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Abstract. Using a multidimensional large sieve inequality, we prove that, for almost all pairs (or indeed
almost all k-tuples) of elliptic curves, the associated Galois representation on their torsion has maximal
image. This generalizes the author’s previous work and provides evidence for an affirmative answer to
a higher-dimensional analogue of Serre’s uniformity question for single elliptic curves. Furthermore, as a
consequence of our main theorem, one deduces the triviality of the Brauer group of the Kummer surface
attached to almost all pairs of elliptic curves.

1. Introduction

Let E be an elliptic curve over Q. For a fixed positive integer n, let

E[n] := {P ∈ E(Q) : nP = O}

denote the n-torsion of E, which is isomorphic to Z/nZ×Z/nZ. Moreover, the absolute Galois group GQ :=
Gal (Q/Q) acts on E[n]. After fixing a Z/nZ-basis of E[n], this action gives rise to a Galois representation

ϕE,n : GQ −→ GL2(Z/nZ).

Taking the inverse limit over n ≥ 1 (ordered by divisibility) and choosing Z/nZ-bases compatibly, one obtains
a continuous Galois representation

(1) ϕE : GQ −→ GL2(Ẑ),

where Ẑ := lim
n

Z/nZ �
�

�

Z�.

How large can ϕE(GQ) be? In 1972, Serre [14] proved an open-image theorem for elliptic curves over Q.
One formulation of his theorem states that, provided E has no complex multiplication (CM), one has

[GL2(Ẑ) : ϕE(GQ)] < ∞.

Equivalently, Serre’s open image theorem states that if E has no CM, then ϕE,�(GQ) = GL2(Z/�Z) for all
primes � > CE for some positive constant CE depending (at most) on E. Serre also asked [14, p. 299] (see
also [15, p. 199]) whether one could take CE to be independent of the elliptic curve E. In spite of deep
partial results providing evidence for an affirmative answer to this uniformity question (e.g. [14], [10], [1]),
it remains open (see also [2]). Further evidence for an affirmative answer was obtained by Duke [3], who
showed that, for “almost all” elliptic curves E over Q, ϕE,�(GQ) = GL2(Z/�Z) for all primes �.

It is also natural to consider the question of how large the image can be in (1). As Serre pointed out
[14, Proposition 22], as a consequence of the Kronecker-Weber theorem, ϕE can never be surjective if E is
defined over Q, and in this case one has

[GL2(Ẑ) : ϕE(GQ)] ≥ 2.

Following Lang and Trotter, we call E a Serre curve if [GL2(Ẑ) : ϕE(GQ)] = 2, i.e. when ϕE(GQ) is as large
as possible inside GL2(Ẑ). Inspired by [3], the author has previously shown [6] that almost all elliptic curves
are Serre curves.

Similarly to the above, one may consider the Galois representation attached to a pair of elliptic curves.
Indeed, let E1 and E2 be elliptic curves over Q and let n ≥ 1 be a positive integer. The action of GQ on
E1[n]× E2[n] gives rise to a Galois representation

ϕ(E1,E2),n : GQ −→ GL2(Z/nZ)×GL2(Z/nZ).
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How large can ϕ(E1,E2),n(GQ) be? We have a natural constraint coming from the Weil pairing (see [16]):
given an elliptic curve E over Q, an n-th root of unity ζn, and an automorphism σ ∈ GQ, the relation

σ(ζn) = ζdet(ϕE,n(σ))
n

always holds. Therefore, in our setting,

(2) ϕ(E1,E2),n(GQ) ⊆ ∆n,

where (here and throughout the paper)

∆n := {(g1, g2) ∈ GL2(Z/nZ)×GL2(Z/nZ) : det g1 = det g2} .

In [14, Théorème 6, p. 324], Serre already proved the analogous open-image theorem in this context,
namely, provided neither E1 nor E2 has complex multiplication, and provided E1 is not Q-isogenous to E2

1,
one has ϕ(E1,E2),�(GQ) = ∆� for all primes � > CE1,E2 for some positive constant CE1,E2 depending (at
most) on the pair (E1, E2). Equivalently, considering the inverse limit

ϕ(E1,E2) : GQ −→ ∆ := {(g1, g2) ∈ (GL2(Ẑ))2; det g1 = det g2},

one has
[∆ : ϕ(E1,E2)(GQ)] < ∞.

