
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 1, January 2009, Pages 37–43
S 0002-9939(08)09436-7
Article electronically published on July 25, 2008

A BOUND FOR THE TORSION CONDUCTOR
OF A NON-CM ELLIPTIC CURVE

NATHAN JONES

(Communicated by Ken Ono)

Abstract. Given a non-CM elliptic curve E over Q of discriminant ∆E , de-
fine the “torsion conductor” mE to be the smallest positive integer so that the
Galois representation on the torsion of E has image π−1(Gal(Q(E[mE ])/Q)),

where π denotes the natural projection GL2(Ẑ) → GL2(Z/mEZ). We show
that, uniformly for semi-stable non-CM elliptic curves E over Q, one has

mE �
(∏

p|∆E
p
)5

.

1. Introduction

Let E be an elliptic curve defined over a number field K and let

ϕE : Gal (K/K) → GL2(Ẑ)

be the continuous group homomorphism defined by letting Gal (K/K) operate on
the torsion points of E and by choosing an isomorphism Aut(Etors) � GL2(Ẑ). We
will refer to ϕE as the torsion representation of E. A celebrated theorem of
Serre [10] shows that if E has no complex multiplication, then the index of the
image of ϕE is finite:

[GL2(Ẑ) : ϕE(Gal (K/K))] < ∞.

This is equivalent to the statement that there exists an integer m ≥ 1 with the
property that

(1) ϕE(Gal (K/K)) = π−1(Gal (K(E[m])/K)),

where K(E[m]) denotes the m-th division field of E, obtained by adjoining to K
the x and y coordinates of the m-torsion points of a Weierstrass model of E, and
where

π : GL2(Ẑ) → GL2(Z/mZ)
denotes the projection.

Definition 1. We define the torsion conductor mE of a non-CM elliptic curve
E over K to be the smallest positive integer m so that (1) holds.

Serre [10, p. 299] has asked the following important question about the image
of ϕE .
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Question 2. Given a number field K, is there a constant CK such that for any
non-CM elliptic curve E over K and any rational prime number p ≥ CK one has

Gal (K(E[p])/K) � GL2(Z/pZ)?

Even in the case of K = Q this question remains unanswered. Mazur [7, Theorem
4, p. 131] has shown that

(2) E is semi-stable =⇒ ∀ p ≥ 11, Gal (Q(E[p])/Q) � GL2(Z/pZ).

His work also shows that, if p > 19, p /∈ {37, 43, 67, 163}, and

(3) Gal (Q(E[p])/Q) � GL2(Z/pZ),

then Gal (Q(E[p])/Q) is contained in the normalizer of a Cartan subgroup of
GL2(Z/pZ). The work of Parent [8] represents further progress towards resolution
of the split Cartan case, while the work of Chen [2] shows that in the non-split case,
new ideas are needed. Other authors have bounded the largest prime p satisfying
(3) in terms of invariants of the elliptic curve ([11], [4], [3], and [6]).

In some applications it is useful to have effective control over the variation of
mE with E. In this paper we prove the following theorem, whose statement uses
the Vinogradov symbol �, which is defined by

A � B ⇐⇒ ∃ an absolute constant c such that |A| ≤ cB.

Theorem 3. Let ∆E denote the minimal discriminant of an elliptic curve E over
Q. Then, uniformly for semi-stable non-CM elliptic curves E over Q, one has

mE �

⎛
⎝ ∏

p prime, p|∆E

p

⎞
⎠

5

.

If Question 2 has an affirmative answer when K = Q, then the above bound holds
uniformly for all elliptic curves E over Q.

The proof of Theorem 3 uses elementary Galois theory to reduce the question to
working “vertically over exceptional primes” or, in other words, to the analogous
question of the Galois representation on the Tate module

Gal (Q/Q) → GL2(Zp),

where p satisfies (3). Such a study has been carried out in the recent work of Arai
[1]. The main ideas are present in [9] and [5].

