/15

,

(where c3 is the constant appearing in (15)) then one has∑
Y≤`<Z

∑
p∈Sf (x)

Np≡1 (mod `)

1 � 1

Y log Y
· Li(x) + bf ,

with an absolute implied constant.

Inserting the results of Propositions 4.3 and 4.5 into (9) and putting

Y =
log log x

(log log log x)2
, Z =

(
log x

(6c2 log log x)2

)1/15

,

we see that Theorem 1.7 follows.

5. Preliminaries on Kummer extensions

The rest of the paper is devoted to proving Proposition 4.5. Our proof uses Theorem 4.4 with L equal to
a field extension of the form

L = K
(
ζ`, n

1/`
1 , n

1/`
2 , f(n1)1/`, f(n2)1/`

)
,

for appropriately chosen n1, n2 ∈ N. If f is a global power map, then L = K(ζ`, n
1/`
1 , n

1/`
2 ), and one cannot

deduce the result of Proposition 4.5. In case f is not a global power map but nevertheless |Sf | = ∞, then
it is still not immediately clear that one may find n1, n2 ∈ N for which [L : K(ζ`)] = `4 for all primes `
which are large enough, but we show that one may achieve [L : K(ζ`)] ≥ `3 for ` �f 1, which suffices for
our purposes (see Corollary 5.5 below).

7



We begin by reviewing some fundamental facts about Kummer extensions in general. For any integers
m ≥ 0 and n ≥ 1 and vector c = (c1, c2, . . . , cm) ∈ (K×)m, we will call a number field of the form

L = K(ζn, c
1/n) := K(ζn, c

1/n
1 , c

1/n
2 , . . . , c1/nm )

a Kummer extension (in case m = 0, we interpret this as K(ζn, c
1/n) := K(ζn)). In our application, we will

deal exclusively with the case where n = ` is an odd prime number.

5.1. The discriminant of a Kummer extension. Because of (15), in order to apply Theorem 4.4 with
L of the form K(ζ`, c

1/`), we will need a bound on the absolute discriminant of L. Such a bound may be
obtained from the following classical formula for relative discriminants.

Lemma 5.1. Let K ⊆ F ⊆ L be a tower of number fields, let ∆L/F ⊆ OF , ∆L/K ⊆ OK , and ∆F/K ⊆ OK
be the relative discriminants and let NF/K : F× −→ K× the usual norm map. Then one has

∆L/K = NF/K(∆L/F )∆
[L:F ]
F/K . (16)

Proof. See for instance [5, p. 126]. �

The next lemma follows from the previous one by induction on m.

Lemma 5.2. Let L = K(ζ`, c
1/`
1 , . . . , c

1/`
m ), and let ∆L/K ⊆ OK denote the relative discriminant and dL ∈ Z

the absolute discriminant. Then

∆L/K divides

(
m∏
i=1

num(ci)den(ci)

)nL/nK
`(m+1)nL/nKOK ,

dL divides

(
dK ·NK/Q

(
m∏
i=1

num(ci)den(ci)

))nL/nK
`(m+1)nL .

In particular, we obtain the following corollary. Note that, for some bound aK , one has that

` ≥ aK =⇒ [K(µ`) : K] = `− 1.

Let us put

bK,f,n := max

{
aK ,

∣∣∣∣∣dK ·NK/Q
(

2∏
i=1

ninum(f(ni))den(f(ni))

)∣∣∣∣∣
}
. (17)

Corollary 5.3. Suppose f : K× −→ K× is any function and let L = K
(
ζ`, n

1/`
1 , n

1/`
2 , f(n1)1/`, f(n2)1/`

)
.

Then for any prime ` satisfying log ` ≥ bK,f,n, one has

max
{

log |dL|, |dL|1/nL
}
≤ (6nK + 1)`5 log `.

