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Let E be an elliptic curve defined over the rational numbers and r a fixed integer. Using

a probabilistic model consistent with the Chebotarev density theorem for the division

fields of E and the Sato–Tate distribution, Lang and Trotter conjectured an asymptotic

formula for the number of primes up to x which have Frobenius trace equal to r, where r

is a fixed integer. However, as shown in this note, this asymptotic estimate cannot hold

for all r in the interval |r| ≤ 2
√

x with a uniform bound for the error term, because an

estimate of this kind would contradict the Chebotarev density theorem as well as the

Sato–Tate conjecture. The purpose of this note is to refine the Lang–Trotter conjecture, by

taking into account the “semicircular law,” to an asymptotic formula that conjecturally

holds for arbitrary integers r in the interval |r| ≤ 2
√

x, with a uniform error term. We

demonstrate consistency of our refinement with the Chebotarev density theorem for

a fixed division field, and with the Sato–Tate conjecture. We also present numerical

evidence for the refined conjecture.

1 Introduction

Let E be an elliptic curve defined over Q of minimal discriminant !E . For any prime

number p not dividing !E , let E p denote the reduction of E modulo p and

aE (p) := p+ 1 − #E p(Z/pZ)
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434 S. Baier and N. Jones

the trace of Frobenius at p. For a fixed integer r, define the prime-counting function

πE ,r(x) :=
∑

p≤x,p!!E
aE (p)=r

1.

By studying a probabilistic model consistent with the Chebotarev density theorem for

the division fields of E and the Sato–Tate distribution, Lang and Trotter formulated the

following conjecture.

Conjecture 1. (Lang–Trotter) Let E be an elliptic curve over Q and r ∈ Z a fixed integer.

If r = 0 then assume additionally that E has no complex multiplication. Then

πE ,r(x) = C E ,r

∫ x

2

dt
2
√

t log t
+ o

( √
x

log x

)
= C E ,r

√
x

log x
+ o

( √
x

log x

)
(1)

as x → ∞, where C E ,r is a specific non-negative constant. !

Remark 1. It is possible that the constant C E ,r = 0, in which case we interpret the

asymptotic to mean that there are only finitely many primes p for which aE (p) = r. !

We note that if r = 0 and E has complex multiplication, Deuring [3] showed that

half of the primes p satisfy aE (p) = 0, i.e.

πE ,0(x) ∼ π (x)
2

as x → ∞.

More precisely, for any constant C > 1, we have

πE ,0(x) = 1
2

Li(x) + O
(

x
(log x)C

)
, (2)

where the implied O-constant depends only on E and C , and

Li(x) :=
∫ x

2

dt
log t

∼ x
log x

as x → ∞.

Primes p with aE (p) = 0 are known as “supersingular primes.”

We point out that Conjecture 1 is formulated for fixed numbers r. The purpose of

this note is to refine Conjecture 1 to an asymptotic formula, which conjecturally holds for
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A refined version of the Lang-Trotter Conjecture 435

arbitrary integers r in the interval −2
√

x ≤ r ≤ 2
√

x, with a uniform error term, where the

case r = 0 is excluded if E has complex multiplication. Our refinement is stated below.

Conjecture 2. Let E be an elliptic curve over Q. Fix any C > 1. Then, uniformly for

|r| ≤ 2
√

x, where the case r = 0 is excluded if E has CM, we have

πE ,r(x) = C E ,r

∫ x

max{2,r2/4}

#E (r/(2
√

t ))
2
√

t log t
dt + OE ,C

( √
x

(log x)C

)
, (3)

where C E ,r is the same constant appearing in Conjecture 1, and

#E (z) :=
{√

1 − z2 if E does not have CM
1√

1−z2 if E has CM.
(4)

!

For convenience, throughout the sequel, we denote the main term on the right-

hand side of (3) by FE ,r(x), i.e. we set

FE ,r(x) := C E ,r

∫ x

max{2,r2/4}

#E (r/(2
√

t ))
2
√

t log t
dt (5)

if x ≥ max{2, r2/4}. We note that this term is bounded from above by the main term in

Conjecture 1, i.e.

FE ,r(x) * C E ,r

√
x

log x
. (6)

Conjecture 2 is rather “conservative” in the sense that the O-term bounding the

error is smaller than the main term by no more than a factor of a power of logarithm. In

Section 3, we shall give a heuristic suggesting the following sharpening of Conjecture 2,

which essentially states that the the error term in (3) should not be much larger than the

square root of the main term.

Conjecture 3. Let E be an elliptic curve over Q and ε > 0. Assume that |r| ≤ 2
√

x. Assume

further that r += 0 if E has CM. Then

πE ,r(x) = FE ,r(x) + OE ,ε(xε
√

1 + FE ,r(x)), (7)

where the function FE ,r(x) is defined as in (5). !
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436 S. Baier and N. Jones

Our work is motivated by the natural desire to sum the prime-counting function

πE ,r(x) over r in a fixed residue class and recover the Chebotarev density theorem for the

appropriate division field of E . More precisely, fix a modulus q and denote by Q(E [q]) the

qth division field of E , i.e. the field obtained by adjoining to Q the x and y coordinates of

the q-torsion points of a given Weierstrass model of E . Fixing a basis

E [q] , Z/qZ ⊕ Z/qZ

of E [q] over Z/qZ, we may view the Galois group

Gal (Q(E [q])/Q) ≤ GL2(Z/qZ)

as a subgroup of GL2(Z/qZ). Finally, let us denote by

δa,q := |{g ∈ Gal (Q(E [q])/Q) : tr g ≡ a mod q}|
|Gal (Q(E [q])/Q)|

the Chebotarev factor. The Chebotarev density theorem for the field Q(E [q]) implies that,

for any fixed constant C > 1, we have

∑

p≤x,p!q!E
aE (p)≡a mod q

1 = δa,q Li(x) + O
(

x
(log x)C

)
. (8)

We begin by observing that

∑

r≡a mod q
|r|≤2

√
x




∑

p≤x,p!!E
aE (p)=r

1



 =




∑

p≤x,p!q!E
aE (p)≡a mod q

1



 + Oq(1).