A conjecture of Mazur (see [12, Remark on p. 6] and the references therein) on congruence primes for
modular forms would imply an affirmative answer to the analogue of Serre’s uniformity question, that is,
that the constant CE1,E2 above can be chosen independently of the pair (E1, E2). Like Serre’s uniformity
question itself, this is a deep open problem about which little is known.

The purpose of this paper is to prove that, as we vary the pair (E1, E2) in a family of elliptic curves,
ϕ(E1,E2)(GQ) is as large as possible inside ∆, for almost all pairs (E1, E2). First, we clarify precisely what
this means. Observe that

ϕ(E1,E2)(GQ) ⊆ (ϕE1(GQ)× ϕE2(GQ)) ∩∆.

Since the right-hand side has index at least 4 inside ∆, it is natural to make the following definition.

Definition 1.1. A pair (E1, E2) of elliptic curves over Q is called a Serre pair if

[∆ : ϕ(E1,E2)(GQ)] = 4.

In the spirit of [6], we will prove that almost all pairs (E1, E2) of elliptic curves over Q are Serre pairs.
This provides some evidence for an affirmative answer to the analogue of Serre’s uniformity question for pairs
of elliptic curves, since for any Serre pair (E1, E2), ϕ(E1,E2),�(GQ) = ∆� for all primes �. Additionally, our
result has consequences to the study of the Brauer group of Kummer surfaces; indeed, combining Theorem
1.2 below with [17, Example A2], one deduces that, for almost all pairs of elliptic curves (E1, E2), the
associated Kummer surface Kum(E1 × E2) has trivial Brauer group.

In order to state our main result, let us introduce the following additional notation. For any elliptic curve
E over Q (i.e. for any Q-isomorphism class of elliptic curves over Q), let Er,s denote the Weierstrass model
y2 = x3 + rx + s. The integers r, s ∈ Z may be chosen such that

(3) ∀ prime p, p12 � gcd(r3, s2).

We then define the height H(E) of E by H(E) := max{|r|3, |s|2}. For a positive real number T , let

B(T ) := {(E1, E2) : max{H(E1),H(E2)} ≤ T 6
},

where (E1, E2) denotes a pair of elliptic curves over Q. Since |{E : H(E) ≤ T 6}| � T 5, we have that

|B(T )| � T 10.

Let us define
Enon-Serre(T ) := {(E1, E2) ∈ B(T ) : (E1, E2) is not a Serre pair} .

1In fact, Serre makes the assumption that E1 and E2 have no complex multiplication and that the Galois representations
ϕE1 and ϕE2 do not become isomorphic over a finite extension of Q. Later work of Faltings [4] showed that this condition is

equivalent to E1 and E2 not being Q-isogenous.
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The main result of this paper is:

Theorem 1.2. There is an explicit positive constant β such that, for any T ≥ 2, we have

|Enon-Serre(T )|� T 9(log T )β ,

with an absolute implied constant. Consequently,

lim
T→∞

|{(E1, E2) ∈ B(T ) : (E1, E2) is a Serre pair}|

|B(T )|
= 1.

In other words, “almost all” pairs (E1, E2) of elliptic curves have ϕ(E1,E2)(GQ) as large as possible.
Theorem 1.2 has the following corollary regarding the corresponding �-adic Galois representation ϕ(E1,E2),�∞ .

The group GQ acts on E[�∞] :=
�

n≥1

E[�n], giving rise to a continuous group homomorphism

ϕ(E1,E2),�∞ : GQ −→ GL2(Z�)×GL2(Z�),

where Z� denotes the ring of �-adic integers. As before, one must have

ϕ(E1,E2),�∞(GQ) ⊆ ∆�∞ := {(g1, g2) ∈ GL2(Z�)×GL2(Z�) : det g1 = det g2} .

Corollary 1.3. One has

lim
T→∞

���(E1, E2) ∈ B(T ) : ϕ(E1,E2),�∞(GQ) = ∆�∞ for all �
���

|B(T )|
= 1.