5.2. The Galois group of a Kummer extension. We now describe the structure of Gal(K(ζ`, c
1/`)/K).

Consider the group

(Z/`Z)× n (Z/`Z)m,

where the semi-direct product is defined via the multiplicative action of (Z/`Z)× on (Z/`Z)m, or explicitly

(a1,b1) · (a2,b2) = (a1a2,b2 + a2b1),

where bi ∈ (Z/`Z)m. (Equivalently, the embedding

(Z/`Z)× n (Z/`Z)m ↪→ GLm+1(Z/`Z)

(a,b) 7→
(
a 0
b I

)
,

8



where I denotes the m × m identity matrix, allows one to regard (Z/`Z)× n (Z/`Z)m as a subgroup of
GLm+1(Z/`Z).) There is an embedding of groups1

Gal(K(ζ`, c
1/`)/K) ↪→ (Z/`Z)× n (Z/`Z)m(

ζ` 7→ ζa`
c
1/`
i 7→ c

1/`
i · ζbi`

)
7→ (a,b),

(18)

where b = (b1, b2, . . . bm). What is the image of this embedding? In general, the image depends on whether
(and to what extent) there exist multiplicative relations

ce/` :=

m∏
i=1

(c
1/`
i )ei ∈ K(ζ`)

×, (19)

where in the above, e = (e1, e2, . . . , em) ∈ (Z/`Z)m. In our application, we will need to understand the image
of this embedding, even in the case where nontrivial relations such as (19) exist. Let Vc(`), respectively V ⊥c (`)
denote the Z/`Z-vector subspaces

Vc(`) := {e ∈ (Z/`Z)m : the relation (19) holds}

V ⊥c (`) := {b ∈ (Z/`Z)m : ∀e ∈ Vc(`),

m∑
i=1

biei ≡ 0 (mod `)}.
(20)

Note that

∀σ ∈ Gal(K/K), σ(ce/`) = ζx` ce/`

for some x ∈ Z/`Z. Together with (19), this implies that, for each e ∈ Vc(`), one has ce/` ∈ K× · µ`. It

follows that, multiplying each c
1/`
i by an appropriate `-th root of unity, one may arrange that

∀e ∈ Vc(`), ce/` ∈ K×. (21)

It follows from (21) and (20) that the image of the embedding (18) is contained in the subgroup

(Z/`Z)× n V ⊥c (`) ⊆ (Z/`Z)× n (Z/`Z)m.

In fact, the image of the embedding (18) is equal to (Z/`Z)× n V ⊥c (`), as stated in the following lemma.

Lemma 5.4. Suppose that the roots c
1/`
1 , . . . , c

1/`
m have been chosen so that (21) holds. Then the function

(18) gives an isomorphism of groups

Gal(K(ζ`, c
1/`)/K) ' (Z/`Z)× n V ⊥c (`).

Proof. Let B ⊆ K× be the multiplicative subgroup generated by (K×)` and {ci : 1 ≤ i ≤ m}. In [10,
Theorem 8.1, p. 294–295] it is shown that

Gal(K(ζ`, c
1/`)/K(ζ`)) '

B

(K×)`
.

Noting that, under cn (mod `) 7→ n (mod `), one has

B

(K×)`
' (Z/`Z)m

Vc(`)
' V ⊥c (`),

one concludes that Gal(K(ζ`, c
1/`)/K(ζ`)) ' V ⊥c (`), and the conclusion of the lemma follows. �

Lemma 5.5. Suppose that f : N −→ K× is a completely multiplicative function that is not a global power
map. Then there exist positive integers n1, n2 and cf for which

` - cf =⇒


[
K
(
ζ`, n

1/`
1 , n

1/`
2

)
: K(ζ`)

]
= `2, and[

K
(
ζ`, n

1/`
1 , n

1/`
2 , f(n1)1/`, f(n2)1/`

)
: K(ζ`)

]
≥ `3.

(22)

Proof. Note that f is a global power map if and only if the following two conditions hold.

1Here we are interpreting Gal(K(ζ`, c
1/`)/K) as operating on the right.
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(1) For each rational prime p and prime ideal q ∈ PK , one has

q | f(p)OK =⇒ q | pOK .

(2) For any rational primes p and q and for any prime ideals p, q ∈ PK with p lying above p and q lying
above q, one has

ordp(f(p))

fp
=

ordq(f(q))

fq
,

where fp (resp. fq) denotes the inertial degree of p (resp. q) in K.

Assume that f is not a global power map, so that at least one of these conditions fails. If (1) fails, then
one can find a prime number p1 and a prime ideal q ∈ PK with

q | f(p1) but q - p1.