Thus, paying attention only to the main terms in (8) and Conjecture 1, and taking (2) in

the CM case into account, it is natural to hope that



∑

r≡a mod q
0<|r|≤2

√
x

C E ,r





√
x

log x
∼

(
δa,q − γ (E , a, q)

2

)
x

log x
,

where

γ (E , a, q) =
{

1 if E has CM and a ≡ 0 mod q,

0 otherwise.
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A refined version of the Lang-Trotter Conjecture 437

However, this is not the case. In fact, as proved in Section 4, one has the following.

Proposition 1. Let A be any integer and B any positive integer. Set M := max{|A|, |A+
B|}. Then

∑

r≡a mod q
A<r≤A+B

r +=0

C E ,r =






1
π

(
δa,q − γ (E ,a,q)

2

)
B + OE (q log3 M) if E has CM

2
π
δa,q B + OE (q) if E has no CM.

(9)

!

It follows that




∑

r≡a mod q
0<|r|≤2

√
x

C E ,r





√
x

log x
∼ 1

λ E

8
π

(
δa,q − γ (E , a, q)

2

)
x

log x
(10)

as x → ∞, where

λE :=





2 if E has CM

1 if E has no CM.

Hence, the conjectural asymptotic estimate (1) cannot hold for all r in the in-

terval |r| ≤ 2
√

x with a uniform bound for the error term of size o(
√

x/ log x). We shall

further see that (1) with a uniform bound for the error term also contradicts the Sato–

Tate conjecture (this follows from Theorem 4, proved in Section 6). We shall show that

our refined Conjecture 2 (resp. Conjecture 3) remedies these discrepancies. Moreover, in

Section 6 we shall demonstrate that in a certain sense, the main term in Conjectures 2

(resp. Conjecture 3) is the only possibility.

The paper is organized as follows. In Section 2, we motivate Conjectures 2 and

3. We also discuss briefly in which regions of the (x, r)-plane our main term differs

significantly from that in Conjecture 1 and under which circumstances (3) (resp. (7))

is actually an asymptotic estimate. In Section 3, we give a detailed description of the

constants C E ,r. In Section 4, we provide a proof of Proposition 1, which will serve as a

key tool in what follows. In Section 5, we prove that Conjecture 2 is consistent with the

Chebotarev density theorem, and in Section 6, we demonstrate the consistency with the

distribution of aE (p)/(2
√

p) ∈ [−1, 1]. Finally, in Section 7, we present numerical evidence

for Conjectures 2 and 3.
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438 S. Baier and N. Jones

2 The Refinement

The work of Lang-Trotter takes account of algebraic and analytic information in coming

up with the factor C E ,r. However, the analytic part of their heuristic replaces the “semi-

circular law” of Sato-Tate with a limiting constant value. This works well for fixed (or

small) r’s, as considered in their work. However, when we consider arbitrary r’s in the

interval −2
√

x ≤ r ≤ 2
√

x, it becomes necessary to introduce an analytic factor corre-

sponding to the Sato-Tate distribution in the non-CM case and to another characteristic

distribution in the CM case.

Roughly speaking, the heuristics of Lang and Trotter predict that the probability

that a large natural number p is prime and satisfies aE (p) = r is

≈ C E ,r
1

2
√

plog p
. (11)

Thus, one expects that

πE ,r(x) = C E ,r

∑

2≤n≤x

1
2
√

n log n
+ o

( √
x

log x

)
= C E ,r

∫ x

2

dt
2
√

t log t
+ o

( √
x

log x

)
,

as x → ∞. We note that

∫ x

2

dt
2
√

t log t
∼

√
x

log x
, as x → ∞.

To be precise, the reason for the apparent inconsistency (10) between Conjecture

1 and (8) is two-fold:

R1 When r is not very small compared with
√

x, the heuristic (11) needs to be

corrected by a factor accounting for the distribution of

aE (p)
2
√

p
∈ [−1, 1].

R2 Since πE ,r(x) only counts primes p that are ≥ r2/4, the interval of integration

in Conjecture 1 should be [r2/4, x] rather than [2, x].

Note that for fixed r and large x, neither of these observations affect the asymptotic.
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A refined version of the Lang-Trotter Conjecture 439

2.1 The distribution of aE( p)/(2
√

p) ∈ [−1, 1]

The appropriate measure for equidistribution of the quantity

aE (p)
2
√

p
∈ [−1, 1]

is φE (z)dz, where φE (z) is defined by

φE (z) :=
{

2
π

√
1 − z2 if E does not have CM

1
2π

1√
1−z2 if E has CM.

(12)

In the CM case, this distribution law is a classical theorem of Deuring [3].