As with previous results on this topic ([3], [6]), the bounds of Masser-Wüstholz ([8], [9]), Gallagher’s
multi-dimensional large sieve [5], and averages of Kronecker class numbers play a crucial role. However, in
our present context, new problems arise: firstly, we now need to know that a proper subgroup of G must
miss some entire conjugacy classes C ⊂ G when G = ∆n; secondly, we must bound the number of pairs
(E1, E2) ∈ B(T ) for which E1 is Q-isogenous to E2. These are dealt with in Lemmas 3.3 and 3.6 below.

Finally, as we shall point out in Section 4, our methods also prove the analogue of Theorems 1.2 in the
context of arbitrary k-tuples (E1, . . . , Ek) of elliptic curves over Q (or even over an arbitrary number field).

Acknowledgments. This note was inspired by a question posed to the author by A. Skorobogatov while
visiting the Hausdorff Research Institute in Bonn, Germany. The author would like to thank A. Skorobogatov
for his question, and the Hausdorff Institute for a stimulating work environment. He would also like to thank
K. Ribet for a helpful discussion, and A.C. Cojocaru for comments on a previous version.

2. Chebotarev error on average

In this section we describe an auxiliary result to Theorem 1.2, which bounds the mean-square error term
in the Chebotarev Theorem for division fields of elliptic curves and is of independent interest. Let E1 and
E2 be elliptic curves over Q of conductors N1 and N2, respectively. For a fixed positive integer n ≥ 1 and a
subset C ⊂ ∆n stable by ∆n-conjugation, define the counting function π(E1,E2)(X; C) by

π(E1,E2)(X; C) :=
���p ≤ X : p � nN1N2, ϕ(E1,E2),n(Frobp) ⊆ C

��� .

(Here and throughout the paper, Frobp refers to the conjugacy class of a Frobenius automorphism at p
in Gal (Q/Q). We note that the condition p � nN1N2 guarantees that ϕ(E1,E2),n is unramified at p.) As
usual, for positive integers d and n with gcd(d, n) = 1, denote the counting function for primes in arithmetic
progressions by

π(X;n, d) := |{p ≤ X : p ≡ d mod n}| .

Furthermore, let us denote the Chebotarev factor attached to C by

δC :=
|C|ϕ(n)
|∆n|

=
|C|(ϕ(n))2

|GL2(Z/nZ)|2
=

|C|

|SL2(Z/nZ)|2
,
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where ϕ(n) is the Euler phi function. The proof of Theorem 1.2 makes use of the following result, which
generalizes [3, Theorem 2] to products of elliptic curves. Let us call a subset C ⊆ ∆n admissible if it may be
written as a union

C =
r�

j=1

Aj × Bj ,

where Aj ,Bj ⊆ GL2(Z/nZ) are subsets which are stable under GL2(Z/nZ)-conjugation. Notice that any
admissible subset C is necessarily stable under ∆n-conjugation.

Theorem 2.1. Fix a positive integer n ≥ 1 and an admissible subset C ⊂ ∆n which represents a single

determinant value:

(4) det(C) = d ∈ (Z/nZ)×.

Then, provided T ≥ X, one has

1
|B(T )|

�

(E1,E2)∈B(T )

�
π(E1,E2)(X; C)− δC · π(X;n, d)

�2
� |C|

2X,

with an absolute implied constant.

2.1. Proof of Theorem 2.1. Our proof of Theorem 2.1 follows the same technique as that of Theorem 2
of [3]. It begins with the following multi-dimensional large sieve inequality of Gallagher (see [5, Lemma A]).
Fix an integer k ≥ 1 and, for each prime p, a subset Ω(p) ⊆ (Z/pZ)k. For each fixed m ∈ Zk we define

P (X;m) := |{p ≤ X : m mod p ∈ Ω(p)}|

and

(5) P (X) :=
�

p≤X

|Ω(p)|p−k.

Lemma 2.2. Let B be a box in Rk whose sides are parallel to the coordinate planes and which has minimum

width W (B) and volume V (B). If W (B) ≥ X2, then

1
V (B)

�

m∈B∩Zk

(P (X;m)− P (X))2 �k P (X),

where the implied constant depends only on k.