Let p1 ∈ PK be any prime ideal above p1, let q be the rational prime below q, and pick any other rational
prime p2 /∈ {p1, q} and any prime ideal p2 lying over p2. Setting n1 = p1 and n2 = p2 and considering the
exponents of p1, p2 and q in p1, p2 and f(p1), we see that∣∣∣∣∣∣

fp1 0 ∗
0 fp2 ∗
0 0 ordq(f(p1))

∣∣∣∣∣∣ = fp1fp2 ordq(f(p1)) 6≡ 0 mod ` =⇒ (22) holds,

so we may set cf := fp1fp2 ordq(f(p1)) in this case.
On the other hand, if (1) holds but (2) fails, then let us write αp := ordp(f(p)), where p is the rational

prime lying under p. One can find prime ideals p1 6= p2 for which

αp1
fp2 6= αp2

· fp1 ,

where pi denotes the prime lying under pi. In case p1 6= p2, then choose p3 to be any other prime
ideal lying over a prime p3 /∈ {p1, p2} and set n1 := p1p2p3 and n2 := p3. Considering the subfield

K(ζ`, n
1/`
1 , n

1/`
2 , f(n1n2)1/`), one sees that∣∣∣∣∣∣

fp1 0 αp1

fp2 0 αp2

fp3 fp3 2αp3

∣∣∣∣∣∣ = fp3(fp2αp1
− fp1αp2

) 6≡ 0 mod ` =⇒ (22) holds,

so we may set cf := |fp3(fp1αp2
−fp2αp1

)| in this case. In case p1 = p2 =: p, we let p′ be any other prime and

p′ any prime ofK over p′. Setting n1 := p and n2 := p′ and considering the subfieldK(ζ`, n
1/`
1 , n

1/`
2 , f(n1)1/`),

we find that ∣∣∣∣∣∣
fp 0 αp1

fp 0 αp2

0 fp′ 0

∣∣∣∣∣∣ = fp′(fpαp1
− fpαp2

) 6≡ 0 mod ` =⇒ (22) holds,

and we may set cf := |fp′(fpαp1
− fpαp2

)| in this case, finishing the proof of Lemma 5.5. �

5.3. The Frobenius automorphism in Kummer extensions. We now turn our consideration to the
Frobenius automorphism FrobP for a prime ideal P ⊆ OL lying over p ∈ PK,1, where L = K(ζ`, c

1/`) and
Np ≡ 1 (mod `). Note that for any p ∈ PK,1, Np is prime.

We begin by describing the situation when m = 1 and c /∈ (K×)`, i.e. (dropping subscripts) we have

L = Lc := K(ζ`, c
1/`) 6= K(ζ`) (c ∈ K×)

and

Gal(Lc/K) ' (Z/`Z)× n Z/`Z(
ζ` 7→ ζa`
c1/` 7→ c1/` · ζb`

)
7→ (a, b),

(23)
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The minimal polynomials over K of ζ` and c1/`, together with their factorizations over K, are given respec-
tively as follows:

Φ`(t) :=
t` − 1

t− 1
=

∏
i∈(Z/`Z)×

(t− ζi`),

t` − c =
∏

i∈Z/`Z

(t− ζi` · c1/`).

In our present discussion, we will adopt the standing assumptions that

Np ≡ 1 (mod `) and ordp(c) = 0. (24)

By Lemmas 5.2 and 5.4, these conditions imply that

p splits completely in K(ζ`) and p is unramified in Lc.

Consider the subgroup µ` ⊆ F×p of `-th roots of unity. Since Np ≡ 1 (mod `), one can find an element z ∈ Z
whose reduction z modulo p generates µ`, i.e. we have

〈z〉 = µ` ⊆ F×p , (25)

and the reductions modulo p of the above minimal polynomials factorize over Fp as

Φ`(t) ≡
∏

i∈(Z/`Z)×
(t− zi) (mod p),

t` − c ≡
∏

i∈Z/`Z

(t− ziθc) (mod p),

for some θc ∈ F×p /µ`. Furthermore, one has the prime factorization

pOK(ζ`) =
∏

i∈(Z/`Z)×
pz,i,

(
pz,i := pOK(ζ`) + (ζ` − zi

∗
)OK(ζ`)

