PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 1, January 2009, Pages 37-43 S 0002-9939(08)09436-7 Article electronically published on July 25, 2008

A BOUND FOR THE TORSION CONDUCTOR OF A NON-CM ELLIPTIC CURVE

NATHAN JONES

(Communicated by Ken Ono)

ABSTRACT. Given a non-CM elliptic curve E over \mathbb{Q} of discriminant Δ_E , define the "torsion conductor" m_E to be the smallest positive integer so that the Galois representation on the torsion of E has image $\pi^{-1}(\text{Gal}(\mathbb{Q}(E[m_E])/\mathbb{Q}))$, where π denotes the natural projection $GL_2(\hat{\mathbb{Z}}) \to GL_2(\mathbb{Z}/m_E\mathbb{Z})$. We show that, uniformly for semi-stable non-CM elliptic curves E over \mathbb{Q} , one has $m_E \ll \left(\prod_{p|\Delta_E} p\right)^5$.

1. INTRODUCTION

Let E be an elliptic curve defined over a number field K and let

$$\varphi_E : \operatorname{Gal}(\overline{K}/K) \to GL_2(\hat{\mathbb{Z}})$$

be the continuous group homomorphism defined by letting $\operatorname{Gal}(\overline{K}/K)$ operate on the torsion points of E and by choosing an isomorphism $\operatorname{Aut}(E_{\operatorname{tors}}) \simeq GL_2(\hat{\mathbb{Z}})$. We will refer to φ_E as the **torsion representation of** E. A celebrated theorem of Serre [10] shows that if E has no complex multiplication, then the index of the image of φ_E is finite:

$$[GL_2(\hat{\mathbb{Z}}): \varphi_E(\operatorname{Gal}(\overline{K}/K))] < \infty.$$

This is equivalent to the statement that there exists an integer $m \ge 1$ with the property that

(1)
$$\varphi_E(\operatorname{Gal}(\overline{K}/K)) = \pi^{-1}(\operatorname{Gal}(K(E[m])/K)),$$

where K(E[m]) denotes the *m*-th division field of *E*, obtained by adjoining to *K* the *x* and *y* coordinates of the *m*-torsion points of a Weierstrass model of *E*, and where

$$\pi: GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z}/m\mathbb{Z})$$

denotes the projection.

Definition 1. We define the **torsion conductor** m_E of a non-CM elliptic curve E over K to be the smallest positive integer m so that (1) holds.

Serre [10, p. 299] has asked the following important question about the image of φ_E .

 $\textcircled{C}2008 \mbox{ American Mathematical Society} Reverts to public domain 28 years from publication$

Received by the editors September 6, 2007, and, in revised form, November 25, 2007. 2000 *Mathematics Subject Classification*. Primary 11G05, 11F80.

Question 2. Given a number field K, is there a constant C_K such that for any non-CM elliptic curve E over K and any rational prime number $p \ge C_K$ one has

$$\operatorname{Gal}(K(E[p])/K) \simeq GL_2(\mathbb{Z}/p\mathbb{Z})?$$

Even in the case of $K = \mathbb{Q}$ this question remains unanswered. Mazur [7, Theorem 4, p. 131] has shown that

(2)
$$E \text{ is semi-stable } \implies \forall p \ge 11, \text{ Gal}\left(\mathbb{Q}(E[p])/\mathbb{Q}\right) \simeq GL_2(\mathbb{Z}/p\mathbb{Z})$$

His work also shows that, if p > 19, $p \notin \{37, 43, 67, 163\}$, and

(3)
$$\operatorname{Gal}\left(\mathbb{Q}(E[p])/\mathbb{Q}\right) \subsetneq GL_2(\mathbb{Z}/p\mathbb{Z}),$$

then Gal $(\mathbb{Q}(E[p])/\mathbb{Q})$ is contained in the normalizer of a Cartan subgroup of $GL_2(\mathbb{Z}/p\mathbb{Z})$. The work of Parent [8] represents further progress towards resolution of the split Cartan case, while the work of Chen [2] shows that in the non-split case, new ideas are needed. Other authors have bounded the largest prime p satisfying (3) in terms of invariants of the elliptic curve ([11], [4], [3], and [6]).