To prove Theorem 2.1, we apply Lemma 2.2 with k = 4, defining

(6) Ω(p) = ΩC(p) := {(r1, s1, r2, s2) ∈ (Z/pZ)4 :
2�

i=1

(4r3
i + 27s2

i ) �= 0, ϕ(Er1,s1 ,Er2,s2 ),n(Frobp) ⊆ C}.

Note that, by (4), ΩC(p) = ∅ unless p ≡ d mod n. Furthermore, it follows from the definitions that

(7) P (X;m) := |{p ≤ X : m mod p ∈ ΩC(p)}| = π(E1,E2)(X, C) + O(1).

The following lemma restates [6, Theorem 8], and will be used to evaluate P (X) asymptotically as X →∞.

Lemma 2.3. Let A ⊆ GL2(Z/nZ) be any subset which is stable under GL2(Z/nZ)-conjugation. Then, for

any prime p � n, one has

���(r, s) ∈ F2
p : −16(4r3 + 27s2) �= 0, ϕEr,s,n(Frobp) ⊆ A

���
p2

=
|A|

|SL2(Z/nZ)|
+ O(|A|p−1/2).

with an absolute implied constant.

Corollary 2.4. With the definitions (5) and (6), one has

P (X) = δCπ(X;n, d) + O(CX1/2),

with an absolute implied constant.
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Proof of Corollary 2.4. Since C is admissible and represents only one determinant value, then C may be
decomposed as

C =
r�

j=1

Aj × Bj ,

where each Aj ,Bj ⊂ GL2(Z/nZ) is a single GL2(Z/nZ)-conjugation orbit and det(Aj) = det(Bj) = d for
each j. Further, since δC1�C2 = δC1 + δC2 and |ΩC1�C2(p)| = |ΩC1(p)| + |ΩC2(p)|, it suffices to consider the
case C = A× B. In this case, notice that Ω(p) = ΩA(p)× ΩB(p), where

ΩA(p) := {(r1, s1) ∈ (Z/pZ)2 : 4r3
1 + 27s2

1 �= 0, ϕEr,s,n(Frobp) ⊆ A},

ΩB(p) := {(r2, s2) ∈ (Z/pZ)2 : 4r3
2 + 27s2

2 �= 0, ϕEr,s,n(Frobp) ⊆ B}.

It follows from Lemma 2.3 that

(8)
ΩA(p)

p2
=

|A|

|SL2(Z/nZ)|
+ O(|A|p−1/2),

ΩB(p)
p2

=
|B|

|SL2(Z/nZ)|
+ O(|B|p−1/2),

from which we deduce Corollary 2.4. �

Theorem 2.1 now follows from Lemma 2.2, Corollary 2.4, and (7).

3. Proof of Theorem 1.2

We will now deduce Theorem 1.2 from Theorem 2.1. The following lemma characterizes Serre pairs. In
its statement, ε denotes the character

ε : GL2(Z/36Z) −→ GL2(Z/2Z) −→
GL2(Z/2Z)

[GL2(Z/2Z), GL2(Z/2Z)]
� {±1}.

Lemma 3.1. A pair (E1, E2) of elliptic curves over Q is a Serre pair if and only if the following two

conditions hold.

(1) For each prime � ≥ 5, one has ϕ(E1,E2),�(GQ) = ∆�.

(2) One has
�
ϕ(E1,E2),36(GQ),ϕ(E1,E2),36(GQ)

�
= (SL2(Z/36Z) ∩ ker ε)× (SL2(Z/36Z) ∩ ker ε).

Proof. This is [7, Corollary 6.7]. �
In particular, we have

(9) (E1, E2) is not a Serre pair =⇒

�
ϕ(E1,E2),�(GQ) � ∆� for some � ≥ 5, or
ϕ(E2,E2),36(GQ) � ∆36.

This implication reduces us to considering ϕ(E1,E2),�(GQ) for primes � ≥ 5 and ϕ(E1,E2),36(GQ). For any
integer n ≥ 1, let

En(T ) :=
�
(E1, E2) ∈ B(T ) : ϕ(E1,E2),n(GQ) � ∆n

�

E
0
n(T ) :={(E1, E2) ∈ En(T ) : ϕE1,n(GQ) � GL2(Z/nZ) or ϕE2,n(GQ) � GL2(Z/nZ)},

E
1
n(T ) :={(E1, E2) ∈ En(T ) : E1 or E2 has complex multiplication},

E
2
n(T ) :=En(T )− (E0

n(T ) ∪ E1
n(T )),

E
i(T ) :=E i

36(T ) ∪
�

� prime
�≥5

E
i
�(T ) (i ∈ {0, 1, 2}).