)
,

where i∗ denotes an integer satisfying i∗i ≡ 1 (mod `). Note that, by our choice of indexing, we have

∀j ∈ (Z/`Z)×, pz,i = pzj ,ij . (26)

What about the splitting type of such a prime ideal pz,i in Lc? Since Lc has prime degree ` over K(ζ`) and
by (24), each pz,i either splits completely or remains inert in Lc. Furthermore, since Lc is Galois over K,
the splitting type of each pz,i is the same. Under the assumptions (24), one has

pz,i splits completely in Lc ⇐⇒ c (mod p) ∈ (F×p )`

⇐⇒ θc ∈ F×p /µ`
(27)

If this is the case, we may allow z in (25) to be an arbitrary generator of µ` ⊂ F×p and note also that, under
the isomorphism (23),

pz,i splits completely in Lc ⇐⇒ FrobP = (1, 0),

for any prime ideal P ⊆ OLc lying over pz,i.
In case pz,i does not split completely in Lc, the finite field Fp[θc] has degree ` over Fp , and we normalize

our choice of z = zc ∈ Z so that

zc :=
θNp
c

θc
∈ F×p (28)

(Note that zc ∈ F×p is independent of the choice of θc ∈ F×p /µ`). In this case, putting

Pzc,i := pzc,iOLc = pOLc + (ζ` − zi
∗

c )OLc , (29)

the ideal Pzc,i is prime and we have a prime factorization

pOLc =
∏

i∈(Z/`Z)×
Pzc,i.

The following lemma characterizes the Frobenius automorphism FrobPzc,i
.

11



Lemma 5.6. Suppose c ∈ K× satisfies Lc := K(ζ`, c
1/`) 6= K(ζ`). Furthermore, let p ∈ PK,1 be a prime

ideal satisfying Np ≡ 1 (mod `) and ordp(c) = 0. Then p is unramified in Lc and, with notation as above,
under the isomorphism Gal(Lc/K) ' (Z/`Z)× n Z/`Z given by (23), one has

FrobPzc,i
=

{
(1, 0) if p splits completely in Lc and Pzc,i is any prime above p

(1, i) if pOLc =
∏
i∈(Z/`Z)× Pzc,i, where each Pzc,i is as in (29) and is prime.

Proof. We need only concern ourselves with the case that p does not split completely in Lc. In this case,
consider the ring homomorphism πzc,i : OK(ζ`) −→ Fp, induced by ζ` 7→ zi

∗

c . Note that

kerπzc,i = pzc,i and σa(pzc,i) = pzc,ai,

where σa 7→ a under Gal(K(ζ`)/K) ' (Z/`Z)×. Since OLc/Pzc,i ' Fp(θc) in this case, one may extend

πzc,i to a ring homomorphism $zc,i : OLc −→ Fp(θc) for which $zc,i(c
1/`) = θc. Consider the induced

isomorphism

$zc,i : OLc/Pzc,i −→ Fp(θc).

By definition of FrobPzc,i
, one has $zc,i ◦FrobPzc,i

◦$−1zc,i(θc) = θpc . On the other hand, if FrobPzc,i
7→ (1, b)

under (23), then by (28), we have

zcθc = θNp
c = $zc,i(FrobPzc,i

($−1zc,i(θc))) = $zc,i(FrobPzc,i
(c1/` (mod Pzc,i))) = $zc,i(ζ

b
` c

1/`) = zi
∗b
c θc.

Thus, one finds that b = i, proving the lemma. �

The next Lemma follows from Lemma 5.6, and is essential in what follows. Our context is as before but

with m = 2k even, and we write L = K(ζ`, c
1/`,d1/`) := K(ζ`, c

1/`
1 , . . . , c

1/`
k , d

1/`
1 , . . . , d

1/`
k ). Thus,

Gal(L/K) ↪→ (Z/`Z)× n
(
(Z/`Z)k × (Z/`Z)k

)
, (30)

and we regard elements of Gal(L/K) as triples (a,b, f) with b, f ∈ (Z/`Z)k. We denote by C2k ⊆ Gal(L/K)
the subset

C2k := {(1,b, f) ∈ Gal(L/K) : f = λb for some λ ∈ Z/`Z }, (31)

which is stable by Gal(L/K)-conjugation.