In some applications it is useful to have effective control over the variation of m_E with E. In this paper we prove the following theorem, whose statement uses the Vinogradov symbol \ll , which is defined by

 $A \ll B \iff \exists$ an absolute constant c such that $|A| \leq cB$.

Theorem 3. Let Δ_E denote the minimal discriminant of an elliptic curve E over \mathbb{Q} . Then, uniformly for semi-stable non-CM elliptic curves E over \mathbb{Q} , one has

$$m_E \ll \left(\prod_{p \ prime, \ p|\Delta_E} p\right)^5.$$

If Question 2 has an affirmative answer when $K = \mathbb{Q}$, then the above bound holds uniformly for all elliptic curves E over \mathbb{Q} .

The proof of Theorem 3 uses elementary Galois theory to reduce the question to working "vertically over exceptional primes" or, in other words, to the analogous question of the Galois representation on the Tate module

$$\operatorname{Gal}\left(\overline{\mathbb{Q}}/\mathbb{Q}\right) \to GL_2(\mathbb{Z}_p),$$

where p satisfies (3). Such a study has been carried out in the recent work of Arai [1]. The main ideas are present in [9] and [5].

Remark 4. The torsion conductor m_E should not be confused with the number

$$A(E) := 2 \cdot 3 \cdot 5 \cdot \prod_{\substack{p \text{ prime} \\ \text{Gal}\left(\mathbb{Q}(E[p])/\mathbb{Q}\right) \subsetneq GL_2(\mathbb{Z}/p\mathbb{Z})}} p$$

discussed in [3], which has the useful property that, for any integer n,

$$gcd(n, A(E)) = 1 \implies Gal(\mathbb{Q}(E[n])/\mathbb{Q}) \simeq GL_2(\mathbb{Z}/n\mathbb{Z}).$$

This condition is weaker than (1). For example, if E is the curve $y^2 + y = x^3 - x$, then A(E) = 30 and $m_E = 74$. More generally, when E is a Serre curve (for a definition, see [10, pp. 310–311]), one has A(E) = 30, whereas m_E is greater than or equal to the square-free part of $|\Delta_E|$.¹

¹By the square-free part $|\Delta_E|$, we mean the unique square-free number n such that $|\Delta_E|/n$ is a square.

Notation 5. For a fixed elliptic curve E over \mathbb{Q} and for any positive integer n we will denote

$$L_n := \mathbb{Q}(E[n]), \quad G(n) := \operatorname{Gal}(L_n/\mathbb{Q}),$$

and we will regard G(n) as a subgroup of $GL_2(\mathbb{Z}/n\mathbb{Z})$. Also, we will overwork the symbol π , using it to denote any one of the canonical projections

$$\pi: GL_2(\hat{\mathbb{Z}}) \to GL_2(\mathbb{Z}/n\mathbb{Z}), \quad \pi: GL_2(\mathbb{Z}_p) \to GL_2(\mathbb{Z}/p^n\mathbb{Z}),$$

or $\pi: GL_2(\mathbb{Z}/n\mathbb{Z}) \to GL_2(\mathbb{Z}/d\mathbb{Z}) \quad (d \text{ dividing } n),$

or the restrictions of any of these projections to closed subgroups, for example

$$\pi: \varphi_E(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) \to G(M) \quad \text{ or } \quad \pi: G(n) \to G(d) \quad (d \text{ dividing } n).$$

We hope that these abbreviations will minimize cumbersome notation and not cause any confusion. We will say that an integer M divides N^{∞} if whenever a prime p divides M, p also divides N. Throughout, the letters p and ℓ will always denote prime numbers.

2. Proof of Theorem 3

Let E be a fixed non-CM elliptic curve over a number field K and denote by

$$\varphi_{E,p}$$
: Gal $(K/K) \to GL_2(\mathbb{Z}_p) \simeq \operatorname{Aut}(\lim E[p^n])$

the Galois representation on the Tate module of E at p. The following is a restatement of [1, Theorem 1.2].