(Note that E1
� (T ) ⊆ E0

� (T ) unless � = 2.) By (9), Theorem 1.2 is implied by

|E
0(T ) ∪ E1(T ) ∪ E2(T )|� T 9(log T )β .

It follows from [3] that
|E

0(T )|� T 9(log T )C and |E
1(T )|� T 8.

Thus, Theorem 1.2 will follow from the estimate

(10) |E
2(T )|� T 9(log T )β .
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To show this, we will use the following group-theoretic lemmas.

Lemma 3.2. (Goursat’s Lemma) Let G0 and G1 be groups and G ⊆ G0 ×G1 a subgroup satisfying

πi(G) = Gi (i ∈ {0, 1}),

where πi denotes the canonical projection onto the i-th factor. Let Ni := πi(G ∩ ker π1−i). Then there is an

isomorphism of groups ψ : G0/N0 → G1/N1 (whose graph is induced by G) for which

G = {(g0, g1) ∈ G0 ×G1 : ψ(g0N0) = g1N1}.

Proof. See [13, Lemma (5.2.1)], which shows that the image of G in G0/N0 × G1/N1 is the graph of an
isomorphism ψ. Now note that N0 ×N1 ⊆ G. �
Lemma 3.3. Let n ≥ 1 be any positive integer and G ⊆ ∆n be any subgroup satisfying

π1(G) = π2(G) = GL2(Z/nZ),

where πi denotes the canonical projection on the i-th factor. Then either

G = ∆n,

or there exists a non-empty admissible subset C ⊂ ∆n for which

(11)

�
G ∩ C = ∅, and

det(C) = 1.

Proof. By Lemma 3.2, there are normal subgroups N1, N2 � GL2(Z/nZ) and a group isomorphism ψ :
GL2(Z/nZ)/N1 −→ GL2(Z/nZ)/N2 for which

(12) G = {(g1, g2) ∈ GL2(Z/nZ)2 : ψ(g1N1) = g2N2}.

Notice that

(13) |GL2(Z/nZ)/N1| = |GL2(Z/nZ)/N2|.

Case 1: SL2(Z/nZ) ⊆ N2.
In this case, the containments

N1 × SL2(Z/nZ) ⊆ N1 ×N2 ⊆ G ⊆ ∆n

imply that N1 ⊆ SL2(Z/nZ), which by (13) implies that N2 = SL2(Z/nZ) = N1. It follows that ψ is the
identity map, and G = ∆n in this case.

Case 2: SL2(Z/nZ) � N2.
Pick any x ∈ SL2(Z/nZ)−N2 and define

C := {1}×
�
gxg−1 : g ∈ GL2(Z/nZ)

�
.

Note that C ⊆ ∆n is admissible, and by (12), C ∩G = ∅ in this case. �
Now let n ∈ {36} ∪ {� ≥ 5 : � prime}. For each pair (E1, E2) ∈ E2

n(T ), we have that

G = ϕ(E1,E2),n(GQ) � ∆n

satisfies the hypotheses of Lemma 3.3, and so there is a subset C = C(E1, E2) as in Lemma 3.3 which satisfies
(11). Defining

E
2
n,C(T ) := {(E1, E2) ∈ E

2
n(T ) : ϕ(E1,E2),n(GQ) ∩ C = ∅},

it follows that E
2
n(T ) =

�

C⊆∆n

E
2
n,C(T ), where the union is over admissible subsets C ⊆ ∆n. We turn to

bounding each E2
n,C(T ). For a fixed admissible set C, we have

�

(E1,E2)∈E2
n,C(T )

δ2
Cπ(X;n, 1)2 ≤

�

(E1,E2)∈B(T )

�
π(E1,E2)(X; C)− δC · π(X;n, 1)

�2
.

Let A > 0 be fixed. The Siegel-Walfisz Theorem ([18], see also [11]) implies that, uniformly for

(14) � ≤ (log T )A,
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one has
π(T ; �, 1) �A

T

ϕ(�) log T
.