Lemma 5.7. Let L = K(ζ`, c
1/`,d1/`). Let p ∈ PK,1 be any prime ideal satisfying Np ≡ 1 (mod `) and

ordp

(
k∏
i=1

cidi

)
= 0.

Then p is unramified in K and splits completely in the subfield K(ζ`). Suppose further that, for some fixed
kp ∈ Z/(Np− 1)Z, one has

∀i ∈ {1, 2, . . . , k}, di ≡ c
kp
i (mod p).

Then, under the embedding (30), the Frobenius class Frobp ⊆ Gal(L/K) satisfies

Frobp ⊆ C2k.

Proof. Note that, for any vector w = (w1, w2, . . . , wm) ∈ Km, the diagram

Gal(K(ζ`,w
1/`)/K) −−−−→ (Z/`Z)× n V ⊥w (`)

res

y πj

y
Gal(K(ζ`, w

1/`
j )/K) −−−−→ (Z/`Z)× n V ⊥wj (`)

(32)

commutes, where πj((a,b)) := (a, bj). Taking any prime ideal p as in the statement of the corollary, p is

unramified in L = K(ζ`, c
1/`,d1/`), and we fix a prime P of K lying over p. By the discussion preceding

Lemma 5.6, for any multiplicative generator z ∈ µ` ⊆ F×p we may find i ∈ (Z/`Z)× for which

P ∩ OK(ζ`) = pz,i. (33)

Let us fix an index j ∈ {1, 2, . . . , k} and put c := cj and d := dj . Furthermore, denote by

Pc := P ∩ OLc and Pd := P ∩ OLd
12



the corresponding primes of Lc := K(ζ`, c
1/`) (resp. of Ld := K(ζ`, d

1/`)) lying under P.
Case: kp ≡ 0 (mod `). Since d ≡ ckp (mod p), we see in this case that d (mod p) ∈ (F×p )`, so that by

(27) and Lemma 5.6, one has FrobPd = (1, 0) in this case. Since this is independent of the index j, we see
by (32) that the conclusion of the corollary holds, taking λ = 0 in (31).

Case: kp 6≡ 0 (mod `). Now if c (mod p) ∈ (F×p )`, then necessarily d ≡ ckp (mod p) ∈ (F×p )`, and again
by (27) and Lemma 5.6, we have that FrobPc = (1, 0) and FrobPd = (1, 0 · kp), and (note that this covers
the case c ∈ (K×)`).

In case c (mod p) /∈ (F×p )`, we put z = zc in (33), possibly adjusting i (mod `) appropriately. Noting

that θd only depends on d modulo p, we may take θd = θ
kp
c , and so zd ≡ z

kp
c (mod p). Thus, by (29) and

(26), we find that
Pc = Pzc,i = P

z
kp
c ,ikp

= Pzd,ikp .

Applying Lemma 5.6, we conclude that FrobPc = (1, i) and FrobPd = (1, ikp), and since the factor kp is
independent of the index j, we apply (32) to deduce the conclusion of Lemma 5.7 in this case. �

In particular, taking c = (n1, n2) ∈ N2 and d = (f(n1), f(n2)) ∈ (K×)2, we obtain the following corollary.

Recall that bf,n :=

∣∣∣∣∣
2∏
i=1

ninum(f(ni))den(f(ni))

∣∣∣∣∣.
Corollary 5.8. Suppose that f : N −→ K× is any function, n1, n2 ∈ N, and ` is an odd prime number. Put

L = K
(
ζ`, n

1/`
1 , n

1/`
2 , f(n1)1/`, f(n2)1/`

)
. Then, for each prime ideal p, one has

p ∈ Sf and Np ≡ 1 (mod `) =⇒ Frobp ⊆ C4 or p | bf,n,
where C4 is defined by taking k = 2 in (31).

Our final lemma shows that, if f is not a global power map, then the relevant Chebotarev factor
|C4|/|Gal(L/K)| is bounded by a constant times 1/`2, which will allow us to deduce Proposition 4.5 from
Theorem 4.4.