Theorem 1. (Deuring) Suppose that K is an imaginary quadratic field and that E has

complex multiplication by an order in K, i.e.

EndQ(E ) ⊗ Q , K.

Then for any prime number p of good reduction for E , we have

aE (p) = 0 ⇐⇒ p is inert in K.

Furthermore, if I ⊂ [−1, 1] is some interval with 0 /∈ I , then

lim
x→∞

∣∣∣
{

p ≤ x : p ! !E , aE (p)
2
√

p ∈ I
}∣∣∣

π (x)
=

∫

I
φE (z)dz, (13)

where

φE (z) = 1
2π

1√
1 − z2

. !
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440 S. Baier and N. Jones

In the non-CM case, the distribution law was conjectured independently by Sato

and Tate (see [10]).

Conjecture 4. (Sato–Tate) For an elliptic curve E over Q without complex multiplication

and any subinterval I ⊆ [−1, 1], we have

lim
x→∞

∣∣{p ≤ x : p ! !E , aE (p)
2
√

p ∈ I
}∣∣

π (x)
∼

∫

I
φE (z)dz,

where φE (z) = 2
π

√
1 − z2. !

We note that the Sato–Tate conjecture has been proved by L. Clozel, M. Harris,

N. Shepherd-Barron, and R. Taylor for all elliptic curves E over totally real fields (in

particular, over the rationals) satisfying the mild condition of having multiplicative

reduction at some prime (see [11] and the references therein).

2.2 Modifying the heuristic

Observation R1 and the above facts on the distribution of aE (p)/(2
√

p) suggest that the

heuristic (11) should be corrected by the factor φE (r/(2
√

p)) and then be normalized by

an appropriate constant factor C, which we specify later. Hence, the probability that a

large natural number p is a prime with aE (p) = r should be

∼ CC E ,r
φE (r/(2

√
p))

2
√

plog p
.

This modified heuristic, taken together with observation R2, suggests that the prime

counting function πE ,r(x) behaves approximately like

CC E ,r

∫ x

max{2,r2/4}

φE (r/(2
√

t ))
2
√

t log t
dt.

For this approximation to be consistent with Conjecture 1, the normalization factor

must be C = 1/φE (0). This leads us to the main term in Conjecture 2 upon noting that

#E (z) = φE (z)/φE (0).

Furthermore, taking the bound (6) and the order of magnitude of the O-term in

(8) into account, it seems reasonable to conjecture that the error in our approximation of
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A refined version of the Lang-Trotter Conjecture 441

πE ,r(x) is smaller than
√

x/ log x by at least a factor of (log x)C , which gives the error term

in Conjecture 2.

We are not only interested in the correct form of the main term in the approx-

imation of πE ,r(x) but also in the true order of magnitude of the error term. We note

that, assuming the generalized Riemann hypothesis, the true order of magnitude of the

error term in (8) is O
(
x1/2+ε

)
, which is by almost a factor of

√
x smaller than x/(log x)C .

Similarly, a much sharper bound than O(
√

x/(log x)C ) should hold for the error term in

(1). Indeed, if we assume that the events “p is prime with aE (p) = r” are independent as

p runs over the natural numbers, then Chebyshev’s law of large numbers suggests that

the error term should not be much larger than the square root of the main term. This

leads us to the error term

OE ,ε(xε
√

1 + FE ,r(x)) (14)

in Conjecture 3. The reason we include the term 1 in the error bound is so that the

statement continues to hold true even when C E ,r = 0.

We point out that the implied constant in (14) cannot be independent of the

elliptic curve E . To see this, pick any large integer r and then for any prime p in the

range r2/4 < p < x, find E p (mod p) such that ap(E p) = r. Then select an elliptic curve E

over Q with E ≡ E p (mod p) for all such p. Hence, if one desires to state a conjecture

which is uniform in E , one certainly needs to bring into the error term some information

about E . It is conceivable that one might replace (14) with

Oε((NE x)ε
√

1 + FE ,r(x)),

where NE is the conductor of E .

2.3 Comparison of the main term and error term

In the following, we compare the sizes of the main term FE ,r(x) and the error terms in (3)

and (7), respectively. We begin with some comments on the constants (see Section 3 for

details).

If C E ,r = 0, then it is conjectured that only finitely many primes satisfy aE (p) = r

in which case (3) is trivial. In the following, we assume that C E ,r += 0. If E has CM by an

order in an imaginary quadratic field K, then (as we will see in Section 3) the nonzero
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442 S. Baier and N. Jones

values of the constant satisfy the bound

C E ,r += 0 =⇒ 1
log log(3 + |r|)

*E C E ,r *E log log(3 + |r|). (15)

It follows that in this case the main term FE ,r(x) satisfies the bound

√
4x − r2

log x log log(3 + |r|)
*E FE ,r(x) *E

√
4x − r2

log x
log log(3 + |r|).

If E has no CM, then the nonzero values of the constant C E ,r are uniformly bounded from

below and above as r varies, i.e. there exist positive constants cE and C E for which

C E ,r += 0 =⇒ cE ≤ C E ,r ≤ C E . (16)

Hence, in this case the main term in FE ,r(x) satisfies the bound

FE ,r(x) 5E
(4x − r2)3/2

x log x
.