Thus, putting X = T in Theorem 2.1 and noting that GL2(Z/�Z)/ϕ(�) � �3, we conclude that

|E
2
�,C(T )| � |B(T )| ·

�12T

(π(T ; �, 1))2
�A �14T 9 log2 T.

Summing over the O(�2) many conjugacy classes C ⊂ GL2(Z/�Z), we find that

(15) |E
2
� (T )| �A �16T 9 log2 T,

provided � satisfies (14). In order to truncate the infinite union over primes � occurring on the left-hand side
of (10), we use the following two theorems due to Masser and Wüstholz.

Theorem 3.4. There are absolute constants c1 and γ such that, for any pair (E1, E2) of non-Q-isogenous,

non-CM elliptic curves over Q and any prime � > c1(max{log H(E1), log H(E2)})γ , we have

ϕ(E1,E2),�(GQ) = ∆�.

Proof. See [9, Proposition 1]. �

Theorem 3.5. There exists an absolute constant c2 with the property that, given any elliptic curve E defined

over Q and any other curve E� over Q which is Q-isogenous to E, there exists an isogeny between E and E�

of degree at most c2 log4(H(E)).

Proof. See [8, p. 1] �

From Theorem 3.5 we may deduce the following Lemma.

Lemma 3.6. The number of pairs (E1, E2) ∈ E
2(T ) which are Q-isogenous to each other is � T 6 log8 T .

Proof of Lemma 3.6. For each fixed E1 over Q, we consider the set

Isogd,E1
(T ) := {E2 ∈ B1(T ) : ∃ a Q-isogeny ψ : E1 → E2 of degree d},

where B1(T ) := {E over Q : H(E) ≤ T 6}. By Theorem 3.5, the set

Isog(T ) := {(E1, E2) ∈ E
2(T ) : E1 is Q-isogenous to E2}

satisfies

|Isog(T )| =
�

E1∈B(T )

c2(log T )4�

d=1

|Isogd,E1
(T )|.

To bound |Isogd,E1
(T )|, note that, if ψ : E1 → E2 and ψ� : E1 → E�2 are Q-isogenies with kerψ = kerψ� = G,

then E2 � E1/G � E�2, and so E2 is isomorphic over Q to E�2. Thus, it is natural to partition Isogd,E1
(T )

according to the associated kernel G. Having fixed a kernel G, it remains to count the elliptic curves E2

which are Q-isomorphic to E1/G. Now, for a given fixed elliptic curve E1/G = E� given by y2 = x3 +r�x+s�

with r�, s� ∈ Z\{0}, the elliptic curves E2 over Q which are Q-isomorphic to E are given by y2 = x3 + rx+ s,
with r = r�d2 and s = s�d3 for some d ∈ Q×. By considering such models of E2 which also satisfy (3), it
follows that, provided j(E�) /∈ {0, 1728} there are at most O(T ) many elliptic curves E2 ∈ B(T ) which are
Q-isomorphic to E�. Since E2(T ) excludes elliptic curves with complex multiplication, we see that

|Isog(T )|�
�

E1∈B(T )

c2 log4 T�

d=1

�

G⊆E(Q)
|G|=d

T

�T 6
c2 log4 T�

d=1

σ(d)

�T 6 log8 T,
7



where we have used that |{G ⊂ (Z/dZ)2 : G an additive subgroup, |G| = d}| = σ(d) :=
�

δ|d

δ, and that

�

d≤X

σ(d) � X2. �

Note that, for T large enough one has (log T )γ+1 ≥ c2(log T )γ . Thus, taking A = γ + 1 in (14), Theorem
3.4 and Lemma 3.6 lead us to������

E
2
36(T ) ∪

�

� prime

E
2
� (T )

������
�




�

�≤(log T )γ+1

�16T 9 log2 T



 + O(T 6 log8 T )

�T 9 logβ T.

We have proved (10), finishing the proof of Theorem 1.2.