Lemma 5.9. Suppose that f : N −→ K× is any function, let n1, n2 ∈ N, let ` be an odd prime, and let

L := K
(
ζ`, n

1/`
1 , n

1/`
2 , f(n1)1/`, f(n2)1/`

)
. Suppose that

[K
(
ζ`, n

1/`
1 , n

1/`
2 , f(n1n2)1/`

)
: K(ζ`)] = `3. (34)

Then one has
|C4|

|Gal(L/K)|
≤ 2

`(`− 1)
,

where C4 is defined by taking k = 2 in (31).

Proof. By hypothesis, one has
Gal(L/K) ' (Z/`Z)× n (Z/`Z · d)⊥,

for some d ∈ (Z/`Z)4. If d = 0, i.e. if Gal(L/K) ' (Z/`Z)× n (Z/`Z)4, then directly from (31) one finds
that

|C4| ≤ `3,
and the conclusion of the lemma follows. If d 6= 0 then, writing d = (d1,d2) with di ∈ (Z/`Z)2, we have
that

C4 = {(1,b, λb) : (b, λ) ∈ (Z/`Z)3, b · d1 + λb · d2 = 0}
= {(1,b, λb) : (b, λ) ∈ (Z/`Z)3, b · (d1 + λd2) = 0}.

Consider the equation
b · (d1 + λd2) = 0. (35)

By (34) we see that d2 6= 0 ∈ (Z/`Z)2, and so d1 + λd2 = 0 for at most one λ ∈ Z/`Z. For such a λ, one
counts `2 solutions b ∈ (Z/`Z)2 to the equation (35), while for each of the other `− 1 values of λ one counts
` solutions. Thus, one has

|C4| ≤ `(2`− 1),
13



and the conclusion of the lemma follows in this case as well. �

Remark 5.10. The hypothesis in Lemma 5.9 that f not be a global power map is critical. Indeed, if
f(α) = αk for all α ∈ K, then (e.g. provided n2 is multiplicatively independent from n1) under (30) one has

Gal(L/K) = (Z/`Z)× n {(b, kb) : b ∈ (Z/`Z)2}.

In particular, one finds that

|C4|
|Gal(L/K)|

=
|{(1,b, kb) : b ∈ (Z/`Z)2}|

|(Z/`Z)× n {(b, kb) : b ∈ (Z/`Z)2}|
=

1

`− 1
,

and our method of proof fails for this case (as it should).

6. Proof of Proposition 4.5

We now assume that f is not a global power map, and we may assume that |Sf | =∞. Fix n = (n1, n2) ∈
N2 as in Lemma 5.5, and define

af := max{cf + 1, ebf,n},

where cf is as in Lemma 5.5 and bf,n is as in (17). Note that in particular, by Corollary 5.8, one has∑
p∈Sf (x)

Np≡1 (mod `)

1 ≤ π(x;L/K, C4) +O(ω(bf,n)). (36)

Our assumption that

Z ≤
(

log x

(6c2 log log x)2

)1/15

(37)

implies that, for x large enough, one has
√

log x/Z5 ≥ 6c2 · Z5 logZ. By Corollary 5.3, ` ∈ [Y,Z) and

ebf,n ≤ af < Y guarantee that (15) holds in this case. Thus, for Y > af and ` ∈ [Y,Z), Theorem 4.4 and
Lemma 5.9 imply that

π(x;L/K, C4) =
|C4|

|Gal(L/K)|
· π(x) +O

(
|C4| · x · exp

(
−c1

√
log x

[L : K]

))

� 1

`2
· π(x) + `3 · x · exp

(
−c1

√
log x

Z5

)
.

(38)

Inserting this into of Lemma 5.9 into (36) and summing over primes ` ∈ [Y, Z), we obtain

∑
Y≤`<Z

∑
p∈Sf (x)

Np≡1 (mod `)

1 � 1

Y log Y
· π(x) +

Z4

logZ
· x · exp

(
−c1

√
log x

Z5

)
+ ω(bf,n).

By virtue of the bounds (37) and

exp
(
−c1(log x)1/3

)
�A

1

(log x)A
(A > 0),

we see that the second remainder term satisfies

Z4

logZ
· x · exp

(
−c1

√
log x

Z5

)
�A

x

(log x)A

for any A > 0, and since Y < Z, this observation finishes the proof of Proposition 4.5.
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