Theorem 6. Let K be a number field and let p be a prime number. There exists an exponent $n_K(p)$ so that, for each non-CM elliptic curve E over K, one has

$$\varphi_{E,p}(Gal(\overline{K}/K)) = \pi^{-1}(Gal(K(E[p^{n_K(p)}])/K)).$$

If $n_K(p) = 0$, this is interpreted to mean that $\varphi_{E,p}$ is surjective. In fact, for $K = \mathbb{Q}$ and p > 3 one has

(4)
$$G(p) \simeq GL_2(\mathbb{Z}/p\mathbb{Z}) \implies n_{\mathbb{Q}}(p) = 0.$$

This is proved by applying [9, Lemma 3, p. IV-23] with X equal to the commutator subgroup of $\varphi_{E,p}(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, together with the fact that thanks to the Weil pairing, the determinant map

$$\det : \operatorname{Gal}\left(L_{p^{\infty}}/\mathbb{Q}\right) \twoheadrightarrow (\mathbb{Z}_p)^*$$

is surjective, where $L_{p^{\infty}} := \bigcup_{n=1}^{\infty} L_{p^n}$. We define

$$S := \{2, 3, 5\} \cup \{p \text{ prime } : G(p) \subsetneq GL_2(\mathbb{Z}/p\mathbb{Z}) \text{ or } p \mid \Delta_E\}.$$

For each prime $p \in S$, define the exponents

$$\alpha_p := \max\{1, \text{ the exponent } n_{\mathbb{Q}}(p) \text{ of Theorem 6}\}$$

and

$$\beta_p := \text{ the exponent of } p \text{ occurring in } \left| GL_2\left(\mathbb{Z} \middle/ \left(\prod_{\ell \in S \setminus \{p\}} \ell\right) \mathbb{Z} \right) \right|.$$

Finally, define the positive integer

(5)
$$n_E := \prod_{p \in S} p^{\alpha_p + \beta_p}.$$

Note that, for $p \in S$ and M dividing $(n_E/p^{\alpha_p+\beta_p})^{\infty}$, one has

(6) $\beta_p \ge \text{ the exponent of } p \text{ in } |GL_2(\mathbb{Z}/M\mathbb{Z})|.$

Using the above definitions and facts, we will prove

Theorem 7. Let E be any elliptic curve defined over \mathbb{Q} . Then

 $\varphi_E(Gal(\overline{\mathbb{Q}}/\mathbb{Q})) = \pi^{-1}(Gal(\mathbb{Q}(E[n_E])/\mathbb{Q})),$

where n_E is defined in (5). In particular, $m_E \leq n_E$.

Note that

$$\prod_{p \in S} p^{\beta_p} \le \left| GL_2\left(\mathbb{Z} / \left(\prod_{\ell \in S} \ell \right) \mathbb{Z} \right) \right| \ll \prod_{\ell \in S} \ell^4,$$

so that, by (4) and (2), if E is semi-stable and non-CM then

(7)
$$n_E \ll (\prod_{\ell \mid \Delta_E} \ell)^5$$

and an affirmative answer to Question 2 for $K = \mathbb{Q}$ would imply the above bound for all non-CM elliptic curves E over \mathbb{Q} . Thus, Theorem 3 is a corollary of Theorem 7.

Proof of Theorem 7. First we will prove

Lemma 8. For any positive integer n_1 dividing n_E^{∞} , one has

$$G(n_1) = \pi^{-1}(G(d)),$$

where d is the greatest common divisor of n_1 and n_E .

In the language of [5], this lemma says that n_E "stabilizes" the Galois representation φ_E . The second lemma says that n_E "splits" φ_E as well.

Lemma 9. For any positive integers n_1 dividing n_E^{∞} and n_2 coprime to n_E , one has

$$G(n_1n_2) \simeq G(n_1) \times GL_2(\mathbb{Z}/n_2\mathbb{Z}).$$

The two lemmas together imply Theorem 7.