4. Concluding remarks

4.1. Arbitrary finite products of elliptic curves. Our first remark is that Theorems 1.2 and 2.1 may be
generalized without difficulty to the setting of arbitrary k-fold products of elliptic curves, for any k ≥ 2. Given
k elliptic curves E1, . . . , Ek over Q of respective conductors N1, . . . , Nk, consider the Galois representation

ϕ(E1,...,Ek),n : GQ −→ ∆(k)
n := {(g1, g2, . . . , gk) ∈ (GL2(Z/nZ))k : det g1 = det g2 = · · · = det gk},

defined by letting GQ act on E1[n]× · · ·× Ek[n] and fixing (Z/nZ)-bases, and also the inverse limit

ϕ(E1,...,Ek) : GQ −→ ∆(k) := {(g1, g2, . . . , gk) ∈ (GL2(Ẑ))k : det g1 = det g2 = · · · = det gk}.

In this context, Definition 1.1 becomes

Definition 4.1. The k-tuple (E1, E2, . . . , Ek) is a Serre k-tuple if

[∆(k) : ϕ(E1,...,Ek)(GQ)] = 2k.

Setting the notation
B×k(T ) :={(E1, . . . , Ek) over Q : max(H(E1), . . . H(Ek)) ≤ T 6

},

E
(k)
non-Serre(T ) :={(E1, . . . , Ek) ∈ B×k(T ) : (E1, . . . , Ek) is not a Serre k-tuple},

π(E1,...,Ek)(X; C) :=|{p ≤ X : p � n
k�

i=1

Ni, ϕ(E1,...,Ek),n(Frobp) ⊆ C}|,

δC :=
|C|ϕ(n)

|∆(k)
n |

,

and calling a subset C ⊆ ∆(k)
n admissible if it may be written as a union

C =
r�

j=1

A
(1)
j ×A

(2)
j × · · ·×A

(k)
j ,

where A
(1)
j ,A(2)

j , . . . ,A(k)
j ⊆ GL2(Z/nZ) are subsets which are stable under GL2(Z/nZ)-conjugation. Note

that any admissible subset C is necessarily closed under ∆(k)
n -conjugation. The proof of Theorem 2.1 gener-

alizes to give the following.

Theorem 4.2. Fix a positive integer k, a positive integer n ≥ 1, and an admissible subset C ⊂ ∆(k)
n which

represents a single determinant value:

det(C) = d ∈ (Z/nZ)×.

Then, provided T ≥ X, one has

1
|B×k(T )|

�

(E1,...,Ek)∈B×k(T )

�
π(E1,...,Ek)(X; C)− δC · π(X;n, d)

�2
�k |C|

2X,

where the implied constant depends only on k.
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Furthermore, since Lemma 3.3 may be readily generalized by induction to the analogous statement for
k-fold products, and since Theorems 3.4 and 3.5 are in fact both stated for arbitrary products, our proof of
Theorem 1.2 also gives

Theorem 4.3. There is an explicit positive constant βk such that, for any T ≥ 2, we have
���E(k)

non-Serre(T )
��� �k T 5k−1 logβk T.

Since
|B×k(T )| � T 5k,

one deduces the same “almost all” statement about k-tuples of elliptic curves.

4.2. Elliptic curves over an arbitrary number field. Our second remark is that one may adapt our
methods in the style of Zywina [19] to prove the analogous result for k-tuples of elliptic curves defined over
an arbitrary number field F . Indeed, fix a number field F �= Q and let OF denote its ring of integers. Fix a
norm � · � on O2k

F ⊗ R � R2k[F :Q] and define

BF,×k(T ) :={(r, s) = (ri, si)i ∈
�
O

2
F

�k :
k�

i=1

(4r3
i + 27s2

i ) �= 0, � (r, s) �≤ T},

E
(k)
F (T ) :={(r, s) ∈ BF,×k(T ) : SL2(Ẑ)k � ϕ(Er1,s1 ,Er2,s2 ,...,Erk,sk

)(GF )},

where Er,s denotes the elliptic curve y2 = x3 + rx + s, which is defined over F . Note that

BF,×k(T ) � T 2k[F :Q].

In a manner similar to the proof of Theorem 1.2, but employing a version of the large sieve tailored to the
number field setting (see [19]), one proves the following theorem.

Theorem 4.4. There is an explicit positive constant βk such that, for any T ≥ 2, we have
���E(k)

F (T )
��� �k,F,�·� T (2k− 1

2 )[F :Q](log T )βk .
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