Remark 4. The torsion conductor mE should not be confused with the number

A(E) := 2 · 3 · 5 ·
∏

p prime
Gal (Q(E[p])/Q)�GL2(Z/pZ)

p

discussed in [3], which has the useful property that, for any integer n,

gcd(n, A(E)) = 1 =⇒ Gal (Q(E[n])/Q) � GL2(Z/nZ).

This condition is weaker than (1). For example, if E is the curve y2 + y = x3 − x,
then A(E) = 30 and mE = 74. More generally, when E is a Serre curve (for a
definition, see [10, pp. 310–311]), one has A(E) = 30, whereas mE is greater than
or equal to the square-free part of |∆E |.1

1By the square-free part |∆E |, we mean the unique square-free number n such that |∆E |/n is
a square.
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Notation 5. For a fixed elliptic curve E over Q and for any positive integer n we
will denote

Ln := Q(E[n]), G(n) := Gal (Ln/Q),
and we will regard G(n) as a subgroup of GL2(Z/nZ). Also, we will overwork the
symbol π, using it to denote any one of the canonical projections

π : GL2(Ẑ) → GL2(Z/nZ), π : GL2(Zp) → GL2(Z/pnZ),

or π : GL2(Z/nZ) → GL2(Z/dZ) (d dividing n),

or the restrictions of any of these projections to closed subgroups, for example

π : ϕE(Gal (Q/Q)) → G(M) or π : G(n) → G(d) (d dividing n).

We hope that these abbreviations will minimize cumbersome notation and not
cause any confusion. We will say that an integer M divides N∞ if whenever a
prime p divides M , p also divides N . Throughout, the letters p and � will always
denote prime numbers.

2. Proof of Theorem 3

Let E be a fixed non-CM elliptic curve over a number field K and denote by

ϕE,p : Gal (K/K) → GL2(Zp) � Aut(lim
←

E[pn])

the Galois representation on the Tate module of E at p. The following is a re-
statement of [1, Theorem 1.2].

Theorem 6. Let K be a number field and let p be a prime number. There exists
an exponent nK(p) so that, for each non-CM elliptic curve E over K, one has

ϕE,p(Gal (K/K)) = π−1(Gal (K(E[pnK(p)])/K)).

If nK(p) = 0, this is interpreted to mean that ϕE,p is surjective. In fact, for
K = Q and p > 3 one has

(4) G(p) � GL2(Z/pZ) =⇒ nQ(p) = 0.

This is proved by applying [9, Lemma 3, p. IV-23] with X equal to the commu-
tator subgroup of ϕE,p(Gal (Q/Q)), together with the fact that thanks to the Weil
pairing, the determinant map

det : Gal (Lp∞/Q) � (Zp)∗

is surjective, where Lp∞ :=
⋃∞

n=1 Lpn . We define

S := {2, 3, 5} ∪ {p prime : G(p) � GL2(Z/pZ) or p | ∆E}.
For each prime p ∈ S, define the exponents

αp := max {1, the exponent nQ(p) of Theorem 6}
and

βp := the exponent of p occurring in

∣∣∣∣∣∣GL2

⎛
⎝Z

/⎛
⎝ ∏

�∈S\{p}
�

⎞
⎠ Z

⎞
⎠

∣∣∣∣∣∣ .

Finally, define the positive integer

(5) nE :=
∏
p∈S

pαp+βp .
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Note that, for p ∈ S and M dividing (nE/pαp+βp)∞, one has

(6) βp ≥ the exponent of p in |GL2(Z/MZ)|.
Using the above definitions and facts, we will prove

Theorem 7. Let E be any elliptic curve defined over Q. Then

ϕE(Gal (Q/Q)) = π−1(Gal (Q(E[nE])/Q)),

where nE is defined in (5). In particular, mE ≤ nE.

Note that ∏
p∈S

pβp ≤
∣∣∣∣∣GL2

(
Z/

(∏
�∈S

�

)
Z

)∣∣∣∣∣ �
∏
�∈S

�4,

so that, by (4) and (2), if E is semi-stable and non-CM then

(7) nE � (
∏

�|∆E

�)5,

and an affirmative answer to Question 2 for K = Q would imply the above bound for
all non-CM elliptic curves E over Q. Thus, Theorem 3 is a corollary of Theorem 7.