Proof of Lemma 8. Fix an arbitrary divisor d of n_E . The statement of the lemma is trivial if $n_1 = d$. Now we will prove it by induction on the set

$$\mathcal{N}_d := \{ n \in \mathbb{N} : n \text{ divides } n_E^\infty, \ \gcd(n, n_E) = d \}$$

Let $n_1 \in \mathcal{N}_d$ and suppose that for each $n \in \mathcal{N}_d \cap \{1, 2, \ldots, n_1 - 1\}$, the statement of the lemma is true. Notice that if $n_1 > d$, then there must exist a prime $p \in S$ satisfying

 $p^{\alpha_p+\beta_p}$ exactly divides d and $p^{\alpha_p+\beta_p+1}$ divides n_1 .

Write $n_1 = p^{r+1}M$, where p does not divide M and

(8)
$$r \ge \alpha_p + \beta_p$$

We will show that

$$L_{p^{r+1}} \cap L_M = L_{p^r} \cap L_M$$

If this is true, then, writing k for this common field, we have that

 $\operatorname{Gal}\left(L_{p^{r+1}}L_M/k\right) \simeq \operatorname{Gal}\left(L_{p^{r+1}}/k\right) \times \operatorname{Gal}\left(L_M/k\right)$

40

and

$$\operatorname{Gal}\left(L_{p^r}L_M/k\right) \simeq \operatorname{Gal}\left(L_{p^r}/k\right) \times \operatorname{Gal}\left(L_M/k\right),$$

from which it follows that $[L_{p^{r+1}M} : L_{p^r}L_M] = [L_{p^{r+1}} : L_{p^r}]$. Since $r \ge \alpha_p$, we conclude that

$$G(n_1) = \pi^{-1}(G(p^r M)),$$

proving the lemma by induction.

To see why (9) holds, let us write

(10)
$$F_x := L_{p^x} \cap L_M \subseteq L_M \qquad (x \ge 1).$$

Note that, for $x \ge 1$, the degree $[F_{x+1} : F_x]$ is always a power of p. Thus, if $\beta_p = 0$, then by (6), we must have $F_r = F_{r+1}$. Now assume that $\beta_p \ge 1$. Suppose first that

$$\forall s \in \{1, 2, \dots, r - \alpha_p\}, \quad F_{\alpha_p + s - 1} \subsetneq F_{\alpha_p + s}.$$

By (10), (8), and (6) we see that this may only happen if $r = \beta_p + \alpha_p$ and the exponent of p in $[F_r : \mathbb{Q}]$ is β_p . In this case we see from (10) that $F_{r+1} = F_r$.

Now suppose instead that for some $s \in \{1, 2, ..., r - \alpha_p\}$ one has $F_{\alpha_p+s-1} = F_{\alpha_p+s}$. We'll first show that under these conditions, $F_{\alpha_p+s-1} = F_{\alpha_p+s+1}$. To ease notation, we will write $\alpha := \alpha_p + s - 1$, so that we are trying to prove that

$$F_{\alpha} = F_{\alpha+1} \Longrightarrow F_{\alpha} = F_{\alpha+2}$$

Denote by

$$\pi_2: G(p^{\alpha+2}) \to G(p^{\alpha+1}), \quad \pi_1: G(p^{\alpha+1}) \to G(p^{\alpha})$$

the restrictions of the natural projections and let $N' \subseteq N \subseteq G(p^{\alpha+2})$ be the normal subgroups satisfying

$$F_{\alpha} = F_{\alpha+1} = L_{p^{\alpha+2}}^{N}$$
 and $F_{\alpha+2} = L_{p^{\alpha+2}}^{N'}$.

Our contention is that N' = N. Now,

(11)
$$L_{p^{\alpha+2}}^{\ker \pi_2 \cdot N'} = L_{p^{\alpha+2}}^{\ker \pi_2} \cap L_{p^{\alpha+2}}^{N'} = L_{p^{\alpha+2}}^N,$$

which implies that the restriction of π_2 to N' maps surjectively onto $\pi_2(N)$:

$$N' \twoheadrightarrow \pi_2(N).$$

The fact that $L_{p^{\alpha+2}}^N = F_{\alpha} \subseteq L_{p^{\alpha}} = L_{p^{\alpha+2}}^{\ker(\pi_1 \circ \pi_2)}$ implies that