Now, let B > 0 be arbitrarily given. By the above observations, if the constant C

is chosen large enough, then the error term O(
√

x/(log x)C ) in (3) is small compared to the

main term if |r| ≤ 2
√

x(1 − 1/(log x)B ) and x is sufficiently large. Hence, in this case, (3)

is an asymptotic estimate. In all other cases, (3) implies an estimate for πE ,r(x) which is

still nontrivial.

Similarly, (7) is an asymptotic estimate if x is large and |r| ≤ 2
√

x(1 − x−δ), where

δ is a fixed positive number satisfying δ < 1 in the CM case and δ < 1/3 in the non-CM

case (provided ε is chosen small enough).

We also note that (3) as well as (7) imply (1) if r = o(
√

x). Hence, Conjecture 1 is

contained in Conjecture 2 as well as in Conjecture 4. If |r| > D
√

x for some fixed positive

D, then the main term in (1) is significantly larger than the main term FE ,r(x) in (3) and

(7).

3 The constants CE,r

We now give a description of the constants C E ,r. The reader may find more details in [6].
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A refined version of the Lang-Trotter Conjecture 443

We first introduce the notation

GE (n) :=





Gal (K(E [n])/K) if E has CM by the imaginary quadratic field K

Gal (Q(E [n])/Q) if E has no CM.

We further set

HE (n) :=





(O/nO)∗ if E has CM by an order O in K

GL2(Z/nZ) if E has no CM.

We note that GE (n) can be viewed as a subgroup of HE (n). With this in mind, for any

subgroup G of HE (n) and any integer r, we write

Gr := {g ∈ G : tr g ≡ r mod n}.

Following Lang and Trotter [6], we now define the constant C E ,r by

C E ,r := φE (0)
mE |GE (mE )r|

|GE (mE )|
∏

) prime
)!mE

)|HE ())r|
|HE ())|

, (17)

where the positive integer mE is given by the following theorem, the celebrated non-CM

case of which is due to Serre [8].

Theorem 2. Suppose that E is an elliptic curve over Q. Then there exists a positive

integer mE so that, for any positive integer n, we have

GE (n) , π−1(GE (gcd(n, mE ))),

where π : HE (n) −→ HE (gcd(n, mE )) denotes the canonical projection. In particular, if ) is

a prime not dividing mE , then GE ()) , HE ()). !

Note that the conclusion of Theorem 2 and (17) continue to hold if one replaces

the integer mE by any multiple. For notational convenience, we will assume in the CM

case that

(

4
∏

) ramified in O

)

)

divides mE . (18)
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444 S. Baier and N. Jones

Under this assumption, we further have the following explicit description of the cardi-

nalities of HE ()) and HE ())r if ) ! mE .

Lemma 1. Let r be any integer and ) be a prime not dividing mE (in particular, ) does

not ramify in O if E has CM by O). If E does not have CM, then

|HE ())| = l(l − 1)2(l + 1) (19)

and

|HE ())r| =





)2() − 1) if r ≡ 0 mod )

)()2 − ) − 1) otherwise.
(20)

If E has CM by an order O in an imaginary quadratic field K, then

|HE ())| = () − 1)() − χO())) (21)

and

|HE ())r| =





) − 1 if r ≡ 0 mod )

) − (1 + χO())) otherwise,
(22)

where χO()) is the character determining the splitting of ) in the order O, namely

χO()) :=





1 if ) splits in O

−1 if ) is inert in O. !

Proof. We leave the proofs of (19) and (20) to the reader and deal only with the CM case.

We note that since E is defined over Q, the class number h(O) of the order O equals 1

(see [9, p. 99, Proposition1.2 (b)], which works out the case where O is the full ring of

integers). Now for any prime ) that is not ramified in O, we have

O/)O ,





F) ⊕ F) if ) splits in O

F)2 if ) is inert in O.
(23)

This implies (21) and (22). "

 at Princeton U
niversity on O

ctober 26, 2010
im

rn.oxfordjournals.org
D

ow
nloaded from

 



A refined version of the Lang-Trotter Conjecture 445

Thus, if E has CM, then

C E ,r = 1
2π

mE |GE (mE )r|
|GE (mE )|

∏

)!mE
)|r

(
1 + χO())

) − χO())

) ∏

)!mE
)!r

(
1 − χO())

() − 1) () − χO()))

)
.

Noting that, for fixed E , the factor mE |GE (mE )r |
|GE (mE )| takes on only finitely many values as r

varies, we obtain the bounds (15). If E does not have CM, then we have

C E ,r = 2
π

mE |GE (mE )r|
|GE (mE )|

∏

)!mE
)|r

(
1 + 1

)2 − 1

) ∏

)!mE
l!r

(
1 − 1

() − 1)()2 − 1)

)
.

Notice that the Euler product converges absolutely and (16) follows.

4 Averaging the Constants over Residue Classes

Proposition 1 will serve as a key tool in the following sections. We now provide a proof

of this proposition, which has some similarity to the proof of Lemma 9 in [1], where

certain constants related to C E ,r were averaged as well. However, the algebraic structure

of the relevant constants in [1] is much simpler than that of the original Lang–Trotter

constants C E ,r, which we deal with in the present paper.

Our goal is to obtain an asymptotic formula for the average

∑

r≡a mod q
A<r≤A+B

r +=0

C E ,r.