Proof of Theorem 7. First we will prove

Lemma 8. For any positive integer n1 dividing n∞
E , one has

G(n1) = π−1(G(d)),

where d is the greatest common divisor of n1 and nE.

In the language of [5], this lemma says that nE “stabilizes” the Galois represen-
tation ϕE . The second lemma says that nE “splits” ϕE as well.

Lemma 9. For any positive integers n1 dividing n∞
E and n2 coprime to nE, one

has
G(n1n2) � G(n1) × GL2(Z/n2Z).

The two lemmas together imply Theorem 7. �

Proof of Lemma 8. Fix an arbitrary divisor d of nE . The statement of the lemma
is trivial if n1 = d. Now we will prove it by induction on the set

Nd := {n ∈ N : n divides n∞
E , gcd(n, nE) = d}.

Let n1 ∈ Nd and suppose that for each n ∈ Nd ∩ {1, 2, . . . , n1 − 1}, the statement
of the lemma is true. Notice that if n1 > d, then there must exist a prime p ∈ S
satisfying

pαp+βp exactly divides d and pαp+βp+1 divides n1.

Write n1 = pr+1M , where p does not divide M and

(8) r ≥ αp + βp.

We will show that

(9) Lpr+1 ∩ LM = Lpr ∩ LM .

If this is true, then, writing k for this common field, we have that

Gal (Lpr+1LM/k) � Gal (Lpr+1/k) × Gal (LM/k)
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THE TORSION CONDUCTOR OF A NON-CM ELLIPTIC CURVE 41

and
Gal (LprLM/k) � Gal (Lpr/k) × Gal (LM/k),

from which it follows that [Lpr+1M : LprLM ] = [Lpr+1 : Lpr ]. Since r ≥ αp, we
conclude that

G(n1) = π−1(G(prM)),
proving the lemma by induction.

To see why (9) holds, let us write

(10) Fx := Lpx ∩ LM ⊆ LM (x ≥ 1).

Note that, for x ≥ 1, the degree [Fx+1 : Fx] is always a power of p. Thus, if βp = 0,
then by (6), we must have Fr = Fr+1. Now assume that βp ≥ 1. Suppose first that

∀s ∈ {1, 2, . . . , r − αp}, Fαp+s−1 � Fαp+s.

By (10), (8), and (6) we see that this may only happen if r = βp + αp and the
exponent of p in [Fr : Q] is βp. In this case we see from (10) that Fr+1 = Fr.

Now suppose instead that for some s ∈ {1, 2, . . . , r − αp} one has Fαp+s−1 =
Fαp+s. We’ll first show that under these conditions, Fαp+s−1 = Fαp+s+1. To ease
notation, we will write α := αp + s − 1, so that we are trying to prove that

Fα = Fα+1 =⇒ Fα = Fα+2.

Denote by
π2 : G(pα+2) → G(pα+1), π1 : G(pα+1) → G(pα)

the restrictions of the natural projections and let N ′ ⊆ N ⊆ G(pα+2) be the normal
subgroups satisfying

Fα = Fα+1 = LN
pα+2 and Fα+2 = LN ′

pα+2 .

Our contention is that N ′ = N . Now,

(11) Lker π2·N ′

pα+2 = Lker π2
pα+2 ∩ LN ′

pα+2 = LN
pα+2 ,

which implies that the restriction of π2 to N ′ maps surjectively onto π2(N):

N ′ � π2(N).

The fact that LN
pα+2 = Fα ⊆ Lpα = L

ker(π1◦π2)
pα+2 implies that

π−1
2 (kerπ1) = ker(π1 ◦ π2) ⊆ N ⊆ π−1

2 (π2(N)),

so that
ker π1 ⊆ π2(N).

Since α ≥ αp, we know that

ker π2 = I + pα+1M2×2(Z/pZ) and kerπ1 = I + pαM2×2(Z/pZ).