$$\pi_2^{-1}(\ker \pi_1) = \ker(\pi_1 \circ \pi_2) \subseteq N \subseteq \pi_2^{-1}(\pi_2(N))$$

so that

$$\ker \pi_1 \subseteq \pi_2(N).$$

Since $\alpha \geq \alpha_p$, we know that

$$\ker \pi_2 = I + p^{\alpha+1} M_{2 \times 2}(\mathbb{Z}/p\mathbb{Z}) \quad \text{and} \quad \ker \pi_1 = I + p^{\alpha} M_{2 \times 2}(\mathbb{Z}/p\mathbb{Z})$$

Now pick any

$$\begin{split} I + p^{\alpha}A \in \ker \pi_1 \\ \text{and find a pre-image } X &= I + p^{\alpha}A + p^{\alpha+1}B \in N'. \text{ But then} \\ X^p &\equiv I + p^{\alpha+1}A \mod p^{\alpha+2} \in N', \end{split}$$

and so $I + p^{\alpha+1}M_{2\times 2}(\mathbb{Z}/p\mathbb{Z}) = \ker \pi_2 \subseteq N'$. This together with (11) shows that N' = N, as desired. Replacing s by s + 1 and repeating the argument inductively, we conclude that $F_{\alpha_p+s-1} = F_{\alpha_p+k}$ for any positive integer $k \geq s-1$, so that in particular $F_{r+1} = F_r$. This finishes the proof of Lemma 8.

Proof of Lemma 9. The reasoning here is very similar to that of [5, Theorem 6.1, p. 49]. The first step is to prove

Sublemma 10. Fix any integers M_1 and M_2 with the property that $2 \nmid M_2$, $5 \nmid M_2$, and $gcd(M_1\Delta_E, M_2) = 1$. If $G(M_2) \simeq GL_2(\mathbb{Z}/M_2\mathbb{Z})$, then

$$G(M_1M_2) \simeq G(M_1) \times GL_2(\mathbb{Z}/M_2\mathbb{Z}).$$

Proof of Sublemma 10. Set $F := L_{M_1} \cap L_{M_2}$. We need to show that $F = \mathbb{Q}$. Suppose that $F \neq \mathbb{Q}$. Note that $1 \neq \operatorname{Gal}(F/\mathbb{Q})$ is a common quotient group of $G(M_1)$ and $G(M_2) \simeq GL_2(\mathbb{Z}/M_2\mathbb{Z})$. Replacing F by a subfield, we may assume that $\operatorname{Gal}(F/\mathbb{Q})$ is a common non-trivial simple quotient. We claim that this common simple quotient must be abelian. For a finite group G let $\operatorname{Occ}(G)$ denote the set of simple non-abelian groups which occur as quotients of subgroups of G. One easily deduces from [9, p. IV-25] that, for any positive integer M, $\operatorname{Occ}(GL_2(\mathbb{Z}/M\mathbb{Z}))$ is equal to

$$\left(\bigcup_{\substack{p|M\\p>5\\p\equiv\pm1 \bmod 5}} \{PSL_2(\mathbb{Z}/p\mathbb{Z}), A_5\}\right) \cup \left(\bigcup_{\substack{p|M\\p>5\\p\equiv\pm2 \bmod 5}} \{PSL_2(\mathbb{Z}/p\mathbb{Z})\}\right) \cup \left(\bigcup_{\substack{p|M\\p=5}} \{A_5\}\right).$$

(Note that $A_5 \simeq PSL_2(\mathbb{Z}/5\mathbb{Z})$.) One can use elementary group theory to show that

{simple non-abelian quotients of $GL_2(\mathbb{Z}/M\mathbb{Z})$ } $\subseteq \bigcup_{\substack{p|M\\p>3}} \{PSL_2(\mathbb{Z}/p\mathbb{Z})\}.$