As observed in the previous section, (17) continues to hold if the integer mE appearing

on the right-hand side of this equation is replaced by any multiple. Therefore, we may

assume that mE is divisible by q throughout the following. Moreover, Theorem 2 and

Lemma 1 tell us that if ) is a prime not dividing mE , then

|GE ())r| =






|HE ())1| if ) ! r

|HE ())0| if )|r.
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Hence, we can write the constant in the form

C E ,r = φE (0)
mE |GE (mE )r|

|GE (mE )|
C f (r), (24)

where

C :=
∏

)!mE

)|HE ())1|
|HE ())|

and f (r) :=
∏

)!mE
)|r

|HE ())0|
|HE ())1|

.

Thus we have

∑

r≡a mod q
A<r≤A+B

r +=0

C E ,r = φE (0)mEC
∑

r≡a mod q
A<r≤A+B

r +=0

f (r)
|GE (mE )r|
|GE (mE )|

= φE (0)mEC
∑

b mod mE
b≡a mod q

|GE (mE )b|
|GE (mE )|

∑

r≡b mod mE
A<r≤A+B

r +=0

f (r). (25)

We use the Dirichlet convolution g = f ∗ µ to rewrite the inner sum as

∑

r≡b mod mE
A<r≤A+B

r +=0

f (r) =
∑

r≡b mod mE
A<r≤A+B

r +=0

∑

d|r
g(d) =

∞∑

d=1

g(d)
∑

A<r≤A+B
r≡b mod mE
r≡0 mod d

r +=0

1. (26)

It is straightforward to show that

g(d) =





µ2(d)

∏
)|d

|HE ())0|−|HE ())1|
|HE ())1| if gcd(d, mE ) = 1

0 if gcd(d, mE ) > 1.
(27)

Using Lemma 1, we see that

∞∑

d=1

g(d) =






∑
gcd(d,mE )=1

µ2(d)·χO (d)∏
)|d ()−1−χO ())) if E has CM by O

∑
gcd(d,mE )=1

µ2(d)∏
)|d ()2−)−1) if E has no CM.

Note in particular that the sum
∑∞

d=1 g(d) is convergent, albeit only conditionally in the

CM case. Using (26) and the Chinese Remainder Theorem, we deduce in the non-CM case
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that

∑

r≡b mod mE
A<r≤A+B

r +=0

f (r) =
∞∑

d=1

g(d)
(

B
dmE

+ O(1)
)

= B
mE

∞∑

d=1

g(d)
d

+ O(1).

In the CM case, the error term is more delicate, and so (recalling that M := max{|A|, |A+
B|}), we write

∑

r≡b mod mE
A<r≤A+B

r +=0

f (r) =
∑

d≤M

g(d)
(

B
dmE

+ O(1)
)

= B
mE

∞∑

d=1

g(d)
d

+ O

(
B

mE

∑

d>M

|g(d)|
d

+
∑

d≤M

|g(d)|
)

= B
mE

∞∑

d=1

g(d)
d

+ O((log M)3),

where we have used the fact that, for gcd(d, mE ) = 1 (note that then d must be odd by

(18)), one has

|g(d)| ≤ 1
d

∏

)|d

(
1 + 2

) − 2

)
* 1

d

∏

)|d

(
1 + 2

)

)
* (log d)2

d
and B * M.

Also, by (27), and noting that the sum
∑∞

d=1
g(d)
d converges absolutely in either case, we

have

∞∑

d=1

g(d)
d

=
∏

)!mE

(
1 + g())

)

)
=

∏

)!mE

|HE ())0| + () − 1)|HE ())1|
)|HE ())1|

= C −1.

Inserting this into (25) and using the fact that

∑

b mod mE
b≡a mod q

|GE (mE )b|
|GE (mE )|

= |GE (q)a|
|GE (q)|

,
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we conclude that

∑

r≡a mod q
A<r≤A+B

C E ,r = φE (0)B
|GE (q)a|
|GE (q)|

+





OE (q log3 M) if E has CM

OE (q) if E has no CM.

Proposition 1 now follows at once from the next

Lemma 2. We have

|GE (q)a|
|GE (q)|

= λE

(
δa,q − γ (E , a, q)

2

)
,

where

λE :=





2 if E has CM

1 if E has no CM. !

Proof of Lemma 2. In case E has no CM, the result is immediate. We turn to the CM

case. Suppose first that K ⊆ Q(E [q]). Noting the disjoint union

Gal (Q(E [q])/Q) = Gal (Q(E [q])/K) 7 (Gal (Q(E [q])/Q) − Gal (Q(E [q])/K)),

and that every matrix in (Gal (Q(E [q])/Q) − Gal (Q(E [q])/K)) has trace zero, Lemma 2 fol-

lows in this case. If K is not contained in Q(E [q]), then we must have either q = 1 or q = 2

(see [7, Lemma 6], for example). The case q = 1 is trivial, and if q = 2, we see that

Gal (Q(E [2])/Q) , Gal (K(E [2])/K) ↪→ (O/2O)∗.