Now pick any
I + pαA ∈ kerπ1

and find a pre-image X = I + pαA + pα+1B ∈ N ′. But then

Xp ≡ I + pα+1A mod pα+2 ∈ N ′,

and so I + pα+1M2×2(Z/pZ) = kerπ2 ⊆ N ′. This together with (11) shows that
N ′ = N , as desired. Replacing s by s + 1 and repeating the argument inductively,
we conclude that Fαp+s−1 = Fαp+k for any positive integer k ≥ s − 1, so that in
particular Fr+1 = Fr. This finishes the proof of Lemma 8. �
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Proof of Lemma 9. The reasoning here is very similar to that of [5, Theorem 6.1,
p. 49]. The first step is to prove

Sublemma 10. Fix any integers M1 and M2 with the property that 2 � M2, 5 � M2,
and gcd(M1∆E , M2) = 1. If G(M2) � GL2(Z/M2Z), then

G(M1M2) � G(M1) × GL2(Z/M2Z).

Proof of Sublemma 10. Set F := LM1 ∩ LM2 . We need to show that F = Q.
Suppose that F �= Q. Note that 1 �= Gal (F/Q) is a common quotient group of
G(M1) and G(M2) � GL2(Z/M2Z). Replacing F by a subfield, we may assume that
Gal (F/Q) is a common non-trivial simple quotient. We claim that this common
simple quotient must be abelian. For a finite group G let Occ(G) denote the set of
simple non-abelian groups which occur as quotients of subgroups of G. One easily
deduces from [9, p. IV-25] that, for any positive integer M , Occ(GL2(Z/MZ)) is
equal to⎛
⎜⎜⎜⎜⎝

⋃
p|M
p>5

p≡±1 mod 5

{PSL2(Z/pZ), A5}

⎞
⎟⎟⎟⎟⎠ ∪

⎛
⎜⎜⎜⎜⎝

⋃
p|M
p>5

p≡±2 mod 5

{PSL2(Z/pZ)}

⎞
⎟⎟⎟⎟⎠ ∪

⎛
⎜⎜⎝ ⋃

p|M
p=5

{A5}

⎞
⎟⎟⎠ .

(Note that A5 � PSL2(Z/5Z).) One can use elementary group theory to show that

{simple non-abelian quotients of GL2(Z/MZ)} ⊆
⋃
p|M
p>3

{PSL2(Z/pZ)}.

Thus, the assumptions on M1 and M2 imply that Gal (F/Q) must be abelian. Since
M2 is odd, the commutator subgroup

[GL2(Z/M2Z), GL2(Z/M2Z)] = SL2(Z/M2Z),

which implies that F is contained in the cyclotomic field

F ⊆ Q

(
exp

(
2πi

M2

))
.

Let p be a prime ramified in F . We see that p must divide the discriminants of both
LM1 and Q

(
exp

(
2πi
M2

))
, which is impossible since gcd(M1∆E , M2) = 1. Since Q

has no everywhere unramified extensions, we have arrived at a contradiction. Thus,
we cannot have F �= Q, and the sublemma is proved. �

To prove Lemma 9, we first prove by induction on the number of primes p
dividing n2 that in fact

(12) G(n2) � GL2(Z/n2Z).

The case where n2 is a power of a prime p > 5 follows from (4). Then, (12) is
proved by writing n2 = pnM with n ≥ 1 and p � M and by applying Sublemma 10
with M1 = pn and M2 = M . Finally, to prove Lemma 9, we apply the sublemma
with Mi = ni. �

We end by asking the following weakening of Question 2.
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Question 11. Fix a number field K. Does there exist a constant CK so that for
each prime number p one has

nK(p) ≤ CK ,

where nK(p) is the exponent occurring in Theorem 6?

Conditional upon an affirmative answer to this question, Theorem 7 together
with [3, Theorem 2] would imply that for any non-CM elliptic curve E over Q, one
has

mE �

⎛
⎝ ∏

p≤BE

p

⎞
⎠

CQ+4

·

⎛
⎝ ∏

p|∆E

p

⎞
⎠

5

,

where

BE :=
4
√

6
3

· NE

∏
p|∆E

(
1 +

1
p

)1/2

+ 1,

NE denoting the conductor of E.
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