Thus, the assumptions on M_1 and M_2 imply that $\operatorname{Gal}(F/\mathbb{Q})$ must be abelian. Since M_2 is odd, the commutator subgroup

$$[GL_2(\mathbb{Z}/M_2\mathbb{Z}), GL_2(\mathbb{Z}/M_2\mathbb{Z})] = SL_2(\mathbb{Z}/M_2\mathbb{Z}),$$

which implies that F is contained in the cyclotomic field

$$F \subseteq \mathbb{Q}\left(\exp\left(\frac{2\pi i}{M_2}\right)\right).$$

Let p be a prime ramified in F. We see that p must divide the discriminants of both L_{M_1} and $\mathbb{Q}\left(\exp\left(\frac{2\pi i}{M_2}\right)\right)$, which is impossible since $\gcd(M_1\Delta_E, M_2) = 1$. Since \mathbb{Q} has no everywhere unramified extensions, we have arrived at a contradiction. Thus, we cannot have $F \neq \mathbb{Q}$, and the sublemma is proved.

To prove Lemma 9, we first prove by induction on the number of primes p dividing n_2 that in fact

(12)
$$G(n_2) \simeq GL_2(\mathbb{Z}/n_2\mathbb{Z}).$$

The case where n_2 is a power of a prime p > 5 follows from (4). Then, (12) is proved by writing $n_2 = p^n M$ with $n \ge 1$ and $p \nmid M$ and by applying Sublemma 10 with $M_1 = p^n$ and $M_2 = M$. Finally, to prove Lemma 9, we apply the sublemma with $M_i = n_i$.

We end by asking the following weakening of Question 2.

42

Question 11. Fix a number field K. Does there exist a constant C_K so that for each prime number p one has

$$n_K(p) \le C_K,$$

where $n_K(p)$ is the exponent occurring in Theorem 6?

Conditional upon an affirmative answer to this question, Theorem 7 together with [3, Theorem 2] would imply that for any non-CM elliptic curve E over \mathbb{Q} , one has

$$m_E \ll \left(\prod_{p \le B_E} p\right)^{C_{\mathbb{Q}}+4} \cdot \left(\prod_{p \mid \Delta_E} p\right)^5,$$

where

$$B_E := \frac{4\sqrt{6}}{3} \cdot N_E \prod_{p \mid \Delta_E} \left(1 + \frac{1}{p}\right)^{1/2} + 1$$

 N_E denoting the conductor of E.

Acknowledgments

I would like to thank C. David and A. C. Cojocaru for stimulating discussions and for comments on an earlier version.

References

- K. Arai, On uniform lower bound of the Galois images associated to elliptic curves, preprint (2007). Available at http://arxiv.org/abs/math/0703686.
- [2] I. Chen, The Jacobians of non-split Cartan modular curves, Proc. London Math. Soc. (3) 77, no. 1 (1998), 1–38. MR1625491 (99m:11068)
- [3] A. C. Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic curves, with an appendix by Ernst Kani, Canad. Math. Bull. 48 (2005), no. 1, 16–31. MR2118760 (2005k:11109)
- [4] A. Kraus, Une remarque sur les points de torsion des courbes elliptiques, C. R. Math. Acad. Sci. Paris, **321**, Série I (1995), 1143–1146. MR1360773 (97a:11085)
- [5] S. Lang and H. Trotter, Frobenius distributions in GL₂-extensions, Lecture Notes in Math., 504, Springer-Verlag, Berlin, 1976. MR0568299 (58:27900)
- [6] D. Masser and G. Wüstholz, Galois properties of division fields of elliptic curves, Bull. London Math. Soc. 25 (1993), 247–254. MR1209248 (94d:11036)
- [7] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44, no. 2 (1978), 129–162. MR482230 (80h:14022)
- [8] P. E. Parent, Towards the triviality of $X_0^+(p^r)(\mathbb{Q})$ for r > 1, Compos. Math. 141, no. 3 (2005), 561–572. MR2135276 (2006a:11076)
- J-P. Serre, Abelian l-adic representations and elliptic curves, Benjamin, New York-Amsterdam, 1968. MR0263823 (41:8422)
- [10] _____, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331. MR0387283 (52:8126)
- [11] _____, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 123–201 (323–401). MR0644559 (83k:12011)

Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-Ville Station, Montréal, Québec H3C 3J7, Canada

E-mail address: jones@dms.umontreal.ca