By (23), it follows that Gal (Q(E [2])/Q) is cyclic of order 1, 2, or 3, corresponding to whether

2 splits, ramifies, or remains inert in O, respectively. We will now argue that the “cyclic

of order 3” case never occurs. To see this, first note that if Gal (Q(E [2])/Q) is cyclic of order

3, then the discriminant of E is a perfect square. Indeed, one may identify Aut(E [2]) with

S3, the symmetric group on three letters, by considering its action on the nonidentity

2-torsion points

E [2] − {(∞, ∞)} = {(e1, 0), (e2, 0), (e3, 0)},
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A refined version of the Lang-Trotter Conjecture 449

where E is given by the Weierstrass model y2 = (x − e1)(x − e2)(x − e3). If Gal (Q(E [2])/Q)

is cyclic of order three, then under this association it must correspond to the alternating

group A3. But then by Galois theory,

√
!E = (e1 − e2)(e1 − e3)(e2 − e3) ∈ Q,

and so !E is a perfect square. Now consider the explicit Weierstrass equations

y2 = x3 + ax, y2 = x3 + b, y2 = x3 − 3 j( j − 1728)3x + 2 j( j − 1728)5

with j-invariants 1728, 0, and

j ∈ {54000, − 12288000, 287496, −3375, 16581375, 8000, −32768, −884736,

− 884736000, −147197952000, −262537412640768000},

respectively. Any CM elliptic curve over Q is Q-isomorphic to one of these models, and

except for the curves with j-invariant 1728, the square-free part of the discriminant ! =
−16(4a3 + 27b2) is independent of the model chosen. One computes the discriminants to

be

−28a3, −2433b2, 21236 j2( j − 1728)9.

The only time any of these is a perfect square is for the curve y2 = x3 + ax, when a = −t2,

in which case E [2] is rational. Thus, Gal (Q(E [2])/Q) is never cyclic of order 3, and so must

be cyclic of order 1 or 2, representable by matrices as

Gal (Q(E [2])/Q) ,
{(

1 0

0 1

)}

or

{(
1 1

0 1

)

,

(
1 0

0 1

)}

.

In either case, we have

|GE (2)0|
|GE (2)|

= δ0,2 = 1 and
|GE (2)1|
|GE (2)|

= δ1,2 = 0,

upon which Lemma 2 follows in this case. "

We have now completed the proof of Proposition 1. !
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5 Consistency with Chebotarev Density

We will now verify the consistency of our refinement with the Chebotarev density theo-

rem for the qth division field of E . More precisely, we establish the following.

Theorem 3. Conjecture 2 implies the asymptotic (8). !

Proof. Let FE ,r(x) be defined as in (5), i.e. FE ,r(x) is the main term in (3). The statement of

the theorem follows from (2) and the asymptotic estimate

∑

r≡a mod q
0<|r|≤2

√
x

FE ,r(x) =
(

δa,q − γ (E , a, q)
2

)
Li(x) + OE (q

√
x log3 x),

which we shall prove in the following. We remark that, in the (more straightforward)

non-CM case, one may obtain the stronger error term OE (q
√

x/ log x). The CM case is

complicated a bit by the fact that φE has a singularity at the point 1, which necessi-

tates a truncation parameter δ > 0 that will eventually approach zero. We will prove the

CM case, noting that the non-CM case follows in much the same way, but without the

parameter δ.

We begin by splitting the left-hand sum as

∑

r≡a mod q
0<|r|≤2

√
x

FE ,r(x) =
∑

r≡a mod q
2<r≤2

√
x

FE ,r(x) +
∑

r≡a mod q
−2

√
x<r≤−3

FE ,r(x) + O
( √

x
log x

)
.

We will now show that

∑

r≡a mod q
2<r≤2

√
x

FE ,r(x) = 1
2

(
δa,q − γ (E , a, q)

2

)
Li(x) + OE (q

√
x log3 x), (28)

the proof that

∑

r≡a mod q
−2

√
x<r≤−3

FE ,r(x) = 1
2

(
δa,q − γ (E , a, q)

2

)
Li(x) + OE (q

√
x log3 x)
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being essentially the same. Remembering that #E (z) = φE (z)/φE (0), the left-hand side of

(28) is the limit as δ → 0+ of

1
φE (0)

∑

r≡a mod q
2<r≤2

√
x

C E ,r

∫ x+δ

r2/4+δ

φE (r/(2
√

t ))
2
√

t log t
dt.

By partial summation and by integration by parts, the above expression is equal to

− 1
φE (0)

∫ 2
√

x

3




∑

r≡a mod q
2<r≤y

C E ,r




d
dy

(∫ x+δ

y2/4+δ

φE (y/(2
√

t ))
2
√

t log t
dt

)
dy.

We now invoke the estimate (9), obtaining

−λE

(
δa,q − γ (E , a, q)

2

) ∫ 2
√

x

3
(y − 3)

d
dy

(∫ x+δ

y2/4+δ

φE (y/(2
√

t ))
2
√

t log t
dt

)
dy

+OE (q
√

x + δ log3 x),

(29)

where

λE :=





2 if E has CM

1 if E has no CM,

and for the error bound, we have used the fact that

∫ x+δ

9/4+δ

φE (3/(2
√

t ))
2
√

t log t
dt *

√
x + δ.

Integrating by parts, we see that the integral in the main term is then equal to

∫ 2
√

x

3

∫ x+δ

y2/4+δ

φE (y/(2
√

t ))
2
√

t log t
dtdy =

∫ x+δ

9/4+δ

1
2
√

t log t

∫ 2
√

t−δ

3
φE (y/(2

√
t ))dydt

=
∫ x+δ

9/4+δ

1
log t

∫ 2
√

t−δ/(2
√

t )

3/(2
√

t )
φE (z)dzdt

=
∫ x+δ

9/4+δ

dt
log t

·
∫ 1

0
φE (z)dz + O

(√
x + δ

log x

)

,
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where we have made use of the facts that, for (say) 0 ≤ λ ≤ 1/2,

2π

∫ λ

0
φE (t )dt = arcsin(λ) = λ + O(λ3)

and

arcsin(1) − arcsin(1 − λ) = O(
√

λ),

which imply that

∫ x+δ

9/4+δ

1
log t

∫ 3/(2
√

t )

0
φE (z)dzdt = O

(√
x + δ

log x

)

and

∫ x+δ

9/4+δ

1
log t

∫ 1

1−δ/t
φE (z)dzdt = O

(√
δ
√

x + δ

log x

)

.

Inserting this into (29), using that

∫ 1

0
φE (z)dz =





1/4 if E has CM

1/2 if E has no CM
= 1

2λE
,

and letting δ → 0+, the asymptotic estimate (28) and hence Theorem 3 is proved. "

6 Consistency with Sato–Tate

In this section, we will establish that Conjecture 2 implies the Sato–Tate conjecture. We

deduce this from the following stronger result, which implies that the correcting factor

#E (z) in the main term in (3) is the only possibility, i.e. it must be of the form given in (4).

Theorem 4. Let E be an elliptic curve over Q, φE (z) be defined by (12) and C > 1 be any

constant. Assume that there exists a continuously differentiable function # : (−1, 1) → R
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Fig. 1. The function v = πE ,r (4 × 107), as a function of r.

such that, uniformly for |r| ≤ 2
√

x (excluding r = 0 if E has CM),

πE ,r(x) = C E ,r

∫ x

max{2,r2/4}

#(r/(2
√

t ))
2
√

t log t
dt + O

( √
x

(log x)C

)
. (30)

Then the Sato–Tate conjecture (resp. (13) if E has CM) holds if and only if #(z) = #E (z) for

all z ∈ (−1, 1), where #E (z) is defined as in (4). !

Proof. By continuity of #, we have #(z) = #E (z) for all z ∈ (−1, 1) if and only if

∫ β

α

#(z)dz =
∫ β

α

#E (z)dz (31)

for all α, β with −1 < α < β < 1 and 0 +∈ [α, β]. Moreover, equation (31) is equivalent with

∫ β

α

φ(z)dz =
∫ β

α

φE (z)dz,

where we set

φ(z) := φE (0)#(z),
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454 S. Baier and N. Jones

Fig. 2. The approximation v = FE ,r (4 × 107), as a function of r.

Fig. 3. The absolute error v = πE ,r (4 × 107) − FE ,r (4 × 107).

and φE (z) is defined as in (12). Therefore, to establish the equivalence claimed in the

theorem, it suffices to prove that if (30) holds, then

∑

p≤x
α≤ aE (p)

2
√

p <β

1 ∼ Li(x)
∫ β

α

φ(z)dz as x → ∞ (32)
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Fig. 4. The relative error v = πE ,r (4·107)−FE ,r (4·107)
FE ,r (4·107) .

for all fixed α, β satisfying −1 < α < β < 1 and 0 +∈ [α, β]. In the sequel, we assume that

0 < α < β < 1. In the complementary case −1 < α < β < 0, (32) can be proved similarly.

We note that, for aE (p) > 0 one has

α ≤ aE (p)
2
√

p
< β ⇐⇒ aE (p)2

4β2
< p ≤ aE (p)2

4α2
.

Thus,

∑

p≤x
α≤ aE (p)

2
√

p <β

1 =
∑

0<r≤2
√

xα

(
πE ,r

(
r2

4α2

)
− πE ,r

(
r2

4β2

))

+
∑

2
√

xα<r≤2
√

xβ

(
πE ,r (x) − πE ,r

(
r2

4β2

))
. (33)

We observe that (32) follows from (30), (33), and the asymptotic estimate

∑

2<r≤2
√

xα

C E ,r

φE (0)

∫ r2/4α2

r2/4β2

φ(r/(2
√

t ))
2
√

t log t
dt +

∑

2
√

xα<r≤2
√

xβ

C E ,r

φE (0)

∫ x

r2/4β2

φ(r/(2
√

t ))
2
√

t log t
dt

= Li(x)
∫ β

α

φ(z)dz + Oα,β (
√

x log2 x),

(34)
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Fig. 5. v = Error√
Main term

= πE ,r (4×107)−FE ,r (4×107)√
FE ,r (4×107)

.

which we shall prove in the following. Reversing the order of summation and integration,

the left-hand side of (34) becomes

∫ x

2

1
2
√

t log t




∑

2α
√

t<r≤2β
√

t

C E ,r

φE (0)
φ

(
r

2
√

t

)

 dt + Oα,β (1). (35)

We note that by δ1,0 = 1 and the definition of φE (z) in (12), the main term on the right-

hand side of (9) coincides with φ(0)B if q = 1 and a = 0. Now using partial summation,

Proposition 1 with q = 1, a = 0, and integration by parts, we have

∑

2α
√

t<r≤2β
√

t

C E ,rφ

(
r

2
√

t

)

= φ(β)
∑

2α
√

t<r≤2β
√

t

C E ,r −
∫ 2β

√
t

2α
√

t




∑

2α
√

t<r≤y

C E ,r



 d
dy

φ

(
y

2
√

t

)
dy

= φE (0)(2β
√

t − 2α
√

t )φ(β) − φE (0)
∫ 2β

√
t

2α
√

t
(y − 2α

√
t )

d
dy

φ

(
y

2
√

t

)
dy + Oα,β (log3 t )

= φE (0)
∫ 2β

√
t

2α
√

t
φ

(
y

2
√

t

)
dy + Oα,β (log3 t ),
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Fig. 6. The function v = πE ,r (4 × 107), as a function of r.

where for the estimation of the error term, we have used that the derivative of φ is

continuous and hence bounded on [α, β]. Thus, (35) equals

∫ x

2

1
2
√

t log t

∫ 2β
√

t

2α
√

t
φ

(
y

2
√

t

)
dydt + Oα,β (

√
x log2 x).

Making the change of variables y/(2
√

t ) → z, the main term above becomes

Li(x)
∫ β

α

φ(z)dz,

which proves (34) and hence Theorem 4. "

7 Numerical Evidence

We conclude with some supporting numerical evidence. Figures 1–5 display data for the

single elliptic curve E given by the Weierstrass equation

Y2 = X3 + 6X − 2.
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Fig. 7. The approximation v = FE ,r (4 × 107), as a function of r.

Fig. 8. The absolute error v = πE ,r (4 × 107) − FE ,r (4 × 107).

In Figure 1, we plot the function v := πE ,r(4 × 107) as a function of the variable r.

In Figure 2, we plot our approximation v := FE ,r(4 × 107) as a function of r. This elliptic
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Fig. 9. The relative error v = πE ,r (4×107)−FE ,r (4×107)
FE ,r (4×107) .

curve has mE = 6, and the “main factor”

mE |Gal (Q(E [mE ])/Q)r|
|Gal (Q(E [mE ])/Q)|

of the constant C E ,r takes on four distinct values {1/2, 3/4, 9/8, 7/4} as r ranges over the

integers, which accounts for the four distinct bands visible in Figures 1 and 2.

We then plot various forms of the error in the approximation. In Figure 3, we plot

the absolute error

v = πE ,r(4 · 107) − FE ,r(4 × 107),

while in Figure 4, we plot the relative error

v = πE ,r(4 × 107) − FE ,r(4 × 107)
FE ,r(4 × 107)

.

Note that the absolute (resp. relative) error is significantly smaller (resp. larger)

at the ends of the graph than in the middle. This comes from the fact that we are

approximating an integer valued function with a continuous one.
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Fig. 10. v = Error√
Main term

= πE ,r (4×107)−FE ,r (4×107)√
FE ,r (4×107)

.

We remark that in practice, the main difficulty in obtaining numerical data on

these error terms lies in the constants C E ,r, which are difficult to compute in general.

However, the elliptic curve we are considering is a Serre curve (see [8, p. 318] and also [6,

p. 51]), so we may use Proposition 11 of [4], which computes C E ,r explicitly for any Serre

curve.

In Figure 5, we plot the error relative to square root of the main term, which

looks remarkably like random noise.

Finally, in Figures 6–10, we plot the corresponding data for the elliptic curve E

given by the Weierstrass equation

Y2 = X3 − 768108000X + 8194304162000,

which has CM by the complex order of discriminant −27 (i.e. by the unique order of index

3 in Z[1/2 +
√

−3/2]).

Acknowledgments

We would like to thank A. Granville for helpful comments on an earlier version and J. Fearnley for

advice regarding the numerical computations. Moreover, we wish to thank the referee for many

valuable comments.

 at Princeton U
niversity on O

ctober 26, 2010
im

rn.oxfordjournals.org
D

ow
nloaded from

 



A refined version of the Lang-Trotter Conjecture 461

References
[1] Baier, S., and L. Zhao. “The Sato-Tate conjecture on average for small angles.” Transactions

of the American Mathematical Society (forthcoming).

[2] David, C., and F. Pappalardi. “Average Frobenius distributions of elliptic curves.” Interna-

tional Mathematics Research Notices 4 (1999): 165–83.

[3] Deuring, M. “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.” Abhand-

lungen aus dem Mathematischen Seminer der Hansischen Universität 14 (1941): 197–272.

[4] Jones, N. “Averages of elliptic curve constants.” Preprint.

[5] Jones, N. “A bound for the ‘torsion conductor’ of a non-CM elliptic curve.” Proceedings of

the American Mathematical Society (forthcoming).

[6] Lang, S., and H. Trotter. Frobenius Distributions in GL2-Extensions. Lecture Notes in Math-

ematics 504. Berlin: Springer, 1976.

[7] Ram Murty, M. “On Artin’s conjecture.” Journal of Number Theory 16 (1983): 147–68.

[8] Serre, J.-P. “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques.” Inven-

tiones Mathematicae 15 (1972): 259–331.

[9] Silverman, J. Advanced Topics in the Arithmetic of Elliptic Curves. New York: Springer, 1994.

[10] Tate, J. T. “Algebraic Cycles and Poles of Zeta Functions.” In Arithmetical and Algebraic

Geometry, 93–110. Proceedings of a Conference at Purdue, Dec. 5–7, 1963. New York: Harper

& Row, 1965.

[11] Taylor, R. “Automorphy for some l-adic lifts of automorphic mod l representations 2.” (2008):

preprint www.math.harvard.edu/∼rtaylor.  at Princeton U
niversity on O

ctober 26, 2010
im

rn.oxfordjournals.org
D

ow
nloaded from

 


